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Abstract

Cooperative Adaptive Cruise Control (CACC) is an innovative and promising vehicle technology
that increases safety and road throughput, while decreasing traffic jams and fuel consumption.
In real-life scenarios, vehicles in a platoon are likely to have heterogeneous longitudinal dynam-
ics, which poses a challenge to the design of a CACC system. In this regard, a control strategy
has been developed in the Integrated Vehicle Safety department at TNO intended to improve
platoon cohesion when the vehicles have heterogeneous and dynamic acceleration limits. Using
a multi-layer control approach, the control scheme prevents the platoon leader from accelerating
beyond the capabilities of the following vehicles. In this thesis, the asymptotic stability of such a
control strategy is thoroughly analyzed using a piecewise affine modelling framework, combined
with classical frequency domain analysis, numerical methods for semi-definite programming, and
computer simulations. Furthermore, an alternative control scheme is proposed, for which a stabil-
ity analysis is conducted as well. The proposed control scheme is designed to overcome limitations
of the existing multi-layer CACC strategy in terms of scalability and transient performance. The
results from numerical analyses and computer simulations confirm stable responses and adequate
performance of these control schemes.
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Chapter 1

Introduction

In present days, vehicle automation is attracting a considerable amount of attention from the
automotive industry and the scientific community around the globe. Automation in passenger
and commercial vehicles is expected to increase road safety by preventing traffic accidents related
to human error [1]. Furthermore, as automated vehicles progressively replace manually driven ones,
traffic congestion is expected to decrease [5]. In addition, vehicle automation can also contribute
to reduce fuel consumption and, consequently, exhaust emissions [22].

Cooperative Adaptive Cruise Control (CACC) is an example of such vehicle automation of the
longitudinal vehicle motion. The purpose of CACC is to automatically control the acceleration
and deceleration of the vehicle in order to maintain a desired distance to the preceding vehicle.
To achieve this, a CACC system relies on measurements of relative distance and relative speed
with respect to the predecessor, which are acquired for example with a radar and cameras. Ad-
ditionally, CACC employs wireless communication between vehicles to transmit relevant signals
between platoon members. This communication allows the host vehicle to react faster to changes
in acceleration of the predecessor.

In the field of vehicle automation, the term vehicle platoon is often used to refer to a set of
vehicles that follow each other, while interacting through a sensing and (possibly) a communication
network. Vehicles driving in a platoon while employing CACC can follow each other at a short
inter-vehicle distance [13], which is beneficial in terms of road throughput (i.e., more vehicles can
fit on the road). Moreover, when the vehicles drive sufficiently close to each other, the aerodynamic
drag is reduced [22]. This can provide a significant reduction of fuel consumption, in particular
for heavy-duty trucks.

An additional benefit of CACC is its potential to attenuate disturbances as these propagate up-
stream through the platoon. As expressed in [14], the notion of string stability refers to the
evolution of disturbances across the vehicular platoon. Disturbances might originate, for example,
from variations in the acceleration of the leading vehicle. String stable behavior is desired because
it achieves smoother traffic flow (i.e., with less accelerating and decelerating) and prevents the
so-called ghost traffic jams.

Still, various challenges need to be addressed before CACC becomes a mature technology that can
be commercially available. For instance, the fact that vehicles in a platoon might have different
longitudinal dynamics is a key aspect that has motivated several research studies. Designing a
CACC system for platoons of heterogeneous vehicles is a complex task because one must consider
that different vehicles might have very different responses to the same input. Moreover, vehicles
have a limited engine torque, which restricts their acceleration capabilities. If the vehicles in a
platoon have heterogeneous torque limitations, the cohesion of the platoon might be compromised
if the CACC system does not take into account the limitations in acceleration.
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CHAPTER 1. INTRODUCTION

To the best of the author’s knowledge, a comprehensive study addressing the issues mentioned
previously has not been conducted yet. The present thesis intends to design and analyze a CACC
strategy that provides adequate performance, focusing particularly on platoon cohesion, while
considering heterogeneities in the acceleration capabilities of the platoon members.

1.1 Literature survey

A vast amount of literature addresses the design, asymptotic stability, and string stability prop-
erties of CACC controllers. In various studies, the authors assume all vehicles in the platoon to
have identical longitudinal dynamics (cf. [12], [13], [24]). However, in reality, even for a platoon of
vehicles of the same brand and model, differences in the longitudinal dynamics can be expected.
To broaden its scope of application, a CACC system should be able to deal with heterogeneous
vehicles. To identify what solutions have been proposed to address heterogeneities in the vehicle
platoon, a literature survey is conducted and the relevant findings are presented here.

1.1.1 Heterogeneous actuation dynamics

In various publications that deal with vehicular platooning, the longitudinal dynamics of the vehi-
cle are represented with a third-order linear dynamic model that describes the position, velocity,
and acceleration of the vehicle, with the input being a desired acceleration. In such models, the
actuation dynamics is modelled as a first-order lag filter characterized by a certain time constant.
As explained in [13], to arrive at this linear model, it is assumed that a low-level controller is
used to achieve input-output linearization of a more complex, non-linear model for the driveline
dynamics, which considers the engine and (possibly) the braking dynamics.

It could be assumed that all vehicles in the platoon employ a low-level controller that linearizes
the driveline dynamics in such a way that all vehicles behave as if they all had the same time
constant for the actuation dynamics. This approach might not have wide acceptance from the
drivers, since the potentially fast driveline dynamics of a sports car would be hindered by the
slow dynamics of other platoon members. Alternatively, various authors have proposed CACC
controllers considering heterogeneous time constants. For instance, in [18] a decentralized control
strategy is proposed with a one-vehicle look ahead topology, i.e., the desired acceleration of the
preceding vehicles serves as a feedforward signal for the host vehicle. The host vehicle must be
informed about the actuation dynamics of the predecessor to compensate for the difference with
respect to its own actuation dynamics, which is done using a lead/lag filter.

A different approach to handle heterogeneous actuation dynamics can be found in [3], where the
authors represent the heterogeneous time constants as an uncertainty around a nominal value and
propose an adaptive controller to estimate the actual value of the time constant. The authors also
propose a switching mechanism to alternate from CACC to Adaptive Cruise Control (ACC), in
case the inter-vehicle communication fails.

Yet another example can be found in [15], where the authors consider heterogeneous actuation
dynamics and they evaluate various communication topologies, such as one-vehicle look-ahead,
leader-following, and a combination of these two. The authors propose decentralized feedback
controllers where the control gains are chosen differently for each vehicle in the platoon, depending
on its actuation dynamics. Additionally, the authors define string stability for a heterogeneous
platoon as the property of maintaining bounded spacing errors, regardless of the platoon size and
vehicle ordering (i.e., whether a vehicle with slow actuation dynamics is followed by a vehicle with
faster dynamics or vice-versa).
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CHAPTER 1. INTRODUCTION

1.1.2 Heterogeneous resistance forces

Turning now to other sources of heterogeneity, some authors have considered heterogeneous resis-
tance forces acting on the vehicles. For example, these forces can be related to the inertia, i.e.,
vehicle mass, aerodynamic drag, rolling resistance, and gravitational forces due to the slope of the
road. Some relevant examples found in the literature that focused on heterogeneity with respect
to these forces are described next.

Already in the 1960’s, vehicular platooning for passenger transportation was being analyzed. For
instance, [8] used optimal control theory to design a controller that regulates the spacing and
velocity errors of a string of vehicles with heterogeneous masses and drag coefficients. However,
the authors point out that their approach is limited because each vehicle needs information from all
the other platoon members to determine its control input. Another example dating from the 90’s
can be found in [16], where the authors discuss a decentralized feedback control designed using
a pole-placement approach where heterogeneity with respect to aerodynamic drag and vehicles
mass is treated as an external perturbation. However, these authors do not address the problem
of platoon cohesion.

The effect of heterogeneous resistance forces has also been modelled as uncertainty in the longi-
tudinal dynamics or as external disturbances. For instance, in [2] and [9] the authors use robust
control techniques to design a CACC controller for vehicles with uncertain dynamics, considering
distinct actuation dynamics for the engine and braking system of the vehicle. On the other hand,
in [21] sliding mode control is used to deal with the uncertainty in the air drag coefficient, slope
of the road, and rolling resistance.

1.1.3 Heterogeneous constraints

Apart from vehicle heterogeneity, an additional challenge in the design of CACC arises from
possible constraints in velocity or acceleration, as a consequence of limited actuator capabilities,
e.g., limited engine or braking torque. The work of some authors that have considered constraints
on the control inputs are discussed next.

Some CACC controllers have been proposed to deal with actuator saturation. In [6], a method
is proposed to determine acceptable control gains, depending on the initial conditions of the
vehicle (i.e., initial velocity, acceleration, and spacing error), to prevent the control input for the
vehicle from exceeding a certain saturation level. A different approach can be found in [19], where
an error-governor methodology is used to prevent integral windup when the vehicle reaches its
saturation level. However, the main limitation of these studies is that the saturation level is
assumed to be the same for all platoon members, which implies they are capable of reaching the
same maximum acceleration. Furthermore, these authors do not explore the effect of actuator
saturation on platoon cohesion when one or more vehicles are in saturation.

In [24], the authors employ consensus control to handle a constraint in the velocity of one of the
platoon members. The authors propose a decentralized controller with a bidirectional communi-
cation topology, where the desired acceleration for each vehicle is determined based on the input
of the preceding vehicle, the spacing error of the following vehicle, and the spacing error of the
host. The authors do not analyze the case where more than one vehicle has a velocity constraint
and no acceleration constraints are considered, which limits the scope of their technique.

An interesting control approach is proposed in [25], where the authors consider vehicles with
heterogeneous actuation dynamics and input constraints. In this work, model predictive control
is used to deal with heterogeneous constraints on the driving/braking torque of the vehicles.
However, the authors only present results for the case when the heterogeneous constraints on the
driving torque still allow all the vehicles to develop the same acceleration levels. No discussion of
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CHAPTER 1. INTRODUCTION

heterogeneous acceleration limits is offered therein.

Yet another example can be found in [17], where the authors consider a platoon of vehicles subject
to a dynamic acceleration limit defined as a function of the vehicle velocity and the slope of the
road. Furthermore, the authors consider vehicles with different power-to-weight, meaning the
acceleration limits among the platoon members are heterogeneous. The authors use a leader-
predecessor following topology so that the desired acceleration for all vehicles is influenced by the
leader’s and the predecessor’s input. With this topology, when a vehicle reaches its acceleration
limit, the vehicle behind it might crash into the former in an attempt to follow the leader’s
motion. The control strategy proposed therein aims to prevent collisions in such a scenario, which
is achieved by means of an adaptive spacing policy. However, their approach is not designed to
guarantee platoon cohesion when one of the vehicles reaches its acceleration limit.

1.2 Research approach

The various publications encountered in the literature review in Section 1.1 indicate that extensive
research on vehicle platooning has been conducted, considering various types of heterogeneity.
However, few authors have considered vehicles with heterogeneous constraints in acceleration, let
alone dynamic acceleration constraints, i.e., constraints that dependent on the vehicle’s velocity.
Moreover, to the best of the author’s knowledge, the adverse effect of acceleration limits on the
cohesion of the platoon has not been addressed. To this end, in [23] the authors propose a
novel multi-layer CACC strategy that improves platoon cohesion when the vehicles are subject to
heterogeneous and dynamic acceleration limits.

In [23], the authors present results from simulations and experiments that indicate an adequate
performance of the control strategy proposed therein. However, the authors do not analyze the
stability of the platoon dynamics, neither do they explore the scalability of their technique nor the
influence of the vehicle parameters and control gains on performance. These open issues motivate
the research described in this thesis.

The objectives for this project are as follows. First, we aim to derive mathematical models for
the closed-loop platoon dynamics of vehicles subject to heterogeneous and dynamic acceleration
limits, when applying the CACC strategy proposed in [23]. Then, using these models, we aim
to perform stability analyses in order to provide further insight on the behavior observed in the
simulation results from [23]. A further objective is to assess the scalability of this strategy and
analyze the influence of the vehicle parameters, control gains, and the spacing policy on stability
and performance. A final objective is to develop an improved CACC strategy that achieves better
performance in face of dynamic acceleration limits.

As will be explained later, the control scheme proposed in [16] involves various non-linearities
that can be represented as a switching system. This makes the stability analysis a complex task.
To address this problem, in this report the platoon dynamics are modelled as piecewise affine
(PWA) systems, for which asymptotic stability can be proven using piecewise quadratic Lyapunov
functions (PWQLF) that are derived from linear matrix inequalities (LMI), which can be solved via
numerical methods [4]. In addition to the analytical and numerical tools used to model and assess
the stability of the platoon dynamics, computer simulations are also conducted to evaluate the
performance of the control algorithms in different scenarios, including more realistic phenomena
such as time delays in communication, gear-shifting, and non-linear, dynamic acceleration limits.

4



CHAPTER 1. INTRODUCTION

1.3 Outline

The content of this report is organized as follows. Chapter 2 formally describes the platooning
problem being addressed, including the model used for the vehicle dynamics and the dynamic
acceleration limitation. Additionally, in Chapter 2 the multi-layer CACC strategy from [23] is
presented, together with an alternative strategy that intends to improve performance and extend
the scalability of this platooning technique. In Chapter 3, the mathematical theory employed to
model the platoon dynamics and analyze asymptotic stability is presented and is applied to the
multi-layer CACC strategies, while considering different values for the parameters in the model.
Chapter 4 presents simulation results that compare the benefits and limitations of the control
strategies when applied to platoons of various sizes. Finally, Chapter 5 offers conclusions and
recommendations for future work.
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Chapter 2

Multi-layer CACC strategies

The structure of this chapter is as follows. Section 2.1 presents the control problem. Hereto,
the model used to represent the longitudinal vehicle dynamics is described, together with the
dynamic acceleration limit that results from a limitation in engine torque. In Section 2.2, the
multi-layer CACC strategy proposed in [23] is described. An alternative CACC design is proposed
in Section 2.3.

2.1 Problem description

2.1.1 Vehicle model

A platoon of n vehicles is considered. For all vehicles in the platoon, the longitudinal dynamics
are described with the following non-linear dynamics:⎧⎪⎨
⎪⎩

q̇i(t) = vi(t)

v̇i(t) =
1

mi+meq(vi)

(
ηT id(vi)

Rw
Ti(t)− Crlv

2
i (t)−Brlmivi(t)−Arlmi cos (θr(t))−mig sin (φr(t))

)
Ṫi(t) = − 1

τi
Ti(t) +

1
τi
Tref,i (t− θg) ,

∀i ∈ I,
(2.1)

where i denotes the vehicle index and the set I = {1, · · · , n} collects all vehicle indices. Herein, t
denotes time, qi is the position of vehicle i, defined at the rear bumper as illustrated in Figure 2.1),
vi is the velocity, and Ti is the engine torque. The input to the system is Tref,i, the desired torque,
which is subject to the actuation delay θg. The parameter τi corresponds to the driveline time-
constant.

In (2.1), mi is the (heterogeneous) vehicle mass, ηT is the transmission efficiency parameter, Rw

is the wheel radius, id(vi) is the driveline ratio, and meq(vi) is the equivalent mass of the rotating
components in the driveline, defined as

meq(vi) =
i2d(vi)Je + Jw

R2
w

, (2.2)

where Je and Jw are the moments of inertia of the engine and wheels, respectively. The coeffi-
cients Crl, Brl, and Arl are associated to aerodynamic drag, internal friction, and road friction,
respectively. The slope of the road is defined by the angle φr(t) and the gravitational constant is
denoted with g. In general, all the vehicle parameters in (2.1) and (2.2) could be different between

7
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Figure 2.1: Schematic of a vehicle platoon.

platoon members, i.e., the parameters could be considered as being heterogeneous. However, in
this report only the vehicle mass is considered to be heterogeneous as this parameter may vary
significantly from one vehicle to another, especially when dealing with commercial vehicles due
to changes in their cargo. The effect of heterogeneity with respect to other vehicle parameters is
considered to be beyond the scope of this research.

In order to model the effect of gear-shifting, the driveline ratio id(vi) is defined as a piecewise-
constant function of velocity. In other words, id(vi) takes different constant values for different
velocity ranges, based on a simplistic gear-shifting strategy (an example of this strategy is provided
later in the report). Notice that, as the driveline ratio id(vi) appears in expression (2.2), the
equivalent mass meq(vi) is also a piecewise-constant function of velocity.

Assuming that the engine torque is subject to an upper-bound Tmax,i, then the vehicle is only able
to develop a certain maximum acceleration. In fact, setting Ti = Tmax,i in the second equation in
(2.1) leads to the following expression for the maximum acceleration of vehicle i:

amax,i(vi) =
1

mi +meq

(
ηT id
Rw

Tmax,i − Crlv
2
i −Brlmivi −Arlmi cos (φr(t))−mig sin (φr(t))

)
,

∀i ∈ I.
(2.3)

As the velocity of the vehicle appears in (2.3), the function amax,i(vi) represents a dynamic ac-
celeration limit for the vehicle. Moreover, as the driveline ratio id and equivalent mass meq are
piecewise-constant in vi, the function amax,i(vi) is piecewise-continuous in vi. As stated previously,
in this study it is assumed that the vehicle mass mi can differ between vehicles in the platoon,
which results in heterogeneous acceleration limits. Notice that the driveline time-constant τi does
not influence the acceleration limit defined in (2.3). Since this study focuses primarily on the
effect of limitations in acceleration, in the remainder of this work the driveline time-constant is
assumed to be homogeneous for all vehicles in the platoon (i.e., τi = τ, ∀i ∈ I).
As explained in [23], with a suitable control law for the desired torque Tref,i, the dynamics in (2.1)
can be linearized using an input-output feedback linearization technique. To apply this technique
one takes the time derivative of the expression for v̇i in (2.1) and then an expression for the
reference torque Tref,i can be derived such that the resulting expression for Ṫi cancels out the
non-linearities in the expression for v̇i. For the sake of simplicity, this linearization procedure is
applied assuming the driveline ratio id and slope of the road θg are time invariant; this means that
the expression for Tref,i is not able to linearize the dynamics during transients when the driveline
ratio or the slope of the road are changing. The resulting linear dynamics are as follows [13]:⎧⎨

⎩
q̇i(t) = vi(t)
v̇i(t) = ai(t)
ȧi(t) = − 1

τ ai(t) +
1
τ uref,i (t− θg)

, ∀i ∈ I, (2.4)

where ai is the acceleration and the new input uref,i corresponds to the desired acceleration that
is subject to the actuation delay θg. To account for the limit in engine torque in the linearized
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dynamics, the function amax,i as in (2.3) is used to restrict the input uref,i with the following
non-linear expression:

uref,i = min [ amax,i(vi) , ui ] , ∀i ∈ I, (2.5)

where ui is the desired acceleration prescribed by a controller defined later in this chapter. The
restriction presented in (2.5) prevents the desired acceleration from reaching values that are beyond
the capabilities of the vehicle. The linear system in (2.4) together with the restriction in (2.5) are
used in this study to represent the longitudinal dynamics of a vehicle that is subject to a dynamic
acceleration limit.

2.1.2 Spacing policy and platoon model

Consider a group of n vehicles that are following each other forming a platoon, as represented in
Figure 2.1. Then, the inter-vehicle distance di (i.e., the gap between consecutive vehicles) can be
defined as

di(t) = qi−1(t)− qi(t)− Li, ∀i ∈ I \ {1} , (2.6)

where Li is the length of vehicle i.

The vehicles should maintain a desired inter-vehicle distance ddes defined with the following spacing
policy:

ddes,i(t) = r + hvi(t), ∀i ∈ I \ {1} , (2.7)

where r is the standstill distance (i.e., the gap that should remain between vehicles if they come
to a full stop) and h is the desired timegap (i.e., the time it takes to travel a certain distance at
the current speed). As explained in [14], a velocity-dependent spacing policy can contribute to
achieve string stability (i.e., disturbance attenuation in upstream direction). Combining (2.6) and
(2.7), the spacing error between consecutive vehicles is defined as

ei(t) = di(t)− ddes(t) = qi−1(t)− qi(t)− Li − r − hvi(t), ∀i ∈ I \ {1} . (2.8)

A state space representation of the open-loop platoon dynamics is provided next. Let the state
vector for vehicle i be

xi =
(
ei vi ai

)T
, ∀i ∈ I \ {1} , (2.9)

and for vehicle 1 the state vector is x1 =
(
v1 a1

)T
. Combining the linear dynamics in (2.4)

and the spacing error definition in (2.8), the open-loop platoon dynamics are described with the
following set of differential equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v̇1 = a1
ȧ1 = − 1

τ a1 +
1
τ uref,1

ėi = vi−1 − vi − hai
v̇i = ai
ȧi = − 1

τ ai +
1
τ uref,i,

(2.10)

for i ∈ I \ {1}. The inputs for this system are the desired accelerations uref,i for i ∈ I as
defined in (2.5), which in turn depend on the acceleration limits amax,i defined in (2.3) and the
intended desired accelerations ui prescribed by a controller that will be presented later in this
report. Because of the dynamic acceleration limit in (2.3) and the minimum function in (2.5), the
platoon dynamics can be described as a non-linear, state-based switching system.

2.1.3 Control objectives

The first objective for the CACC controller is to guarantee that the platoon members follow each
other while realizing the inter-vehicle distance specified by the spacing policy. Hence, the spacing
errors should converge to zero (i.e., limt→∞ ei(t) = 0, ∀i ∈ I \ {1}).

9
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The second objective is to guarantee stability for the closed-loop platoon dynamics. In other words,
the states of all vehicles in the platoon, including internal states associated to the controller, should
remain bounded. Furthermore, asymptotic stability of the platoon dynamics is desired, i.e., the
states should converge to a desired equilibrium, which corresponds to a point where all vehicles
drive at the same cruising speed, while the spacing errors, accelerations, and control inputs are
equal to zero.

The objectives described before should be achieved for a platoon of vehicles that are subject to
heterogeneous and dynamic acceleration limits as defined in (2.3).

2.2 Baseline multi-layer CACC strategy

This section describes the multi-layer CACC controller proposed in [23], which was developed to
achieve the control objectives presented in Section 2.1.3. This multi-layer scheme is illustrated in
Figure 2.2.

The lower layer of this control scheme consists of a CACC with one-vehicle look ahead topology
based on [13], which defines the following dynamics for the desired acceleration ui:

u̇i(t) = − 1

h
ui(t) +

1

h
uref,i−1 (t− θc) +

1

h
(kpei(t) + kdėi(t)) , ∀i ∈ I \ {1} , (2.11)

where kp and kd are proportional and derivative gains, respectively. The signal uref,i−1 is the
desired acceleration of the preceding vehicle as defined in (2.5), which serves as a feedforward term
that improves vehicle following and contributes to string stability. Vehicle i receives the signal
uref,i−1 from its predecessor via wireless communication, which introduces a communication delay,
denoted as θc.

As discussed in [13], when the vehicles have no acceleration limit (i.e., amax,i(vi) is unbounded
∀vi > 0 and i ∈ I), the control law (2.11) achieves asymptotically stable error dynamics for
any positive value of the timegap h, as long as the gains satisfy kp > 0 and kd > kpτ . In [13],
the authors also study for which combinations of communication delay and timegap the platoon
exhibits string stability (i.e., disturbances are attenuated as these propagate upstream through
the platoon). The interested reader may refer to [14] for a formal definition of string stability and
for details on which values of h and θc achieve string stability.

Because the first vehicle has no predecessor, expression (2.11) does not apply to vehicle 1. Instead,
the desired acceleration u1 is prescribed by a simple cruise controller, as follows:

u1(t) = kv(vdes − v1(t)), (2.12)

where vdes is a constant desired speed and kv is a positive gain.

As expressed in (2.5), the CACC input ui defined in (2.11) is used together with the acceleration
limit amax,i from (2.3) to define the desired acceleration uref,i. The signal uref,i is the input to the
linear system (2.4) that represents the longitudinal dynamics of the vehicle. The block-diagram
in Figure 2.3 illustrates this relation.

The coordination layer

Turning now to the coordination layer in this control scheme, this is used to convey information
about the acceleration limits of the platoon members. As illustrated in Figure 2.2, the vehicles
behind the leader send the information vector yi ∈ R

3 to their corresponding node in the coor-
dination layer. This vector is defined as yi = (amax,i, ei, ėi)

T . The coordination variable ξi, a

10



CHAPTER 2. MULTI-LAYER CACC STRATEGIES

Figure 2.2: Schematic overview of a platoon with the multi-layer controller from [23].

Figure 2.3: Block diagram of vehicle i, for i ∈ I \ {1}, with the CACC controller (2.11) and
dynamic acceleration limit (2.3).

scalar variable, is defined based on the vector yi and the coordination variable from the following
vehicle ξi+1, according to the following expressions:

ξi(t) = f (yi(t), ξi+1(t− θc)) := min [ Kyi(t) , ξi+1(t− θc) ] , ∀i ∈ I \ {1, n}
ξn(t) = Kyn(t),

(2.13)

with gain vector K = (1, − γp, − γd), where γp > 0 and γd > 0 are proportional and derivative
gains, respectively. Notice that vehicle i uses the coordination variable from the following vehicle
ξi+1 which is transmitted via wireless communication, so that a time delay θc is considered in this
transmission.

As a result of (2.13), the smallest of all Kyi = amax,i − γpei − γdėi, for i ∈ I \ {1}, is propagated
downstream until it reaches the platoon leader via the variable ξ2. The platoon leader uses the
information in ξ2 to restrict its desired acceleration uref,1 as follows:

uref,1(t) = min [ u1 , amax,1(v1) , ξ2(t− θc) ] , (2.14)

where u1 is the acceleration setpoint from the cruise controller in (2.12).

11
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The restriction defined by (2.14) prevents vehicle 1 from accelerating beyond the capabilities of
the slowest member in the platoon. Suppose that vehicle k is the one with the lowest value of
Kyi for a point in time at which this information is received by the lead vehicle. In this case,
the coordination variable reaching the leader would take the value ξ2 = Kyk(t − θT ), where θT
corresponds to the total communication delay between vehicle k and vehicle 1. Then, in view of
(2.14), the leader would not exceed the acceleration limit of vehicle k. Furthermore, if the spacing
error of vehicle k starts to increase, then the term −γpek in the coordination variable reduces
the acceleration allowed for the platoon leader to a value below the feasible limit of vehicle k.
In this way, the spacing error of the slowest member can be regulated when such vehicle reaches
its acceleration limit. An example that illustrates this behavior is presented later in the report.
As explained in [23], the term −γdėi is included in the coordination variable as a damping factor
which prevents a cyclic increase and decrease in the spacing error of a vehicle that is driving near
its limit.

As illustrated in Figure 2.2, in this control scheme only the platoon leader uses information from
the coordination layer to modify its behavior. In other words, the coordination layer does not
interfere with the CACC controller that defines the acceleration setpoint for the vehicles behind
the leader. This preserves, to some extent, the string stability properties of a nominal CACC, as
explained next.

Suppose that only one of the vehicles has limited acceleration, let us say vehicle k. Then, with
this multi-layer technique string stability can still be guaranteed for those vehicles between the
leader and the limited one (i.e., vehicles 2 to k − 1) and also for those behind the slowest (i.e.,
vehicles k + 1 to n). This is true because vehicles 2 to k − 1 and k + 1 to n would be using
the desired acceleration prescribed by a string-stable CACC (assuming the values for the timegap
and communication delay guarantee string stability in the first place). A formal proof for the
string stability properties of this multi-layer technique is beyond the scope of this work. A more
important aspect is addressed first: asymptotic stability of the closed-loop platoon dynamics,
thereby addressing the first and second control objectives formulated in Section 2.1.3.

The multi-layer controller described before is able to maintain platoon cohesion even when the
vehicles have different acceleration capabilities and it also provides upstream disturbance attenu-
ation. These properties are illustrated in Chapter 4 with results from computer simulations.

The main limitation of the baseline multi-layer CACC comes from the fact that only the desired
acceleration of the platoon leader is affected directly by the coordination layer. When the platoon
is accelerating and the slowest member, vehicle k, reaches its limit, then its spacing error starts
to increase. In such case, there is a phase lag before the terms γpek and γdėk have an effect on
the motion of vehicle k − 1. This actuation lag depends on the number of vehicles between the
leader and vehicle k, the total communication delay between vehicle k and vehicle 1, and the
chosen timegap for the spacing policy. The simulations presented later in this report indicate that
when the slowest vehicle is located sufficiently back in the platoon, it becomes hard to tune the
gains γp and γd to guarantee platoon cohesion and at the same time obtain a smooth transient
response for the vehicles’ acceleration. Hence, the scalability of this control approach is limited.
This limitation is clarified with the analyses and simulation results in the following chapters of
this report. In the following section, an alternative control strategy is proposed aimed at tackling
this limitation.

2.3 Alternative multi-layer CACC strategy

This section describes an alternative multi-layer CACC strategy that is proposed to satisfy the
control objectives presented in Section 2.1.3 and overcome the limitations of the CACC scheme
discussed in the previous section. The proposed strategy consists of a lower layer where a CACC,
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Figure 2.4: Schematic overview of a platoon with the proposed multi-layer controller.

with a control law defined as in (2.11), prescribes the desired acceleration to achieve the vehicle
following objective, while a coordination layer is used to determine an acceleration level that is
feasible for all the vehicles in the platoon. Compared to the baseline CACC strategy where only
the platoon leader is affected by the coordination layer, in the control scheme proposed here the
coordination variable directly influences the motion of all vehicles. The proposed control scheme
is illustrated in Figure 2.4.

In this novel design, the coordination variable ξi(t) is used to communicate only the acceleration
limit of the vehicles, without including information on the spacing error. Now the signal yi that
each vehicle sends to its corresponding node in the upper layer is a scalar variable defined as
yi(t) = amax,i(vi). Then, the coordination variable ξi is defined based on the variable yi and the
coordination variable from the following vehicle ξi+1, as follows:

ξi(t) = f (yi(t), ξi+1(t− θc)) := min [ yi(t) , ξi+1(t− θc) ] , ∀i ∈ I \ {1, n}
ξn(t) = yn(t),

(2.15)

This definition ensures that ξi = min [ amax,i , · · · , amax,n ]. The information in these coordi-
nation variables is then used to restrict the desired acceleration for every vehicle, as explained in
the coming paragraphs, but first an additional communication variable is introduced.

In the novel coordination layer design, a second variable σi(t) is used to transmit information of
the spacing error of vehicle i to the preceding vehicle. The variable σi(t) is defined as follows:

σi(t) = γpei + γdėi, ∀i ∈ I \ {1} , (2.16)

where γp > 0 and γd > 0 are proportional and derivative gains, respectively. The variable σi(t)
is transmitted from vehicle i to vehicle i− 1 only. Now, with the variables ξi and σi, the control
input for the vehicles, i.e., the desired acceleration, is defined as:

uref,i(t) = min [ ui , amax,i(vi), ξi+1(t− θc)− σi+1(t− θc) ] , ∀i ∈ I \ {n}
uref,n(t) = min [ un , amax,n(vn) ] ,

(2.17)

with u1 defined as in (2.12) and ui for i ∈ I \ {1} as in (2.11). The block-diagram in Figure 2.5
illustrates the interaction defined in (2.17).

With the non-linear control law proposed in (2.17), assuming vehicle k to be the vehicle with the
lowest acceleration limit, all vehicles from 1 to k − 1 are restricted directly by the acceleration
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Figure 2.5: Block diagram of vehicle i, for i ∈ I \ {n}, with acceleration limit from (2.3), desired
acceleration as defined in (2.17), and coordination variables as in (2.15) and (2.16).

limit of vehicle k. This eliminates the phase lag that is present in the baseline multi-layer CACC,
responsible for the poor performance in the case of large platoons or large values of the timegap h.
It is important to mention that, if the variable σi were not to be included in this control scheme,
then platoon cohesion would not be guaranteed. When the spacing error of vehicle i is increasing
because it is being restricted either by its acceleration limit or by the expression ξi+1 −σi+1, then
vehicle i − 1 is forced to reduce its acceleration thanks to the variable σi(t). It is more effective
to regulate the spacing error of the host by slowing down the vehicle in front, instead of slowing
down only the first vehicle in the platoon, as would be the case with the baseline controller

The proposed multi-layer scheme offers advantages with respect to the baseline technique describe
in 2.2, in particular with respect to the size of the platoon that can be handled and it expands the
range of timegap values for which platoon cohesion can be guaranteed. Nevertheless, as discussed
in Chapter 3, the stability analysis for the proposed control scheme is more involved compared
to the stability analysis for the baseline multi-layer controller . The benefits, disadvantages, and
limitations of both control schemes are discussed throughout this report to help assess which
control scheme performs better in a certain scenario.

It is worth mentioning that throughout this research project several attempts were made to design
a multi-layer CACC strategy that would perform appropriately under various circumstances. The
interested reader might refer to Appendix C, where alternative control strategies are described
which offer some improvement with respect to the baseline approach, but still suffer from limita-
tions compared to the algorithm described in this section.
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Chapter 3

Stability analysis

Having presented two distinct multi-layer CACC strategies in Chapter 2, the resulting asymptotic
stability of the closed-loop platoon dynamics is the focus of this chapter. First, the modelling
framework and tools used for the stability analysis are introduced as preliminaries in Section 3.1.
These tools are then applied to the control strategies in question and the results are presented in
the following sections.

3.1 Preliminaries

The closed-loop platoon dynamics that result from the control strategies described in Chapter 2
can be formulated as piecewise affine systems. A piecewise affine (PWA) system indicates that
the state space is partitioned into multiple regions where different linear or affine dynamics are
active. This mathematical model is suitable to represent systems with static non-linearities, such as
saturations, hysteresis, and relays. For instance, the min function used to define the coordination
variables and desired acceleration in the previous chapter can be modelled with a PWA system.
This section describes what a PWA system is and how a suitable Lyapunov function can be found
to prove the stability properties of the system. The content of this section is based on [4].

3.1.1 Piecewise affine systems

A piecewise affine system can be expressed as

ẋ(t) = Ajx(t) + bj for x(t) ∈ Xj , j ∈ J = {1, ..., N} , (3.1)

where x ∈ R
nx is the state vector and nx is the dimension of the state space. Then, Aj ∈

R
nx×nx are the system matrices, and bj ∈ R

nx are affine terms in the dynamics. The sets Xj ⊂
R

nx , referred to as cells, denote N different regions that compose the state space partition. The
subscript j denotes the index of the cell, and the set J collects the indices for the N cells.

The cells Xj are convex, possibly unbounded, polyhedra that result from dividing the state space
with a finite number of hyperplanes. The cells Xj can be defined with a set of linear inequalities,
as follows:

Xj = {x ∈ R
nx | Gjx+ gj � 0} , for j ∈ J , (3.2)

with Gj ∈ R
pj×nx and gj ∈ R

pj . The number of rows in Gj and gj , denoted by pj , corresponds
to the number of hyperplanes that delimit the cell Xj . The symbol � denotes an element-wise
inequality.
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Figure 3.1: Schematic representation the state space partition, before (left) and after (right)
extending the original boundaries. The solid black lines represent the original boundaries, while
the red dashed line indicates the extension of a boundary. The dynamics are the same in regions
k and k′.

In principle, the cells in the PWA model might be delimited by different numbers of hyperplanes.
However, for the stability analysis described in the next section, it is important that the boundaries
of all cells are extended globally, as represented schematically in Figure 3.1.

For a PWA system to have a well-defined solution, it is necessary (but not sufficient) for the cells
Xj to have a disjoint interior, meaning that adjacent cells may overlap only at the boundary. The
common boundary between two adjacent cells corresponds to a collection of points that lie on one
of the hyperplanes or on the intersection of multiple hyperplanes that are common to adjacent
cells. The previous fact implies that the overlap between adjacent cells is a set of dimension less
than or equal to nx − 1.

The definition in (3.1) restricts dynamics that correspond to each cell to be continuous up to
the cell boundary. However, in principle, the dynamics, i.e., the vector fields, from adjacent cells
might not be continuous at their common boundary. This gives rise to the possibility of sliding
modes, for which a unique solution might not exist. As explained in [4], the concept of Filippov
solutions can be used to define a unique solution even in the presence of attractive sliding modes.
Attractive sliding modes result in a more involved stability analysis. However, sliding modes are
not discussed further in this report because, as explained in upcoming sections, the PWA models
analyzed in this work have continuous dynamics.

3.1.2 Piecewise quadratic Lyapunov functions

For a PWA system, asymptotic stability of the origin, assuming this point is an equilibrium for
the dynamics, can be proven with a piecewise quadratic Lyapunov function (PWQLF). Such a
function can be (potentially) found by solving an optimization problem consisting of linear matrix
inequalities (LMIs). The method proposed in [4] for this purpose is described next.

First, it is necessary to make a distinction between cells that contain the origin and those cells
that do not. When referring to the origin, it corresponds to the point x0 = 0 ∈ R

nx . With this in
mind, let J0 ⊂ J be the set of indices for cells that contain x0, and J1 ⊂ J be the set of indices
for cells that do not. Notice that x0 lies on the common boundary of the cells with indices j ∈ J0

or in the interior of one cell in case J0 contains a single element.

For those cells Xj that contain the origin, it is required that the corresponding dynamics have
no affine terms, i.e., bj = 0, ∀j ∈ J0 , such that the origin is the equilibrium for the dynamics
associated to those cells. On the other hand, for the cells with indices j ∈ J1, the dynamics are
allowed to have affine terms, but in that case the point x that makes Ajx+ bj equal to zero, if it
exists, should not lie within the corresponding cell Xj . The previous conditions are necessary, but
not sufficient, to have global asymptotic stability of the origin.

To prove exponential stability of the origin for the system in (3.1), one can search for a piecewise
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quadratic Lyapunov function of the form:

V (x) =

⎧⎨
⎩

xTPjx, for x ∈ Xj , j ∈ J0[
xT 1

]
P̄j

[
x
1

]
, for x ∈ Xj , j ∈ J1,

(3.3)

where Pj ∈ R
nx×nx and P̄j ∈ R

(nx+1)×(nx+1) are symmetric matrices. The matrices P̄j for j ∈ J1

have the following structure:

P̄j =

[
Pj pj
pTj rj

]
. = xTPjx+ 2pTj x+ rj (3.4)

with Pj ∈ R
nx×nx , pj ∈ R

nx , and rj ∈ R.

The quadratic functions for j ∈ J1 in (3.3) have the following form:

[
xT 1

]
P̄j

[
x
1

]
= xTPjx+ 2pTj x+ rj . (3.5)

The terms 2pTj x+ rj in the expression above allow to handle possibly affine dynamics in the cells
Xj with j ∈ J1. The expression in (3.3) indicates that the function V (x) is composed of possibly
different quadratic functions associated to each cell in the state space partition.

To ensure the function V (x) is continuous at the boundary between cells, continuity matrices F̄j

are used. These matrices have the following structure:

F̄j =
[
Fj fj

]
=

[
F ′
j f ′

j

I(nx) 0(nx×1)

]
, for j ∈ J , (3.6)

with Fj ∈ R
(nx+m)×nx and fj ∈ R

(nx+m), where m denotes the total number of hyperplanes used
to define the state space partition. Here I(nx) is the identity matrix of dimension nx × nx, which
is included to give full row rank to F̄j [4]. The matrices F̄j are constructed using the equations of
the hyperplanes used to partition the state space with the procedure described in Appendix A, in
such a way that these matrices satisfy the following expression:

[
xT 1

]
F̄j

[
x
1

]
=

[
xT 1

]
F̄k

[
x
1

]
, for x ∈ Xj ∩ Xk, ∀j, k ∈ J . (3.7)

The expression above must be satisfied for any pair of cells that share a common boundary,
regardless of whether they both contain the origin, only one contains the origin, or neither of
them does. The continuity matrices F̄j are used to define the matrices Pj and P̄j in (3.3) as
follows:

Pj = FT
j TFj , j ∈ J0

P̄j = F̄T
j T F̄j , j ∈ J1,

(3.8)

where T is a symmetric matrix and Fj is the submatrix of the corresponding F̄j , as defined in (3.6).
In this way, continuity of the function V (x) is guaranteed.

If the function V (x) in (3.3) is indeed a Lyapunov function for the system (3.1), then it must be
positive and its time derivative V̇ (x) must be negative, except at the origin where both must be
equal to zero. The individual quadratic functions that conform V (x) need to satisfy these two
conditions inside their corresponding regions of the state space, but not necessarily outside of it.
A Lyapunov function with such characteristics proves asymptotic stability of the origin for a PWA
system, assuming the system (3.1) has no sliding modes. A piecewise quadratic function with the
aforementioned characteristics can be determined from a solution to the following set of LMIs [4]:{

Pj − ET
j UjEj > 0

AT
j Pj + PjAj + ET

j WjEj < 0
, j ∈ J0, (3.9)
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Figure 3.2: Mass-spring-damper system.

{
P̄j − ĒT

j UjĒj > 0
ĀT

j P̄j + P̄jĀj + ĒT
j WjĒj < 0

, j ∈ J1, (3.10)

with matrices Pj and P̄j as in (3.8), which means the matrix T is present in every LMI defined
by the expressions above. The unknown matrices in the set of LMIs in (3.9) and (3.10) are T ,
Uj , and Wj , which must all be symmetric. Furthermore, matrices Uj and Wj must contain only
non-negative elements. The reason for this restriction is explained in Appendix A. Moreover, the
matrix Āj is an augmented system matrix defined as:

Āj =

[
Aj bj

0(1×nx) 0

]
. (3.11)

The matrices Ej and Ēj are so-called cell bounding matrices which satisfy the following expressions:

Ejx � 0, for x ∈ Xj , j ∈ J0[
xT 1

]
Ēj

[
x
1

]
� 0, for x ∈ Xj , j ∈ J1.

(3.12)

The matrices Ej and Ēj are known and are constructed with the algorithm described in Appendix
A using the equations of the hyperplanes that bound the corresponding region.

The first expression in both (3.9) and (3.10) guarantees that the function V (x) is positive definite,
while the second expression guarantees that V̇ (x) is negative definite. The terms containing Uj or
Wj are introduced to relax the conditions for the individual quadratic functions in V (x), meaning
they are not required to be positive or strictly decreasing (along solutions of the PWA system)
outside of the cell where they are used. This relaxation is known as the S-procedure and is
explained in more detail in Appendix A.

It is important to point out that the feasibility of the LMIs presented before is only a sufficient
condition for stability. In other words, it is not always possible to find a PWQLF for a PWA
system that is asymptotically stable. Moreover, a stable PWA system might admit a PWQLF
which cannot be derived from these LMIs [4].

The methodology explained in this section is applied to assess the asymptotic stability of the
origin for a PWA model that describes the closed-loop platoon dynamics for the control schemes
described in Chapter 2. But first a simple example is provided to clarify how this methodology is
applied.

An illustrative example

Consider a mass-spring-damper system, as depicted in Figure 3.2. Both the spring and the damper
are assumed to behave differently in the expansion and compression strokes, as follows:
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Figure 3.3: Computed Lyapunov function for the mass-spring-damper system. State trajectories
for different initial conditions are shown (left), together with level curves for the Lyapunov function.
The different line styles of the level curves indicate the four regions of the state space partition.
The plot to the right illustrates the continuity of the PWQLF.

k(q(t)) =

{
k1 ; q(t) ≤ 0
k2 ; q(t) > 0

(3.13)

c(v(t)) =

{
c1 ; v(t) ≤ 0
c2 ; v(t) > 0

, (3.14)

where q(t) denotes the horizontal position and v(t) the horizontal velocity. This mechanical system
can be modelled using a PWA system with a state-space partitioned into four regions, each with
different linear dynamics. The equations of motion for the system are:

{
q̇(t) = v(t)
v̇(t) = − 1

m (k(q) · q(t) + c(v) · v(t)) . (3.15)

Choosing the state vector as x(t) = [q(t), v(t)]
T
, four system matrices can be derived from (3.13),

(3.14), and (3.15). In this example, the various dynamics have no affine terms, so that the origin
is a common equilibrium for all regions. Two lines divide the state-space: q(t) = 0 and v(t) = 0.
These equations are used to construct the matrices Ḡj defined in (3.2).

Solving the LMIs in (3.9) using the YALMIP toolbox for MATLAB [10], a PWQLF can be found
when the parameters are set to: m = 1 kg, k1 = 0.5 N

m , k2 = 1 N
m , c1 = 0.5 Ns

m , c2 = 1 Ns
m . The

obtained Lyapunov function is illustrated in Figure 3.3. The plot to the left shows various state
trajectories for different initial conditions, which all converge to the origin. Furthermore, the plot
contains level curves for the PWQLF. The plot to the right illustrates the Lyapunov function for
a subset of the state-space, where it can be seen that the function is continuous at the boundary
between regions. The obtained PWQLF proves global exponential stability of the origin for this
PWA system. The procedure described here will also be applied to assess the stability of the
platoon dynamics, but in that case it is not simple to visualize the obtained Lyapunov function
because of the high dimension of the state space.
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3.2 Translating static non-linearities into a PWA system

Deriving a PWA model for the closed-loop platoon dynamics can be a cumbersome task because of
the multiple non-linearities associated to the min functions used to introduce the heterogeneous
acceleration bounds as in 2.5) and to define the coordination variables as in (2.13) and (2.15).
Each minimum function can be translated into inequalities which, in turn, define one or more
hyperplanes that partition the state space. Furthermore, as the number of vehicles in the platoon
increases, the number of hyperplanes required to represent the non-linearities increases rapidly.

Instead of manually writing the system matrices Aj and corresponding affine terms bj , as well as the
cell bounding matrices Ḡj and offset terms gj , required to describe the PWA model, a MATLAB
script is developed to generate the complete set of matrices for a platoon with n vehicles. The
rationale behind this script is described next, which clarifies why the PWA system becomes rather
complex for platoons with more than two vehicles.

As explained in [4], when analyzing the stability of an equilibrium point for a PWA system, it is
necessary to apply a state transformation such that the equilibrium point of interest lies at the
origin of the transformed coordinates. In this case, the equilibrium of interest corresponds to a
point where all vehicles drive with speed vdes, while the acceleration, desired acceleration, and
spacing error for all vehicles are equal to zero. With this in mind, a shifted state vector for the
vehicles is defined as follows:

zi = (ei, vi − vdes, ai, ui)
T , ∀i ∈ I \ {1} , (3.16)

where i is the vehicle index and n is the platoon size. Furthermore, ei(t) is the spacing error,
vi(t) is the velocity, vdes is the desired constant speed for the platoon, ai(t) is the acceleration,
and ui(t) is the unrestricted control input prescribed by the CACC in the lower layer (see (2.11)).
The shifted state vector for vehicle 1 is defined as z1 = (v1 − vdes, a1)

T . Then, introducing the
lumped state vector z = (zT1 , zT2 , · · · , zTn )

T , the PWA system is expressed as

ż(t) = Ajz(t) + bj , for z ∈ Zj , j ∈ J = {1, ..., N} , (3.17)

where N is the number of regions that compose the state-space partition and j is the region index.
The regions are defined as Zj = {z | Gjz + gj � 0}. The matrices Aj and vectors bj in (3.17)
are determined from the differential equations that describe the dynamics in cell Zj , while the
matrices Gj and vectors gj are determined from the hyperplanes that delimit the cell Zj .

Some assumptions must be made so that the platoon dynamics can be modelled with a PWA
system. First, the aerodynamic drag is neglected, because it introduces a nonlinearity in the
function amax,i(vi) in (2.3). The acceleration limit of the vehicle is approximated with a linear
function, as follows:

amax,i(vi) = αivi + βi, ∀i ∈ I, (3.18)

with constants αi < 0 and βi > 0. The coefficient αi indicates the rate of decrease in accelera-
tion capability as the vehicle increases its velocity, and the constant βi indicates the maximum
acceleration from rest. A second assumption deals with the time-delays in the dynamics. It is
assumed the delay θc for the wireless inter-vehicle communication and the actuation delays θg are
negligible. With these two assumptions, the platoon dynamics can be represented as a collection
of linear dynamics that are active in different regions of the state space.

Deriving a PWA model for the baseline control strategy

The closed-loop platoon dynamics that arise when applying the baseline control strategy described
in Section 2.2 are described with the following set of differential equations in terms of the states
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in the shifted state vector z:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d
dt (v1 − vdes) = a1
ȧ1 = − 1

τ a1 +
1
τ uref,1

ėi = (vi−1 − vdes)− (vi − vdes)− hai
d
dt (vi − vdes) = ai
ȧi = − 1

τ ai +
1
τ uref,i

u̇i = − 1
hui +

1
huref,i−1 +

1
h (kpei + kdėi),

(3.19)

for i ∈ I \ {1}. These equations are derived by combining the linear dynamics in (2.4) and the
CACC control law in (2.11). Furthermore, the desired acceleration for vehicle 1, uref,1, is defined
as in (2.14) which, in turn, involves the cruise controller in (2.12). The desired acceleration uref,i

for vehicles 2 to n is defined with expression (2.5).

The min function in expression (2.5) is represented in the PWA system with the hyperplane
ui − amax,i = 0. Then, uref,i = ui in those regions of the state space where ui − amax,i ≤ 0, and
uref,i = amax,i in the regions where ui − amax,i ≥ 0. A total of n − 1 hyperplanes are required
to represent the limited acceleration of vehicles 2 to n. These hyperplanes together divide the
state-space into 2n−1 regions.

The coordination variable ξ2, which is involved in the expression for uref,1 in (2.14), is a non-linear
function of the states of vehicles 2 to n, defined as:

ξ2(t) = min [ Ky2, · · · ,Kyn ] , (3.20)

with Kyi = amax,i(vi) − γpei − γdėi, with amax,i as in (3.18). Substituting (3.20) in (2.14) leads
to the following expression for uref,1:

uref,1(t) = min [ u1, amax,1, Ky2, · · · , Kyn ] . (3.21)

To explain how (3.21) is represented in the PWA system, consider for example the case when u1 is
in fact the minimum of the variables in the right-hand side of (3.21). In other words, u1 ≤ amax,1,
u1 ≤ Ky2, · · · , u1 ≤ Kyn. In the region of the state-space where the previous inequalities hold,
the control input for vehicle 1 is uref,1 = u1. This region is delimited by n hyperplanes, namely,
u1 − amax,1 = 0, u1 −Ky2 = 0, · · · , u1 −Kyn = 0.

Following the logic in the previous paragraph, the state-space partition requires a hyperplane for
every possible pair of variables in the argument of the min function in (3.21), which results in
1
2n(n + 1) hyperplanes. These hyperplanes define (n + 1)! regions, where ! denotes the factorial.
To explain the previous statement, notice that a possible set of inequalities that describe a region
where uref,1 = u1 can be u1 ≤ amax,1(v1) ≤ Ky2 ≤ Ky3 ≤ · · · ≤ Kyn, which involves all 1

2n(n+1)
hyperplanes. However, uref,1 also takes the value of u1 in the region where u1 ≤ Ky2 ≤ Ky3 ≤
· · · ≤ Kyn ≤ amax,1(v1). Hence, a different cell in the state space is defined for every possible
permutation of the variables in {u1, amax,1,Ky2, · · · ,Kyn}, which gives (n+ 1)! distinct cells.

Combining the hyperplanes required to represent expressions (2.5) and (3.21), the total number
of regions in the partition is N = 2n−1 × (n + 1)!. Table 3.1 illustrates the rapid increase in
number of regions as the platoon size increases. A MATLAB script is developed with the logic
described above, which automatically enumerates all the possible regions for a given platoon
size and constructs the corresponding system matrices Aj and (possible) affine terms from the
equations in (3.19), and the matrices Gj and offset terms gj for the inequalities that delimit these
regions. The output of the script is a set of matrices defined with symbolic variables that can be
stored into a file and then retrieved to evaluate the matrices for some values of vehicle parameters
and control gains.

The advantage of constructing the PWA system as described before is that such a system can
be used to represent platoons with different vehicle ordering, meaning the slowest member can
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Table 3.1: Number of regions in the PWA system for various platoon sizes with the baseline
multi-layer scheme.

Platoon size n 2 3 4 5
Regions in the state-space partition 12 96 960 11,520

Table 3.2: Number of regions in the PWA system for various platoon sizes with the proposed
control scheme.

Platoon size n 2 3 4 5
Regions in the state-space partition 12 288 34,560 24,883,200

be located in any position in the platoon. Furthermore, the acceleration limits of the platoon
members can be arbitrarily close to each other, such that the coordination variable ξ2 in (3.20)
might contain information from a different vehicle at different time instants, such that the control
input for the leading vehicle might be restricted by a different platoon member at different times.

Deriving a PWA model for the newly proposed control strategy

Next, we consider the control strategy proposed in Section 2.3, the non-linearities in that high-
level control scheme translate into an even more involved PWA system. The rationale presented
before is used to design a MATLAB script that automatically generates the matrices for the PWA
system of the proposed multi-layer scheme.

The main difference between the baseline and the newly proposed control strategies is that in the
latter all vehicles are directly influenced by the coordination variables. As defined in (2.17), the
expression for the desired acceleration uref,i consists of a min function with three arguments, as
follows:

uref,i = min [ ui , amax,i(vi) , ξi+1 − σi+1 ]
= min [ ui , amax,i(vi) , min [ yi+1 , · · · , yn ]− σi+1 ]
= min [ ui , amax,i(vi) , yi+1 − σi+1 , · · · , yn − σi+1 ]

, ∀i ∈ I \ {n} , (3.22)

where the expression for ξi in (2.15) was used, with σi as in (2.16), and yi = amax,i(vi). The min
function defining uref,n has only two arguments: un and amax,n(vn), which translates into a single
hyperplane. However, for vehicles 1 to n−1 the number of hyperplanes required to describe uref,i

depends on the value of i. To determine the total number of cells defined by these hyperplanes,
one must look at all the possible permutations of the variables in the argument of (3.22), one
vehicle at a time. The product of the permutations for each value of i gives the total number of
cells, as follows:

N =

n∏
i=1

((2 + n− i)!) . (3.23)

Table 3.2 shows the number of cells for platoons of 2 to 5 vehicles. Comparing Tables 3.1 and 3.2,
it can be seen that the proposed control scheme is harder to analyze and in fact it is only feasible
to conduct the stability analysis for platoons with up to 3 vehicles. From an analysis point of view,
this is a disadvantage of the newly proposed multi-layer strategy when compared to the baseline
control scheme, but this is not necessarily a disadvantage from a performance point of view.

It is important to mention that, because the non-linearities in the platoon dynamics that make
these piecewise affine are equivalent to a saturation function, continuity of the dynamics at the
boundary between regions is guaranteed. In other words, the minimum functions in expression
(3.21) and (3.22) lead to continuous functions, such that the vector fields that arise from (3.19)
are also continuous. In this way, sliding modes are discarded from the dynamics and the stability
analysis based on PWQLF, as described in Section 3.1.2, is applicable.
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The rationale used to construct PWA models for the platoon dynamics has been described. In the
next section, global asymptotic stability of the origin is assessed via piecewise quadratic Lyapunov
functions.

3.3 Stability analysis for the baseline control scheme

The method to assess stability described in Section 3.1.2 requires to solve LMIs, for which numer-
ical procedures are available in the form of MATLAB toolboxes for semidefinite programming (c.f.
[10], [7]). A disadvantage of this numerical approach is that one must choose certain parameter
values before attempting to find a Lyapunov function. Various control gains are involved in the
PWA model. It would be useful to have an additional tool that provides insight on how to choose
these gains. Computer simulations can serve this purpose, but these are time-consuming. To
this end, an analysis in the frequency domain is discussed next, which can be used as a guideline
to choose the control gains for the coordination layer. This analysis is based on inspecting the
stability of the individual subsystems that compose the PWA model describing the closed-loop
platoon dynamics. As the control gains influence the stability of these subsystems, it is useful to
derive conditions for which the subsystems are (marginally) asymptotically stable.

3.3.1 A frequency domain approach to analyze the stability of a partic-
ular operation mode

Consider a platoon of n vehicles under the nominal CACC proposed in [13], i.e., where the desired
acceleration is defined with (2.11) and when the vehicles have no bound on acceleration. Assuming
homogeneous engine dynamics for all vehicles, the transfer function from vi−1 to vi corresponds
to [13]:

Γ(s) =
1

H(s)

Dc(s) +G(s)K(s)

1 +G(s)K(s)
, (3.24)

where s ∈ C is the Laplace variable. Then, H(s) = hs+ 1 is the spacing policy transfer function.

G(s) =
(
(τs+ 1)s2e−θas

)−1
is the vehicle transfer function from the desired acceleration uref,i(s)

to the position of the vehicle qi(s); in G(s), the actuation delay θa is considered. Next, K(s) =
kds+ kp corresponds to the PD controller associated to the feedback of the spacing error. Finally,
Dc(s) = e−θcs corresponds to the inter-vehicle communication delay. As explained in [13], for the

case of homogeneous vehicle strings, qi(s)
qi−1(s)

= vi(s)
vi−1(s)

= ai(s)
ai−1(s)

= Γ(s).

If the actuation delay θa is neglected, the transfer function Γ(s) has stable poles when h > 0,
τ > 0, kp > 0, and kd > kpτ [13]. From (3.24), it is evident that the spacing policy acts as
a low-pass filter which introduces phase lag. The higher the value of the timegap h, the more
sluggish the response of the platoon to an input applied to the leading vehicle.

Now consider the case in which vehicle k is the slowest in the platoon. Then, when applying the
baseline multi-layer strategy, the acceleration limit of the vehicle k and its spacing error are used
to define the desired acceleration for the platoon leader. A particular operation mode is analyzed
here: vehicle k is driving at its limit, vehicle 1 is restricted by the coordination variable ξ2, and
all other vehicles are applying the input prescribed by the CACC. It is particularly relevant to
analyze the dynamics in this operation mode because, from the numerous simulations conducted
along this research, it has been observed that undesired transient performance can arise when the
dynamics in this operation mode are unstable as a result of the control gains in the coordination
layer.

The operation mode in question is illustrated with the block scheme in Figure 3.4, where the
acceleration limit of vehicle k is considered to be an exogenous input. In reality, the limit amax,k
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Figure 3.4: Block scheme of the closed-loop platoon dynamics subject to the baseline control strat-
egy, when vehicle k is driving at its acceleration limit and vehicle 1 is limited by the coordination
variable ξ2.

is a function of vk, but this is not relevant for the analysis presented next. Furthermore, it is not
necessary to analyze the dynamics of vehicles k + 1 to n because in this operation mode those
vehicles are being controlled by a stable CACC and do not influence the dynamics of the preceding
vehicles.

In Figure 3.4, P (s) = γds + γp is the error feedback in the coordination layer, while DT (s)
corresponds to the total communication delay in the coordination layer between vehicle k and the
platoon leader.

From the block scheme in Figure 3.4, the closed-loop transfer function from amax,k(s) to ek(s) is

CL(s) =
ek(s)

amax,k(s)
=

DT (s)G(s)Γk−2(s)−G(s)H(s)

1 +DT (s)G(s)Γk−2(s)P (s)
. (3.25)

This transfer function is relevant for the stability analysis because the dynamics of all vehicles in
the platoon play a role in this transfer function as well as the the control gains in the coordination
layer. Moreover, it is useful to analyze the spacing error dynamics for vehicle k during the operation
mode in question.

Now, to simplify the analysis, the communication and actuation delays are assumed to be zero.
In such case, (3.24) simplifies to Γ(s) = 1/H(s); this simplification is valid because the actuation
time constant τ is assumed to be homogeneous for all vehicles in the platoon. Substituting the
simplified expression for Γ(s) in (3.25), the transfer function CL(s) becomes

CL(s) =
GH−(k−2) −GH

1 +GPH−(k−2)
=

1− (hs+ 1)k−1

(hs+ 1)k−2(τs+ 1)s2 + γds+ γp
. (3.26)

The dynamics for some regions in the PWA system are related to the transfer function (3.26). In
fact, the denominator of (3.26) appears in the characteristic polynomial for the system matrices
of some subsystems in the PWA model. Therefore, if the transfer function above is unstable, also
the dynamics in some regions of the state space would be unstable. Notice that, as explained
in [4], for a PWA system to have a stable equilibrium, the various subsystems in it need not be
stable. As long as the region containing the equilibrium of interest has stable dynamics, it might
be possible to find a PWQLF for a PWA system that has unstable dynamics in some regions of
the partition.

To illustrate the influence of the gains γp and γd on the stability properties of this operation mode,
the poles of (3.26) are computed for two values of the timegap h, 0.3s and 0.6s, with the actuation
time constant set to τ = 0.1s. In Figure 3.5, the shaded areas indicate the region in the design
space γp × γd ∈ R

2 for which (3.26) has only poles in the open left half-plane. In this figure,
the shaded areas are overlapping, i.e., the area for k lies within the area for k − 1. Notice that
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Figure 3.5: Boundary for the values of γp and γd that achieve stable poles in (3.26), with τ = 0.1s,
for two values of h, 0.3s (left) and 0.6s (right), and various values of the index k, associated to the
index of the saturated vehicle. The shaded areas correspond to the gain values that lead to stable
poles.

the regions that achieve stable poles reduce considerably in size as the index k increases and also
when the value of the timegap increases. Although not illustrated here, increasing the value of
the time constant τ also reduces the size of the stable region. When the gains are chosen exactly
at the boundary of the stable region, the transfer function has a pair of marginally stable poles,
i.e., lying on the imaginary axis, which in the time domain translates into undamped oscillations.

For the control problem discussed here, it has been observed in simulations that the desired equi-
librium might be reached for some cases in which the gains γp, γd are such that the function (3.26)
has unstable poles. However, in such cases the performance is rather poor, meaning that the ac-
celeration of the vehicles shows oscillations which would be inefficient in terms of fuel consumption
and even uncomfortable for the passengers. Hence, the stability of the transfer function (3.26) can
serve as a guideline to choose the control gains in the coordination layer.

The frequency domain analysis discussed here shows the limitation of the baseline control strategy
in terms of scalability and versatility with respect to the timegap. Of course, even if the poles in
(3.26) are stable, stability of the origin for the full PWA system remains to be proven.

The influence of the acceleration limit on the stability of a particular subsystem

In this section, a different operation mode is analyzed to determine the influence of the dynamic
acceleration limits on the stability of the platoon dynamics. Once again, a platoon of n vehicles is
considered, where vehicle k has the lowest acceleration capability. This time, the operation mode
corresponds to the case when vehicle 1 is restricted by the coordination variable, such that it
uses the acceleration limit of vehicle k together with the spacing error ek to determine its desired
acceleration. In contrast to the dynamics analyzed in the previous section, in this operation mode
vehicle k is not in saturation, meaning it is following the desired acceleration prescribed by the
CACC in (2.11). The dynamics of this operation mode are illustrated with the block diagram
in Figure 3.6. Here, the acceleration limit of vehicle k is assumed to be a linear function of its
velocity, as defined in (3.18).
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Figure 3.6: Block scheme of the closed-loop platoon dynamics subject to the baseline control
strategy, when vehicle 1 is limited by the coordination variable ξ2. Vehicle k, the slowest in the
platoon, has not reached its acceleration limit.

To assess the stability of this dynamics, the communication and actuation delays are neglected.
In such case, and assuming homogeneous vehicles, the transfer function Γ(s) = qi(s)/qi−1(s)
simplifies to H−1(s). With this in mind, the transfer function from βk(s) to qk(s) is derived:

qk(s)

βk(s)
=

GΓ−(k−1)

1 +GΓ−(k−2)P (1− ΓH)
·
(
1− GΓ−(k−1)αks

1 +GΓ−(k−2)P (1− ΓH)

)−1

=
1/s

(hs+ 1)k−1(τs+ 1)s− αk
,

(3.27)
where the fact that (1− Γ(s)H(s)) = 0 was used. This transfer function is relevant for the stability
analysis because it involves the dynamics of all vehicles in the platoon. Moreover, the polynomial
in the denominator of this transfer function appears as a factor in the characteristic polynomial
for the system matrix associated to this operation mode, indicating that the coordination layer
has an influence in the stability of the platoon dynamics.

The parameter αk, the rate of change of the acceleration limit as a function of velocity, has a
direct influence on the stability of the transfer function (3.27). The values for the parameters h
and αk that guarantee stable poles for this transfer function are illustrated in Figure 3.7 for two
values of τ . In this figure, the shaded areas are overlapping, i.e., the area for k lies within the
area for k − 1. Notice that as the index k increases, the range of values for αk and h that lead to
stable poles reduces.

From the analysis above, it can be concluded that instability might occur during this operation
mode if the acceleration limit of the slowest vehicle decreases sufficiently fast. If that is the case,
then it might not be possible to find a PWQLF to prove stability of the origin for the PWA
system. The coefficient αi can be estimated from the non-linear function for amax,i in (2.3). For
the vehicle parameters considered in this research, which are presented later in this report, the
values of αi are always within the stable regions depicted in Figure 3.7.

Following the design guidelines derived from the previous frequency domain analyses, parametric
stability studies are presented in the next section for the PWA closed-loop system dynamics
corresponding to the baseline multi-layer CACC.
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Figure 3.7: Boundary for the values of αk and h that achieve stable poles in (3.27), for two values
of τ , 0.1s (left) and 1s (right), and various platoon sizes. The values for the parameters that lead
to stable poles, for each value of index k, lie in the corresponding shaded area.

3.3.2 Parametric stability analysis

In this section, the results of a parametric stability analysis are discussed. In this study, exponential
stability of the origin is attempted to be proven for the PWA system that describes closed-loop
platoon dynamics for the baseline control scheme. To this end, the method described in Section 3.1
is used to search for a piecewise quadratic Lyapunov function. Due to the complexity of the
PWA models derived for the platoon dynamics, only the case of a 3-vehicle platoon is analyzed
here. Nevertheless, analyzing a 3-vehicle platoon is relevant because it can provide insight on the
influence that the control parameters have on the feasibility of the LMIs in (3.9) and (3.10).

Table 3.3: Vehicle parameters [23].

Parameter Value Unit Parameter Value Unit Parameter Value Unit
Rw 0.45 m Arl 0.039 m/s2 φr 0 rad
Jw 232 kg ·m2 Brl 0.0037 1/s g 9.81 m/s2

Je 2.5 kg ·m2 Crl 1.25 kg/m r 2 m
Tmax,i, ∀i 2500 N ·m τ 0.1 s h 0.3 s

ηT 1 - θg 0.12 s kp 0.2 -
Li, ∀i 18 m θc 0.02 s kd 0.7 -

For this parametric study, a set of three trucks with identical drivelines is chosen. The masses of
the trucks are set to (m1,m2,m3) = (20, 20, 40) · 103 kg, so that vehicles 1 and 2 have a higher
acceleration limit than vehicle 3. The acceleration limit is estimated with expression (2.3) using
the parameters in Table 3.3, but setting the air-drag coefficient Crl and the time delays θg, θa
equal to zero. Furthermore, the driveline ratio id is fixed to the value corresponding to the highest
velocity range, as shown in Table 3.4.

The following linear functions are used to describe the heterogeneous acceleration limits of the
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Table 3.4: Driveline ratios id [23].

Velocity range [km/h] Driveline ratio id [−]
0 - 10 24
10 - 20 14.75
20 - 30 8.75
30 - 45 5.25
45 - 70 3
> 70 2.5

trucks:
amax,1 = −0.0035v1 + 0.6177 [m/s2]
amax,2 = −0.0035v2 + 0.6177 [m/s2]
amax,3 = −0.0036v3 + 0.2991 [m/s2].

(3.28)

Notice that the coefficients of vi in (3.28) are rather small, which is explained by the fact that
the air drag is assumed to be zero at all driving speeds and only internal and road friction are
considered to affect the acceleration limit. The maximum acceleration from rest, i.e., the constant
terms in (3.28), is small because it is assumed that the trucks are driving with the highest gear
available in the gearbox (see Table 3.4). In this research, it was observed that the acceleration
limits do not have a crucial role in the stability of the PWA system, provided that the parameters
αi in (3.18) satisfy the stability conditions discussed in Section 3.3.1. In Appendix B, a more
detailed parametric study is presented in which stability is assessed for various values of the
acceleration limit.

The feasibility of the LMIs in (3.9) and (3.10) is verified for several points in the design space
γp×γd×h×τ ∈ R

4 using the YALMIP toolbox in MATLAB [10]. The values for the gains γp and
γd are chosen between 0.01 and 1; the desired timegap h is set between 0.1 and 3 s; the actuation
time constant τ is chosen between 0.1 and 1 s. The ranges for these parameters are defined in
accordance to the frequency domain analysis in Section 3.3.1, such that some of the parameter
combinations provide stable eigenvalues for the transfer functions (3.26) and (3.27), while some
combinations result in unstable eigenvalues for these transfer functions.

For this study, the desired cruising speed is set to vdes = 80 km/h, which is a feasible speed for
the three vehicles in the platoon, in view of the acceleration limits in (3.28). The control gains
kp and kd used for the CACC in the lower layer are fixed to the values shown in Table 3.3, which
achieve a stable transfer function Γ(s) in (3.24).

Figure 3.8 presents the results of this study. In this figure, cross-sections of the four-dimensional
design space are depicted, choosing three values for h and three values for τ . The values for γp and
γd that lead to feasible LMIs are shown as green dots. The red crosses correspond to parameter
combinations that lead to infeasible LMIs. The dashed line in the plots indicates the bound for
the region of the design space for which all subsystems in the PWA model have (marginally) stable
dynamics. This boundary was determined based on the analysis presented in Section 3.3.1.

Notice in Figure 3.8 that, for the plots with h = 0.3s, some of the feasible points lie beyond the
boundary for which the subsystems in the PWA are stable. This confirms a prior statement: for
a PWA system, even when the dynamics in some regions of the partition are unstable, it might
be possible to find a PWQLF that proves global exponential stability of the origin.

On the other hand, notice in Figure 3.8 that, except for the plot with h = 3s and τ = 1s, all the
infeasible points lie to one side of the dashed line. This is a useful results because, for most values
of h and τ , the stability of the individual subsystems in the PWA model serves as a good indicator
of the feasibility of the LMIs. For the exceptional case with h = 3s and τ = 1s, the infeasibility
of the LMIs for most combinations of γp and γd does not indicate that the origin is unstable.
As explained in Section 3.1, the feasibility of the LMIs is only a sufficient condition to prove
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exponential stability of the origin for a PWA system, but it is not necessary. In fact, simulations
indicate a stable behavior for those parameter combinations that lead to stable subsystems even
if the LMIs are not feasible, but in such case the performance is not adequate. An example of
parameter combinations that lead to a stable PWA system but for which a Lyapunov function
could not be found is presented in Chapter 4.

In Appendix B, the parametric study described here is repeated for a platoon with 4 vehicles,
exploring the same subset of the design space discussed above. The results are consistent with
those presented here: for most parameter combinations that achieve stable subsystems in the PWA
model, a PWQLF function can be derived. For the 4-vehicle platoon, the number of parameter
combinations for which a Lyapunov function can be found is significantly lower compared to the
results in Figure 3.8, which is to be expected in view of the stability analysis discussed in Section
3.3.1.

The parametric studies and frequency domain analyses presented in this section provide useful
insight on how to design the control gains for the coordination layer such that the platoon dynamics
that arise from the baseline control scheme are stable. By proving the feasibility of the LMIs in
(3.9) and (3.10), global asymptotic stability of the desired equilibrium for the closed-loop platoon
dynamics has been proved for several combinations of control parameters. Furthermore, these
studies allow to conclude that, for the baseline multi-layer CACC scheme the stability of the
individual subsystems that compose the PWA model is a good indicator of the feasibility of the
LMIs used to derive a PWQLF. In Chapter 4, computer simulations are presented that confirm
the stability results discussed here.
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Figure 3.8: Parametric stability analysis for a three-vehicle platoon subject to the baseline control
scheme, varying γp, γd, h, and τ . The green dots indicate points in the design space for which
the LMIs (3.9) and (3.10) are feasible. The red dots indicate parameter combinations that lead
to infeasible LMIs. The dashed line bounds the region for which (marginally) stable eigenvalues
are obtained for all the subsystems in the PWA model.
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3.4 Stability analysis for the proposed control scheme

After analyzing the stability properties of the baseline control scheme, the same tools are applied to
the multi-layer strategy proposed in Section 2.3. Similar to the procedure in the previous section,
first the dynamics of a particular operation mode is analyzed using a frequency domain approach.
Then, a parametric study is conducted to assess the stability of the corresponding PWA model.
The results presented in this section illustrate some of the advantages of the proposed control
scheme when compared to the baseline.

3.4.1 Frequency domain analysis

As discussed in Section 3.3.1, analyzing the stability of the individual subsystems in a PWA model
can provide insight on how to choose the control gains in order to increase the chances of finding a
PWQLF that proves stability of the PWA system. To this end, the subsystems in the PWA model
for the proposed control strategy are analyzed to identify which of those might become unstable
when changing the gains γp and γd used in the variables σi, as defined in (2.16).

Consider a platoon of n vehicles under the proposed multi-layer strategy. Furthermore, assume
that vehicle k has the lowest acceleration limit in the platoon. With the proposed control scheme,
the acceleration limit of vehicle k is used to restrict the desired acceleration of vehicles 1 to k− 1,
while taking into account the spacing error of the vehicle behind.

To assess which subsystems are most sensitive to the control gains γp and γd, the characteristic
polynomials of the various system matrices are computed with the help of the Symbolic Math
Toolbox in MATLAB [11]. From this procedure, a particular operation mode is identified as the
most critical one: the case when vehicle k is driving at its acceleration limit and vehicles 1 to k−1
are all restricted by the coordination variable ξi. The block scheme in Figure 3.4 illustrates the
dynamics of this operation mode. In Figure 3.4, the function P (s) = γds+γp is the error feedback
implemented with the variables σi; the transfer functions Dc(s), G(s), and H(s) are as defined in
Section 3.3.1.

To analyze the stability of this operation mode, the transfer function from amax,k to uref,k−1 is
derived:

Θk−1(s) :=
uref,k−1(s)

amax,k(s)
=

Dc(s) (1 +G(s)P (s)H(s))

1 +Dc(s)G(s)P (s)
. (3.29)

If one extends the block diagram in Figure 3.9 to include vehicles 1 to k− 3 the transfer function
from amax,k to uref,i can be derived as follows:

Θi(s) :=
uref,i(s)

amax,k(s)
=

Dc(s)
(
Dk−i−1

c (s) + Θi+1(s)P (s)H(s)
)

1 +Dc(s)G(s)P (s)
, ∀i ∈ {1, · · · , k − 2} . (3.30)

This transfer function is relevant because it illustrates how the input amax,k propagates down-
stream from vehicle k towards vehicle 1, as a result of the coordination layer in the proposed
control scheme . The transfer function from amax,k to ei could have been analyzed instead; in
that case the poles turn out to be defined by the same polynomial in the denominator of (3.30).

If one computes the full expression for Θi(s) a pattern can be identified: the denominator of
Θi(s) is (1 + Dc(s)G(s)P (s))k−i, for i ∈ {1, · · · , k − 1}. Now, for the sake of simplicity, the
communication and actuation delays are neglected. In such a case, the denominator for Θi(s)

simplifies to
(
τs3 + s2 + γds+ γp

)k−i
. This polynomial in included as a factor in the characteristic

polynomial for the system matrix that describes the dynamics in this operation mode. This
polynomial allows to conclude that the stability of this operation mode is independent of the
timegap h and of the value of the index k. If the time delays are neglected, the transfer functions
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Figure 3.9: Block scheme of the platoon dynamics subject to the proposed control strategy, when
vehicle k is driving at its acceleration limit. Vehicles k−1 and k−2 are restricted by the acceleration
limit of vehicle k and the spacing error of the vehicle behind.

in (3.30) have stable poles as long as τ > 0, γp > 0, and γd > γpτ , which follows from the
Routh-Hurwitz criterion.

Recall that, for the baseline control strategy, the stability of the critical operation mode is related
to the polynomial (hs+1)k−2(τs+1)s2 + γds+ γp (see (3.26)). On the other hand, for the newly
proposed control scheme, the stability of the critical operation mode is related to the polynomial
τs3+s2+γds+γp. Hence, the conditions for the gains γp and γd that must be satisfied to achieve
stable dynamics in the critical operation mode are less restrictive for the newly proposed control
scheme. This illustrates the additional flexibility of the proposed control scheme.

3.4.2 Parametric stability analysis

The parametric study described in Section 3.3.2 is repeated using the PWA model for the proposed
control strategy. Only the case of a 3-vehicle platoon is analyzed, assuming vehicle 3 is the slowest.
The parameters from Section 3.3.2 are also used in this study. A PWQLF is attempted to be found
for several points in the design space γp × γd × h× τ . The results are condensed in Figure 3.10.

In Figure 3.10, the dashed lines bound the region of the design space that leads to stable subsystems
in the PWA model. This boundary corresponds to the line γd = γpτ and is determined from the
denominator of the transfer function (3.30). The green dots in these plots denote parameter
combinations for which a PWQLF was found, while the red crosses indicate infeasible LMIs.
Comparing figures 3.8 and 3.10, it is evident that the proposed control strategy expands the range
of parameter values for which stability of the PWA model could be proven, especially for the larger
values of h and τ .

As was also the case for the study in Section 3.3.2, it was not possible to prove stability for all
the points in the design space that achieve stable dynamics for the individual subsystems in the
PWA model. Notice in Figure 3.10 that some of the red crosses lie on the side of the dashed line
where it holds that γd > τγp, i.e., where the green dots are. A simulation example is presented in
Chapter 4 to provide some intuition as to why a Lyapunov function could not be found for those
exceptional points in the design space, although the simulations indicate stable behavior.

Similar to the stability obtained for the baseline control scheme, the parametric stabilty study
for the newly proposed control scheme indicate that the stability of the subsystems in the PWA
model serves as a good indicator of the feasibility of the LMIs used to derive a PWQLF. For
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the parameter combinations identified here that violate the previous statement, it might still be
possible to find a Lyapunov function. As suggested in [4], refining the state space partition by
subdividing the initial regions provides additional flexibility in the search for a PWQLF. However,
this refinement is not attempted here because it is extremely time-consuming and the results might
not add significant value to this report.

The stability analyses discussed in this chapter concern only platoons with 3 vehicles. Although,
in principle, it is possible to analyze stability of PWA models for larger platoons, in practice it is
not feasible to conduct such numerical analyses due to limitations in computational power. An
alternative to analyze the stability for platoons with more than 3 vehicles is to consider some
additional assumptions that simplify the PWA model. For instance, the number of regions in the
state space partition reduces considerably if it is assumed that some vehicle k has an acceleration
limit that is sufficiently low compared to the limit of all other platoon members. Under this
assumption, vehicle k prescribes, at all times, the acceleration limit for the platoon through the
coordination layer. The other vehicles would not reach their own saturation point, assuming their
initial spacing errors are sufficiently small.

Yet another alternative to assess the stability of the platoon dynamics is to conduct computer
simulations. This approach is used in the following chapter, considering platoons with more than
three vehicles and also more realistic phenomena in the dynamics.
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Figure 3.10: Parametric stability analysis for a three-vehicle platoon subject to the proposed
control scheme, varying γp, γd, h, and τ . The green dots indicate points in the design space
for which the LMIs (3.9) and (3.9) are feasible. The red dots indicate parameter combinations
that lead to infeasible LMIs. The dashed line bounds the region for which (marginally) stable
eigenvalues are obtained for all the subsystems in the PWA model.



Chapter 4

Simulation study

As explained in Chapter 3, assessing the stability of the platoon dynamics via PWA models is
computationally feasible for platoons of up to four vehicles, for the case of the baseline control
scheme, and for up to three vehicles for the newly proposed scheme. Nevertheless, the PWA models
for larger platoons can be used to conduct simulations and assess stability using such simulation
results. This chapter presents the results of a simulation study comparing the control strategies
described in Chapter 2, both with piecewise linear and non-linear simulation models.

The purpose of this simulation study is to illustrate the limitations of the baseline control scheme
and how the proposed algorithm overcomes those limitations. Moreover, the effects of vehicle
parameters and control gains on the performance of the control schemes are illustrated here.
Simulations are conducted with some peculiar parameter combinations identified in Chapter 3 to
illustrate why it is not always possible to find a PWQLF for a PWA system that exhibits stable
behavior in simulations.

The results in this chapter were obtained using two different simulation models. The first model is
based on piecewise-linear (affine) systems, as described in chapters 2 and 3. The simulations with
this model confirm the stability results presented in Chapter3. However, the analysis based on
PQA models was limited to platoons of up to three vehicles. To this end, a non-linear simulation
model is used to simulate larger platoons which includes more realistic phenomena such as time
delays and gear shifting. Both the PWA and non-linear simulation models are developed in
MATLAB-Simulink.

For the simulations presented in this chapter, the vehicle parameters from Tables 3.3 and 3.4
are used, unless specified otherwise. These parameters correspond to trucks with homogeneous
driveline dynamics. The heterogeneity is introduced by choosing different vehicle masses so that
the acceleration capabilities are not homogeneous. The critical case for both control schemes
analyzed in this report corresponds to the scenario when the last vehicle in the platoon has the
lowest acceleration limit, so the vehicle masses in the simulations below are chosen accordingly.

4.1 Simulations for a 3-vehicle platoon

This section compares simulation results based on PWA models derived with the rationale in
Section 3.2. Examples of the computed PWQLF functions are also provided to illustrate that
these indeed meet the characteristics of a Lyapunov function, thus proving asymptotic stability
of the origin. Furthermore, the differences in performance between the two control algorithms are
illustrated.
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Figure 4.1: Time response for velocity, acceleration, and spacing error of a 3-vehicle platoon (top),
and the computed Lyapunov functions evaluated for the state trajectories (bottom). The different
colors in the plots for V (x) and dV/dt indicate different regions of the state space partition. The
simulations are based on PWA models. The plots to the left correspond to the baseline control
scheme. The plots to the right correspond to the proposed control scheme.
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The first simulation scenario consists of a 3-vehicle platoon with masses

(m1,m2,m3) = (20, 20, 40) · 103 kg. (4.1)

The scenario corresponds to a platoon transitioning from a medium to a high cruising speed, i.e.,
from 60 to 80 km/h. A step input is applied to the desired velocity vdes in the cruise controller
of vehicle 1. The spacing errors and accelerations are initially equal to zero for the three vehicles.
Gear-shifting, time delays, and air drag are not considered in this simulation. The cruise controller
in vehicle 1 is tuned so that the vehicles are forced to drive at their acceleration limit, which is
achieved by setting the proportional gain kv in the cruise controller (2.12) equal to 1. This
particular choice for kv allows to illustrate the benefits of the control schemes.

The control gains for the coordination layer of the two control schemes are set to γp = γd = 1.
The timegap is chosen as h = 0.3 s and the driveline time constant as τ = 0.1 s. As discussed
in Chapter 3, for these parameter values a Lyapunov function can be found both for the baseline
and proposed control schemes. The plots in Figure 4.1 show the time response for the velocity,
acceleration, and spacing error of the 3-vehicle platoon.

The plots in Figure 4.1 show that the velocity and acceleration responses are very similar for both
control schemes. The three vehicles accelerate from the initial speed to the desired one, while
the platoon leader sets an acceleration level that is feasible for vehicle three. Notice that the
order of magnitude of the spacing error is in millimeters, which confirms that platoon cohesion
is guaranteed with any of the two control schemes. In this simulation, the conspicuous difference
between the two control schemes is in the spacing error response. With the baseline control scheme,
only vehicle 3, the slowest in the platoon, has an increase in spacing error during the accelerating
phase. On the other hand, with the proposed algorithm, vehicles 2 and 3 exhibit an increase in
their spacing error, which can be explained as follows.

With the proposed control strategy, the desired acceleration of vehicle 2 is limited by the expression
ξ3 − σ3 = amax,3 − γpe3 − γdė3 (see (2.17)), such that vehicle 3 is not left behind due to its lower
acceleration limit. During the time when the desired acceleration of vehicle 2 is uref,2 = ξ3 − σ3,
this vehicle it is not able to regulate its spacing error down to zero because it is not following the
intended desired acceleration u2 prescribed by the CACC controller (2.11). However, as vehicle
1 receives the coordination variable ξ2 = amax,3 and the variable σ2 = γpe2 + γdė2, this vehicle
limits its desired acceleration to uref,1 = ξ2 − σ2, such that it respects the acceleration limit of
vehicle 3, while compensating for the spacing error of vehicle 2. Vehicle 2 has a positive spacing
error during the transient because it takes some time for vehicle 1 to respond to the change in e2.
At around t = 20 s the spacing error of vehicles 2 and 3 starts to decrease, although very slowly.
In fact, if the desired cruising speed vdes were set higher, it would be possible to observe how the
spacing errors e2 and e3 continue to decrease after the initial transient period.

The detailed view for the acceleration response at the bottom of Figure 4.1, a particular forma-
tion can be identified: when vehicle 3 reaches its limit, vehicles 1 and 2 eventually reduce their
acceleration slightly below that of vehicle 3. In both control schemes, this driving formation is
achieved by the coordination variable and the terms associated to the spacing error. Notice also
the subtle differences between the two control schemes in the acceleration profiles. With Zeger’s
algorithm, the acceleration of vehicles 1 and 2 exhibit slightly more undershoot with respect to
the acceleration limit of vehicle 3. On the other hand, with the proposed control scheme, the
acceleration of the vehicles is slightly more smooth.

The plots at the bottom of Figure 4.2 illustrate the computed Lyapunov functions V (x) and
the time derivative V̇ (x) for both control schemes. These functions are evaluated for the state
trajectory obtained in the aforementioned simulation. Notice that the Lyapunov functions are
indeed positive definite and their time derivatives are negative. When the vehicles have reached
the equilibrium, i.e., around t = 35 s, both V (x) and V̇ (x) are equal to zero. Even when the
state trajectories traverse various regions of the state space partition, the computed PWQLFs are
continuous. On the other hand, the time derivative of the Lyapunov functions are discontinuous.
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The LMIs presented in Chapter 3 do not guarantee continuity of the time derivative, but this is
not required to prove stability of the origin for a PWA system, provided the dynamics contains
no sliding modes [4].

The fact that both vehicles 2 and 3 exhibit an increase in spacing error when using the proposed
algorithm could be considered a disadvantage because in this case the total space occupied by
the platoon on the road is larger during the transient. From this simulation, it can be concluded
that, for a platoon of three vehicles, with a sufficiently low timegap h, and a sufficiently low time
constant τ , the baseline control strategy offers better performance in terms of platoon cohesion
compared to the proposed control scheme. Nevertheless, as discussed later in this report, other
simulation scenarios indicate that this is not always the case.

Simulations with parameter values that lead to stable response but poor performance

The simulation illustrated in Figure 4.1 is repeated but this time setting the gains in the coor-
dination variables to γp = 0.89 and γd = 0.23. For these values, some subsystems in the PWA
model for the baseline control approach are unstable. Nevertheless, a PWQLF can be found, as
indicated in Figure 3.8. On the contrary, these gain values guarantee marginally stable subsystems
in the PWA model for the proposed control scheme, but the LMIs turn out to be infeasible. This
particular tuning for the control gains allows to illustrate why in some cases it is not possible to
find a PWQLF for a PWA model composed of stable subsystems and also what is the effect of the
control gains on the transient performance.

The simulation results using the gain values discussed before are shown in Figure 4.2, where
only the accelerations and spacing errors are depicted. Notice that both control strategies cause
oscillations in the acceleration of vehicles 1 to 3. In fact, vehicle 3 is periodically switching in and
out of its acceleration limit, which explains the periodic increase and decrease in spacing error.
In both cases, the platoon reaches the desired equilibrium at t = 40 s and platoon cohesion is
guaranteed. However, from a performance point of view, this controller tuning is worse than the
tuning used in Figure 4.1.

For the PWA model corresponding to the baseline control scheme, in spite of the oscillatory
behavior associated to unstable subsystems, it is possible to derive a PWQLF. Figure 4.3 illustrates
the computed Lyapunov function V (x) together with the time derivative V̇ (x), evaluated for the
state trajectory obtained in the simulation illustrated in Figure 4.2. The Lyapunov is positive
definite and its time derivative is negative definite, thus proving asymptotic stability for the
baseline controller with the aforementioned parameters.

The control gains chosen for the simulation in Figure 4.2 achieve stable subsystems in the PWA
model for the proposed control strategy. However, it is not possible to construct a Lyapunov
function from the LMIs presented in Chapter 3. The simulation offers a possible explanation for
the infeasibility of the LMIs. Notice in the spacing error plot to the right of Figure 4.2 that
both signals e2 and e3 show oscillations that fade out when the platoon reaches the equilibrium.
These indicate that vehicles 2 and 3 are switching periodically between the desired acceleration
prescribed by the CACC and the limit imposed by amax,3. Hence, the state trajectory is circling
around various regions in the state-space partition. As suggested in [4], refining the state-space
partition might allow to find a PWQLF for this peculiar combination of control gains, but in any
case the poor performance observed in Figure 4.2 does not make the refinement worthy of the time
it would require.

The simulations discussed in this section confirm the results obtained in the numerical analyses
of Chapter 3. Furthermore, the influence of the control gains on the transient performance is
also illustrated. The fact that a Lyapunov function can be found does not guarantee an adequate
performance, since the acceleration and spacing error of the vehicles might exhibit sustained
oscillations while the platoon accelerates.
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Figure 4.2: Time response for acceleration and spacing error of a 3-vehicle platoon. The plots
to the left correspond to the baseline control scheme. The plots to the right correspond to the
proposed control scheme. The chosen control gains induce transient oscillations in the acceleration
of the vehicles

For the simulation scenario discussed here, the advantages of the proposed control scheme are not
evident. To this end, in the next section the simulation study is extended to larger platoons.
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Figure 4.3: Computed Lyapunov function for the PWA system corresponding to the baseline
control scheme. The function is evaluated for the state trajectory depicted in Figure 4.2. The line
colors indicate different regions of the state space partition.

4.2 Simulations for larger platoons

Although the stability analysis in Chapter 3 is limited to platoons with 3 vehicles, PWA models for
the platoon dynamics can be derived for larger platoons. Instead of conducting simulations based
on PWA models, in this section a non-linear simulation model is used to assess the asymptotic
stability and performance of the control schemes in question when applied to platoons with more
than 3 vehicles.

The simulation model used here was developed by the department of Integrated Vehicle Safety
at TNO. It considers time delays in the inter-vehicle communication, in the radar measurements,
and in the actuation dynamics, which were determined from real hardware and sensors. This
simulation model was customized to implement the control strategies discussed in this report,
together with the dynamic acceleration limitation that includes the effect of aerodynamic drag
and a simple gear-shifting strategy. With this complex simulation model, the robustness of the
control schemes is assessed in face of more realistic dynamics and disturbances.

Simulation scenarios for platoons of 4 and 10 vehicles are discussed in this section. Two values of
timegap for the spacing policy are used to illustrate the strong influence of this parameter on the
performance of the control schemes. In the simulations below, the last vehicle in the platoon has
the lowest acceleration limit as a consequence of its higher vehicle mass.

It is worth mentioning that simulations were also conducted for a 10-vehicle platoon in which
the slowest vehicle is not at the rear but somewhere in between the platoon. As no remarkable
distinguishing phenomenon was observed in those simulations, the results are not presented here.
Once again, the critical scenarios correspond to those in which the last vehicle in the platoon
has the lowest acceleration capabilities. Simulations for even larger platoons were not attempted
because for the case of 10 vehicles the computation time required is already quite considerable.
Moreover, from the simulation scenarios with 4 and 10 vehicles, it is possible to infer how the
control schemes might behave for even larger platoons.
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4.2.1 4-vehicle platoon

The scenario discussed in Section 4.1 is simulated now considering a 4-vehicle platoon. The vehicle
mass distribution is the following:

(m1,m2,m3,m4) = (20, 20, 20, 40) · 103 kg. (4.2)

In this scenario, the platoon starts driving at a constant speed of 60 km/h with no spacing errors.
The desired cruising speed is set to vdes = 80 km/h. The timegap is set to h = 0.3 s, and the
actuation constant to τ = 0.1 s. Other vehicle parameters, including time delays in communication
and actuation, are listed in Table 3.3. The gear-shifting strategy is described in Table 3.4.

To choose adequate values for the control gains in the coordination layer, the stability of the
poles in the transfer functions (3.25) and (3.30) is assessed. Recall that these transfer functions
describe the closed-loop platoon dynamics for a particular operation mode of the control schemes
in question. These operation modes were identified as critical because of their sensitivity to the
tuning of the control gains. Notice that the simulation model does contain time delays, which
affect the stability of the aforementioned transfer functions. However, for the sake of simplicity
and because the time delays considered here are rather small, the stability of the poles in these
transfer functions is verified while neglecting the time delays.

A numerical routine is implemented in MATLAB to determine the gain values that minimize the
the real part of the poles for the transfer function (3.25), associated to the baseline control strategy.
In other words, the gains are chosen such that the poles are located in the open left half complex
plane and as far as possible from the imaginary axis. This criterion is used to make the transients
decay fast during the operation mode described associated to this transfer function. With this
procedure, the control gains are chosen as γp = 0.14 and γd = 0.61. These gain values also achieve
stable poles in the transfer function (3.30) associated to the proposed control strategy, so these
gains are used to conduct simulations for both control schemes and allow for a direct comparison.

The results for this simulation are shown in Figure 4.4, where a comparison is offered between the
two control schemes. A significant difference in this simulation compared to that in Section 4.1
is the presence of gear-shifting. Notice that around t = 16 s the acceleration of vehicle 4 has a
step-like response, which indicates that this vehicle has shifted to a higher gear, thus decreasing
its acceleration limit. This step disturbance in the acceleration limit of vehicle 4 is propagated
through the coordination layer causing an undershoot in the acceleration of vehicles 1 to 3. Notice
in the detailed view for acceleration that the undershoot is less severe when using the proposed
control scheme. Overall, in this scenario the acceleration response is smoother when using the
proposed algorithm.

In this simulation, the proposed algorithm achieves smaller spacing error for vehicle 4 compared to
the baseline approach. However, with the proposed algorithm the spacing error of vehicles 2 and
3 increase during the transient, which is not the case for the baseline algorithm. This is the main
disadvantage of the proposed algorithm; not only the spacing error of the slowest vehicle increases
during accelerating phases, but also that of the vehicles between the first and the slowest. Still
the proposed scheme achieves smoother acceleration and overall smaller spacing errors.

One of the control goals for this platooning problem is disturbance attenuation. A formal analysis
of disturbance attenuation or string stability properties as defined in [14] is out of the scope of
this thesis. However, the simulation results allow to qualitatively assess how the disturbances in
the acceleration limit propagate through the platoon. For the case of the baseline scheme, notice
in Figure 4.4 that the undershoot in acceleration of vehicles 1 to 3, between t = 15 s and t = 20s,
can be considered as a string stable behavior because the undershoot attenuates as it propagates
from vehicle 1 to vehicles 2 and 3. This attenuation is achieved by the CACC in the lower layer
of the baseline control approach.
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Assessing string stability for the proposed control scheme is not straightforward. Recall that in
the proposed scheme the coordination layer is used to directly limit the desired acceleration for
all vehicles in front of the slowest. Hence, disturbances in the acceleration limit of the slowest ve-
hicle are propagated downstream, contrary to the upstream propagation discussed in the previous
paragraph. For this reason, it would not be appropriate to apply the string stability definition
presented in [14], which deals only with upstream disturbance attenuation.

The acceleration plots to the right of Figure 4.4 illustrate how the step disturbance in amax,4

propagates towards vehicles 3, 2, and 1 causing an undershoot that is more pronounced as it
propagates downstream. This could be regarded as a string unstable behavior in downstream
direction. In spite of this, the proposed algorithm exhibits an asymptotically stable response with
adequate performance in terms of platoon cohesion, since the transient spacing error is in the
order of centimeters. It is worth mentioning that the aforementioned disturbance amplification is
only present in the operation mode where the vehicles in front of the slowest are being restricted
by the coordination layer.

The simulation described before is repeated now for a timegap of h = 1 s. The values for the
gains γp and γd are not modified because these still achieve stable poles in (3.26) in spite of the
larger timegap. This time the desired cruising speed is set higher, vdes = 100 km/h, but the initial
conditions are not altered. This higher cruising speed allows for a longer period of acceleration
during which the transient performance can be observed.

Figure 4.5 illustrates the results of the simulation with a timegap of 1 s. Compared to the
simulation with h = 0.3 s, in this case the spacing error reaches larger magnitudes during the
transient regardless of the control scheme. Consequently, the undershoot in the acceleration of
vehicles 1 to 3 is more pronounced. With both control algorithms platoon cohesion is guaranteed,
but the proposed algorithm achieves smaller spacing errors.

Studying the plots at the bottom of Figure 4.5, the oscillations in acceleration that have been
mentioned various times throughout this report can be clearly observed. For the case of Zeger’s
control scheme, the step disturbance in the acceleration limit of vehicle 4 induces oscillations in the
acceleration of vehicles 1 to 3. During the accelerating period, vehicle 4 is periodically switching
between driving at its limit and following the input prescribed by the CACC. This oscillatory
behavior is inadequate for passenger comfort and fuel efficiency. For the previous reason, in this
scenario the proposed algorithm outperforms the baseline scheme.

To reduce the oscillations in acceleration when using the baseline approach, the control gains γp
and γd should be chosen small, but in that case the spacing error would have a larger amplitude
during the transient. The baseline algorithm faces a compromise between smooth acceleration and
small spacing error. This compromise is not there for the proposed control algorithm.

To offer a quantitative assessment of the simulation results, two simple indices are defined that
allow for a more objective comparison of the performance achieved by the control strategies. The
first index intends to quantify platoon cohesion by measuring the worst spacing error among the
platoon members, as follows:

max
i

||ei(t)||L2
= max

i

⎛
⎝
√∫ tf

0

|ei(t)|2 dt
⎞
⎠ , for i ∈ I \ {1} , (4.3)

where || · ||L2 denotes the L2 signal norm and tf is the time span of the simulation. This index
retrieves the maximum over the energy in the spacing error signals ei. Hence, it captures how
large (both positive or negative) and for how long the worst spacing error is. A spacing error with
large amplitude results in a higher value for this index, but also a spacing error that takes long to
converge to zero.

The second performance index is based on the L2 signal norm of the difference between the
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Table 4.1: Performance indices for simulations with a 4-vehicle platoon.

max ||ei(t)||L2
δa1,a4

Timegap Baseline Proposed Baseline Proposed
h = 0.3 s 0.789 0.761 0.270 0.264
h = 1.0 s 3.89 2.51 0.555 0.511

acceleration of the platoon leader and that of the slowest vehicle, as follows:

δa1,ak
= ||a1(t)− ak(t)||L2

=

√∫ tf

0

|a1(t)− ak(t)|2 dt, (4.4)

where k corresponds to the index of the slowest vehicle in the platoon and tf is the time span
of the simulation. Evidently, this performance index captures how dissimilar the acceleration of
vehicle 1 is from that of vehicle k throughout the simulation. The longer the period of time for
which a1 is different from ak, the higher the value of the index δa1,ak

. This index can be regarded
as a proxy for the amount of over and undershoot in the acceleration of vehicle 1 with respect to
that of vehicle k, as well as how long it takes to correct the overshoot or undershoot.

Table 4.1 collects the values for the performance indices defined in (4.3) and (4.4) computed for
the simulations in figures 4.4 and 4.5. The index max ||ei(t)||L2 indicates that, in these simulation
scenarios, the proposed algorithm achieves better performance in terms of spacing error. Notice
from figures 4.1 and 4.4 that with the baseline control scheme the vehicle with the worst spacing
error is the one with the lowest acceleration limit, vehicle 4 in this case. On the other hand, for
the proposed control scheme, vehicle 2 has the worst spacing error, but this is not as large as the
error obtained for vehicle k with the baseline strategy. Regarding the index δa1,a4 associated to
the transients in acceleration, the proposed scheme outperforms the baseline. This implies that
the proposed algorithm achieves less undershoot, shorter settling time, or a combination of both.
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Figure 4.4: Time response for velocity, acceleration, and spacing error of a 4-vehicle platoon. The
plots to the left correspond to the baseline control scheme. The plots to the right correspond
to the proposed control scheme. The plots at the bottom are detailed views of the acceleration
response. The timegap is set to h = 0.3 s, and the control gains to γp = 0.14 and γd = 0.61.
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Figure 4.5: Time response for velocity, acceleration, and spacing error of a 4-vehicle platoon. The
plots to the left correspond to the baseline control scheme. The plots to the right correspond
to the proposed control scheme. The plots at the bottom are detailed views of the acceleration
response. The timegap is set to h = 1 s, and the control gains to γp = 0.14 and γd = 0.61.
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4.2.2 10-vehicle platoon

Large platoons pose a difficult scenario for the control algorithms analyzed in this report. For
this reason, simulations considering a platoon of 10-vehicles are presented in this section. For
the simulations discussed next, the last vehicle in the platoon has lower acceleration capabilities
because of its higher mass. The mass distribution is chosen as

mi = 20 · 103 kg, for i = {1, · · · , 9}
m10 = 40 · 103 kg.

(4.5)

The difficulty with large platoons lies on how the gains γp and γd should be tuned. For the baseline
algorithm, the stability of the transfer function (3.25) can be used as a reference to tune the gains,
but this applies only for small values of timegap. For example, for a 10-vehicle platoon, with a
timegap of h = 0.3 s, the gains γp = 0.0162 and γd = 0.2 achieve stable poles in (3.25) that are
located as far as possible from the imaginary axis. On the other hand, when the timegap is set
to h = 1 s, the gains γp = 0.0014 and γd = 0.06 minimize the real part of the poles, which are all
stable. Nevertheless, the simulations for these two parameter sets show very distinct performance.

Figure 4.6 illustrates the performance of the baseline control strategy for a 10-vehicle platoon
with the two values of timegap mentioned in the previous paragraph and the corresponding gain
values. For the case with h = 0.3 s, the spacing error of vehicle 10 is not too large during the
transient and the undershoot in the acceleration of vehicles 1 to 9 is not too pronounced. However,
for a timegap of 1 s, vehicle 10 has a large transient spacing error, sufficiently large for another
vehicle to cut in if this were a real life scenario. For the timegap of 1 s it is possible to reduce
the transient spacing error e10 by choosing higher gains, but this tuning should be done carefully
otherwise oscillations appear in the acceleration of vehicles 1 to 9 which dampen out very slowly,
similar to the case illustrated in Figure 4.5.

The 10-vehicle platoon scenario is simulated now using the proposed control strategy. For the
simulation with h = 0.3s the control gains are chosen equal to those used in the simulation in
Figure 4.6, i.e., γp = 0.0162 and γd = 0.2. However, for the case with h = 1 s, the gain values are
not chosen equal to those in Figure 4.6. Instead, the gains are set to γp = 0.0162 and γd = 0.2,
i.e., the same tuning used for the case with h = 0.3 . This illustrates that with the proposed
control strategy it is not always necessary to re-tune the control gains when changing the value of
the timegap. The results for these simulations are shown in Figure 4.7.

Comparing the simulations in figures 4.6 and 4.7, it can be seen that the proposed algorithm
achieves less undershoot in the acceleration of vehicles 1 to 9 in the period when vehicle 10 is
driving at its limit. Notice that when using the proposed algorithm vehicles 2 to 10 have an
overshoot in velocity with respect to the desired cruising speed. This overshoot is explained by
the increase in spacing error of those vehicles, which requires them to keep accelerating after the
leader has reached vdes. This overshoot forces vehicles 2 to 9 to brake once they have regulated
their spacing error. During this overshoot period, the upstream string stability properties of the
proposed algorithm can be clearly observed, in particular for the simulation with h = 1 s. In
the plots to the right of Figure 4.7, it can be seen that the amplitude of the velocity overshoot
does not increase indefinitely as the index of the vehicle increases. In fact, the overshoot increases
from vehicles 2 to 5 and then attenuates for the following vehicles. A similar attenuation can be
observed for the undershoot in acceleration around t = 60 s. This attenuation is achieved by the
CACC in the lower layer of this approach.

Notice also that the proposed algorithm achieves smaller transient errors. For the simulation
with timegap of 1 s, the spacing errors are certainly not negligible but they are much smaller
compared to those obtained with the baseline scheme. This clearly indicates that the proposed
control strategy is more versatile than the baseline approach because the former achieves platoon
cohesion for larger platoons and for larger values of timegap, without causing sustained oscillations
in the acceleration of the vehicles.
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Table 4.2: Performance indices for simulations with a 10-vehicle platoon.

max ||ei(t)||L2
δa1,a10

Timegap Baseline Proposed Baseline Proposed
h = 0.3 s 21.7 28.8 0.533 0.584
h = 1.0 s 468 80.2 1.263 1.060

The performance indices defined in (4.3) and (4.4) are computed for the simulations in figures 4.6
and 4.7; the values for these indices are collected in Table 4.2. Notice that for the simulations
with a timegap h = 0.3 s, the baseline control scheme achieves lower values for the indices, i.e.,
it outperforms the proposed scheme, which was not the case for the simulations with 4 vehicles.
In order to improve the performance of the proposed scheme for the scenario with h = 0.3 s, the
control gains need to be adjusted. On the other hand, for a timegap h = 1 S the proposed scheme
achieves better indices than the baseline, especially for the index associated to spacing error. With
proper tuning, the proposed control scheme can achieve smaller spacing errors than the baseline
without causing inadequate transients in acceleration.

Simulations with non-zero initial conditions, i.e., when the vehicles start with some spacing error
or different velocities, are also executed. The results indicate that both control schemes can handle
initial-condition perturbations, which confirms the global asymptotic stability result obtained in
Chapter 3. However, for the sake of brevity simulation results with non-zero initial conditions are
not illustrated here.

The various simulation results presented in this chapter illustrate the advantages and limitations
of the control strategies analyzed in this report. Although stable responses were observed in all
the simulation scenarios, the performance varies significantly and degrades as the platoon size
increases or the timegap is chosen higher. Nevertheless, compared to the baseline algorithm, the
proposed control strategy can provide platoon cohesion for a wider range of timegap values and
platoon sizes.
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Figure 4.6: Time response for velocity, acceleration, and spacing error of a 10-vehicle platoon
using the baseline control scheme. The control gains are set differently for each value of timegap
h to achieve smooth accelerations.
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Chapter 5

Conclusions and recommendations

This report has addressed the problem of vehicular platooning subject to heterogeneous and dy-
namic acceleration limits. A literature survey was conducted to identify existing solutions for
vehicle platooning subject to some sort of heterogeneity in the vehicles’ dynamics or constraints
in the input. Few publications on CACC consider heterogeneous constraints in the acceleration,
but only one study addresses the implications of acceleration limits in platoon cohesion, i.e., the
multi-layer control strategy in [23].

Chapter 3 thoroughly analyzes the control scheme from [23] in order to assess asymptotic stability.
To this end, a piecewise affine modelling framework was used to translate the non-linearities in
the control strategy into state-based switching between various linear dynamics. Then, piecewise
quadratic Lyapunov functions were derived based on linear matrix inequalities and numerical
routines for semi-definite programming. Using this methodology, global asymptotic stability was
proven for 3-vehicle platoons. Furthermore, parametric studies were conducted to have a reference
of which parameter combinations lead to asymptotic stability.

A classical frequency domain technique was also used in an attempt to derive a simple criterion
to tune the control gains. This analysis allowed to identify an important limitation: with the
baseline multi-layer strategy platoon cohesion and oscillation-free accelerations are mutually ex-
clusive requirements, in particular for the case of large platoons or large timegaps. Overcoming
this limitation motivated an intensive design process to propose an alternative control strategy.

After several iterations, a multi-layer control scheme was derived that is able to mitigate the afore-
mentioned limitation without adding too much complexity and preserving a distributed control
approach. The tools used to analyze the baseline approach were applied also to the proposed algo-
rithm, focusing primarily on illustrating the advantages of this proposal and also the limitations.

Due to the complexity of the piecewise affine models, the stability analyses were limited to platoons
of 3 vehicles. However, computer simulations were used to confirm the stability results and extend
the analysis to platoons with more vehicles. Moreover, a complex simulation model was used
to evaluate the robustness of the control schemes in face of gear-shifting and time delays in
communication, actuation, and sensing. The simulations presented here offer a useful comparison
of the stability properties of the control schemes. Furthermore, the strong influence of the timegap
and the control gains on the performance was discussed. The stability analyses and simulation
results allow to conclude that the newly proposed multi-layer CACC scheme overcomes limitations
of the baseline CACC strategy in [23]. With the proposed control scheme, the phase lag in
actuation that is present in the baseline control scheme is eliminated, such that the vehicles in
front of the slowest react sooner to changes in the spacing error of the slowest vehicle. In this
way, platoon cohesion can still be achieved for larger platoons and for a wider range of timegaps,
without compromising the transient acceleration performance.
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Recommendations

During the extensive research project that culminated in this thesis report, various areas of op-
portunity for future research were identified. The most relevant and pressing ones are discussed
next.

The proposed control strategy exhibits a stable response in simulations, provided the control gains
are chosen appropriately. However, the disturbance attenuation properties of this approach are
not adequate in the downstream direction. To this end, a formal definition for string stability
that encloses both upstream and downstream disturbance attenuation is required to evaluate
platooning strategies with bidirectional topologies, such as the one proposed in this work. Then,
the proposed control scheme could be adjusted to achieve downstream disturbance attenuation.
A possible approach could be to introduce a dynamic control law in the coordination layer, as
opposed to the static feedback proposed in this report. In other words, it might be possible
to design a filter to be introduced in the definition for the coordination variables such that the
transfer function from the desired acceleration of vehicle i to the desired acceleration of vehicle
i− 1 satisfies some disturbance attenuation criterion for the applicable operation modes.

The non-linear dynamics arising from the control schemes discussed here required complex mod-
elling and analysis tools. A scalable analysis methodology is required if one intends to address the
stability properties of arbitrarily large platoons. A possible direction is to apply L2-gain and small
gain theories for piecewise affine systems. This would allow to analyze the platoon dynamics as a
collection of simple piecewise affine systems connected among themselves, instead of assessing the
dynamics as a single PWA system with an unmanageable amount of subsystems.

In this research, only one type of heterogeneity was addressed, i.e., the acceleration limit. How-
ever, as identified in the literature survey, several vehicle parameters might vary among platoon
members. Hence, it would be fruitful to combine the multi-layer control strategies described here
with other control laws designed to handle other source of heterogeneity. In this regard, the multi-
layer structure of the control strategies allows to easily integrate other CACC techniques designed
to handle different heterogeneities or schemes with more complex communication topologies.

An additional recommendation concerns the model used in this research for the acceleration limit
of the vehicles. Although several factors were considered in the equation dictating the acceleration
limit, it was assumed that the maximum engine torque is constant. This is not the case for real
combustion engines, in which the maximum output torque depends on the engine speed. It would
be interesting to include a realistic engine map that relates the maximum engine torque with the
engine speed in the simulation models. Similarly, the limitation in braking force could be included
in the model and the multi-layer control strategies could be adjusted to address this limitation in
deceleration capabilities.

A final recommendation is to conduct experiments with real vehicles to evaluate the robustness of
the proposed control scheme in face of unmodelled dynamics and external disturbances, such as
measurement noise. This would reveal the weak points of the control design and provide further
inspiration to develop a solution that could reach maturity in the coming years.
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Appendix A

Matrices used in the stability
analysis of piecewise affine systems

A.1 Continuity matrices

This section describes the procedure suggested in [4] to construct continuity matrices to be used
in the search of a continuous PWQLF that proves stability of a PWA system. The continuity
matrices must satisfy

[
xT 1

]
F̄j

[
x
1

]
=

[
xT 1

]
F̄k

[
x
1

]
, for x ∈ Xj ∩ Xk, ∀j, k ∈ J . (A.1)

The continuity matrices can be constructed based on the matrices Ḡj =
[
Gj gj

]
that collect the

equations of the hyperplanes that delimit the cells.

Notice that the points on the boundary between two adjacent cells Xj and Xk simultaneously
satisfy Gjx + gj � 0 and Gkx + gk � 0. If care is taken to construct the matrices Ḡj in such a
way that they contain information related to the same hyperplane in the same row (i.e., the first
row of all matrices Ḡj corresponds to the same hyperplane, the second row to another hyperplane,
and so on), then the following is true:

Gjx+ gj = Gkx+ gk � 0, ∀x ∈ Xj ∩ Xk, ∀j, k ∈ J , with Xj ∩ Xk 	= ∅, (A.2)

which explains why matrices Gj and gj can be used as a basis for the continuity matrices F̄j .

The structure for the continuity matrices F̄j is the following:

F̄j =

[
F ′
j f ′

j

I(nx) 0(nx×1)

]
, for j ∈ J , (A.3)

with F ′
j ∈ R

m×nx , f ′
j ∈ R

m, where m corresponds to the number of rows in the matrices Ḡj ,
i.e., the number of hyperplanes that bound the corresponding region Xj . The submatrix I(nx)

corresponds to the identity matrix of dimension nx × nx, which gives full column rank to F̄j .

The blocks F ′
j and f ′

j are constructed using the matrices Gj and gj , applying the following proce-
dure:

• Set
[
F ′
j f ′

j

]
equal to

[
Gj gj

]
.
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• Replace with a row of zeros those rows in
[
F ′
j f ′

j

]
that have a positive element in the last

column.

The procedure above guarantees that the matrices F̄j have the so-called zero interpolation prop-
erty, which means that f ′

j = 0 for j ∈ J0. This property allows to construct a continuous piecewise
quadratic Lyapunov function of the form (3.3) having no affine term for those cells that contain
the origin [4].

To explain how the matrices F̄j ensure continuity for the function V (x) defined in (3.3), consider
two quadratic functions of the form x̄T P̄j x̄ and x̄T P̄kx̄, with P̄j = F̄T

j T F̄j and P̄k = F̄T
k T F̄k,

where the abbreviated notation x̄ =
[
xT 1

]T
is used. Furthermore, T ∈ R

(nx+m)×(nx+m) is a
symmetric matrix. Then, in view of (A.1), the following equalities are satisfied:

x̄T P̄j x̄ = x̄T F̄T
j T F̄j x̄ = x̄T F̄T

k T F̄kx̄ = x̄T P̄kx̄, with x̄ =

[
x
1

]
, for x ∈ Xj ∩ Xk, ∀j, k ∈ J . (A.4)

A.2 Cell bounding matrices and the S-procedure

This appendix describes the procedure proposed in [4] to arrive at cell bounding matrices Ej and
Ēj that satisfy (3.12). These matrices are used for the S-procedure in the LMIs presented in (3.9)
and (3.10), which is explained at the end of this appendix.

For j ∈ J0, the matrices Ēj are constructed as follows:

• Set Ēj = Ḡj =
[
Gj gj

]
.

• Replace with a row of zeros those rows in Ēj whose element in the last column is different
from zero.

The previous algorithm removes from Ēj the information of those hyperplanes that have an offset
term. This achieves the zero interpolation property in matrices Ēj for j ∈ J0, which means these
matrices have only zeros in their last column. As explained in [4], this property allows the LMIs
in (3.9) to be strict. The matrix Ej , which is used in (3.9), is a sub-matrix of the respective Ēj

that corresponds to the first nx columns of Ēj .

For the indices j ∈ J1, the matrices Ēj are constructed as follows:

• Set Ēj =
[
Gj gj

]
.

• If the cell Xj is an unbounded polyhedron, then the matrix Ēj is augmented with the row[
0(1×nx) 1

]
.

The matrices Ēj are used for the S-procedure in the LMIs in (3.9) and (3.10), which relaxes the
conditions for the individual quadratic functions in (3.3), not forcing them to be positive or strictly
decreasing outside of the cell where they are used. To explain how this relaxation is achieved,
consider the following LMI from (3.9):

Pj − ET
j UjEj > 0, j ∈ J0. (A.5)

The previous LMI implies xTPjx > xTET
j UjEjx for any x ∈ R

nx . As the matrix Uj is required
to have only non-negative elements and Ej is constructed to satisfy Ejx � 0 for x ∈ Xj , then

xTET
j UjEjx ≥ 0, for x ∈ Xj . (A.6)
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The expression xTET
j UjEjx might be negative outside of Xj , so the function xTPjx is also allowed

to be negative outside of Xj . A similar reasoning explains how the S-procedure achieves the desired
relaxation for other LMIs in (3.9) and (3.10).

Once the LMIs (3.9) and (3.10) are solved, the term xTET
j UjEjx defines a quadratic surface that

divides the state space in two, and the cell Xj is contained entirely in one side of the surface.
The corresponding quadratic function xTPjx is positive for all points on one side of the quadratic
surface, including possible points that lie outside of Xj . This implies that the LMIs are, in general,
conservative.
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Appendix B

Additional parametric stability
studies

In this appendix, the results of additional parametric stability analyses are presented. PWQLFs
are attempted to be found for the PWA system corresponding to the baseline control scheme using
the vehicle parameters presented in Section 3.3.2.

Parametric study varying the acceleration limit of the vehicles
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Figure B.1: The five linear functions amax,i(vi) = αivi+βi used to represent the acceleration limit
of the vehicles

The purpose of this study is to confirm if stability of the PWA system can be proven while varying
the parameters that define the acceleration limit of the vehicles, but also using different ordering
of the vehicles in the platoon. In other words, in this study it is not always the case that the
slowest vehicle is at the rear of the platoon.

For this study, the timegap is fixed to h = 0.3 s and the driveline time constant is fixed to τ = 0.1 s.
The control gains γp and γd are chosen as 0.1 and 0.5, respectively, and other parameters are set
to the values in Table 3.3. These parameters achieve stable eigenvalues for the system matrices
in the PWA model. The acceleration limit for the three vehicles in the platoon is defined with
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one of the five linear functions presented in Figure B.1. These linear functions have the form
amax,i(vi) = αivi + βi. The parameter βi, indicating the maximum acceleration from rest, is
chosen between 0.2g and 0.4g, with g = 9.81 m/s2. The parameter αi is chosen between −0.2 and
−0.07s−1. For these values of αi the stability conditions presented in Section 3.3.1 are satisfied.

As shown in Figure B.1, three of the linear functions intersect at vi = 50 km/h. This intersection
is intentionally designed to verify if stability can be proven even when the vehicle with the lowest
acceleration limit is not the same at all driving speeds.

The study consists of 375 iterations, which consider all possible combinations of the acceleration
limits in Figure B.1, including cases where the three vehicles have the same function for acceleration
limit. The study is conducted for three different values of desired cruising speed, i.e., vdes ∈
{40, 50, 60} km/h.

The study reveals that the LMIs are feasible for any of the combinations of acceleration limits
considered here, as long as the desired cruising speed vdes is set within the capabilities of all the
vehicles in the platoon. In other words, for the LMIs to be feasible, the desired cruising speed
should not exceed the point where the maximum acceleration of one of the vehicles has reached
zero. This is of course a logical result, but it also means that the desired equilibrium for the PWA
system, i.e., the origin of the state space, should be contained in some region (or at the border
between some regions) for which the origin is indeed the equilibrium of the local dynamics.

The parametric study described above was conducted also for the PWA model corresponding to
the proposed control scheme from Section 2.3. The results are consistent with those corresponding
to the PWA model for the baseline control scheme: the functions for the acceleration limits do
not have a significant role in the feasibility of the LMIs, provided the desired cruising speed vdes
is feasible for all vehicles.

Although not being a formal proof, the results presented in this section indicate that the param-
eters related to the acceleration limit of the vehicles do not play a key role when trying to find a
PWQLF to prove the stability of the system.

Parametric study for a 4-vehicle platoon

In Section 3.3.2 the results of a parametric stability study are described, which consists of looking
for a PWQLF for the PWA model of a 3-vehicle platoon using several points of the design space
γp × γd × h× τ . This study is repeated but now for the PWA model corresponding to a 4-vehicle
platoon with the control scheme in [23]. The results are condensed in Figure B.2. In this figure,
the dashed line indicates the boundary in the design space for which the parameters achieve stable
subsystems in the PWAmodel. Due to the large number of regions in the PWAmodel, in this study
only combinations of parameters that lead to stable subsystems were assessed, which explains why
in Figure B.2 all dots and crosses lie to one side of the dashed line. The results of this study
are consistent with those in Section 3.3.2: for most points in the design space that achieve stable
subsystems it is possible to find a PWQLF that proves stability of the origin. However, some
exceptions were found, especially for the larger values of h and τ , which supports the conclusion
that the control strategy in [23] is applicable only for a limited range of values of timegap and
driveline constant.
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Figure B.2: Parametric stability analysis for a 4-vehicle platoon subject to the control scheme
in [23], varying γp, γd, h, and τ . The green dots indicate points in the design space for which
the LMIs (3.9) and (3.9) are feasible. The red dots indicate parameter combinations that lead to
infeasible LMIs. The dashed line bounds the region for which (marginally) stable eigenvalues are
obtained for all the subsystems in the PWA model.





Appendix C

Other attempts to improve the
baseline multi-layer CACC
strategy

In this appendix, some additional ideas are presented which were explored during this research
project in an attempt to improve the performance and scalability of the multi-layer CACC strategy
from [23]. The limitations and disadvantages of these solutions are also discussed to motivate why
in the end the preferred alternative is the one presented in Section 2.3. The upcoming sections
present also stability analyses based on piecewise affine models and piecewise quadratic Lyapunov
functions. It is assumed that the reader is familiar with these concepts, which are explained in
Section 3.1.

C.1 A non-linear feedback in the coordination layer

As discussed in Chapter 4 the multi-layer CACC strategy proposed in [23] can cause an oscillatory
behavior in the acceleration of the vehicles during transient phases. Depending on the values of
the control gains chosen for the coordination layer, the oscillations might dampen out or increase
in amplitude. In this section, a solution to mitigate this undesired effect is proposed.

Recall that the control strategy in [23], employs information signals in the upper layer defined as:

Kyi(t) = amax,i (vi(t))− γpei(t)− γdėi(t), ∀i ∈ I \ {1} , (C.1)

where the gains γp and γd are assumed to be positive. Since the spacing error and its time
derivative might have negative values, the variable yi might end up being larger than amax,i. In
such case, with Zeger’s control approach the platoon leader might accelerate beyond the limit of
the slowest vehicle in the platoon (recall that, thanks to the coordination layer, vehicle 1 does not
accelerate above ξ2 = min [ y2 , · · · , yn ]). This phenomenon has been observed in simulations
and seems to be related to the undesired oscillations in the acceleration of the vehicles.

To address the issue described before, the variables yi are re-defined with the following non-linear
expression similar to a one-sided spring:

yi(t) = amax,i −max [ 0 , γpei + γdėi ] , ∀i ∈ I \ {1} . (C.2)

The max function in (C.2) guarantees yi ≤ amax,i, ∀t. Assuming amax,i to be a linear function
of vi, expression (C.2) is piecewise-linear, which allows to analyze the stability of the platoon
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dynamics based on piecewise quadratic Lyapunov functions. The desired acceleration for vehicle
1 is still defined with expression (2.14), and for vehicles 2 to n is defined as in (2.5).

The proposed expression in (C.2) does not suffice to prevent the undesired oscillations in accel-
eration. This is illustrated with a simulation example later in this section. Hence, an additional
term is included in the information variables yi, as follows:

yi = amax,i −max [ 0 , γpei + γdėi + (ui−1(t− θc)− amax,i) ] , ∀i ∈ I \ {1} . (C.3)

where ui−1 is the control input of the preceding vehicle, which is known to the host vehicle thanks
to the wireless communication link and is subject to the time delay θc. The vehicle preceding
the slowest member should not drive with an acceleration above the limit of the latter (i.e., it is
desirable to achieve uk−1 ≤ amax,k, assuming vehicle k is the slowest), otherwise the spacing error
of the slowest member might (temporarily) increase. To this end, expression (C.3) decreases the
acceleration level allowed for the platoon leader whenever the vehicle in front of the slowest is
accelerating too much. Simulation results comparing the effect of expressions (C.2) and (C.3) are
presented next.

The simulation scenario consists of a ten-vehicle platoon, where the last vehicle has a lower ac-
celeration limit than the rest (parameters are chosen as in [23], including communication and
actuation delays). The platoon starts driving at 70 km/h and the desired cruising speed is set to
100 km/h, which allows for a sufficiently long transient to illustrate the benefits of the proposed
strategy. Figure C.1 shows the time response for acceleration and spacing error of this simula-
tion. When using expression (C.2), the acceleration of vehicles 1 to 9 keep oscillating during the
transient phase, while vehicle 10 periodically goes in and out of saturation. Notice also that the
acceleration of vehicle 9 exceeds that of vehicle 10 in various moments (see the detailed view at
the bottom of Fig. C.1). On the other hand, when using expression (C.3), the oscillations in the
acceleration fade out and vehicle 9 eventually drives with a lower acceleration than vehicle 10.

After confirming an adequate response through simulations, the stability of the closed-loop platoon
dynamics is analyzed using a piecewise affine (PWA) model. As a first attempt, the stability
analysis is conducted with the following assumptions. The last vehicle in the platoon has an
acceleration limit that is sufficiently low compared to the limits of the predecessors and the initial
spacing errors are sufficiently small. This means that only vehicle n might reach its acceleration
limit. Additionally, the platoon leader receives information from the last vehicle at all times, i.e.,
ξ2(t) = min [ y2 , · · · , yn ] , ∀t > 0. Furthermore, the function amax,i is assumed to be linear;
the communication and actuation delays are neglected.

To explain how expression (C.3) is represented in a PWA model, notice that (C.3) is equivalent
to:

yi = min [ amax,i , amax,i − (γpei + γdėi + ui−1 − amax,i) ] , ∀i ∈ I \ {1} , (C.4)

With the assumptions mentioned before and because of the coordination layer in this approach,
the expression for the control input of the platoon leader is:

uref,1(t) = min [ u1 , yn ]

= min [ u1 , amax,n , amax,n − (γpen + γdėn + un−1 − amax,n) ] ,
(C.5)

where u1 = kv(vdes − v1). Expression (C.5) translates into three hyperplanes which divide the
state space into 6 regions. The saturation of vehicle n is represented with another hyperplane,
which results in a PWA system with a total of 12 regions, regardless of the platoon size.

For a platoon of ten vehicles, using the parameters from the simulation presented in Fig. C.2, a
piecewise quadratic Lyapunov function for the PWA system can be found by solving linear matrix
inequalities as explained in Section 3.1. However, when choosing a larger timegap for the spacing
policy (e.g., h = 1 sec), the LMIs turn out to be infeasible. Similar to the results discussed in
Section 3.3, the dynamics for one of the subsystems in this PWA model can become unstable
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Figure C.1: Time response for acceleration and spacing error of a ten-vehicle platoon. The plots to
the left correspond to the simulation with expression (C.2), while the plots to the right correspond
to expression (C.3).

depending on the platoon length, the timegap, the time constant of the driveline dynamics, and
the control gains γp and γd. In such case, the stability analysis based on piecewise quadratic
functions is not conclusive.

The modification proposed here achieves some improvement with respect to the baseline control
strategy. However, it is still not suitable to be scaled to platoons of any size and the stability is
still dependent on the timegap. A different control approach is described in the next section which
aims to tackle the difficulties described before.

C.2 A dynamic feedback in the coordination layer

To address the limitation discussed before, the feedback law could be re-defined, in the frequency
domain, as

P (s) = (γds+ γp)(hs+ 1)n−2. (C.6)

This dynamic feedback law would compensate for the phase lag introduced by the spacing policy.
However, such a feedback would be difficult to implement in reality because measurements of the
high-order derivatives of the spacing error are not available. As an alternative, cascaded lead-filters
can be used, as follows:

P (s) = (γds+ γp)

(
hs+ 1
1

2πf s+ 1

)n−2

, (C.7)
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with some frequency f > 1
2πh . Substituting (C.7) in (3.26) results in

CL(s) =

(
1

2πf s+ 1

hs+ 1

)n−2
1− (hs+ 1)n−1(

1
2πf s+ 1

)n−2

(τs+ 1)s2 + γds+ γp

. (C.8)

Assuming the gains γp, γd are kept constant, the value of f should increase as n increases in order
to achieve stable poles in (C.8). Of course, in practice, the higher the value of f , the higher the
amplification of high-frequency measurement noise. Notice also that the order of the filter proposed
in (C.7) is higher as the platoon size increases, which might lead to large computation time in a
real implementation and also requires more complex PWA models for the stability analysis.

The dynamic feedback proposed before does not compensate for communication delays. Although
not discussed here, the stability of the closed-loop transfer function in (3.25) considering time
delays could be assessed with graphical methods, such as inspecting the Nyquist plot for the
open-loop transfer function, as suggested in [20].

To evaluate the performance of this proposal, a simulation is conducted using the multi-layer
CACC strategy with the dynamic feedback law in (C.7). The same scenario described in Section
C.1 is used here. In this simulation the timegap is set to h = 0.3 sec. Figure C.2 shows the
time response for acceleration and spacing error. The simulation is performed using two different
frequencies for the low-pass filters in (C.7): f = 1 Hz and f = 2 Hz (these values achieve stable
poles in (C.8) for the chosen gains: γp = 0.1, γp = 0.5). When using f = 2 Hz, the oscillations
in the acceleration of the vehicles decay faster, but the acceleration of vehicle 1 shows a large
spike. The spikes in the acceleration a1 occur when vehicle 10 goes in and out of saturation. This
switching introduces high-frequency harmonics in the spacing error e10, which are amplified by
the feedback law, thus causing the spikes in the control input for vehicle 1.

The simulation presented before is repeated, but this time for a timegap h = 0.5 sec (the plots are
not shown here). In this case, spikes in a1 are observed even when using f = 1 Hz in the low-pass
filters. Increasing the timegap to h = 1 sec results in even larger spikes which cause an unstable
behavior. To regain stability, the frequency f or the gains γp and γd must be reduced. However,
the poles in (C.8) become unstable when f is set sufficiently low. This indicates that the dynamic
feedback proposed here is not suitable for any timegap h.

It was observed in simulations that, as the slowest vehicle is located further back in the platoon,
the spikes in the control input of vehicle 1 increase in amplitude. This leads to conclude that this
dynamic feedback is not suitable for platoons with an arbitrary number of vehicles.

From the various attempts to design a feedback law for the multi-layer CACC, it can be concluded
that regulating the spacing error of the saturated vehicle at the rear of the platoon just by changing
the input to the platoon leader is not an effective solution and leads to the limitations discussed
before. An alternative would be to use the coordination layer to also change the input for the
vehicles between the slowest and the leader. This would achieve a faster reaction to the changes
in spacing error of the saturated vehicle. However, this approach would interfere with the string
stability properties of the nominal CACC, which are still present (to some extent) when the
coordination layer only affects the input of the platoon leader.
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Figure C.2: Time response for acceleration and spacing error of a ten-vehicle platoon subject to
the multi-layer CACC strategy with a dynamic feedback law. The plots to the left correspond to
the case of a low-pass filter with f = 1 Hz, while the plots to the right correspond to a low-pass
filter with f = 2 Hz.

C.3 Designing a full state-feedback for the coordination
layer

A prior report described a couple of ideas for an output-feedback law to be used in the coordination
layer of the multi-layer CACC, this in order to prevent the undesired oscillations in the acceleration
of the vehicles, which were observed during the transient periods in simulations. Those ideas were
generated while keeping in mind the particular application for this control strategy, i.e., a vehicle
platooning problem in which each vehicle has access only to its own states and a single signal is
communicated in between contiguous vehicles. This time the problem is approached in a more
generic way to be able to apply a different design tool.

It is assumed that the states of all vehicles (i.e., spacing error, velocity, acceleration, and the
desired acceleration prescribed by a nominal CACC [13]) are available to construct a full state-
feedback in the coordination layer. This feedback is then used to limit the desired acceleration
of the platoon leader, while the vehicles between the leader and the slowest continue to use the
nominal CACC. Recall that the goal of this multi-layer strategy is to maintain platoon cohesion
(i.e., guarantee small spacing errors during accelerating periods) in face of heterogeneous and
dynamic acceleration limits in the vehicles.

The coordination variable that is used to limit the desired acceleration of vehicle 1 is defined as
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in [23]:

ξi(t) = min [yi(t), ξi+1(t)] , for i ∈ {2, · · · , n− 1}
ξn(t) = yn(t),

(C.9)

where the scalar variable yi contains the acceleration limit of vehicle i and a feedback term, as
follows:

yi(t) = amax,i (vi)− δi(t)

δ̇i(t) = 2πf
(
−δ(t) +Ki(t)

(
xT
1 , · · · , xT

i

)T
+ ki(t)

)
x1(t) = (v1, a1)

T

xi(t) = (ei, vi, ai, ui)
T

, for i ∈ {2, · · · , n} , (C.10)

where ei, vi, ai, and ui are the spacing error, velocity, acceleration, and desired acceleration of
vehicle i, respectively. The term δ(t) is the output of a low-pass filter with some cut-off frequency
f (the reason for including this filter is explained later on). The variable Ki(t) is a vector of
gains associated to the states of vehicles 1 to i, while ki(t) is an affine term. While designing
this feedback, it is assumed that the values for Ki and ki can switch depending on the current
operation mode of the platoon.

The feedback law proposed in (C.10) is a general definition that encloses the less flexible feedback
law proposed in [23], which specifies a feedback term δi(t) that depends only on the spacing
error ei(t) and its time derivative ė(t), together with constant gains: Ki = K, ki = 0, ∀i ∈
{2, · · · , n} , ∀t > 0.

The design of the state-feedback proposed in (C.10) is based on a piecewise affine (PWA) system
that describes the various operation modes of the closed-loop dynamics of the vehicle platoon. Each
mode is described by linear dynamics and the switching between these modes is based on linear
functions of the states (i.e., hyperplanes in the state space). However, attempting to design all the
gains Ki(t) and terms ki(t) at the same time would require a PWA system with an unmanageable
amount of operation modes (i.e., several regions in the state space). As a first attempt to evaluate
this control approach, the procedure presented below focuses on designing only the gains Kn(t)
and the term kn(t), while making some assumptions that allow for a simple PWA system.

The first assumption for the vehicle platoon is that vehicle n is the one with the lowest acceleration
limit (i.e., amax,n(t) < amax,i(t), ∀t > 0, i ∈ {1, · · · , n− 1}). This allows to assume that the
information communicated to vehicle 1 through the coordination variable ξ2 originates in vehicle
n (i.e., ξ2 = yn). Furthermore, it is assumed that the limit of vehicle n is sufficiently small
compared to the limits of the other vehicles. This means that only vehicle n might reach its
acceleration limit at some point in time. This is a reasonable assumption because, thanks to the
coordination layer, the leading vehicle would be driving slightly below amax,n. Then, because of
the CACC in the lower layer of this strategy, the desired acceleration for vehicles 2 to n− 1 is set
below amax,n, provided the initial spacing errors for these vehicles are small.

With the assumptions stated above, the closed-loop platoon dynamics subject to the multi-layer
CACC can be modelled with a PWA system that consists of a state space partitioned into four
regions delimited by two hyperplanes. The first hyperplane indicates a switching in the desired
acceleration of vehicle 1, as follows:

uref,1(t) = min [ kv(vdes − v1) , ξ2 ] , (C.11)

where the first argument of the min function is a simple cruise controller (with some gain kv > 0,
and vdes a desired cruising speed), and ξ2(t) = amax,n(vn)− δn(t) (because of the aforementioned
assumptions). Notice that, thanks to the low-pass filter associated to the feedback term δn(t) [see
(C.10)], the equation of the hyperplane associated to (C.11) is independent of the choice of Kn(t)
and kn(t), which is crucial for the design procedure described below.
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The second hyperplane in the PWA model denotes the saturation in the desired acceleration of
vehicle n:

uref,n(t) = min [ un , amax,n(vn) ] , (C.12)

where un is the desired acceleration prescribed by the CACC and the acceleration limit amax,n

is described with a linear function (i.e., amax,n(vn) = αnvn + βn, with some constants αn < 0,
βn > 0).

The PWA system in question can be written as:{
ẋ(t) = Ajx(t) + bj +Bjw(t)
w(t) = −K(n,j)x(t)− k(n,j)

, for x(t) ∈ Xj , j ∈ J = {1, ..., 4} , (C.13)

where x =
(
xT
1 , · · · , xT

n , δn
)T

is a lumped state vector, Aj are the system matrices, bj are affine
terms, and Bj are the input matrices. The scalar input w(t) is the state feedback that needs to
be designed. The sets Xj correspond to the different regions of the state space (i.e., unbounded
polyhedra); the subscript j denotes the index of the region. Notice that the input w(t) is a
piecewise-affine state-feedback because the gain vectors K(n,j) and affine terms k(n,j) might change
depending on the region Xj . Furthermore, the input w(t) affects only the controller state δn(t),
as defined in (C.10), and Bj = B, ∀j ∈ J .

To design the PWA state-feedback w(t) in (C.13), the procedure described in [4] is used, which
relies on solving a bilinear matrix optimization problem. The idea is to solve a set of bilinear
matrix inequalities (BMIs) while finding an upper bound for the following cost function:

J(x0, w(t)) =

∫ ∞

0

(
x(t)TQx(t) + w(t)TRw(t)

)
dt (C.14)

with Q and R positive definite matrices, and some initial state x0 = x(0), assuming the system
reaches the equilibrium x(∞) = 0. The BMIs that must be solved are [4]:[

(Āj − B̄jK̄(n,j))
T P̄j + P̄j(Āj − B̄jK̄(n,j)) +Q+ ĒT

j UjĒj K̄T
(n,j)

K̄(n,j) −R−1

]
, for j ∈ J , (C.15)

with symmetric matrices P̄j = F̄T
j T F̄j , where T is an unknown symmetric matrix, and F̄j are

continuity matrices (see Appendix A).

The matrices Āj are augmented system matrices containing Aj and bj (see (3.11)). The matrices

B̄j =
[
BT

j 0
]T

are augmented input matrices. Then, K̄(n,j) =
[
K(n,j) k(n,j)

]
are augmented

gain matrices. Matrices Uj are unknown symmetric matrices with non-negative entries. Finally,
matrices Ēj are region-bounding related to the S-procedure, as described in Appendix A.

A solution to (C.15) provides an upper bound for (C.14), as follows [4]:

J(x0, w(t)) ≤ inf
T,Uj

[
xT
0 1

]
Pj0

[
x0

1

]
(C.16)

with initial state x0 = x(0) ∈ Xj0 , with j0 ∈ J . Optimization problems involving BMIs are in gen-
eral non-convex [4]. The linearization method proposed in [4] is used to address this optimization
problem, as described next.

The idea is to provide some initial gain matrices K̄0
(n,j) for which (C.15) can be solved (i.e.,

substitute K̄(n,j) = K̄0
(n,j), and solve the resulting linear matrix inequalities for matrices P̄j and

Uj). Then, substituting P̄j = P̄ 0
j + δP̄j and K̄(n,j) = K̄0

(n,j) + δK̄(n,j) in (C.15) and neglecting

the cross-terms (δK̄(n,j))(δP̄j), linear matrix inequalities are obtained with δP̄j , δK̄(n,j), and Uj

as unknowns. This set of LMIs is solved while minimizing the function x̄T
0 (δP̄j0)x̄0, where x̄0 =[

xT
0 1

]T
. An additional constraint is included to guarantee a valid linearization: ||δP̄j || ≤ α||P̄ 0

j ||.
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This linearization method is repeated until no further improvement can be achieved in the cost
function.

The procedure discussed above leads to a PWA state feedback that is in general discontinuous
at the boundary between regions (i.e., K(n,p)x + k(n,p) 	= K(n,q)x + k(n,q), for x ∈ Xp ∩ Xq, with
p, q ∈ J ). A continuous state feedback is preferred because in that case the stability of the PWA
system for the resulting closed-loop dynamics can be proved without having to account for Fillipov
solutions that might arise from the discontinuity in the dynamics at the boundary between regions.
Hence, as suggested in [4], the unknown matrices δK̄(n,j) are redefined as δK̄(n,j) = SF̄j , where S
is an unknown vector and F̄j are continuity matrices as defined previously.

A major limitation in the design procedure explained before is that one must be able to provide an
initial state feedback for which (C.15) can be solved. Fortunately, a possible choice for the initial
matrices K̄0

(n,j) can be obtained from the original multi-layer CACC in [23], which corresponds

to a continuous output-feedback without affine terms (i.e., K0
(n,j)(t) = K0

n and k0(n,j)(t) = 0,

∀j ∈ J , ∀t > 0). This is the starting point for the bilinear matrix optimization problem that leads
to a piecewise-affine, full state-feedback.

To provide an illustrative example, the design procedure described above is applied to the PWA
system that describes a 10-vehicle platoon, where vehicle 10 has a significantly lower acceleration
limit. The control gains for the CACC in the lower layer and other vehicle parameters are taken
from [23] (communication and actuation delays, as well as the aerodynamic drag, are neglected
to allow for linear systems in the PWA model; no gear-shifting is considered here). The time-gap
for the spacing policy is set to h = 0.3s. An initial state must be chosen, which in this case is set
to vi = 60km/h, ai = ui = 0m/s2, ei = 0m, and δ10 = 0. The desired cruising speed is set to
vdes = 100km/h.

The initial state-feedback for the iterative procedure is chosen based on the output-feedback pro-
posed in [23], so that the dynamics of the controller state δ10(t) in the first iteration are given
by:

δ̇10(t) = 2πf (−δ10(t) + γpe10(t) + γdė10(t)) , (C.17)

with f = 10Hz, gains γp = 0.02, γp = 0.25, and ė10(t) = v9 − v10 − ha10. These values are
chosen because they lead to feasible LMIs in (C.15). The matrix Q is chosen such that the weight
associated to the state e10 is equal to 1, while the weight associated to the other states is 0.01.
The weight associated to the input w(t) is chosen as R = 1.

After around 40 iterations of the linearization method described before, four gain vectors K̄(10,j)

and four matrices P̄j are obtained. With the resulting PWA state-feedback, the upper bound for
the cost function (C.14) computes to J(x0, w(t)) ≤ x̄T

0 P̄3x̄0 = 3.86 ·103, while the bound obtained
using the initial output-feedback is x̄T

0 P̄
0
3 x̄0 = 15.05 · 103. In this example the initial conditions

correspond to a point in region X3, which is why matrices P̄3 and P̄ 0
3 are used for the computation

of the upper bound. The response for acceleration and spacing error of the 10-vehicle platoon is
shown in Figure C.3, where a comparison is offered between the initial output-feedback (C.17)
and the optimized state-feedback.

From Figure C.3, it is evident that the magnitude of the spacing error is lower when using the
optimized state-feedback. Notice in the detailed view for acceleration that, with the initial output-
feedback, vehicle 10 accelerates up to its limit and keeps driving in saturation until the predecessors
reach the desired velocity. On the other hand, when using the optimized state-feedback, vehicle
10 reaches its acceleration limit at around t = 5s, but then it goes out of saturation at around
t = 22s. This happens because the state feedback is setting a desired acceleration for vehicle 1 that
eventually makes vehicle 10 to accelerate below amax,10, so vehicle 10 ends up driving in CACC
mode. Although not illustrated here, depending on the chosen weight matrices Q and R, the state-
feedback resulting from the optimization procedure might cause vehicle 10 to drive significantly
below amax,10, which of course increases the time required to reach the desired velocity.
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Figure C.3: Time response for acceleration and spacing error of PWA system describing a ten-
vehicle platoon. The plots to the left correspond to the simulation with the output-feedback in
(C.17), while the plots to the right correspond to the simulation with the PWA state-feedback
obtained through bilinear matrix optimization.

Unfortunately, from the simulation example presented before, little benefit arises from the op-
timized state-feedback, compared to the output-feedback from [23]. Moreover, when trying to
design a state-feedback for the simulation scenario described before but using a larger timegap,
h = 1s, it was not possible to find a value for the gain vectors K̄0

(10,j) based on the output-feedback

(C.17) that makes the LMIs in (C.15) feasible, so that one has no starting point for the bilinear
matrix optimization. It might be possible to find a suitable initial feedback through some other
procedure, but it can be concluded that finding the initial feedback is harder as the platoon size
or the timegap increase.

An additional disadvantage of the state-feedback proposed here is related to the implementation
in a real vehicle platoon. The feedback signal is, in general, a function of the states from all
the vehicles in front of the slowest. To implement this state-feedback in a distributed fashion, a
coordination variable could be used that is communicated downstream from vehicle p (assuming
vehicle p is the slowest) towards vehicle 1. The states of the vehicles multiplied by their associated
gains are added to this coordination variable as it travels downstream, such that in the end
vehicle 1 receives a variable equal to K(p,j)x(t)+ k(p,j). Additionally, vehicles 1 to p− 1 should be
informed of what are the control gains associated to their states (i.e., the relevant gains in vectors
K̄(p,j)), as well as the operation mode of the platoon (i.e., which region Xj is currently applicable).
Furthermore, if at some point in time the vehicle with the lowest acceleration limit changes from
index p to a different index q, then the gain vector K̄(q,j) for the state-feedback would need to be
communicated to vehicles 1 to q − 1, because in general K̄(p,j) 	= K̄(q,j).

From the discussion in the previous paragraph, it can be concluded that the performance improve-
ment offered by the state-feedback proposed here is outweighed by the difficulties associated to
the implementation and the fact that an initial feedback that makes (C.15) feasible is needed.
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