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Chapter 1

Introduction

Demand for livestock products has increased steadily in the past fifty years and is estimated to
grow even further in the coming decades[44]. This growth has lead to an increase in demand for
animal food. To meet this demand producers in the animal feed industry have to increase their
production capacity. This can be achieved by expansion of capital goods and man labor and by
increase in production efficiency. However, capital goods are a costly investment and man labor
can be expensive in some countries. Furthermore, space limitations might restrict possibilities in
expanding capital goods in existing factories. Therefore, it is important to consider increasing the
production efficiency. Moreover, the reason to apply a certain production planning in factories is
often not supported by scientific reasoning, but rather based on experience and those production
plannings are only updated out once per year or even carried out once in general. Hence, this
research focuses on a systematic production planning optimization in a feed production system.

Optimization of production planning is studied in industries other than the animal feed indus-
try as well. Examples range from the chemical and semiconductor industries to shipbuilding
manufacturing[13][26][35].

The graduation project is executed in collaboration with KSE Process Technology. KSE Process
Technology is a company in Bladel, Noord-Brabant, specialized in solutions for dosing, weighing
and transport of materials in factories. They supply instruments and expertise primarily in the
animal feed industry in the form of dosing and weighing installations, automation solutions and
services for producers of powders, granulates and liquids[1]. A typical animal feed production
system used in the industry is illustrated in Figure 1.1. The figure shows the general steps in an
animal feed production plant. First, material is introduced to the system. Most material is sup-
plied in bulk as visualized by the ‘Bulk Intake’ stage in the figure. The material is stored in silos.
A silo is a container intended for storing material in dosing installations. A dosing installation is a
machine dedicated to dosing, i.e. weighing, material. One or several steps of dosing take place on
these installations as indicated by ‘Macro Dosing’ and ‘Medium and Micro Dosing’. The process
continues with mixing and grinding the materials, after which they are removed from the system
as illustrated by ‘Bulk Outtake’.

This research focuses on optimizing the production planning of the blending line of the animal
production feed system, that is, the process of dosing and mixing materials. The intake and
outtake of material and grinding is thus not taken into consideration. Furthermore, this research
considers a simplified dosing process: it consists of only one dosing stage followed by one mixing
stage, meaning that there is simply one step at which materials are added and one step at which
materials are mixed in the system. In the dosing stage one or multiple dosing installations are
placed parallel to each other. In the mixing stage one mixer is placed behind the dosing stage.

Optimization of total production time on the blending line is achieved by arranging the container
placement and production allocation. Assuming a fixed production schedule, rearranging the con-
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tainer placement, and therefore the materials, between machines may result in a more efficient
production as it may reduce the idle time of the installations. Furthermore, given a set of dosing
installations, material may theoretically be weighed on multiple installations. Therefore, rearrang-
ing the production allocation over these installations may also result in more efficient production.

The problem definition is explained in more detail in Chapter 2. Furthermore, Chapter 3 introduces
some of the background information required to solve the problem. Chapters 4, 5 and 6 discuss
solution methods to the problem at stake. Finally, conclusions to these solution methods are
drawn and recommendations for future research are given in Chapter 7.

Bulk Intake

Macro Dosing Medium,
and Micro Dosing

Bulk Outtake

Mixing,
and grinding

Dosing
Installations

Figure 1.1: General animal feed production process[46]
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Chapter 2

Problem definition

In the introduction a typical animal production feed system is presented. This chapter introduces
the investigated system at KSE Process Technology. The investigated system is a simplified section
of the animal production system as depicted in Chapter 1. First, an overview of the system is
given. Then, some components are discussed in more detail. After that, the production that needs
to be scheduled on the system is discussed. In the end of the chapter the research question of this
project is posed.

2.1 General system

Weigher

Silo

Batch mixer

Dosing installation
with movable weigher

Dosing installation
with stationairy weigher

FRONT VIEW

Dosage

Discharge

Dosing installation
with movable weigher

Dosing installation
with stationairy weigher

TOP VIEW

Figure 2.1: System with dosing installations and a batch mixer

The focus of this graduation project is optimization of the production on a blending line. A blend-
ing line is the process of dosing and consequently mixing material. In Figure 1.1 in Chapter 1 an
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animal feed production process is depicted. The blending line considered in this chapter concerns
a simplified production process consisting of solely one dosing stage and one blending stage as
seen in Figure 2.1. This is in contrast to the process in Chapter 1 where multiple dosing stages
are illustrated. The dosing stage consists of one or multiple dosing installations which weigh raw
material. A dosing installation consists of silos and a single weigher. Each silo contains one spe-
cific ingredient, referred to as a raw material. It is assumed that a silo has infinite capacity, such
that silos do not require replenishing. Also, once raw material is assigned to a silo, it cannot be
changed. Furthermore, it is assumed that some raw materials are bound to a certain set of dosing
installations or silos while other materials are excluded from a certain set of dosing installations
or silos. The weigher weighs raw material that flows from a silo. A single flow of raw material
from a silo in the weigher is called a dosage. In addition, it is assumed that a silo has infinite
capacity and does not require replenishing. Dosing installations are set parallel to each other
and are connected to a single batch mixer which mixes raw material. Material is released from a
weigher into the batch mixer. A single flow of material from a weigher in the batch mixer is called
a discharge. On one installation only one dosage takes place simultaneously, since only one raw
material can be weighed at once. In the total system only one discharge takes place simultaneously.

There are two types of dosing installations: stationary and movable. In a dosing installation with
a stationary weigher, the weigher is located at a fixed position. Raw material can flow directly
from a silo into the weigher. In a dosing installation with a movable weigher the weigher is not
in direct connection with the silos of the installation. The weigher relocates in order to collect or
release material. The weigher of one installation cannot collect material from another installation.

In the system production takes place in the form of production orders. A production order is
defined as a certain mass of a recipe. Recipes are a certain ratio of a set of raw materials. Hence,
production orders are specified as a set of raw materials, in which each raw material in the pro-
duction order has a specific mass. The production process starts with raw material in silos, which
need to be weighed in the weigher and are consequently mixed in the batch mixer. In the system,
only one batch may be mixed simultaneously.

Production orders are processed according to the following approach: production orders are split
in batches as production orders may not exceed the maximum allowed mass in the batch mixer.
Most batches of a production order have equal production quantities. However, the last batch in
a production order often may have a different weight and sometimes a smaller sized test batch is
performed in advance. Hence, it is assumed that batches in a production order are not equally
sized. Each batch contains the exact ratio of raw material as the production order. The production
of a batch is carried out by collecting dosages from silos. These dosages are cleared by discharges
from the weigher into the mixer.

2.2 Components system

The blending line consists of two types of instruments, namely: a dosing installation and a mixer.
Dosing is defined as taking a certain mass of a raw material from the silo by weighing it on the
weigher. The dosing time is dependent of a silo dependent dosing constant cD, the released mass m
in the dosage and a silo dependent dosing velocity vD and the dosing time as a whole is dependent
of a dosability factor Kg, which is dependent of raw material g. The dosing time is given as:
Kg(

1
vD
l

m+ cDl )[s], for a silo l and a raw material g. Due to the weighing accuracy of the weigher a

dosage is bound to a required minimum dosing mass. Due to the physical dimensions of a weigher
in an installation a dosage is bound to a maximum allowed dosing mass and a maximum allowed
dosing volume. Dosing is executed on a dosing installation, which can either contain a stationary
or movable weigher. Material is released from the dosing installation in the batch mixer by a
discharge. Discharging is defined as emptying the content of the weigher in the batch mixer. The
discharge time is dependent of an installation dependent discharge constant cS , the released mass
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m in the discharge, and an installation dependent discharge velocity vS . The discharge time at
a weigher w is hence given as: 1

vS
w
m+ cSw[s]. The discharge time is not dependent of a dosability

factor as often discharges involve multiple raw materials. The combination of these materials
generates a more uniform release time, which is expressed in the discharge constant. Furthermore,
the dosability in such cases is dependent of the specific combination of raw materials; it is assumed
that this is unknown.

Usually, installations in the system are not all identical in size. An installation is considered to
be larger in size if it has a larger maximum allowed dosing mass. If two installations have an
equal maximum allowed dosing mass, but a different minimum required dosing mass, then the
installation with the largest minimum required dosing mass (i.e., the installation with the most
limiting weighing interval) is considered the larger installation of the two.

2.2.1 Batch mixer

Mixing is executed on a batch mixer and the mixing time is considered to be constant with a
mixing time constant. It is assumed that the mixing time is the time needed for the batch mixer
to mix the raw materials to a homogeneous mixture and the time needed to unload the completed
batch from the system. There can be multiple parallel dosing installations but there exists solely
one batch mixer in the studied system.

2.2.2 Dosing installation with stationary weigher

In a dosing installation with stationary weigher, the weigher is in direct connection with all silos
and the mixer and thus raw material can directly flow from a silo in the weigher.

2.2.3 Dosing installation with movable weigher

In case a movable weigher is involved the mixer is not in direct connection with the silos and
the mixer and thus the weigher has to relocate in order to collect raw material from a silo or
to release material in the mixer. The relocation time is dependent of the installation dependent
acceleration, installation dependent deceleration and maximum velocity of the weigher as well as
the displacement of the weigher. It is assumed that the weigher takes the shortest path from
one silo to another and that it always accelerates and decelerates with the same acceleration and
deceleration. The distance between silos and the distance between silos and the discharge location
are assumed to be known. The exact relation between the relocation time and displacement,
acceleration, deceleration and maximum velocity of the weigher is given in Appendix A. For the
remainder of this report is assumed that the relocation time is known.

2.2.4 Handtip

Not all raw materials are processed by machines. Some materials are added directly into the
batch mixer by hand, referred to as a ‘handtip’. The reason to do so might be that some materials
must be weighed below the minimum required dosing mass of any weigher. Another reason to
place a material at the handtip is because their flow properties do not allow these materials to be
weighed accurately at a weigher. For this report, materials processed by handtip are considered
to be processed on a dosing installation. The parameters for the ‘handtip installation’ have to be
chosen such that in most cases the dosing installations are preferred over the handtip installation
to prevent all materials to be placed on the handtip installation. It is assumed that the handtip
installation does not have a weight or volume restriction.
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Production Period Batch Discharge Dosage
Raw
material

Period

Period

Batch

Batch

Discharge

Discharge

Dosage

Dosage

Figure 2.2: Composition production

2.3 Production

The production in the system is given in periods. Periods are assumed consecutive and each period
is given by a number of production orders. A production order is the production, i.e. weighing and
mixing, of a certain mass of a recipe. A recipe is defined as a certain ratio of a set of raw materials.

Often, a production order exceeds the mass or volume restrictions of the batch mixer, meaning
that it cannot be mixed by the batch mixer at once. The production of a production order is
therefore split in several batches. A batch is defined as part of a production order that can be
processed at once by a batch mixer. Furthermore, in order to generate conveniently sized batches
the batch size may additionally be dependent of, for example, the maximum allowed mass or
volume in other parts of the system. It is assumed that each batch in a production order consists
of the same ratio of raw materials as the production order. The batches of one production order
are mixed consecutively in the batch mixer and should be finished before a batch of a next pro-
duction order can be mixed. As a production order can be expressed in a number of batches of
identical recipe, the formulation of production in production orders in batches can be reduced to
a formulation of production in batches directly, as shown in Figure 2.2. Thus, from this point on
in general production orders are not taken in account anymore. Rather, it is spoken of as batches.

As illustrated earlier in this section, batches are collected in the batch mixer by performing dosages
on the weighers of installations. These dosages are released in the mixer by discharges. Hence,
each batch is collected by a few discharges from multiple dosing installations, which on its turn
are gathered by dosages from silos. Each discharge is performed by a single installation. Multiple
discharges are possible from a single installation in one batch. Furthermore, it is assumed that
a dosage is executed on one installation only and that the raw material in a dosage is extracted
from a single silo.

The order in which the production is carried out is assumed to be fixed according to a given
production schedule. The periods and batches are given by the schedule. The recipe of each batch
is known.

Furthermore, an installation cannot dose and discharge simultaneously. Dosages are performed
consecutively. It is assumed that no material can be added to the batch mixer during mixing.
Therefore, all discharges of a batch have to take place before mixing starts. Discharges take place
consecutively, meaning that installations may not discharge simultaneously.

The total production spans a number of production periods. The production of each period is
carried out consecutively as given in the production schedule. No activity from a next period may
be carried out in the current period, meaning that batches in one period, and therefore dosages
in that period, may only start if the previous period has ended.
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2.3.1 Dosing and discharge order policy

In general, the dosing order of dosages in batches are carried out using the following policy:

• all dosages in a batch at the same installation are executed consecutively. Multiple dosages
may be present together in a weigher depending on the maximum allowed mass or volume of
the weigher. In case a dosage exceeds the remaining capacity of the weigher, it is forwarded
completely to the next discharge. This is illustrated in Example 1;

• dosages at the same installation are carried out in the order they appear in the production
schedule;

• the order in which installations may discharge is assumed to be from large to small. All
dosages executed at the largest installation are discharged first. Only after the dosages
at the largest installation have finished, dosages at the second largest installation may be
discharged and so forth. Finally, the dosages at the handtip are discharged. Even though
the installations discharge in the given order, dosages at a smaller installation may be dosed
before the dosages of a larger installation have been discharged or even dosed, as long as the
dosages of the larger installation are discharged before the dosages of the smaller installation.

Summarizing, the periods and batches are carried out in the order as imposed by the production
schedule. The dosages of the batches however, are carried out in an alternative manner, such that
the number of discharges is limited.

Example 1. Forwarding a dosage Assume that several raw materials with a total mass of
1,000[kg] are present in a weigher with a maximum allowed dosage mass of 2,000[kg]. An additional
dosage of 3,000[kg] grains should be dosed. Then, the 1,000[kg] of raw materials is discharged first.
The grain is consequentially dosed in two dosages. The first dosage is 2,000[kg], which is discharged
before the second dosage of 1,000[kg] is performed.

2.3.2 Production allocation

The decision of how batches are split up over the installation is dependent of the production
allocation. Production allocation indicates setting weight bounds for the distribution of dosages
on installations. The production allocation is determined for each raw material individually.
It is possible that a certain raw material has to be weighed in different quantities in the total
production. All dosages between the bounds are performed on the installation, i.e.: each weight
class is continuous. For a specific raw material, no overlap in these weight classes is allowed. Note
that a consequence of this allocation method is that a raw material from a specific weight class is
always assigned to a specific installation even if another installation that is theoretically capable
of processing that dosage is available. Hence, the production allocation is defined as the allocation
of dosing intervals of raw materials such that:

1. dosing intervals of a raw material are disjoint, that is, each dosing is allowed on one and one
installation only;

2. all dosages are allocated;

3. each dosing interval is left-closed, right-open and a convex set.

It is assumed that the lower bound is and the upper bound is not performed on the installation.
An example of a production allocation is given in Example 2.

Example 2. Production allocation Assume two dosing installations. Installations A and B
have a weigher with a required minimum dosing mass of respectively 10 and 25[kg] and a maximum
allowed dosing mass of respectively 1,000 and 2,000[kg]. Assume that grain is a raw material used
in production and that it is dosed in the following dosage sizes: 10[kg], 50[kg] and 1,500[kg].
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It is straightforward that dosages of 10[kg] can only be dosed at installation A, because of the
required minimum dosing mass restriction. Dosages of 50 and 1,500[kg] can be dosed on either
installation. However, dosages of 1,500[kg] have to be split up in two dosages in case they are
dosed at installation B. Therefore, three production allocations are shown in Table 2.1 that lead
to different allocations of the dosages over the installations. Note that an allocation of 10 and
1500[kg] at installation A and 500[kg] at installation B is not possible, since the allocation should
result in weight classes of continuous intervals.

Table 2.1: Possible production allocations

Installation A B

Production allocation 1 [10,−) -
Dosages [kg] 10, 50, 1500 -
Production allocation 2 [10, 1500) [1500,−)
Dosages [kg] 10, 50 1,500
Production allocation 3 [10, 50) [50,−)
Dosages [kg] 10 50, 1500

Moreover, there are special dosing installations for medicines and liquid materials. It is assumed
that the allocation for certain raw materials, such as the medicines and liquids, are fixed.

Furthermore, raw material is placed on maximum two machines. In very rare cases a raw material
is placed at three installations. Therefore, it is assumed that raw materials can only be placed at
two installations, excluding placement at the handtip installation.

2.3.3 Silo assignment

Another decision that should be made in the system besides production allocation is silo assign-
ment. Silo assignment implies the assignment of raw materials to silos. This is only relevant
for installations with movable weighers, as in these installations the weigher relocates in order to
collect and discharge material, which influences the relocation time as discussed in Section 2.2.

2.4 Research question

The goal of the project is to minimize the makespan for a given production and a given num-
ber dosing installations with movable and a given number of dosing installations with stationary
weighers. The definition of makespan is given in Section 3.1. Minimization of the makespan may
be achieved by optimization of the assignment of the raw materials to the silos on the installations
and the optimization of the production allocation over the dosing installations.

With the problem definition clear, several methods to solve this problem are examined, namely
MILP, heuristics and a genetic algorithm. An MILP is method applied to optimize problems
using a mathematical model. A heuristic is a deterministic algorithm that aims to find a solution
according to a set of rules in which these rules often can be seen as a shortcut towards finding (an
approximation of) the optimal solution. A genetic algorithm is a meta-heuristic; meta-heuristics
are higher-order algorithms that use a combination of rules and often probability to optimize prob-
lems. Genetic algorithms do so by a search procedure based on evolution, i.e. natural selection,
of a sample set of solutions. The next chapter focuses on the necessary theoretical background to
understand these methods.
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Chapter 3

Theoretical background

The practical background of the project has been explained in the introduction. This chapter
focuses on the theoretical background of the project, or more precisely: scheduling optimization.
Scheduling is defined as the arrangement of a set of jobs that are processed in a certain machine
environment. Each job consists of a set of tasks or operations. Numerous literature is available on
scheduling problems. First, some basic scheduling characteristics are discussed in sections 3.1–3.2.
Section 3.3 briefly introduces a framework that may describe and solve optimization problems
exactly. Lastly, Section 3.4 describes some deterministic non-exact optimization methods, that is:
heuristics, and non-deterministic and non-exact optimization methods, that is: meta-heuristics.
In particular, genetic algorithms, a type of meta-heuristic, are described in more detail.

3.1 Optimality criteria

In scheduling optimization several optimality criteria exist. These criteria are set as objective for
the scheduling optimization problem and are identified as the measure of performance. Three of
them are explained here:

Makespan is the completion time of a certain job or the production in general, that is, the time
measured between the start and finish of the job or production. In case makespan is stated
without further specification then it mostly implies the completion time of the production
in general.

Lateness is defined as the difference between the completion time and due date of a job. The
lateness is negative if the completion time falls before the due date and it is positive if the
completion time exceeds the due date.

Tardiness is the difference between the completion time and due date of a job in case the comple-
tion time exceeds the due date. The tardiness is zero in case the completion time is before
or equal to the due date.

Weighted combinations of these criteria are likewise possible as well as other criteria, such as flow
time, earliness and waiting time. The latter criteria are not explained here, so for a more extensive
discussion consult books such as by Conway, Maxwell and Miller[9] and Baker[4].

Another optimality criterion could be production time. Note that production time might have
another definition in other works. However, in this report the production time is considered as
the sum of the processing time of each job in the production. The processing time of each job
is dependent of the combination of machines used to complete the job and the order in which
the components of the jobs are carried out. The difference between makespan and production
time is that makespan measures the duration of the actual production and the production time
measures the sum of the duration of individual jobs. More specifically, for calculating the makespan
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Figure 3.1: Makespan of two jobs (red and blue)

Figure 3.2: Production time of two jobs (red and blue)

of production, the completion time of some jobs may be later than the starting time of later
jobs. That is, jobs might be carried out simultaneously during the production. The makespan is
generally dependent of the exact order in which jobs are carried out. For calculating the production
time, the sum of the processing time of the individual jobs is calculated. Thus, the production
time is independent of the job order. The difference between the makespan and production order
is visualized in Figures 3.1 and 3.2. In Figure 3.1 the production of two jobs is shown. This results
in a makespan of approximately 700 time units. The production time to this production however,
is approximately 850 time units, as shown in Figure 3.2.

3.2 Job characteristics

Jobs can be described by several characteristics. Some affect the relation between jobs, such as
preemption and precedence constraints. Preemption is defined as job splitting, which is the inter-
ruption of a job in order to process another job. Precedence constraints describe the precedence
relation between jobs, which is the order in which jobs must be processed. Furthermore, jobs can
have certain properties such as their release date, processing time and due date.

3.3 Mixed Integer Programming

Mixed Integer Programming (MIP) models are a method to mathematically describe optimization
problems such as scheduling problems. Some of the variables in MIP models are constrained to
be integers. In optimization problems one can distinguish the objective function, equality and
inequality constraints and bound constraints, often written in the following structure:

min f(x) (3.1)

subject to g(x) = p (3.2)

h(x) ≤ q (3.3)

lb ≤ x ≤ ub (3.4)
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In MIP, decision variables x consists of a real variables of which some, but not all, are integer.
The objective function f(x) describes to what variables the problem should be optimized. Some
objectives of scheduling problems have been mentioned in Section 3.1. The constraints describe
the environment in which the solution may exist. One distinguishes equality and inequality con-
straints, which impose an equality or inequality on a combination of variables, respectively given
by (3.2) and (3.3) respectively. Bound constraints describe the domain in which variables exist or
variables are restricted as shown in (3.4).

A variable xi may be bounded from below, above or both, meaning that respectively lbi > −∞,
ubi < ∞ or both should hold true. A solution x that satisfies all constraints is called feasible; a
feasible solution that yields the minimum value for the objective is called optimal.

Mixed Integer Linear Programming

A class of MIP models are Mixed Integer Linear Programming (MILP) models. In MILP models
the variables are solely linearly dependent of each other. Hence, the optimization problem can be
written as:

min cTx (3.5)

subject to Aeqx = beq (3.6)

Ax ≤ b (3.7)

lb ≤ x ≤ ub (3.8)

with x a vector with decision variables. Furthermore, c, beq, b, lb and ub are vectors and Aeq

and A are matrices.

A commonly used formulation in MILP is the ‘Big M’-notation[30]. The Big M-notation is used
to penalize a variable with a sufficiently large positive value M if a constraint is not met. With
the Big M notation some conditional constraints can be defined. For example, a constraint that
defines “if binary variable a = 1, then y ≤ 0, else y ≥ 0”, is constructed as following:

y ≤ M(1− a) (3.9)

−y ≤ Ma (3.10)

If a = 1, then y ≤ 0 by (3.9), such that (3.10) becomes redundant. If a = 0, then y ≥ 0 by (3.10),
such that (3.9) becomes redundant.

MILPs can be solved using exact algorithms, such as cutting plane and branch and bound methods.
The goal of these algorithms is to reduce the number of feasible solutions to analyze in order to
find the optimal solution. Cutting plane methods do so by adding constraints in order to refine
the feasible solution set and branch and bound methods do so by dividing the solution set into
subsets. Extensive material on integer programming is provided by Nemhauser et. al.[32].

3.4 (Meta-)heuristics

Due to the computational complexity of scheduling problems often heuristic search is applied.
Heuristic algorithms determine a (sub-)optimal solution to the problem objective in order to find
the desired solution quicker than exact methods or to approximate the optimal solution if no
exact answer can be found in a reasonable amount of time. Examples of simple heuristics for job
scheduling problems are minimum processing time first, maximum processing time first and min-
imum due date first. Such heuristics are often simple and computationally inexpensive. However,
they are mostly only applicable for specific problems or a narrow set of problems and often there
exists a trade off between the computation time and accuracy of the solution found.
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Other solution methods that have yielded success are meta-heuristics. Meta-heuristics are higher-
level general-purpose algorithms which sample a set of solutions and often incorporate randomness
in heuristics which can be used as a guiding strategy for developing heuristics for a specific prob-
lem. Examples of meta-heuristics are tabu search, simulated annealing and genetic algorithms.
Early research on meta-heuristics dates back to the 1960s and 1970s.

In the 1970s Holland[23] introduced the genetic algorithm. Genetic algorithms use operators based
on genetic variation and natural selection, that is, these algorithms sample a set of solutions and
alter the best of those in order to find better solutions[39]. Genetic algorithms are commonly
used for solving scheduling problems. More recent work on genetic algorithms include studies by
Reeves[38] in 1995 and Pezzella et al.[36] in 2008.

Tabu search has first been introduced by Glover[14] in the 1980s. Tabu search is a method that
samples a set of solutions and repeatedly moves to the best solutions in the neighborhood of these
solutions. By declaring recently visited solutions taboo, tabu search may escape local minima in
search of the global optimum.

Simulated annealing was proposed by Kirkpatrick et al.[27] in 1983 and by Cerny[8] in 1985. It is
an algorithm based on the simulation of the process of physical annealing with solids. Annealing is
the process in which a solid in a heat bath is heated up and slowly cooled down in order to achieve
a highly regular crystal lattice configuration. Simulated annealing is an iterative algorithm that
samples a set of solutions and allows moves to worse solutions with a certain probability in order
to escape local minima.

The list of meta-heuristics is plentiful and too extensive to discuss entirely. An introduction on
the principles of the genetic algorithm is given in Section 3.4.1. An overview of other methods is
given by Osman and Kelly[34].

3.4.1 Genetic algorithm

Genetic algorithms are population based global search optimization methods inspired by the evo-
lution theory of Darwin. The heuristic simulates the evolution of a group of individuals. First,
it samples a population of solutions, more commonly referred to as individuals. Each individual
is evaluated based on its ‘fitness’ score in which better solutions are correlated with a higher fit-
ness score. Via selection individuals are chosen that may continue to the next operation. Using
crossover the selected individuals are recombined with the aim of uniting good traits of individ-
uals. Selected individuals are often referred to as ‘parents’ and the resulting solutions following
from crossover are commonly referred to as ‘offspring’. The resulting offspring may or may not
replace the parents in the following iteration step, referred to as ‘generation’. Furthermore, using
mutation the population is diversified by altering individuals. If a certain number of generations
is carried out, if some predefined steady state situation is reached or if a certain objective is met,
the algorithm stops. Summarizing, a genetic algorithm passes the following steps:

1. An initial population of N individuals is sampled.

2. Each individual n is assigned a fitness score fn.

3. If k generations are carried out or if objective fmin is met, the algorithm is terminated and
the individual with the best fitness score is returned. Otherwise, continue to step 4.

4. Select individuals to perform crossover on. Carry out the crossover and, possibly, remove
the parents from the population.

5. Select individuals to perform mutation on. Carry out the mutation.

6. Generate a new generation by collecting the resulting population. The process is repeated
from step 2.
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The representation of solutions are key to developing a solid genetic algorithm. Furthermore,
numerous fitness assessment, selection, crossover and mutation methods exist. These facets of
genetic algorithms are discussed in this section.

Binary chromosome

(1) (1) (0) (1) (0) (0) (0) (0)

Gene

Genotype

Bit

(a) Genotype 1, representing a numeric variable written in binary

City order chromosome

(d) (g) (b) (a) (c) (e) (f)

Gene

Genotype

Bit

(b) Genotype 2, representing a Traveling salesman problem solution

Machine assignment chromosome

(3,2) (1,2) (1,3) (3,1) (3,3) (1,1) (3,2) (3,3) (2,1) (2,1)

Gene

Sequencing chromosome

(5) (1) (3) (9) (2) (8) (7) (10) (4) (6)

Genotype

Bits

(c) Genotype 3, representing a job shop planning solution

Figure 3.3: Examples of genotypes

Representation of solutions

The general set up of a population is given by ‘genotypes’. Each individual or solution is expressed
by a genotype. Each genotype consists of a number of chromosomes and each chromosome consists
of a number of genes. Finally, each gene consists of a number of bits. A few examples of genotypes
are shown in Figure 3.3. Figure 3.3a shows the possible architecture of a genotype that represents
a value. It consists of one chromosome and 8 genes. For example, if one wishes to optimize a
certain function h(x), then a real number x may be encoded by a binary vector. Figure 3.3b shows
the possible architecture of a genotype that represents an order. This might represent the order
of 6 cities, namely a, b, c, d, e and f, visited in a Traveling salesman problem. Figure 3.3b shows a
genotype that might represent the solution of a job shop planning. It consists of 2 chromosomes,
each consisting of 10 genes. The first chromosome might represent the sequence of jobs, in which
each gene consists of a single bit, and the second chromosome might represent the set of operations
required for completing a job, in which each gene consists of two bits. Note that in all following
visualizations of genotypes, for example in Figure 3.4, the boxes around genes are omitted for
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simplicity.

Fitness assessment

Each individual is assigned a fitness score, which should reflect the objective of the optimization
problem. Examples of objectives have been discussed in Section 3.1.

Selection

The fitness assessment is required for the selection operator. In order to carry out crossover,
individuals have to be selected based on their fitness. There are various methods to do so, with
two of the most used ones being roulette wheel selector and tournament selector.

The roulette wheel selector, also commonly named the fitness proportionate selector is an operator
that proportionally scales the probability of being selected with the fitness score. The probability pi
of an individual being selected is given by:

pi =
fi∑N

n=1 fn
(3.11)

In the tournament selector a given number or percentage of the population is randomly chosen
using a certain ‘pressure’ parameter. From this sub-population, the individual with the highest
fitness score is chosen as one of the parents. This process is referred to as a ‘tournament’. The
second parent is acquired by repeating the procedure, however, the first selected parent is excluded
to avoid repetition. In general, in tournament selection the selection of 1 parent requires 1 ‘tour-
nament’. In tournament selection, the worst individual is never chosen, and the best individual is
chosen in all tournaments it participates in.

Crossover

After parents have been selected crossover is carried out. The crossover operator aims to unify
good traits of selected individuals. The applied crossover operator in a specific genetic algorithm is
highly dependent of the architecture of the genotype. Numerous crossover operators are available,
such as the Partially Mapped Crossover (PMX) operator by Goldberg and Lingle[16] and Cycle
Crossover (CX) by Oliver et al.[33] and Position Based Crossover by Syswerda[43]. Two com-
mon crossover operators are discussed here, namely: Single Point Crossover (SPX) and Ordered
Crossover (OX).

Parent 1 (0) (0) (1) (0) (0) (1) (0) Parent 2 (1) (1) (1) (1) (0) (1) (1)(0) (0) (1) (0) (0) (1) (0)

(a) Selected parents with q = 3

Offspring 1 (0) (0) (1) (1) (0) (1) (1) Offspring 2 (1) (1) (1) (0) (0) (1) (0)(0) (0) (1) (0) (0) (1) (0)

(b) Resulting offspring

Figure 3.4: Illustration of OX applied to a binary chromosome with crossover point q = 3

One of the most used crossover operators is SPX, sometimes referred to as the One Point Crossover
(1PX). In SPX, a point q indicates a randomly selected gene from a chromosome of parent 1. Gene 1
until q in that chromosome of parent 1 are copied to the first offspring. Genes q+ 1 until the end
of the chromosome are copied to the second offspring. The location of the copied genes remains
equal, meaning that a copied gene q is located at position q in the offspring. An example of SPX
is illustrated in Figure 3.4. Instead of crossover at one point, multiple points can be selected, such
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Parent 1 (5) (2) (4) (1) (7) (6) (3) Parent 2 (2) (6) (1) (3) (7) (4) (5)(2) (4) (1) (6) (1) (3)

(a) Selected parents with q1 = 1 and q2 = 4

Parent 2 (2) (6) (1) (3) (7) (4) (5) Parent 1 (5) (2) (4) (1) (7) (6) (3)

(b) Marked out genes

Offspring 1 (6) (2) (4) (1) (3) (7) (5) Offspring 2 (5) (6) (1) (3) (2) (4) (7)(2) (4) (1) (6) (1) (3)

(c) Resulting offspring

Figure 3.5: Illustration of SPX applied to a binary chromosome with crossover points q1 = 1 and
q2 = 4

as in the Two Point Crossover (2PX).

Another operator is the Order Crossover (OX), first introduced by Davis[12]. In OX two crossover
points p1 and p2 are randomly selected in a chromosome of parent 1, dividing the chromosome in
3 sections, called ‘alleles’. The middle allele from parent 1 is copied to offspring 1 to the exact
location in which it occurs in parent 1. The genes of in this allele are marked out in parent 2.
The remaining genes in parent 2 are copied to the remaining locations in offspring 1. These genes
from parent 2 are likely to occupy different locations in offspring 1 than in parent 2, however,
the order of the copied genes is retained. An example of OX is illustrated in Figure 3.5. The
OX operator ensures that offspring do not introduce duplicate genes. This is of importance in for
example Traveling salesman problems and job scheduling problems.

Mutation

Mutations are applied in genetic algorithms to introduce diversity in the population. A simple
type of mutation is carried out by changing each gene of a chromosome with a small probability.
Other mutation operators are for example shift mutations and or exchange mutations. Shift mu-
tations shift a randomly chosen gene a random number of places to the left or the right. Exchange
mutation exchanges the location of two randomly chosen genes of a chromosome. Note that the
significant difference between crossover and mutation is that a crossover operator exchanges infor-
mation between individuals and a mutation operation alters information within a single individual.

Theory from this chapter is applied in the following chapters, especially Chapters 4–6, which
discuss various solution methods to the problem introduced in Chapter 2. Three solution methods
are discussed, namely MILP, deterministic heuristics and genetic algorithms. The next chapter
focuses on the first of these solution: MILP.
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Chapter 4

MILP

The problem posed in Chapter 2 can be translated in a Mixed Integer Linear Programming (MILP)
formulation. In short, MILP is a type of mathematical model using linear equations with partly
integer variables to solve optimization problems. Some background on MILP is provided in Chap-
ter 3. First, the relevant data and assumptions needed to solve the problem, as introduced in
the previous chapter, is summarized and structured. Second, the required design variables are ex-
plained. Then, the constraints and objective function are presented. Finally, the chapter concludes
on the practical functionality of the proposed MILP.

4.1 Required input data

The relevant input data needed to solve the MILP as introduced in the previous chapter is given
below together with the structure in which it is required in the MILP formulation as presented in
Section 4.3.

• W weighers with required minimum dosing mass mmin
w , maximum allowed dosage mass mmax

w

en maximum allowed dosing volume V max
w for weigher w ∈ {1, ...,W}.

• G raw materials.

• L silos, in which L ≥ max(G,W ).

• P periods.

• B batches.

• Sb discharges in each batch b with
∑B

b=1 Sb batches in total, in which
∑B

b=1 Sb ≥ W .

• Db dosages in each batch b with
∑B

b=1 Db dosages in total. Each dosage d has weight md,
volume Vd, in which Db ≥ max(L, Sb), ∀b.

• Δ is a D ×G allocation matrix of D dosages to G raw materials, i.e.:

Δd,g =

{
1, if dosage d consists of raw material g

0, otherwise.

Furthermore, it should hold that each dosage consists of exactly 1 raw material
∑G

g=1 Δd,g =
1, ∀d.

• Λ is an L×W allocation matrix of L silos W weighers, i.e.:

Λl,w =

{
1, if silo l belongs to weigher w

0, otherwise.

Furthermore, it should hold that each silo belongs to exactly 1 weigher
∑W

w=1 Λl,w = 1, ∀l.
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• Θ is a
∑B

b=1 Sb ×B allocation matrix of
∑B

b=1 Sb discharges to B batches, i.e.:

Θs,b =

{
1, if discharge s in batch b

0, otherwise.

Furthermore, it should hold that each discharge belongs to exactly 1 batch
∑B

b=1 Θs,b =
1, ∀s.

• Ψ is a
∑B

b=1 Db ×B allocation matrix of
∑B

b=1 Db dosages to B batches, i.e.:

Ψd,b =

{
1, if dosage b in batch b

0, otherwise.

Furthermore, it should hold that each dosage belongs to exactly 1 batch
∑B

b=1 Θd,b = 1, ∀d.
• Ω is a B × P allocation matrix of B batches to P periods, i.e.:

Ωb,p =

{
1, if batch b in period p

0, otherwise.

Furthermore, it should hold that each batch belongs to exactly 1 period
∑P

p=1 Ωb,p = 1, ∀b.
• Set of silos at a weigher: Lw = {0} ∪ {l|Λl,w = 1}, in which silo 0 represents the discharge

location.

• γ0 set of {silo l and corresponding raw material g}-combinations that exclude raw material
g at silo l.

• γ1 set of {silo l and corresponding raw material g}-combinations that forces raw material g
at silo l.

• ηg the maximum number of silos at which a raw material g occurs.

• Setup time from location l1 to location l2: Σl1,l2 for l1, l2 ∈ Lw, ∀w. In this case, the setup
time solely consists of the relocation time due to driving from location l1 to location l2.

• Dosing time for x[kg] of raw material g at silo l, dependent of the dosing constant cDl,g and

dosing speed vDl,g:
1

vD
l,g

x + cDl,g[s]. Using the dosability factor Kg, the silo and raw material

dependent dosing constant and dosing speed are expressed by cDl,g = Kgc
D
l and vDl,g =

vD
l

Kg
.

• Discharge time for x[kg] at weigher w: 1
vS
w
x+ cSw[s].

• Completion time of the last discharge (from a previous planning) at weigher w: CS
0,w.

• Completion time of the last discharge (from a previous planning): CS
0 = max

w
CS

0,w.

• M a sufficient large value, at least larger than the mass of the largest batch.

• δ a sufficient small value, at least smaller than the smallest weighing accuracy among all
weighers.

4.2 Assumptions

Besides the assumptions presented in the previous section the following time based assumptions
are taken in consideration:

• If period p1 < p2, then p1 is completed before p2.

• If batch b1 < b2, then b1 is completed before b2.

• If dosages d1 < d2 both in discharge s, then d1 is completed before d2
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• If discharge s1 < s2, then s1 is completed before s2 (without loss of generality).

• Dosages are discharged in order, that is, d2 is never discharged before d1 for d1 < d2.

Note that relaxation of the last assumption would not simplify the problem in terms of number of
variables and constraints. In Appendix B an MILP is presented in which dosages of a batch may
be discharged in any order and in which the order of production order is also unconstrained. This
leads to three extra design variables and five extra constraints.

Furthermore, the MILP with only one period is a simplified MILP formulation from the one given
in this chapter. Alternatively, the MILP for multiple periods can be seen as an MILP concerning
one period in which the batches of all periods are carried out consecutively in one period. The
MILP concerning only one period is given in Appendix C. Note that the number of design vari-
ables remain equal to the case with multiple variables.

Moreover, the dosing order policy, as introduced in Section 2.3.1, is altered to simplify the MILP.
In the MILP it is assumed that the periods, batches are carried out in the exact order as imposed
by the production schedule. The dosages of the batches should arrive in the batch mixer in the
order as imposed by the production schedule. Consecutive dosages may arrive at the mixer simul-
taneously.

More precisely, this implies the following: if dosage d1 is listed before dosage d2 in the production
schedule and both dosages take place in batch b, then d1 arrives before or at the same time at the
batch mixer as d2. Thus, the following two situations are possible:

1. If d1 and d2 take place at the same dosing installation, then they may be discharged together
and they may arrive at the mixer simultaneously if the capacity of the weigher allows so, as
is the case with the general dosing and discharge order policy.

2. If d1 and d2 do not take place at the same installations, then d1 arrives at the mixer before
d2. This does not imply that dosages are carried out in order. The installation carrying out
d2 may start dosing d2 before d1 is carried out on the other installation, as long as d1 is
discharged before d2.

For the solution methods other than MILP, the general dosing order policy, as introduced in
Section 2.3.1, is applied.

4.3 Design variables

The binary variables to this MILP formulation are:

• Y DS
d,s =

{
1, if dosage d takes place in discharge s

0, otherwise.

• Y SW
s,w =

{
1, if discharge s is executed at weigher w

0, otherwise.

• Y DL
d,l =

{
1, if dosage d is extracted from silo l

0, otherwise.

• Y LG
l,g =

{
1, if silo l contains raw material g

0, otherwise.

• Y S
s =

{
1, if discharge s contains one or more dosages

0, otherwise.
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• Fw1,w2,g =

{
1, if fWG2

w1,g ≤ fWG1
w2,g

0, otherwise.

The continuous variables to this MILP formulation are:

• fWG1
w,g = lower limit of an allowed dosing interval of raw material g at weigher w

• fWG2
w,g = upper limit of an allowed dosing interval of raw material g at weigher w

• pDd = duration of dosage d.

• pSs = duration of discharge s.

• CD
d = completion time of dosage d.

• CS
s = completion time of discharge s.

• Sd1,d2
= setup time due to driving from dosage d1 to dosage d2 > d1, in which dosage 0

represents the discharge.

• CB
b = completion time of batch b.

• C = completion time of the schedule, i.e.: the total makespan.

4.4 Constraints

The MILP is built around:

• binary variables Y DS
d,s , Y SW

s,w , Y DL
d,l , Y LG

l,g and Y S
s , which fix the location of raw materials and

execution order of dosages;

• binary variable Fw1,w2,g and continuous variables fWG1
w,g and fWG2

w,g , which fix the allowed
dosing interval of raw materials at installations;

• time variables pDd , pSs , C
D
d , CS

s , Sd1,d2
, CB

b and C, which are fixed by variables mentioned
above.

The constraints describing the posed problem of Chapter 2 are introduced below.

Equality constraints
Below, the equality constraints of the proposed MILP are presented. Equations 4.1–4.5 represent
constraints that describe how the production on the system is tied to the physical design of the
system. Equations 4.6 and 4.7 represent constraints that describe the architecture of the produc-
tion itself. The physical limitations of the system are described by (4.8).

Due to several reasons some raw materials may be excluded from or forced on certain silos.
Therefore, silo l may not contain raw material g if this is specified in γ0 and silo l must contain
raw material g if this is specified in γ1, which results in:

Y LG
l,g = 0 ∀(l, g) ∈ γ0,

(4.1)

Y LG
l,g = 1 ∀(l, g) ∈ γ1.

(4.2)
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It is required that each discharge s is executed at exactly one weigher w, each dosage d originates
from exactly one silo l, each silo l contains exactly one raw material g and each dosage d is executed
in exactly one discharge s. Hence, the following four constraints are introduced:

W∑
w=1

Y SW
s,w = 1 ∀s ∈ {1, ..., S},

(4.3)

L∑
l=1

Y DL
d,l = 1 ∀d ∈ {1, ..., D},

(4.4)

G∑
g=1

Y LG
l,g = 1 ∀l ∈ {1, ..., L},

(4.5)

S∑
s=1

Y DS
d,s = 1 ∀d ∈ {1, ..., D}.

(4.6)

Note that these constraints do not rule out that a discharge may consist of multiple dosages, a
weigher may perform multiple discharges, multiple dosages may originate from a silo and a raw
material may be placed on multiple silos.

Furthermore, if batch b contains dosage d, but does not contain discharge s, then dosage d can-
not take place in discharge s. Similarly, if batch b does not contain dosage d, but does contain
discharge s, then dosage d cannot take place in discharge s:

Y DS
d,s = 0 if Θs,b +Ψd,b = 1,

∀s ∈ {1, ..., S},
∀d ∈ {1, ..., D},
∀b ∈ {1, ..., B}.

(4.7)

Note that (4.7) does not apply in case dosage d and discharge s both take place in batch b or in
case dosage d and discharge s both do not take place in b.

If the mass of dosage d is less than the minimum required mass on weigher w due to the weighing
accuracy, then dosage d may not take place at weigher w:

L∑
l=1

Λl,wY
DL
d,l = 0 if mmin

w > md,

∀w ∈ {1, ...,W},
∀d ∈ {1, ..., D}.

(4.8)

Note that in order to check whether dosage d takes place at weigher w no extra binary vari-
abele Y DW

d,w is required, since Y DW
d,w =

∑L
l=1 Λl,wY

DL
d,l . In words: dosages that take place at

weigher w can be expressed by the product of the silos at weigher w and the dosages that are
performed at those silos. Thus, if a dosage may not take place at weigher w then it must hold
true that the silo at which dosage d is performed is not located at weigher w.
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Inequality constraints
It is undesired to place a raw material on a large number of silos as this indicates that the given
set of dosing installations with its corresponding specifications is not fit for the given production.
Restricting the number of silos that may contain raw material g could influence the outcome of
the MILP optimization, the makespan, negatively. Even though the set of dosing installations
is considered a fixed input parameter, it is penalized in the makespan and thus returning the
indication that the given input parameters should be changed. To make this come to expression in
the MILP formulation the number of silos that contain raw material g is restricted to maximum ηg:

L∑
l=1

Y LG
l,g ≤ ηg ∀g ∈ {1, ..., G}.

(4.9)

It must hold true that if (1) dosage d takes place at silo l and (2) raw material g is located at
silo l, then dosage d must contain raw material g. Moreover, if dosage d does not contain raw
material g, statement (1) and/or statement (2) must be false, resulting in the following inequality:

1 + Δd,g ≥ Y DL
d,l + Y LG

l,g ∀d ∈ {1, ..., D},
∀g ∈ {1, ..., G},
∀l ∈ {1, ..., L}.

(4.10)

Furthermore, it must hold true that if (1) dosage d takes place in discharge s and (2) discharge s
takes place at weigher w, then dosage d must be executed by weigher w. Moreover, if dosage d
does not take place at weigher w, statement (1) and/or statement (2) must be false, resulting in
the following inequality:

1 +

L∑
l=1

Y DL
d,l Λl,w ≥ Y DS

d,s + Y SW
s,w ∀d ∈ {1, ..., D},

∀s ∈ {1, ..., S},
∀w ∈ {1, ...,W}.

(4.11)

If dosage d takes place in discharge s and discharge s takes place at weigher w, then dosage d
completes at least S0,d + pDd later than starting condition CS

0,w:

M(Y SW
s,w + Y DS

d,s − 2) + CS
0,w + S0,d + pDd ≤ CD

d ∀d ∈ {1, ..., D},
∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W}.
(4.12)

If dosages d1 < d2 both take place in discharge s, then dosage d2 completes at least Sd1,d2 + pDd2

later than dosage d1:

M(Y DS
d1,s + Y DS

d2,s − 2) + CD
d1

+ Sd1,d2 + pDd2
≤ CD

d2
∀d1 < d2 ∈ {1, ..., D},

∀s ∈ {1, ..., S}.
(4.13)

22



Similarly, if discharges s1 < s2 both take place at weigher w and dosage d takes place in dis-
charge s2, then dosage d completes at least S0,d + pDd later than discharge s1:

M(Y SW
s1,w + Y SW

s2,w + Y DS
d,s2 − 3) + CS

s1 + S0,d + pDd ≤ CD
d ∀d ∈ {1, ..., D},

∀s1 < s2 ∈ {1, ..., S},
∀w ∈ {1, ...,W}.

(4.14)

If batch b1 takes place in p1 < p2 and dosage d takes place in period p2, then dosage d completes
at least S0,d + pDd later than batch b1:

M(Ωb1,p1
+Ψd,b2 +Ωb2,p2

− 3) + CB
b1 + pDd + S0,d ≤ CD

d ∀d ∈ {1, ..., D},
∀b1 < b2 ∈ {1, ..., B},
∀p1 < p2 ∈ {1, ..., P}.

(4.15)

Note that in order to check whether dosage d takes place in period p2, data parameters Ψd,b2 and
Ωb2,p2 are used.

Discharge s completes at least pSs later than discharge s− 1:

CS
s−1 + pSs ≤ CS

s ∀s ∈ {1, ..., S}.
(4.16)

Note that s = 1 requires data parameter CS
0 .

If discharge s takes place in batch b2 > b1, then discharge s completes at least pSs later than CB
b1
:

CB
b1 + pSs +M(Θs,b2 − 1) ≤ CS

s ∀s ∈ {1, ..., S},
∀b1 < b2 ∈ {1, ..., B}.

(4.17)

If dosage d takes place in discharge s, then discharge s completes at least Sd,0 + pSs later than
dosage d:

M(Y DS
d,s − 1) + CD

d + Sd,0 + pSs ≤ CS
s ∀d ∈ {1, ..., D},

∀s ∈ {1, ..., S}.
(4.18)

If dosage d containing raw material g takes place at silo l, then the dosing time is determined by
the dosing constant and the mass of the dosage md:

M(Y DL
d,l + Y LG

l,g − 2) + cDl,g +
md

vDl,g
≤ pDd ∀d ∈ {1, ..., D},

∀g ∈ {1, ..., G},
∀l ∈ {1, ..., L}.

(4.19)
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Furthermore, if discharge s takes place at weigher w, then the discharge time is determined by the
discharge constant and the mass

∑D
d=1 mdY

DS
d,s of all dosages in that discharge:

M(Y SW
s,w − 1) + cSwY

S
s +

1

vSw

D∑
d=1

mdY
DS
d,s ≤ pSs ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W}.
(4.20)

If no dosages take place in a discharge, then the discharge is empty, i.e.: Y S
s = 0. This results in:

D∑
d=1

Y DS
d,s ≥ Y S

s ∀s ∈ {1, ..., S}.

(4.21)

On the other hand, if one or more dosages take place in a discharge, then that discharge is not
empty, i.e.: Y S

s = 1. This results in:

1

D

D∑
d=1

Y DS
d,s ≥ Y S

s ∀s ∈ {1, ..., S}.

(4.22)

Only if dosage d contains more mass than the required minimum dosage mass mmin
w of weigher w,

dosage d may take place on that weigher:

L∑
l=1

Λl,wY
DL
d,l ≤ 1 if mmin

w ≤ md,

∀w ∈ {1, ...,W},
∀d ∈ {1, ..., D}.

(4.23)

If discharge s takes place at weigher w, then the mass and volume of all dosages in discharge s
cannot not exceed the maximum allowed dosage mass and volume of weigher w:

M(Y SW
s,w − 1) +

D∑
d=1

mdY
DS
d,s ≤ mmax

w ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W},
(4.24)

M(Y SW
s,w − 1) +

D∑
d=1

VdY
DS
d,s ≤ V max

w ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W}.
(4.25)
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The lower and upper limit of the allowed dosing interval of raw material g at weigher w may not
be larger than the maximum allowed dosage mass of weigher w:

fWG1
w,g ≤ mmax

w ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},

(4.26)

fWG2
w,g ≤ mmax

w ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(4.27)

The dosing interval of raw material g at weigher w1 may not overlap with the interval at w2. Thus,
if the allowed dosing interval of raw material g at weigher w1 is smaller or equal the interval at
weigher w2, then the upper limit at weigher w1 should be smaller or equal to the lower limit at
weigher w2:

fWG1
w2,g +M(1− Fw1,w2,g) ≥ fWG2

w1,g ∀w1 �= w2 ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(4.28)

If the dosing interval of raw material g at weigher w1 is smaller than the interval at w2, then
Fw1,w2,g = 1 and Fw2,w1,g = 0. If the dosing interval of raw material g at weigher w2 is smaller
than the interval at w1, then Fw1,w2,g = 0 and Fw2,w1,g = 1. If no dosages of raw material g take
place at either weighers w1 or w2, then both intervals are ‘empty’, i.e.: fWG1

w1,g = fWG2
w1,g = fWG1

w2,g =

fWG2
w2,g = 0, resulting in, Fw1,w2,g = Fw2,w1,g = 1. This means in any situation either one or both
variables Fw1,w2,g and Fw2,w1,g should equal 1:

Fw1,w2,g + Fw2,w1,g ≥ 1 ∀w1 < w2 ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(4.29)

If a raw material g is not placed on weigher w, then the interval is ‘empty’, i.e.: fWG1
w,g = fWG2

w,g = 0.

To check whether raw material g is placed on weigher w, binary variable Y GW
g,w is needed, which

comes to expression using
∑D

d=1 Δd,gY
DW
d,w in which Y DW

d,w =
∑L

l=1 Λl,wY
DL
d,l .

M

D∑
d=1

Δd,g

L∑
l=1

Λl,wY
DL
d,l ≥ fWG1

w,g ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},
(4.30)

M
D∑

d=1

Δd,g

L∑
l=1

Λl,wY
DL
d,l ≥ fWG2

w,g ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G}.
(4.31)
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If dosage d takes place at weigher w and if dosage d contains raw material g, then the mass of
dosage d must be contained in the allowed dosing interval of raw material g at weigher w, i.e.: the
mass of dosage d should be larger than the lower limit and smaller than the upper limit of the
dosing interval:

md − δ +M(2− Y DW
d,w −Δd,g) ≥ fWG1

w,g ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},
∀d ∈ {1, ..., D},

(4.32)

md +M(Y DW
d,w +Δd,g − 2) ≤ fWG2

w,g ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},
∀d ∈ {1, ..., D}.

(4.33)

Consider that the mass md of dosage d consists of raw material g. Then md may not correspond
to both the lower limit if the dosing interval of raw material g at weigher w1 and the upper limit of
raw material g at weigher w2, since dosage d is only allowed to be executed on one installation. To
prevent this, at least one of the limits of the weighers should be excluded from executing dosage d.
Therefore, in (4.32), the lower limit of the allowed dosing interval of raw material g at weigher w
should be smaller than md with a margin δ.

If dosages d1 < d2 take place at silos l1 and l2 respectively, the setup time should be equal to
Σl1,l2 :

M(Y DL
d1,l1 + Y DL

d2,l2 − 2) + Σl1,l2 ≤ Sd1,d2
∀d1 < d2 ∈ {1, ..., D},

∀l1 ∈ {1, ..., L},
∀l2 ∈ {1, ..., L}.

(4.34)

Similarly, for silo 0 this results in:

M(Y DL
d,l − 1) + Σ0,l ≤ S0,d ∀d ∈ {1, ..., D},

∀l ∈ {1, ..., L},
(4.35)

M(Y DL
d,l − 1) + Σl,0 ≤ Sd,0 ∀d ∈ {1, ..., D},

∀l ∈ {1, ..., L}.
(4.36)

Dosages must be executed in order, i.e.: if dosages d1 < d2 take place in discharges s1 and s2
respectively, then discharge s2 can take place at earliest together with discharge s1:

M(Y DS
d1,s1 + Y DS

d2,s2 − 2) + CS
s1 ≤ CS

s2 ∀d1 < d2 ∈ {1, ..., D},
∀s1 ∈ {1, ..., S},
∀s2 ∈ {1, ..., S}.

(4.37)

If discharge s takes place in batch b, batch b finishes at least later than CS
s + cB :

CS
s + cB +M(Θs,b − 1) ≤ CB

b ∀s ∈ {1, ..., S},
∀b ∈ {1, ..., B}.

(4.38)
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The final batch in the final period determines the total makespan:

CB
b ≤ C ∀b ∈ {1, ..., B}.

(4.39)

Some of the continuous variables have to be lower-bounded:

fWG1
w,g ≥ 0 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},
(4.40)

fWG2
w,g ≥ 0 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G}.
(4.41)

Note that all other continuous variables have already been (implicitly) lower-bounded by their
constraints.

Optional constraints
The following constraints are not necessary to solve the optimization problem. However, they
reduce the number of possible solutions or make an implicit constraint explicit.

It is assumed that placing a raw material more than once on an installation probably does not sig-
nificantly improve the performance as the weigher can only be located at one silo simultaneously.
The benefit of placing a raw material more than once is a potential decrease in driving time in
an installation with a movable weigher. Furthermore, placing a raw material more than once on
an installation implies that another raw material cannot be placed on that installation. Placing
another raw material on the installation decreases the potential idle time of that installation. It is
assumed that the reduction in makespan from a decrease in idle time exceeds the reduction from
a decrease in driving time. Hence, it is assumed that a raw material g can only occur once on a
dosing installation with weigher w:

L∑
l=1

Λl,wY
LG
l,g ≤ 1 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G}.
(4.42)

The lower limit of a dosing interval of raw material g at weigher w must be smaller or equal to
the upper limit of raw material g at weigher w:

fWG1
w,g ≤ fWG2

w,g ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(4.43)

Note that this implicitly follows from (4.32) and (4.33).
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Furthermore, all time-based continuous variables cannot be negative. Thus:

pDd ≥ 0 ∀d ∈ {1, ..., D},
(4.44)

pSs ≥ 0 ∀s ∈ {1, ..., S},
(4.45)

Sd1,d2
≥ 0 ∀d1 ∈ {1, ..., D},

∀d2 ∈ {1, ..., D},
(4.46)

CD
d ≥ 0 ∀d ∈ {1, ..., D},

(4.47)

CS
s ≥ 0 ∀s ∈ {1, ..., S},

(4.48)

CB
b ≥ 0 ∀b ∈ {1, ..., B},

(4.49)

C ≥ 0. (4.50)

These variables are already implicitly lower-bound. For example: pDd is constrained by (4.19), in
which all terms are explicitly positive except for M(Y DL

d,l + Y LG
l,g − 2). However, from (4.4) and

(4.5) it follows that there is always some silo l and some raw material g for which Yd,l = Yl,g = 1.
Therefore, pDd is always lower-bounded by at least 0.

4.5 Objective function

The objective function follows straightforward from the constraints as the objective is to minimize
the makespan:

min C (4.51)

4.6 Complete MILP

The MILP constraints and objective function are described in sections 4.4 and 4.5. Hence, the
optimization problem can be formulated as proposed in Section 3.3:

min C

subject to Y LG
l,g = 0 ∀(l, g) ∈ γ0,

Y LG
l,g = 1 ∀(l, g) ∈ γ1,

W∑
w=1

Y SW
s,w = 1 ∀s ∈ {1, ..., S},

L∑
l=1

Y DL
d,l = 1 ∀d ∈ {1, ..., D},

G∑
g=1

Y LG
l,g = 1 ∀l ∈ {1, ..., L},

M(Ωb1,p1 +Ψd,b2 +Ωb2,p2 − 3) + CB
b1 + pDd + S0,d≤ CD

d ∀d, ∀b1 < b2, ∀p1 < p2
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subject to
S∑

s=1

Y DS
d,s = 1 ∀d ∈ {1, ..., D},

Y DS
d,s = 0 if Θs,b +Ψd,b = 1,

∀s ∈ {1, ..., S},
∀b ∈ {1, ..., B},
∀d ∈ {1, ..., D},

L∑
l=1

Λl,wY
DL
d,l = 0 if mmin

w > md,

∀w ∈ {1, ...,W},
∀d ∈ {1, ..., D},

L∑
l=1

Y LG
l,g ≤ ηg ∀g ∈ {1, ..., G},

1 +
L∑

l=1

Y DL
d,l Λl,w ≥ Y DS

d,s + Y SW
s,w ∀d ∈ {1, ..., D},

∀s ∈ {1, ..., S},
∀w ∈ {1, ...,W},

1 +

L∑
l=1

Y DL
d,l Λl,w ≥ Y DS

d,s + Y SW
s,w ∀d ∈ {1, ..., D},

∀s ∈ {1, ..., S},
∀w ∈ {1, ...,W},

M(Y SW
s,w + Y DS

d,s − 2) + CS
0,w + S0,d + pDd ≤ CD

d ∀d ∈ {1, ..., D},
∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W},
M(Y DS

d1,s + Y DS
d2,s − 2) + CD

d1
+ Sd1,d2

+ pDd2
≤ CD

d2
∀d1 < d2 ∈ {1, ..., D},

∀s ∈ {1, ..., S},
M(Y SW

s1,w + Y SW
s2,w + Y DS

d,s2 − 3) + CS
s1 + S0,d + pDd ≤ CD

d ∀d ∈ {1, ..., D},
∀s1 < s2 ∈ {1, ..., S},

∀w ∈ {1, ...,W},
M(Ωb1,p1

+Ψd,b2 +Ωb2,p2
− 3) + CB

b1 + pDd + S0,d ≤ CD
d ∀d ∈ {1, ..., D},

∀b1 < b2 ∈ {1, ..., B},
∀p1 < p2 ∈ {1, ..., P},

CS
s−1 + pSs ≤ CS

s ∀s ∈ {1, ..., S},
CB

b1 + pSs +M(Θs,b2 − 1) ≤ CS
s ∀s ∈ {1, ..., S},

∀b1 < b2 ∈ {1, ..., B},
M(Y DS

d,s − 1) + CD
d + Sd,0 + pSs ≤ CS

s ∀d ∈ {1, ..., D},
∀s ∈ {1, ..., S},

M(Y DL
d,l + Y LG

l,g − 2) + cDl,g +
md

vDl,g
≤ pDd ∀d ∈ {1, ..., D},

∀g ∈ {1, ..., G},
∀l ∈ {1, ..., L},
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subject to M(Y SW
s,w − 1) + cSwY

S
s +

1

vSw

D∑
d=1

mdY
DS
d,s ≤ pSs ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W},
D∑

d=1

Y DS
d,s ≥ Y S

s ∀s ∈ {1, ..., S},

1

D

D∑
d=1

Y DS
d,s ≥ Y S

s ∀s ∈ {1, ..., S},

L∑
l=1

Λl,wY
DL
d,l ≤ 1 if mmin

w ≤ md,

∀w ∈ {1, ...,W},
∀d ∈ {1, ..., D},

M(Y SW
s,w − 1) +

D∑
d=1

mdY
DS
d,s ≤ mmax

w ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W},

M(Y SW
s,w − 1) +

D∑
d=1

VdY
DS
d,s ≤ V max

w ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W},
fWG1
w,g ≤ mmax

w ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},

fWG2
w,g ≤ mmax

w ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},

fWG1
w2,g +M(1− Fw1,w2,g) ≥ fWG2

w1,g ∀w1 �= w2 ∈ {1, ...,W},
∀g ∈ {1, ..., G},

Fw1,w2,g + Fw2,w1,g ≥ 1 ∀w1 < w2 ∈ {1, ...,W},
∀g ∈ {1, ..., G},

M

D∑
d=1

Δd,g

L∑
l=1

Λl,wY
DL
d,l ≥ fWG1

w,g ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},

M
D∑

d=1

Δd,g

L∑
l=1

Λl,wY
DL
d,l ≥ fWG2

w,g ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},
md − δ +M(2− Y DW

d,w −Δd,g) ≥ fWG1
w,g ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},
∀d ∈ {1, ..., D},

md +M(Y DW
d,w +Δd,g − 2) ≤ fWG2

w,g ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},
∀d ∈ {1, ..., D},

M(Y DL
d1,l1 + Y DL

d2,l2 − 2) + Σl1,l2 ≤ Sd1,d2
∀d1 < d2 ∈ {1, ..., D},

∀l1 ∈ {1, ..., L},
∀l2 ∈ {1, ..., L},

M(Ωb1,p1
+Ψd,b2 +Ωb2,p2

− 3) + CB
b1 + pDd + S0,d≤ CD

d ∀d, ∀b1 < b2, ∀p1 < p230



subject to M(Y DL
d,l − 1) + Σ0,l ≤ S0,d ∀d ∈ {1, ..., D},

∀l ∈ {1, ..., L},
M(Y DL

d,l − 1) + Σl,0 ≤ Sd,0 ∀d ∈ {1, ..., D},
∀l ∈ {1, ..., L},

M(Y DS
d1,s1 + Y DS

d2,s2 − 2) + CS
s1 ≤ CS

s2 ∀d1 < d2 ∈ {1, ..., D},
∀s1 ∈ {1, ..., S},
∀s2 ∈ {1, ..., S},

CS
s + cB +M(Θs,b − 1) ≤ CB

b ∀s ∈ {1, ..., S},
∀b ∈ {1, ..., B},

CB
b ≤ C ∀b ∈ {1, ..., B},

fWG1
w,g ≥ 0 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},
fWG2
w,g ≥ 0 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},

and optionally

L∑
l=1

Λl,wY
LG
l,g ≤ 1 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},
fWG1
w,g ≤ fWG2

w,g ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},

pDd ≥ 0 ∀d ∈ {1, ..., D},
pSs ≥ 0 ∀s ∈ {1, ..., S},
Sd1,d2

≥ 0 ∀d1 ∈ {1, ..., D},
∀d2 ∈ {1, ..., D},

CD
d ≥ 0 ∀d ∈ {1, ..., D},

CS
s ≥ 0 ∀s ∈ {1, ..., S},

CB
b ≥ 0 ∀b ∈ {1, ..., B},

C ≥ 0

where Y D,S
d,s , Y SW

s,w , Y DL
d,l , Y LG

l,g , Y S
s , Fw1,w2,g binary variables

M(Ωb1,p1 +Ψd,b2 +Ωb2,p2 − 3) + CB
b1 + pDd + S0,d≤ CD

d ∀d, ∀b1 < b2, ∀p1 < p2

4.7 Practical functionality

The MILP formulation as presented in this chapter has a relatively large number of variables. A
typical system developed by KSE might processes 50, 000 batches which consist of 1000 different
recipes with a total of 500 raw materials within a year. To make a conservative estimation of
the number of variables a smaller model of 5, 000 batches consisting of 100 recipes and 50 raw
materials is regarded. Assume that each recipe consists of 5 raw materials, a total number of 3
dosing installations with a collective 50 silos, each batch is able to be processed in 1 discharge.
Again, these are all conservative estimations. This model renders a production with 3 dosing in-
stallations, 50 silos, 50 raw materials, 5, 000 batches, 5, 000 discharges and 25, 000 dosages, leading
to a total of 7.5 · 108 design variables.

The number of possible combinations and thus outcomes increases exponentially with each addi-
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tional variable. Therefore, it can be assumed that for the size of the proposed problem no solution
can be found within acceptable time using the MILP as stated above.

Analyzing the number of variables resulting from each variable group as presented in 4.3, it can
be seen that a relative large number of variables emanate from the setup time Sd1,d2 . As has been
suggested in Section 4.4, the driving time plays a minor role in optimizing the given problem.
Hence, by removing the setup time Sd1,d2

may decrease the problem size. However, even if all
time-based variables were removed, the problem would still yield 1.3 · 108 variables for the conser-
vative sized problem as presented in this section.

It is concluded that the MILP cannot be of practical use due to the large number of input variables.
Hence, heuristics have to be found to speed up the optimization. Heuristics are algorithms that
approximate the optimal solution with rules that usually shortcut the quantity of analyzed data.
A heuristics-based approach is introduced in the next chapter.
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Chapter 5

Heuristics

Heuristics are methods to solve problems which are too large to be solved by classic approaches or
which are relatively difficult to optimize exactly. Therefore, heuristics often tend to approximate
the optimal solution by approaching the solution using short-cuts. In the previous chapter, it is
shown that MILP optimization cannot find a solution within acceptable time. Hence, heuristics
are considered in this chapter as a solution method.

5.1 Reformulation problem

As stated in Chapter 4 optimizing the setup times due to driving time are a minor component of
optimizing the makespan. Therefore, the results from this chapter reflect the system as if all ma-
chines were dosing installations with stationary weighers, meaning that the specific silo assignment
within an installation is not considered in this chapter. Thus, the remaining factor contributing
to the makespan is the production allocation as defined in Section 2.3.

Furthermore, to limit the computational burden, the production time rather than the makespan is
regarded as optimization objective. The difference between the two optimality criteria is described
in Section 3.1. It is assumed that the production time provides a reasonable approximation of the
makespan as the makespan of each batch is relatively large in comparison to the additional time
introduced by the production time.

5.2 General heuristic

The heuristics proposed in this chapter are deterministic, meaning that for a given input always
the same output is achieved. Thus, no randomness is involved in these algorithms. The heuristics
determine the production allocation, that is, the allocation of dosing intervals of raw materials to
installations and they are partially based on the current manual production allocation process at
KSE. The proposed heuristics are the descending mass heuristic, the descending frequency heuris-
tic and the descending recipe occupancy heuristic, which are based on the mass of raw materials
in the production schedule, the dosing frequency of raw material in the production schedule and
the number of recipes a raw material occurs in, respectively.

The three heuristics are similar in approach. Hence, a general heuristic is defined that applies to all
three heuristics. The difference between the descending mass heuristic, the descending frequency
heuristic and the descending recipe occupancy heuristic is discussed in Section 5.3.

For these heuristics it is important to notice that installations are sorted on descending size. The
definition of the size of installations is discussed in Section 2.2. If two installations are exactly
equal in size, it is arbitrary which installation is sorted before the other. In this chapter, the
handtip, liquid and medicinal dosing installations are differentiated from the other installations.
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The handtip, liquid and medicinal installations are referred to distinctively. Other installation are
referred to collectively as ’regular installations’.

The general heuristic is defined as following:

1. Raw materials that are pre-allocated to a specific installation, e.g.: medicinal and liquid ma-
terials, are placed on their respective installations. Hence, these materials are not regarded
anymore in the allocation of the heuristic.

2. All raw materials dosages below the smallest possible required minimum dosing mass, i.e.,
min
w

mmin
w , are placed at the hand tip installation, since they cannot be dosed by any regular

installation. If a raw material is also dosed in dosages larger than the minimum dosing
mass, then, at this point, only the interval below the required minimum mass is placed at
the handtip installation. An illustration of such a situation is shown in Example 3.

3. Sort the remaining raw materials in V according to the desired sorting method.

4. Allocate single installation raw material: allocate the raw material according to V in the
largest possible regular installation that completely satisfies the total dosing interval of that
raw material if possible. Only if the raw material can be allocated, it is removed from V.
Note that the resulting materials in V remain in descending order of the sorting method
from step 3.

5. Allocate multi installation raw material: raw materials that cannot be allocated to a single
regular installation have to be divided over multiple installations. Allocate raw materials in
the order in which they are enlisted in V. It is chosen that raw materials can be split over at
most two regular installations and the handtip installation. Use the weighted sum method
as introduced in Section 5.7 to determine the dosing intervals at the dosing installations
where each raw material should be placed.

6. Raw materials that have not been allocated, i.e., the remaining raw materials in V, are
placed in the handtip installation. This situation may occur, for example, if in the single
installation allocation in step 4 all silos are allocated and no vacant silos remain.

7. Reallocate raw materials to remaining vacant silos: the silos that are not appointed by a
raw material at this point are used to split the allocation of a raw material that has been
appointed to a single regular installation over two regular installations. Only raw materials
that have not been assigned to multiple installations yet may be split to avoid raw materials
to be assigned to more than two regular installations. The vacant silos are evaluated in
order of descending installation size. Only raw materials at installations smaller than the
installation of the vacant silo are considered for potential split up. Using a priority score,
as introduced in Section 5.8, it is determined which raw material should be chosen for split
up. Next, use the weighted sum method, as has been applied in step 5 to determine the
corresponding intervals in which the allocation of the preferred raw material should be split.

Note that for the heuristics it is not necessary to define the number of silos in the handtip in-
stallation. The following sections describe the steps of the heuristic in further detail. The sorting
method of step 3 is discussed in Section 5.3. Three sorting methods are proposed, each yielding a
different heuristic. The allocation of raw materials that can be placed on a single installation is dis-
cussed in Section 5.4. The allocation of raw material that must be placed at multiple installations
is discussed in Section 5.5. Reallocation of raw materials to vacant silos is discussed in Section 5.6.

Additionally, the heuristics can be expanded with a local optimization:

8. Swap raw material between regular installations as described in Section 5.9. By swapping
materials between installations it is aimed to place ingredients that occur in the same recipe
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on different installations. Placing ingredients in the same recipe over different installations
may reduce idle time, as this spreads dosages, and thus dosage times, parallel over installa-
tions instead of appointing dosages in series on a single installation.

The local optimization is described in further detail in Section 5.9.

Example 3. Pre-allocation of raw materials in handtip Assume two dosing installations.
Installations A and B have a weigher with a required minimum dosing mass of respectively 10 and
25[kg]. Assume that grain is a raw material used in production and that it is dosed in the following
dosage sizes: 5[kg], 15[kg] and 1,500[kg]. This implies that at least all dosages of 5[kg] should be
placed at the handtip installation according to step 2.

5.3 Sorting method

After raw materials that are pre-allocated to an installation are placed and raw materials that
are dosed below min

w
mmin

w are placed, i.e., step 1 and 2 of the general heuristic as described in

Section 5.2, the remaining raw materials are sorted in V. The difference between the descending
mass heuristic, the descending frequency heuristic and the descending recipe occupancy heuristic
comes to expression in the sorting method. The descending mass heuristic is based on the sorting
of raw material in descending order of total mass dosed in the production schedule. Similarly, the
descending frequency heuristic and descending recipe occupancy heuristic are based on the sorting
of raw material in descending order of total number of dosages in production and descending order
of total number of recipes a raw material occurs in, respectively. The three sorting methods are
described in further detail in this section.

5.3.1 Descending mass heuristic

For the descending mass heuristic step 3 of the general heuristic as described in Section 5.2 is
defined as following:

3. Sort the raw material in V in descending order of total mass dosed in production. A raw
material ranked high in V is considered a large raw material and a material ranked low in V
is considered a small raw material.

5.3.2 Descending frequency heuristic

For the descending frequency heuristic step 3 of the general heuristic as described in Section 5.2
is defined as following:

3. Sort the raw material in V in descending order of total number of dosages in production. A
raw material ranked high in V is considered a large raw material and a material ranked low
in V is considered a small raw material.

5.3.3 Descending recipe occupancy heuristic

Instead of sorting the raw materials in V in descending order of mass or frequency, another sorting
method is considered: raw materials are sorted in descending order of recipes in which they occur.
The number of dosages or the mass of the dosages are not relevant, mere the total number recipes
in which they occur. Hence, step 3 of the general heuristic as described in Section 5.2 is changed
to:

3. Sort the raw material in V in descending order of total number of recipes in which they
occur. A raw material ranked high in V is considered a large raw material and a material
ranked low in V is considered a small raw material.
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5.4 Single installation allocation

As the number of silos are limited, the raw materials that can be allocated to a single regular in-
stallation, are placed on a single regular installation. After the raw materials are sorted according
to the desired sorting method in step 3 of the general heuristic as described in Section 5.2, the
allocation of raw materials to a single installation is carried out. The procedure for the allocation
of single installation materials is shown in pseudo-code in Algorithm 1 on page 47.

The procedure is carried out as follows: raw materials are analyzed according to the sorting in
V. For each raw material g the largest regular dosing installation with vacant silos that fits all
dosages of g is searched, which is described in lines 4–42 of Algorithm 1. A few outcomes are
possible:

• If there is such a dosing installation, the raw material is placed and removed from V.
• If there is no regular dosing installation that fits all dosages of g, then the raw material

remains in V.
• If there are one or more regular dosing installations that fit all dosages of g, but those do

not have any vacant silos, then g remains in V. However, this does not necessarily imply
that g cannot be placed at a single installation, as another raw material may be reallocated
to another installation in favor of g. Hence, some additional steps are carried out in order
to explore this possibility.

In the latter case, additional possibilities are explored in order to place g, as described in lines 15–
42 of Algorithm 1. It is assumed that an already placed raw material h may only be reallocated
to a smaller installation in favor of g, as h would have been placed in a larger installation in the
first placed if this were possible. The following possibilities are analyzed consecutively:

a. If no vacant silos remain in any regular dosing installation, then no raw material can be
reallocated to another installation in favor of g. Hence, g is placed in the handtip installation.

b. If g fits the smallest regular dosing installation, then there are no smaller regular dosing
installations. Hence, g is placed in the handtip installation.

c. If there are vacant silos in installations smaller than installation w, which is the smallest
regular installation that fits all dosages of g, then the smallest raw material h is searched
that can be reallocated to a smaller regular installation. If h exists, then h is reallocated, g
is placed in w and g is removed from V. It is attempted to reallocate h to the largest regular
installation smaller than w. An illustration of this situation is shown in Example 4.

After the single installation allocation procedure has been carried out as described in this section,
raw materials may remain in V. It is attempted to allocate the remaining materials using the
multi installation allocation procedure as described in the following section.

Example 4. Re-allocation of raw materials in single installation allocation Assume
three dosing installations A, B and C with each 3 silos. A and C are respectively the largest and
smallest installation of the three. Barley, corn and soybean are placed at A. Whey, wheat and
sugar are placed at B. Salt and vitamin B are placed at C. Relevant material data and machine
properties are shown in Tables 5.1 and 5.2. Assume that in this case the descending frequency
heuristic is applied. Thus, raw materials are sorted based on the number of dosages. A raw
material, limestone, with a number of 500 dosages, must be allocated. Assume that the minimum
and maximum dosage sizes of limestone are 200 and 700 kg respectively. Hence, limestone may
fit in installation A or B. However, there are no silos available in either installations. According
to the descending frequency heuristic, during the single installation allocation, it is then attempted
to place limestone at installation B by re-allocating a raw material from B to C. The smallest raw
material in this case is sugar, as it has the smallest number of dosages from all raw materials

36



placed at B. Assume that the minimum and maximum dosage sizes of sugar are 75 and 200 kg
respectively, which is in accordance with the allowed dosing limits of installation C. Hence, sugar
is reallocated from B to C and limestone is placed at B.

Table 5.1: Raw material data

Raw material Installation Number of dosages

Barley A 10.000
Corn A 5.000
Soybean A 5.000
Whey B 2.000
Wheat B 1.000
Sugar B 750
Salt C 700
Vitamin B C 650

Table 5.2: Dosing installation properties

Installation mmin mmax

A 100 2000
B 50 1200
C 2 500

5.5 Multi installation allocation

Raw materials that cannot be placed on a single installation, because not all dosages fit in a single
regular installation or because no silo at a desired installation is available, remain in V. These raw
materials are analyzed in the multi installation allocation procedure. This procedure is globally
shown in pseudo-code in Algorithm 2 on page 48.

Similar to the single installation allocation, raw materials are analyzed according to the sorting
in V, as described by lines 1–2 in Algorithm 2. For each raw material g, the multi installation
allocation is only carried out if not all silos of regular dosing installations have been filled, which
is expressed by line 3. All possible configurations c of 2 regular installations that g can be divided
over are analyzed. A configuration k of g is defined as a set of two regular dosing installations
over which the production allocation of g has to be divided. In case allocation of g to 2 regular
installations does not suffice to cover the full production allocation of g, additional allocation
of dosing interval range0 to the handtip installation exists. It is aimed to avoid allocation of
dosages as much as possible to the handtip installation. Hence, in case allocation to the handtip
is unavoidable, the upper limit of range0 for each configuration k always corresponds to the
minimum required weighing mass mmin

w of the smallest installation in k, such that as little as
possible is allocated to the handtip installation. The configurations from c that allocated as little
as possible to the handtip installation are given by csub, as shown in line 5. To each configuration
k in csub the optimal production allocation is defined using the weighed sum method, see lines
6–8. This production allocation is assigned a certain score. The exact procedure of finding the
optimal production allocation and assigning this score to a configuration k of g is illustrated in
Section 5.7. The production allocation of the configuration with the highest score is described by
regular installations w1 and w2 < w1 and their respective dosing intervals range1 and range2,
which is shown in lines 9–12. For the placement of g several possibilities exist, as illustrated in
lines 14–33, which are analyzed consecutively:
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a. If there are silos vacant in w1, g is placed at w1 with range1.

b. If there are no silos available, then it is checked whether range1 of g is larger than or equal
to the smallest raw material h at w1 according to the applied sorting method. If this is
true, then g is placed at w1 with range1. It is attempted to reallocate h to the next smaller
dosing installation w1 − 1. If this is not possible, because w1 − 1 does not have vacant silos
or because the dosing interval of h at w1 does not correspond to the weigher limits at w1−1,
then h is placed at the handtip installation.

c. If there are no silos available and if g < h, then it is attempted to place g at w1 − 1. If this
is not possible, then g is placed at the handtip installation.

These steps are repeated for the allocation of g in interval range2 at w2.

After the multi installation allocation procedure has been carried out as described in this section,
steps 6 and 7 of the heuristic are executed. Step 6 is straight forward: all remaining raw materials
in V are placed in the handtip installation. Step 7, the reallocation of raw materials to remaining
empty silos, is explained in the next section.

5.6 Reallocation to vacant silos

Remaining raw materials in V after steps 1–5, are placed in the handtip allocation. This situation
may occur if after the singe installation allocation procedure no vacant silos remain. However,
if after step 5 vacant silos do exist, then a raw material should be allocated to those silos. This
procedure is shown in pseudo-code in Algorithm 3 on page 49.

For each regular dosing installation i in descending order of installation size, except the smallest
regular installation, it is checked whether there are vacant silos available. If this is true for i,
then each raw material g allocated at a regular installation smaller than i is assigned a prior-
ity score priorg, as described by lines 2–5. All these raw materials and scores are collected in
glist and priorlist respectively. This priority score resembles the urgency of a raw material to be
reallocated to installation i. The procedure of calculating the priority score is illustrated in Sec-
tion 5.8. For each vacant silo s at i, the raw material g in priorlist that has the highest urgency
priormax = max

g
priorg is searched. Note that g should be allocated to exclusively one regular

installation j. Otherwise, reallocation is not possible as a raw material may only be placed at
most at 2 regular dosing installations. The optimal production allocation for g at i and j is found
using the weighted sum method, which is explained in Section 5.7. According to that production
allocation, part of the dosing interval of g at j is reallocated to i. If priormax = 0, then no dosages
can be reallocated to installation i. In that case, the search for reallocating a raw material to i is
aborted and the next (smaller) regular dosing installation is analyzed for potential reallocation,
as shown in lines 8–10.

After the reallocation of raw materials to empty silos has taken place, additionally, local opti-
mization may be performed using the swap procedure. The swap procedure is explained in the
Section 5.9.

5.7 Weighted sum method

The multi installation allocation procedure as presented in Section 5.5 and the reallocation pro-
cedure as presented in Section 5.6 use the weighted sum method to find the best production
allocation. In the multi installation allocation procedure, a raw material g must be allocated to
at most two regular installations. In the reallocation procedure a section of the dosing interval of
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a raw material g is reallocated to a vacant silo in another installation. If the two chosen installa-
tions for g operate in an overlapping weight range, then more than one distribution of the dosing
intervals of g exists.

To find the optimal production allocation of g the weighted sum method is applied. In this case,
the optimal distribution is defined such that the number of dosages of g executed at the installa-
tions is highest towards the lower weight limit of the installation, the required minimum dosing
mass mmin

w . It is aimed to avoid allocation of relatively large dosages to an installation as this
leaves little space for additional dosages in the weigher, which leads to a high number of discharges
and thus, a longer makespan.

For a given configuration k of a raw material g the weighted sum method searches the highest
score and correlation production allocation. The configuration of a raw material implicates the
set of dosing installations, w1 and w2, at which the raw material is allocated. Placement at two
regular dosing installations at most are allowed for each raw material g. Furthermore, additional
placement with dosing interval range0 at the handtip installation is allowed.

The weighted sum method is based on the concept that dosages of a raw material g are distributed
in a number of weight bins. Depending on the proposed production allocation, a weighting factor
is applied to each bin. The resulting weighted sum s represents the score for that specific produc-
tion allocation.

(a) Weighting factor distribution for cutoff
between bin 5 and 6

(b) Weighting factor distribution for cutoff
between bin 7 and 8

Figure 5.1: Two examples of weighting factor distributions in two dosing intervals

Figure 5.1 shows the distribution of the dosages of an arbitrary raw material g in 12 weight bins.
A low bin number corresponds to a dosage with low mass and a high bin number corresponds to
a dosage with high mass. Figure 5.1a shows that dosages in bins 1–5 are assigned to one dosing
installation and dosages in bins 6–12 are assigned to another dosing installation. Figure 5.1b shows
another production distribution with bins 1–7 and 8–12 to the respective dosing installations. The
mass at which the dosing interval of the first installation ends and the second installation starts
is referred to as the cutoff point.

The weighting factor decreases for increasing bin numbers in the specific dosing interval. The
resulting weighted sum represents the score for that specific production allocation. Furthermore,
to ensure that all dosages are assigned within the dosing limits of the installations, the weight
bins must be distributed such that the dosages of a bin are always fully included or excluded at a
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dosing installation.

The procedure for applying the weighted sum method is globally shown in pseudo-code in Algo-
rithm 4 on page 49. For a given configuration k of a raw material g the weighted sum method
returns the highest score s and correlation production allocation, i.e. dosing intervals range1 and
range2 at dosing installations w1 and w2 respectively, as described by line 1 in Algorithm 4. Lines
3–4 involve finding the cutoff points for configuration k. Cutoff points may be placed before and
after common bins between w1 and w2. Hence, if there are a common bins, then a + 1 possible
cutoff points exist. For each of the a+ 1 cutoff points the score is calculated, yielding an optimal
production allocation for g. It is taken into account that if part of the production allocation of g
has been already allocated to the handtip installation, then range1 and range2 should be chosen
such that no overlap exists with range0. This is described in lines 5–13.

5.8 Priority score

In order to carry out step 7, the reallocation of raw materials to empty silos, a priority score is
calculated for each raw material allocated at an installation smaller than the installation with the
empty silo. Based on that priority score it is chosen which raw material should be partially moved
to the installation with the empty silo.

The priority of which raw material g should be moved from dosing installation j < i to an empty
silo in dosing installation i is based on the concept that it is attempted to avoid allocation of
relatively large dosages at an installation, that is, dosages that are weighted near the maximum
weighing mass of the installation, as this leaves little space for additional dosages in the weigher.
Hence, a raw material g that is allocated at j with relatively large dosages that can be moved to
the larger installation i is assigned a relatively high priority score.

Similar to the weighted sum method as described in Section 5.7, dosages of a raw material g are
distributed over weight bins and a weighting factor is applied, which results in a weighted sum
that, in this case, represents the priority score priorlist. As for the priority score large dosages
should be prioritized, the weighing factor increases for increasing bin numbers, opposed to the
situation of the weighted sum method with descending weighting factors. Only common bins
between i and j are taken into consideration for the priority score. In Figure 5.2 an example is
shown of weighting factors for a random raw material distribution with common bins 7–10. As
can be seen, a weighting factor is applied to the common bins only.

Figure 5.2: Example of weighting factor for a raw material distribution with common bins 7–10
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5.9 Swap procedure

Steps 1–7 in the descending mass heuristic and descending frequency heuristic do not consider the
recipe coherence of raw materials at installations. In this context coherence is defined as the extent
in which the raw materials on an installation occur in the same recipe. To take into account that
raw materials in the same recipe should be placed over different installations, i.e., a low recipe
coherence is desired, step 8, the swap procedure, is introduced. By doing so, it is aimed to divide
the dosage times of a batch parallel over a number of installations, rather than having a serial
dosage times on a single dosing installation and thus reducing the batch time and consequently
the makespan. The batch time is defined as the time required to complete a batch. An indication
of an undesirable high recipe coherence at an installation is thus a large batch time. To this end,
the swap procedure is developed.

As stated in Section 5.1, the production time is regarded as optimization objective. The swap pro-
cedure aims to swap two raw materials g and h between two dosing installations w1 and w2 in order
to reduce the production time. To reduce the production time efficiently, i.e., finding the two raw
materials g and h for which a swap reduces the production time the most, it is assumed that raw
material g should preferably be searched at the busiest dosing installation. To approximate the
business, the occupation time of each installation is calculated. The occupation time occupationi

of an installation i is that part of the production time that installation i is involved in. Hence,
occupationi is the sum of the production times of the batches that involve i.

The swap procedure is schematically visualized in pseudo-code in Algorithm 5 on page 50. The
maximum number of iterations iter that may be carried out for the swap procedure has to be
defined first. Also the production time resulting from steps 1–7 is calculated. This is denoted in
line 1. For each iteration, first, the occupation time occupationi for each installation i is calculated,
see lines 3–5. As shown in line 6, each installation i is ranked in W to descending occupation time
and they are analyzed in this order. For installation w1 = i, the largest raw material g, according
to the applied sorting method, is searched and for installation w2 = w1 − 1, the smallest raw
material h, according to the applied sorting method, is searched. This is described in lines 8–11.
If the dosages of g at w1 can be reallocated to w2 and the dosages of h in w2 can be reallocated to
w1, then the production time for this potential swap is calculated. If this swap leads to a smaller
production time, then the swap is executed and iteration k is ended, as shown in lines 14–18. If
during an iteration no single swap is made, then the local optimization procedure is aborted, as
presented in lines 21–23.

Note that a low recipe coherence is not always desired. In case of the installations of KSE the
discharge times are relatively small compared to the collective dosing times in a batch. In such
situations the time reduction by performing dosages in parallel outweighs the added time of po-
tential extra discharges. Thus, in this report it is assumed that a low recipe coherence is desired.

The following section discusses the results of applying the heuristic including the swap procedure
to four case studies.

5.10 Results

The heuristic as described in the previous sections, including local optimization using the swap
procedure, has been applied to four case studies provided by KSE. See Table 5.3 on page 50 for
some properties of the case studies. The results are discussed in this section.

The heuristic is divided in two distinct processes. The first process is the initial optimization,
which is described by steps 1–7 of the heuristics as shown in Section 5.2. In the initial optimiza-
tion raw material are appointed an initial allocation such that each raw material is allocated and
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no empty silos remain. The second process is the local optimization, which is described by step 8
of the heuristics as shown in Section 5.2. In the local optimization step raw materials are reallo-
cated such that a better production time is achieved. For each of the two processes one of three
sorting methods, descending mass, descending frequency and descending recipe occupancy, may
be applied. This results in at most nine different solutions. For the local optimization a maximum
of 20 iterations is allowed. The applied weighting factors for the weighted sum method and the
priority score are given in Appendix D.

0 2 4 6 8 10 12
2800

3000

3200

3400

3600

3800

4000

4200

Figure 5.3: Results case study 1

Figures 5.3, 5.4 and 5.5 show the results for the heuristics applied to case studies 1, 2 and 4. The
production time given by the initial optimization is given by iteration 0. As three different sorting
methods have been applied to the initial optimization, three different solutions are possible. To
each of these initial optimization solutions local optimization has been applied, resulting in at
most nine different solutions. No local optimization is possible to the solutions of case study 3,
hence, no figure is given for this case study. Numerical results for the best performing heuristic
for case studies 1–4 are given in Table 5.4 on page 50. Additional numeric results are provided
in Appendix D. Furthermore, a production allocation has been assigned by hand to each of the
case studies. These allocations are appointed as ‘original allocations’ in the results and are given
by a bold red line in the figures. The maximum number of iterations is 20. However, it should
be concluded that for neither of the case studies this number of iterations is carried out, because
according to the heuristics no more swaps are possible. At most 12 iterations have been carried
out, as shown in case study 1 by the result of the heuristic and local optimization based on sorting
by descending frequency.

It can be seen that for case studies 1 and 4 similar or better results are achieved by the heuristics

42



0 2 4 6 8 10 12
1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

Figure 5.4: Results case study 2

compared to the original allocation. For case study 1 the maximum reduction in production time
compared to the original allocation is realized by an initial optimization using descending mass
sorting and a local optimization using descending frequency sorting. The reduction is 211.4 hours,
which is a decrease of 7.1% in production time. For case study 2 the maximum reduction in
production time compared to the original allocation is realized by using descending mass sorting
during both the initial optimization and local optimization. The reduction is 0.5% in production
time. For case studies 2 and 3 the heuristics lead to a significantly worse result than the original
allocation by 57.7% and 38.5% respectively. In case study 3 the local optimization sorting method
is irrelevant, all three sorting methods lead to the exact same solution. This is related to the fact
that only one iteration has been able to be carried out, which resulted in the same swap for each
of the sorting methods.

The local optimization is limited or not carried out if the largest raw material cannot be swapped
with the smallest raw material, according to the sorting method, from one installation to another.
This may be due to several factors. If the number of installations is limited, as is the case in
case study 3, then the number of potential installations at which swaps may take place is limited.
Furthermore, if the installations have a minimum dosing mass and maximum allowed dosing mass
limit such that this leaves a relatively small common dosing interval, then the probability that
a raw material can be moved from one installation to another decreases significantly. Also, note
that first all possible raw materials that may be allocated to a single installation during the single
installation allocation procedure are placed. If there are relatively many possible single installation
raw materials, then this procedure leaves no unoccupied silos and the multi installation allocation
is practically not carried out. Hence, resulting raw materials in V after the single installation
allocation procedure are placed at the handtip installation. In general, there is a correlation be-
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Figure 5.5: Results case study 4

tween the size of the raw material according to the applied sorting method and the dosing interval
of these raw materials. Large raw materials have higher dosing intervals than small raw materi-
als. Hence, in general, large raw materials are placed at bigger installations with higher allowed
dosing mass limits and small raw materials are placed at smaller installations. In case no multi
installation raw materials are allocated however, and a relatively large number of small single
installation raw materials exists in the production, then relatively small raw materials are allo-
cated to the installations. Hence, the probability is relatively large that the dosing interval of the
smallest raw material at installation w2 cannot be placed at the larger installation w1 as intended
by the swap procedure as the minimum required dosing mass at w2 is too large for the raw ma-
terial to be reallocated. Due to this reason, few or no swaps are performed for case studies 2 and 3.

Moreover, in that case, the resulting raw materials after the single installation allocation procedure
may consist of raw materials that are required to be allocated to multiple regular installations and
may consist of raw materials that may be placed at a single installation, but are not able to as
all silos have already been occupied. In the first case, the raw material may be large or small,
according to the applied sorting method. In the second case, the raw materials are relatively small
as the largest of the single installation raw materials have been placed. Hence, relatively large raw
materials, the multi installation raw materials, are placed in the handtip installation, resulting in
a relatively high production time as seen in the results of case studies 2 and 3. In case study 4 this
misplacement of relatively large raw materials to the handtip is true to a lesser extent compared
to case studies 2 and 3. Therefore, case study 4 results in a similar, but not significantly better,
result compared to the original allocation.

Furthermore, it should be noted from Table 5.4 that no sorting method is superior, indicating that
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the desired sorting method is highly dependent of the nature of the raw materials, batches and
dosing installations involved in the production schedule.

It should be concluded that the heuristics yields unsatisfactory results as in 2 out of 4 case studies
significantly worse solutions are given by the heuristics compared to the original hand made
allocation. This is due to the fact that the nature of the production data in each case study is
different, meaning that the heuristics do not cover, or do not cover well enough, all aspects of the
production in the case studies that contribute to the makespan. The following section provides
some recommendations to improve the heuristics.

5.11 Recommendations heuristic

To improve the heuristics several recommendations are proposed:

• As concluded from the results in Section 5.10 the multi installations allocation procedure
practically does not take place if all silos are occupied after the single installation allocation
procedure. Due to this, it is probable that raw materials that are sorted high in V, accord-
ing to the concerning sorting method, are placed in the handtip installation and the swap
procedure is not or scarcely carried out, which is undesired. Hence, line 4 in Algorithm 2 on
page 48 should be removed in order to carry out the multi installation allocation procedure,
such that small single installation raw materials can be reallocated to the handtip and larger
raw materials can be placed in the regular installations.

• After the initial optimization has taken place the production allocation for multi installation
raw materials could be redistributed. The initial allocation that is proposed by the weighted
sum method is merely an approximation of a good solution, i.e. a low production time. After
the initial optimization process, the production allocation for each raw material should be
redistributed if this leads to a production time reduction. The raw materials could be
analyzed in order of the applied sorting method.

• In the multi installation allocation procedure only one configuration is analyzed for the
eventual allocation. If this allocation is not possible, the dosing intervals of the raw materials
are placed in the handtip installation. Analyzing more configurations if placement in regular
installations is not (fully) possible could improve results.

• As defined in the problem definition in Chapter 2, installations do have volume restrictions
next to mass restrictions. The volume restrictions have not been implemented yet, however,
this could be done straight forwardly: at all stages in the heuristics that involve some type
of mass analysis, the volume restriction should be analyzed as well.

• The redistribution of raw materials to vacant silos as introduced in Section 5.6 is based
on the priority score and the weighted sum method. However, the production time can be
involved directly instead of the weighted sum method to find the optimal redistribution of
dosages. Also, only one raw material, namely the raw material with the highest priority
score, is chosen to be analyzed for redistribution. This could be extended to a number of
raw materials.

• The heuristic is split up in two processes, the initial optimization and local optimization.
However, in the initial optimization the sorting method is involved in both the single and
the multi installation allocation. Therefore, the heuristics may be split up even further, in
three processes in total. In that case, the remaining raw materials in V should be resorted
to the according sorting method after the single installation allocation procedure.

• In these heuristics three sorting methods are applied based on descending mass, descend-
ing frequency and descending recipe occupancy. A hybridization by combining the sorting
methods may improve results. In that case all three aspects are taken into account. This
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hybridization could be defined as: amg + bfg + cog, with mg the total mass used, fg the
frequency and og the recipe occupancy of a raw material g and a, b and c weighting factors.

• In the proposed heuristics, the handtip installation has not been taken into account in the
local optimization. Doing this might improve results.

• The allocation procedure of raw materials is divided into steps such that single installation
allocation is performed first and multi installation allocation is performed hereafter. How-
ever, instead the allocation procedure may be analyzed strictly to the order of raw materials
in V. Each raw material according to sorting order could be analyzed consecutively. If a raw
material cannot be placed by a single installation allocation, then directly a check may be
performed if the raw material can be placed by a multi installation allocation.

• The swap procedure is a fairly rigid process as it only evaluates the largest and smallest raw
materials in two dosing installations. The swap procedure could be extended by evaluating
more raw materials if swaps are not possible. This might be done by evaluating swaps with
the second (or more) largest and smallest raw materials in addition. Alternatively, random
swaps may be considered as well. Also, swaps between other dosing installations may also be
carried out in order to increase performance, as in the current heuristics only swaps between
consecutive installations w1 = i and w2 = i− 1 are considered.

• Lastly, the provided case studies all have an original allocation with which the heuristic
results are compared. To this original allocation the local optimization, as introduced in
Section 5.9, might be applied. This may result in better solutions. This method however,
can only be used if an original allocation is available, which is not always the case.

As has been indicated, the results of the heuristics vary highly dependent on the nature of the
raw materials, batches and dosing installations involved in the production schedule. Hence, a
deterministic heuristic might not provide a robust solution: there may always be a situation in
which the deterministic heuristic as proposed in this chapter leads to unsatisfactory results, even
if the recommendations stated above are implemented. Hence, the following chapter introduces a
meta-heuristic, namely the genetic algorithm.
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Algorithm 1: Pseudo-code for the allocation procedure of raw material that can be
appointed to a single dosing installation. Note that ‘break’ immediately terminates the
execution of the closest for or while loop in which it occurs

1 for materialindex = 1:length(V) do
2 initialization: w = 0, placed = 0;
3 g = V(materialindex);
4 for each regular dosing installation i in descending order of installation size do
5 if dosing interval of g fits at i then
6 w = i;
7 if there are vacant silos at w then
8 place g at w;
9 placed = 1;

10 remove g from V;
11 break;

12 end

13 end

14 end
15 if w > 0, placed == 0 then
16 if there are no vacant silos in any regular installation then
17 place g at the handtip installation;
18 remove g from V;
19 break;

20 else if w == 1 then
21 place g at the handtip installation;
22 remove g from V;
23 else if there are vacant silos in regular installations < w then
24 for each raw material h in w in descending size depending on sorting method

do
25 for each regular installation j < w in descending order of installation size

do
26 if h fits in j then
27 remove h from w;
28 place h at j;
29 place g at w;
30 placed = 1;
31 remove g from V;
32 break;

33 end

34 end
35 if placed==1 then
36 break;
37 end

38 end

39 else
40 do nothing;
41 end

42 end

43 end
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Algorithm 2: Pseudo-code for the allocation procedure of raw materials that should
be appointed to multiple dosing installations. Note that installation w1 is larger than
installation w2 and that ‘break’ immediately terminates the execution of the closest for
or while loop in which it occurs

1 for materialindex = 1:length(V) do
2 g = V(materialindex);
3 if any vacant silos in regular installations available then
4 c = all configurations raw material g can be divided over concerning at most 2

regular installations and the handtip installation;
5 csub = all configurations from c with the smallest possible dosing interval range0

placed at the handtip installation;
6 for each configuration k in csub do
7 find production allocation with highest score for each configuration k of g using

the weighted sum method;

8 end
9 w1 = largest installation of configuration with highest score;

10 w2 = smallest installation of configuration with highest score;
11 range1 = dosing interval at w1 of configuration with highest score;
12 range2 = dosing interval at w2 of configuration with highest score;
13 for installationindex=1:2 do
14 if silos available in winstallationindex then
15 place g in winstallationindex;
16 else
17 h = smallest raw material at winstallationindex;
18 if g ≥ h according to sorting method then
19 place g at winstallationindex with rangeinstallationindex;
20 if h can be reallocated to the (smaller) next regular installation

winstallationindex − 1 then
21 remove h from winstallationindex;
22 place h at winstallationindex − 1;

23 else
24 place h at the handtip installation;
25 end

26 else
27 if g can be placed at the (smaller) next regular installation

winstallationindex − 1 then
28 place g at winstallationindex − 1 with dosing interval

rangeinstallationindex;

29 else
30 place g at the handtip installation with dosing interval

rangeinstallationindex;

31 end

32 end

33 end

34 end
35 remove g from V;
36 end

37 end
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Algorithm 3: Pseudo-code for the reallocation procedure of raw materials to vacant
silos. Note that ‘break’ immediately terminates the execution of the closest for or while
loop in which it occurs

1 for each regular dosing installation i, except the smallest regular installation, in
descending order of installation size do

2 if there are vacant silos at i then
3 glist = all raw materials allocated to silos at regular installations < i;
4 end
5 priorlist = priority score based on sorting method;
6 for each vacant silo s at i do
7 find raw material g in priorlist with priormax = max scorelist that is allocated at

regular dosing installations j;
8 if priormax == 0 then
9 break;

10 end
11 find production allocation with highest score for configuration of g at i and j using

the weighted sum method;
12 place g at i;

13 end

14 end

Algorithm 4: Pseudo-code of the weighted sum method. Note that installation w1 is
larger than installation w2

1 Weighed sum method (range0, k);
Input : handtip dosing interval range0,

configuration k of raw material g at regular installations w1 and w2 < w1;
Output: score s,

dosing interval range1 at w2,
dosing interval range2 at w2;

2 initialization: s = 0;
3 find common bins i between w1 and w2;
4 define cutoff points jlist based on i;
5 for each cutoff point j in jlist do
6 find dosing intervals range1,j to w1 and range2,j to w2 for cutoff point j, taking into

account that range0 is already allocated to the handtip interval;
7 calculate the score sj for the production distribution with range1,j and range2,j ;
8 if sj > s then
9 s = sj ;

10 range1 = range1,j ;
11 range2 = range2,j ;

12 end

13 end
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Algorithm 5: Pseudo-code for the swap procedure of the local optimization procedure.
Note that installation w1 is larger than installation w2 and that ‘break’ immediately
terminates the execution of the closest for or while loop in which it occurs

1 initialization: iter, ptold = production time of allocation;
2 for k = 1:iter do
3 for each regular dosing installation i, except the smallest regular dosing installation do
4 occupationi = occupation time at each installation;
5 end
6 W = order of installations based on descending occupation time;
7 for each installation i in the order of W do
8 w1 = i;
9 w2 = i− 1;

10 g = largest raw material in w1 according to sorting method;
11 h = smallest raw material in w2 according to sorting method;
12 if g can be reallocated to w2 and h can be reallocated to w1 then
13 ptnew = production time if g is reallocated to w2 and h is reallocated to w1;
14 if ptnew < ptold then
15 swap raw materials g and h;
16 ptold = ptnew;
17 break;

18 end

19 end

20 end
21 if no swap is made during iteration k then
22 break;
23 end

24 end

Table 5.3: Case study properties

Case study Number
of regular
installations

Total num-
ber of silos

Number of
recipes

Total num-
ber of
batches

Number
of raw
materials

1 6 90 43 28.642 99
2 5 66 523 12.218 178
3 3 65 50 6.858 116
4 4 87 471 10.648 191

Table 5.4: Minimum achieved production time [hours] for best performing heuristics

Case study Initial allocation Local optimization Production
time [hours]

1 Descending mass Descending frequency 2891.9
2 Descending frequency - 2255.7
3 Descending recipe occupancy All 1550.0
4 Descending mass Descending mass 1141.4
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Chapter 6

Genetic algorithm

The solution method proposed in the previous chapter has not shown to be a robust algorithm
to solve the problem posed in Chapter 2. The deterministic heuristic in the previous chapter falls
short as the nature of each production schedule is different and, therefore, requires a solution
of a different nature. Hence, a meta-heuristic is proposed in this chapter. Meta-heuristics are
higher-level general-purpose algorithms that often incorporate randomness in order to find good
solutions. Some background information on meta-heuristics, in particular genetic algorithms, can
be found in Chapter 3. Genetic algorithms are widely used in scheduling problems and are inspired
by the process of natural selection. The possibility of applying these algorithms to the problem of
Chapter 2 are investigated in this chapter.

6.1 General genetic algorithm

The design of the genetic algorithm resembles the architecture posed in Section 3.4.1: an initial
population is created, each individual is assigned a fitness score, based on some criteria the simu-
lation is terminated or not. If the simulation is not terminated, crossover and mutation take place
by a selection procedure and a new generation is created from this. This process is repeated until
the simulation is terminated. The genetic algorithm proposed in this chapter is made suitable for
the required production allocation of the posed problem in Chapter 2. However, likewise to the
heuristic in Chapter 5 the specific silo assignment within a dosing installation is not considered.
Hence, it is assumed that all dosing installations have stationary weighers exclusively, which omits
relocation times.

First, a set of initial solutions should be created. This could be achieved by taking the solutions
of the deterministic heuristic as described in Chapter 5. Alternatively, in some situations extra
solutions can be created by excluding local optimization in the heuristic.

These solutions should be represented in a suitable format for genetic algorithms, that is, in the
form of genotypes. The proposed representation of solutions for the genetic algorithm is addressed
in Section 6.2.

The fitness function may correspond to the makespan, as applied in the MILP in Chapter 4 and as
required in the problem definition. However, as applied in the deterministic heuristic of the previ-
ous chapter, in order to limit computational burden, production time is another possible objective.

For the recombination of solutions a custom crossover is introduced, which is discussed in Sec-
tion 6.3. Since the initial population introduced in the genetic algorithm is not guaranteed to be
diverse, it is chosen to introduce two types of mutation operators. These operators are explained
in Section 6.4. Tournament selection is chosen as selection operator for finding individuals for
recombination.
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After recombination has taken place a new generation is generated by collecting the resulting
population. It is chosen to limit the population size to Nmax to prevent population explosion. If
the population size exceeds Nmax after recombination, tournament selection takes place to reduce
the population size to Nmax. Furthermore, it is chosen to retain the parents after recombination
has taken place.

6.2 Representation of solutions

Due to the uncommon requirement of the production allocation as presented in Chapter 2, a
custom representation of the solutions is required. In genetic algorithms solutions are encoded
in the form of genotypes. Several options are discussed in this section. The visualization of the
genotypes follow the same convention as proposed in Chapter 3, that is, chromosomes in a genotype
are listed vertically and genes in a chromosome are listed horizontally. Note that, contrary to the
genotypes shown in Figure 3.3, in this chapter, the boxes around genes are omitted for simplicity.

Option 1

The genotype consists of a number of chromosomes, each representing a dosing installation. The
position of each chromosome represents a specific installation. The number of genes in each chro-
mosome represents the number of silos at that dosing installation. Each gene consists of two
bits. The first bit represents the raw material and the second bit represents the lower limit of the
dosing interval of that raw material on that dosing installation. The production allocation can
be deducted from the lower limits only, as it is assumed that dosing intervals of a raw material
are disjoint and continuous. If a raw material is only placed at a single installation w, then the
raw material is only present once in the genotype with a lower limit of 0. The accompanying
upper limit in that case is the maximum allowed dosing mass mmax

w . Thus, the dosing interval
in that case is [0,mmax

w ), or simply [0,−). If a raw material is placed on multiple installations,
then the raw material is present multiple times in the genotype. The raw material on a specific
installation is lower bounded by the presented lower limit. The upper limit of the raw material on
that installation is then deducted from the next smallest lower limit of that raw material.

Table 6.1 shows an example of such a genotype. It represents a solution with 3 dosing installations:
installation 1 has 4 silos, installation 2 has 2 silos and installation 3 has 1 silo. Raw material 1
is placed at installations 1, 2 and 3, with dosing intervals [67,−), [0, 33) and [33, 67) respectively.
Materials 2, 3 and 4 are placed at installation 1. Material 5 is placed at installation 2.

Table 6.1: Example of a genotype of option 1

(4,0) (3,0) (1,67) (2,0)
(5,0) (1,0)
(1,33)

Table 6.2: Example of a genotype of option 2

(67) (0) (0) (0) (-1)
(0) (-1) (-1) (-1) (0)
(33) (-1) (-1) (-1) (-1)

Option 2

The genotype consists of a number of chromosomes, each representing a dosing installation. The
position of each chromosome represents a specific installation. The number of genes in each
chromosome resembles the total number raw materials. The position of each gene in a chromosome
represents a specific raw material. Each gene consists of a single bit. The bit represents the lower
limit of the dosing interval of the raw material expressed by that specific gene. If a raw material
is not placed on an installation, the gene is marked −1. Table 6.2 shows an example of such a
genotype. It represents the same solution as used for Option 1 as shown in Table 6.1.
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Table 6.3: Example of a genotype of option 3

(2,0) (3,33) (1,67)
(1,0)
(1,0)
(1,0)
(1,0)

Option 3

The genotype consists of a number of chromosomes, each representing a raw material. The po-
sition of each chromosome represents a specific material. The number of genes in a chromosome
expresses the total number of dosing intervals of a raw material, that is, it represents the num-
ber of installations a raw material is placed on. Each gene consists of two bits representing the
installation and lower limit of the dosing interval respectively. The total number of genes in the
genotype represents the total number of silos in the set of dosing installations. Table 6.3 shows
an example of such a genotype. It represents the same solution as used for Option 1 as shown in
Table 6.1.

Option 4

The genotype consists of a number of chromosomes, each representing a raw material. The position
of each chromosome represents a specific material. The number of genes in each chromosome
resembles the number of dosing installations. The position of each gene in a chromosome represents
a specific installation. Each gene consists of a single bit, representing the lower limit of the dosing
interval of the raw material expressed by that specific gene. This produces the transposed genotype
of Option 2.

Option 5

A variant to Option 4 can be made by differentiating between raw materials that cannot be placed
on an installation because:

1. the installation properties do not allow it, or;

2. it is simply not placed at the installation.

In Option 4, materials that are not placed at an installation are marked −1 in the gene. Instead,
in Option 5, genes can be marked −2 if a raw material is never allowed at the installation and
marked −1 if it is allowed at the installation, but it is simply not placed at it.

Table 6.4: Examples of genotypes of option 5; each row or column correspond to a raw material
or dosing installation respectively

(a) Genotype 1

(7) (0) (3)
(0) (-1) (-2)
(0) (-1) (-1)
(0) (-1) (-1)
(-2) (0) (-1)

(b) Genotype 2

(8) (-1) (0)
(0) (-1) (-2)
(0) (-1) (-1)
(0) (-1) (-1)
(-2) (0) (-1)

(c) Genotype 3

(8) (-1) (0)
(0) (-1) (-2)
(-1) (0) (-1)
(0) (-1) (-1)
(-2) (0) (-1)

Three examples of genotypes are given in Table 6.4. These examples are used in Section 6.3 to
illustrate crossover operations. In genotype 1 it can be seen that raw material 1 is placed at
installations 1, 2 and 3. The lower limit at installation 2 is 0 and the lower limit at installation 3
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is 3. Hence, the dosing interval of raw material 1 at installation 2 is [0, 3). As the lower limit at
installation 1 is 7, the dosing interval of raw material 1 at installation 3 is [3, 7) and the dosing
interval at installation 1 is [7,−). Furthermore, it can be seen that raw material 2 is placed at
installation 1 only. It is not placed at installation 2 and it may not be placed at installation 3.
Hence, raw material 2 is placed at installation 1 only with dosing interval [0,−). Raw materials 3
and 4 are placed at installation 1 only, but they are allowed to be placed at installations 2 and 3.
Raw material 5 is placed at installation 2 and it is allowed at installation 3, but it is not allowed
at installation 1.

Proposed genotype format

Key to solving the problem stated in Chapter 2 is to find the optimal production allocation
of raw materials at installations. In this genetic algorithm the genotype format of Option 5 is
considered as representation of the solutions. The reason to do so is because Options 2, 4 and 5
have chromosomes and genes, in which their position directly represents a raw material and dosing
installation, hence only need genes consisting of a single bit. Finally, Option 5 allows the genotype
to be encoded with more information about the reason why a raw material is not placed on a dosing
installation.

6.3 Crossover operator

A custom crossover operator is considered as the representation of solutions requires a unique
genotype format due to the uncommon requirement of the production allocation as presented in
Chapter 2. The example genotypes as shown in Table 6.4 are used to illustrate the operations of
the proposed crossover operator. The crossover is carried out as following:

1. Copy identical negative values from the parents. For example, take genotypes 1 and 2 from
Table 6.4. The corresponding result is shown in Table 6.5.

Table 6.5: Crossover (step 1). Identical
negative values of parents 1 and 2 as
shown in Tables 6.4a and 6.4b

- - -
- (-1) (-2)
- (-1) (-1)
- (-1) (-1)

(-2) - (-1)

Table 6.6: Crossover (step 2). Filled in
raw materials based on parents 1 and 2
as shown in Tables 6.4a and 6.4b

- - -
(0) (-1) (-2)
(0) (-1) (-1)
(0) (-1) (-1)
(-2) (0) (-1)

2. Raw materials that can only be placed on one dosing installation, must be placed. Practically,
this implies that chromosomes that have only one unfilled gene are filled with a 0, see
Table 6.6. For clarification reasons, the representation of the filled in genes show the complete
dosing interval if needed.

Table 6.7: Crossover (step 3). Identical intervals of parents 1 and 2 as shown in Tables 6.4a and
6.4b

[8,∞) ∅ [3, 7)
(0) (-1) (-2)
(0) (-1) (-1)
(0) (-1) (-1)
(-2) (0) (-1)
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3. In the resulting (partially) unfilled chromosomes, choose x chromosomes to alter. All chro-
mosomes that are not chosen to be altered are filled in completely corresponding to one of
both parents. Roulette selector is used to choose the parents. If the number of (partially)
unfilled chromosomes is ≤ x, then all unfilled chromosomes are chosen. Keep the identical
intervals of the chosen chromosomes, see Table 6.7. This means that the coinciding intervals
between both parents are maintained.

4. Divide all residual intervals. From this all possible offspring follow, see Table 6.8.

Table 6.8: Crossover (step 4). All possible offspring from parents 1 and 2 as shown in Tables 6.4a
and 6.4b

(a) Offspring 1.

[7,∞) [0, 3) [3, 7)
(0) (-1) (-2)
(0) (-1) (-1)
(0) (-1) (-1)
(-2) (0) (-1)

(b) Offspring 2

[7,∞) ∅ [0, 7)
(0) (-1) (-2)
(0) (-1) (-1)
(0) (-1) (-1)
(-2) (0) (-1)

(c) Offspring 3

[8,∞) [7, 8) [0, 7)
(0) (-1) (-2)
(0) (-1) (-1)
(0) (-1) (-1)
(-2) (0) (-1)

(d) Offspring 4

[8,∞) [0, 3) [3, 8)
(0) (-1) (-2)
(0) (-1) (-1)
(0) (-1) (-1)
(-2) (0) (-1)

(e) Offspring 5

[8,∞) ∅ [0, 8)
(0) (-1) (-2)
(0) (-1) (-1)
(0) (-1) (-1)
(-2) (0) (-1)

5. Omit offspring that exceed the number of available silos of any dosing installation.

6. In this genetic algorithm it is chosen to retain the parents after recombination has taken
place. As can be seen, the resulting offspring in Table 6.8 does include two offspring that
are identical to the parents, namely: offspring 1 and 5. Therefore, the these offspring should
be omitted to prevent duplicate individuals appearing in the population after crossover has
taken place.

In the case that two individuals with no identical intervals are combined a new random distribution
is chosen. An example of crossover between parents 2 and 3, see genotypes 2 and 3 in Tables 6.4b
and 6.4c, with such outcome is shown in Tables 6.9 and 6.10. In Table 6.9 it is shown that there
are no coinciding intervals for raw material 3 at installations 1 and 2. In Table 6.10 the offspring
are shown that offspring 1 and 2 result from a randomly chosen distribution.

Table 6.9: Crossover (step 3). Identical intervals based on parents 2 and 3 from Tables 6.4b
and 6.4c

(80) (-1) (0)
(0) (-1) (-2)
∅ ∅ (-1)
(0) (-1) (-1)
(-2) (0) (-1)
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Table 6.10: Crossover (step 4). Possible offspring based on parents 2 and 3 from Tables 6.4b
and 6.4c

(a) Offspring 1

(80) (-1) (0)
(0) (-1) (-2)
(0) (4) (-1)
(0) (-1) (-1)
(-2) (0) (-1)

(b) Offspring 2

(80) (-1) (0)
(0) (-1) (-2)
(4) (0) (-1)
(0) (-1) (-1)
(-2) (0) (-1)

6.4 Mutation operator

In Section 6.1 it is mentioned that mutation is of great importance as a diverse initial population is
not guaranteed. As stated in the problem definition of Chapter 2, optimization can be achieved by
two measures: assignment of a raw material to certain installations and addressing the production
allocation on these installations. Hence, two types of mutation operators are considered: limit
expansion mutation and exchange mutation. Limit expansion mutation alters the dosing intervals
and exchange mutation alter the assignment of a raw raw material to a certain installation.

The mutation operator chooses a gene with probability P (m), such that:

1. A genotype is chosen from the population with a probability PG(m);

2. An eligible chromosome is chosen from the selected genotype with probability PC(m). Note
that only chromosomes with two or more values ≥ 1 are eligible;

3. A positive and non-zero gene is chosen from the selected chromosome with probability Pg(m);

in which 3
√
P (m) = PG(m) = PC(m) = Pg(m).

Limit expansion mutation alters the value of a gene with a predefined percentage up or down. It
is randomly chosen whether the value is altered up or down, unless the value of the gene is equal
to the minimum required dosing mass or maximum allowed dosing mass limit of the installation it
is placed on. In that case the value can only be altered up or down respectively. In case the value
of the gene is not equal to the minimum required or maximum allowed limit of the installation
and the alteration leads to a value greater than the maximum allowed limit or smaller than the
minimum required limit, then the new value is chosen to be equal to the maximum allowed or
minimum required limit of the installation respectively.

Exchange mutation moves a gene, the primary mutation gene that is chosen with probability P (m),
from one installation to another eligible installation and simultaneously moves another eligible
randomly chosen gene from that installation back to the first installation. This implies that a
gene exchanges location with another gene within a chromosome. If the mutation results in an
invalid genotype, another exchange with the primary mutation gene is searched. A number of z
attempts is carried out before the mutation operation is aborted.

6.5 Implementation

Implementation of the genetic algorithm has not been (fully) carried out and remains open for
future research. A library for genetic algorithms exists in Java, namely Jenetics[2], developed by
Franz Wilhelmstötter. The library1 provides a structure for genetic algorithms with straightfor-

1Note that in release 4.1.0 of the Jenetics library a subtle bug exists in the class ‘CustomCrossover’, in which
it is assumed that the number of genes is constant over all genotype instances. This has been addressed to the
developer of Jenetics and is fixed in release 4.2.0.
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ward and common genotypes and operators. Jenetics also leaves possibilities for adding custom
genotypes and operators. However, the nature of the library allows implementation of the pro-
posed genetic algorithm for more experienced Java programmers.

The input parameters required for the genetic algorithm, such as the ratio of individuals selected
for crossover and mutation, highly depend on the specific set of dosing installations and production
schedule. The process of finding these parameters is often experimental, however, it is advised to
apply a relatively high crossover and mutation ratio due to the possible low diversity in the initial
population.

Furthermore, tournament selection has been chosen as the appropriate selector as it excludes the
worst individual from being chosen. Other selectors, such as roulette wheel selection, should be
studied as well.

Genetic algorithms might perform better and certainly more robustly than deterministic algo-
rithms, if the right parameters are chosen. As no results have been produced, no conclusions can
be drawn from the performance of the proposed genetic algorithm.

Finally, if it is desirable to include dosing installations with movable weighers in the genetic
algorithm, the specific silo placement within an installation should be taken into account. This
can be achieved by using a genotype format resembling that of Option 1 in Section 6.2. In that case,
the location of the gene within the chromosome may resemble the specific silo at an installation
in which the raw material is placed. Note that altering the genotype format does mostly require
changing the crossover and/or mutation operator.
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Chapter 7

Conclusions and recommendations

This research focuses on optimizing the blending line of the animal production feed system, that
is, the process of dosing and mixing materials. The intake and outtake of material and grinding is
thus not taken into consideration. Furthermore, this research considers a simplified dosing process:
it consists of only one dosing stage followed by one mixing stage, meaning that there is simply
one step at which materials are added and one step at which materials are mixed in the system.
In the dosing stage one or multiple dosing installations are placed parallel to each other. In the
mixing stage one mixer is placed behind the dosing stage.

Optimization of total production time on the blending line is achieved by arranging the container
placement and production allocation. Assuming a fixed production schedule, rearranging the con-
tainer placement, and therefore the materials, between machines may result in a more efficient
production as it may reduce the idle time of the installations. Furthermore, for a given a set of
dosing installations, a material may theoretically be weighed on multiple installations. Therefore,
rearranging the production allocation over these installations may also result in a more efficient
production. Next to dosing installations, materials may also be processed by hand, i.e. they may
be ‘handtipped’. This process is executed in parallel with the dosing installations and may, hence,
be regarded as a custom type of installation in the system. It is assumed that handtipping is a
relatively slow process.

Three different approaches are investigated in order to solve the optimization problem. First, an
MILP has been developed. However, due to the size of the optimization problem a sheer number of
design variables are required in the MILP. Hence, the MILP is of no practical use. Second, a deter-
ministic heuristic is proposed. The heuristic is based on the allocation of raw materials in roughly
3 steps: first, materials that may be allocated at a single dosing installation are placed; second,
materials that must be allocated to multiple installations are placed; finally, a local optimization
takes place by swapping materials between installations in order to decrease the production time.
Four cases studies have been made with diverse results. The deterministic heuristic achieves a
satisfactory result in specific situations. To improve the performance of the heuristics a number
of recommendations have been introduced in Section 5.11. However, the main issue with the case
studies that fail to generate a satisfactory solution is that after materials are placed on a single
installation all installations are completely occupied. Thus, the materials that must be allocated
to multiple installations are not evaluated to be placed at an installation and must, thus, be
handtipped, which results in a high production time. The solution to correct this is given as
the first recommendation in Section 5.11. Applying this correction is fairly straightforward and
may yield better results. The implementation of this correction remains open for future research.
Furthermore, the results for the heuristics applied to the case studies are compared to existing
results that are obtained by hand at KSE. The heuristic results are satisfactory in case they are
better than the existing results. Part of the heuristic optimization involves local optimization.
This local optimization may be applied to the existing results in order to find better results. This
application of the local optimization has not been studied and remains open for future research.
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Nonetheless, the performance of the deterministic heuristics vary highly dependent on the nature
of the production schedule and involved dosing installations. Hence, a deterministic heuristic
might not provide a robust solution. Therefore, another type of heuristic, the genetic algorithm,
is introduced. Genetic algorithms are meta-heuristics, which are higher-level general-purpose
algorithms that often incorporate randomness in order to find good solutions. Genetic algorithms
are widely used in scheduling problems and are inspired by the process of natural selection. A
proposal is introduced for the format of the genetic algorithm suitable for this research project.
The implementation of the algorithm remains open for future research.
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[39] R. Ruiz and J. A. Vázquez-Rodŕıguez. The hybrid flow shop scheduling problem. European
Journal of Operational Research, 205(1):1–18, 2010.

[40] W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics Quar-
terly, 3(1–2):59–66, 1956.

[41] F. Sourd. Scheduling tasks on unrelated machines: Large neighborhood improvement proce-
dures. Journal of Heuristics, 7(6):519–531, 2011.

[42] M. Srinivas and L. M. Patnaik. Genetic algorithms: A survey. Computer, 27(6):17–26, 1994.

[43] G. Syswerda. Scheduling optimization using genetic algorithms. Handbook of genetic algo-
rithms, 1991.

[44] P. K. Thornton. Livestock production: Recent trends, future prospects. Philosophical Trans-
actions of the Royal Society B: Biological Sciences, 365(1554):2853–2867, September 2010.

[45] E. Vallada and R. Ruiz. Scheduling unrelated parallel machines with sequence dependent
setup times and weighted earliness-tardiness minimization. Just-in-Time Systems, 60:67–90,
2012.

[46] T. van der Borgh. Scheduling bulk containers in a feed production system. Master’s thesis,
Eindhoven University of Technology, January 2017. Report number 2017.005.

63



64



Appendix A

Derivation relocation time equations

This appendix focuses on the derivation of the equations for the displacement time for dosing
installations with movable weighers as given in Section 2.2.

vmax

xmax

a1 = ∂v
∂x a2 = ∂v

∂x

Figure A.1: Different velocity paths depending on the magnitude of displacement x

The displacement time Jl1,l2 is the duration a movable weigher needs to relocate from location l1
to l2. It is assumed that the weigher takes the shortest path from l1 to l2. The weigher starts up
from standstill at l1 with a constant acceleration a1. If it reaches the maximum velocity vmax it
continues its path with vmax until it starts to decelerate. The weigher decelerates with a constant
deceleration a2 until it reaches destination l2. This velocity path is indicated by the green line
in Figure A.1. If the weigher travels a distance xl1,l2 lower than xmax, then it does not it reach
vmax so it decelerates immediately after acceleration. This velocity path is shown by the blue line
in Figure A.1. The red line indicates the tipping point between the two types of velocity paths.
Hence, the equation for the displacement time Jl1,l2 depends on the traveled distance xl1,l2 which
consecutively determines the type of velocity path taken.

The tipping point between the two types of paths occurs at xl1,l2 = xmax. In order to calculate
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xmax the following equations of motion are required:

x =
1

2
at2 + v0t+ x0, (A.1a)

v = at+ v0. (A.1b)

In order to travel a distance x = xmax the weigher accelerates with a = a1 to v = vmax and it
decelerates with a = a2 to v = 0. Define t1 and t2 as the time interval during which acceleration
and deceleration take place. Assuming that the weigher has no initial displacement or velocity,
xmax can be calculated using (A.1a):

xmax =
1

2
(a1t

2
1 + a2t

2
2). (A.2)

Time intervals t1 and t2 are described by (A.1b) via

t1 =
vmax

a1
, (A.3a)

t2 =
vmax

a2
. (A.3b)

Hence, substituting this result in (A.4) gives

xmax =
v2max

2
(
1

a1
+

1

a2
). (A.4)

If x ≤ xmax, then the weigher accelerates with a1 to v during time interval t1 after which it
decelerates from v with a2 during time interval t2. Using (A.1a) and (A.1b) the following relations
are found:

x =
1

2
a1t

2
1 +

1

2
a2t

2
2, (A.5a)

v = a1t1
v = a2t2

}
a1t1 = a2t2 (A.5b)

Substituting these equations in each other gives the displacement time Jl1,l2 for x ≤ xmax:

Jl1,l2 = t1 + t2 =

√
2x(

1

a1
+

1

a2
). (A.6)

If x > xmax, then the weigher accelerates with a1 to vmax during time interval t1, travels with
a constant velocity vmax during time interval t12 and decelerates with a2 from vmax during time
interval t2. From Figure A.1 it can be seen that the collective distance covered during acceleration
and deceleration equals xmax. Therefore, the distance covered during t12 is equal to x − xmax.
Using the equation of motion

x = vt− 1

2
at2 + x0 (A.7)

and substituting (A.4) the following expression for t12 is found:

t12 =
x

vmax
− vmax

2
(
1

a1
+

1

a2
) (A.8)

The expressions for t1 and t2 are equal to those for the tipping point. Hence, combining (A.3a),
(A.3b) and (A.8) yields the following relation for Jl1,l2 :

Jl1,l2 =
x

vmax
+

vmax

2a1
+

vmax

2a2
. (A.9)
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Appendix B

Relaxation assumption order of dosages and production orders

This appendix focuses on a variation of the MILP presented in Chapter 4 in which the execution
order of dosages within a batch are unconstrained and the execution order of production orders
are unconstrained. First, the relevant data and assumptions are summarized and structured that
are needed to solve the problem as introduced in Chapter 2 with relaxation of the assumptions
that dosages have to arrive at the batch mixer in order. Second, the required design variables
are explained. Finally, the constraints and objective function are presented. Constraints B.3 and
B.13–B.16 are added to make the relaxation of the execution order valid.

B.1 Required input data

The relevant input data required in the MILP formulation as presented in Section B.3 is given
below.

• W weighers with required minimum dosing mass mmin
w , maximum allowed dosage mass mmax

w

en maximum allowed dosing volume V max
w for weigher w ∈ {1, ...,W}.

• G raw materials.

• L silos, in which L ≥ max(G,W ).

• P periods.

• B batches.

• Sb discharges in each batch b with
∑B

b=1 Sb batches in total, in which
∑B

b=1 Sb ≥ W

• Db dosages in each batch b with
∑B

b=1 Db dosages in total. Each dosage d has weight md,
volume Vd, in which Db ≥ max(L, Sb), ∀b.

• Δ is a D ×G allocation matrix of D dosages to G raw materials, i.e.:

Δd,g =

{
1, if dosage d consists of raw material g

0, otherwise.

Furthermore, it should hold that each dosage consists of exactly 1 raw material
∑G

g=1 Δd,g =
1, ∀d.

• Λ is an L×W allocation matrix of L silos W weighers, i.e.:

Λl,w =

{
1, if silo l belongs to weigher w

0, otherwise.

Furthermore, it should hold that each location belongs to exactly 1 weigher
∑W

w=1 Λl,w =
1, ∀l.
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• Ψ is a
∑B

b=1 Db ×B allocation matrix of
∑B

b=1 Db dosages to B batches, i.e.:

Ψd,b =

{
1, if dosage b in batch b

0, otherwise.

Furthermore, it should hold that each dosage belongs to exactly 1 batch
∑B

b=1 Θd,b = 1, ∀d.
• Ω is a B × P allocation matrix of B batches to P periods, i.e.:

Ωb,p =

{
1, if batch b in period p

0, otherwise.

Furthermore, it should hold that each batch belongs to exactly 1 period
∑P

p=1 Ωb,p = 1, ∀b.
• Set of silos at a weigher: Lw = {0} ∪ {l|Λl,w = 1}, in which silo 0 represents the discharge

location.

• γ0 set of {silo l and corresponding raw material g}-combinations that exclude raw material
g at silo l.

• γ1 set of {silo l and corresponding raw material g}-combinations that forces raw material g
at silo l.

• ηg the maximum number of silos at which a raw material g occurs.

• Setup time from location l1 to location l2: Σl1,l2 for l1, l2 ∈ Lw, ∀w. In this case, the setup
time solely consists of the relocation time due to driving from location l1 to location l2.

• Dosing time for x[kg] of raw material g at silo l, dependent of the dosing constant cDl,g and

dosing speed cDl,g:
1

vD
l,g

x + cDl,g[s]. Using the dosability factor Kg, the silo and raw material

dependent dosing constant and dosing speed are expressed by cDl,g = Kgc
D
l and vDl,g =

vD
l

Kg
.

• Discharge time for x[kg] at weigher w: 1
vS
w
x+ cSw[s].

• Completion time of the last discharge (from a previous planning) at weigher w: CS
0,w.

• Completion time of the last discharge (from a previous planning): CS
0 = max

w
CS

0,w.

• M a sufficient large value, at least larger than the mass of the largest batch.

• δ a sufficient small value, at least smaller than the smallest weighing accuracy among all
weighers.

B.2 Assumptions

Besides the assumptions presented in the previous section the following time based assumptions
are taken in consideration:

• If period p1 < p2, then p1 is completed before p2.

• If batch b1 < b2 and both take place in the same production order, then b1 is completed
before b2.

• If discharge s1 < s2, then s1 is completed before s2 (without loss of generality).

Furthermore, the dosing order policy, as introduced in Section 2.3.1, is altered to simplify the
MILP. In the MILP it is assumed that the periods, batches are carried out in the exact order as
imposed by the production schedule. The dosages of the batches should arrive in the batch mixer
in the order as imposed by the production schedule. Consecutive dosages may arrive at the mixer
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simultaneously.

More precisely, this implies the following: if dosage d1 is listed before dosage d2 in the production
schedule and both dosages take place in batch b, then d1 arrives before or at the same time at the
batch mixer as d2. Thus, the following two situations are possible:

1. If d1 and d2 take place at the same dosing installation, then they may be discharged together
and they may arrive at the mixer simultaneously if the capacity of the weigher allows so, as
is the case with the general dosing and discharge order policy.

2. If d1 and d2 do not take place at the same installations, then d1 arrives at the mixer before
d2. This does not imply that dosages are carried out in order. The installation carrying out
d2 may start dosing d2 before d1 is carried out on the other installation, as long as d1 is
discharged before d2.

For the solution methods other than MILP, the general dosing order policy, as introduced in
Section 2.3.1, is applied.

B.3 Design variables

The binary variables to this MILP formulation are:

• XJ
j1,j2

=

{
1, if production order j1 takes place before j2 > j1 in the same period

0, otherwise.

• XD
d1,d2

=

{
1, if dosage d1 takes place before d2 > d1 in the same discharge

0, otherwise.

• Y SB
s,b =

{
1, if discharge s takes place in batch b

0, otherwise.

• Y DS
d,s =

{
1, if dosage d takes place in discharge s

0, otherwise.

• Y SW
s,w =

{
1, if discharge s is executed at weigher w

0, otherwise.

• Y DL
d,l =

{
1, if dosage d is extracted from silo l

0, otherwise.

• Y LG
l,g =

{
1, if silo l contains raw material g

0, otherwise.

• Y S
s =

{
1, if discharge s contains one or more dosages

0, otherwise.

• Fw1,w2,g =

{
1, if fWG2

w1,g ≤ fWG1
w2,g

0, otherwise.

The continuous variables to this MILP formulation are:

• fWG1
w,g = lower limit of an allowed dosing interval of raw material g at weigher w

• fWG2
w,g = upper limit of an allowed dosing interval of raw material g at weigher w
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• pDd = duration of dosage d.

• pSs = duration of discharge s.

• CD
d = completion time of dosage d.

• CS
s = completion time of discharge s.

• Sd1,d2
= setup time due to driving from dosage d1 to dosage d2 > d1, in which dosage 0

represents the discharge.

• CB
b = completion time of batch b.

• C = completion time of the schedule, i.e.: the total makespan.

B.4 Constraints

The MILP is built around:

• binary variables XJ
j1,j2

, XD
d1,d2

, Y SB
s,b , Y DS

d,s , Y SW
s,w , Y DL

d,l , Y LG
l,g and Y S

s , which fix the location
of raw materials and execution order of dosages and production orders;

• binary variable Fw1,w2,g and continuous variables fWG1
w,g and fWG2

w,g , which fix the allowed
dosing interval of raw materials at installations;

• time variables pDd , pSs , C
D
d , CS

s , Sd1,d2
, CB

b and C, which are fixed by variables mentioned
above.

The constraints describing the posed problem of Chapter 2 with relaxation of the execution order
are introduced below.

Equality constraints
Below, the equality constraints of the proposed MILP are presented. Equations B.1–B.6 represent
constraints that describe how the production on the system is tied to the physical design of the
system. Equations B.7 and B.8 represent constraints that describe the architecture of the produc-
tion itself. The physical limitations of the system are described by (B.9).

Due to several reasons some raw materials may be excluded from or forced on certain silos.
Therefore, silo l may not contain raw material g if this is specified in γ0 and silo l must contain
raw material g if this is specified in γ1, which results in:

Y LG
l,g = 0 ∀(l, g) ∈ γ0,

(B.1)

Y LG
l,g = 1 ∀(l, g) ∈ γ1.

(B.2)
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It is required that each discharge s is executed in exactly one batch b, each discharge s is executed
at exactly one weigher w, each dosage d originates from exactly one silo l, each silo l contains
exactly one raw material g and each dosage d is executed in exactly one discharge s. Hence, the
following five constraints are introduced:

B∑
b=1

Y SB
s,b = 1 ∀s ∈ {1, ..., S},

(B.3)

W∑
w=1

Y SW
s,w = 1 ∀s ∈ {1, ..., S},

(B.4)

L∑
l=1

Y DL
d,l = 1 ∀d ∈ {1, ..., D},

(B.5)

G∑
g=1

Y LG
l,g = 1 ∀l ∈ {1, ..., L},

(B.6)

S∑
s=1

Y DS
d,s = 1 ∀d ∈ {1, ..., D},

(B.7)

Note that these constraints do not rule out that a discharge may consist of multiple dosages, a
weigher may perform multiple discharges, multiple dosages may originate from a silo and raw
material may be placed on multiple silos.

Furthermore, if batch b contains dosage d, but does not contain discharge s, then dosage d can-
not take place in discharge s. Similarly, if batch b does not contain dosage d, but does contain
discharge s, then dosage d cannot take place in discharge s:

Y DS
d,s = 0 if Θs,b +Ψd,b = 1,

∀s ∈ {1, ..., S},
∀d ∈ {1, ..., D},
∀b ∈ {1, ..., B}.

(B.8)

Note that (B.8) does not apply in case dosage d and discharge s both take place in batch b or in
case dosage d and discharge s both do not take place in b.

If the mass of dosage d is less than the minimum required mass on weigher w due to the weighing
accuracy, then dosage d may not take place at weigher w:

L∑
l=1

Λl,wY
DL
d,l = 0 if mmin

w > md,

∀w ∈ {1, ...,W},
∀d ∈ {1, ..., D}.

(B.9)
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Note that in order to check whether dosage d takes place at weigher w no extra binary vari-
abele Y DW

d,w is required, since Y DW
d,w =

∑L
l=1 Λl,wY

DL
d,l . In words: dosages that take place at

weigher w can be expressed by the product of the silos at weigher w and the dosages that are
performed at those silos. Thus, if a dosage may not take place at weigher w then it must hold
true that the silo at which dosage d is performed is not located at weigher w.

Inequality constraints
It is undesired to place a raw material on a large number of silos as this indicates that the given
set of dosing installations with its corresponding specifications is not fit for the given production.
Restricting the number of silos that may contain raw material g could influence the outcome of
the MILP optimization, the makespan, negatively. Even though the set of dosing installations is
considered fixed input parameters, it is penalized in the makespan and thus returning the indication
that the given input parameters should be changed. To make this come to expression in the MILP
formulation the number of silos that contain raw material g is restricted to maximum ηg:

L∑
l=1

Y LG
l,g ≤ ηg ∀g ∈ {1, ..., G}.

(B.10)

It must hold true that if (1) dosage d takes place at silo l and (2) raw material g is located at
silo l, then dosage d must contain raw material g. Moreover, if dosage d does not contain raw
material g, statement (1) and/or statement (2) must be false, resulting in the following inequality:

1 + Δd,g ≥ Y DL
d,l + Y LG

l,g ∀d ∈ {1, ..., D},
∀g ∈ {1, ..., G},
∀l ∈ {1, ..., L}.

(B.11)

Furthermore, it must hold true that if (1) dosage d takes place in discharge s and (2) discharge s
takes place at weigher w, then dosage d must be executed by weigher w. Moreover, if dosage d
does not take place at weigher w, statement (1) and/or statement (2) must be false, resulting in
the following inequality:

1 +
L∑

l=1

Y DL
d,l Λl,w ≥ Y DS

d,s + Y SW
s,w ∀d ∈ {1, ..., D},

∀s ∈ {1, ..., S},
∀w ∈ {1, ...,W}.

(B.12)

If dosage d1 takes place in discharge s and dosage d2 does not take place in discharge s, then
Xd1,d2 = 0. If dosage d1 does not take place in discharge s and dosage d2 does take place in
discharge s, then xd1,d2 = 0. If d1 and d2 both do not take place in s, then Xd1,d2 = 0. Only if d1
and d2 both take place in s, then Xd1,d2

= 1.

Yd1,p − Yd2,p ≤ 1−Xd1,d2
∀d1 < d2 ∈ {1, ..., D},

∀p ∈ {1, ..., P}.
(B.13)

−Yd1,p + Yd2,p ≤ 1−Xd1,d2
∀d1 < d2 ∈ {1, ..., D},

∀p ∈ {1, ..., P}.
(B.14)

72



If production order j1 takes place in period p and production order j2 does not take place in
period p, then Xj1,j2 = 0. If production order j1 does not take place in period p and production
order j2 does take place in period p, then xj1,j2 = 0. If j1 and j2 both do not take place in p, then
Xj1,j2 = 0. Only if j1 and j2 both take place in p, then Xj1,j2 = 1.

Yj1,p − Yj2,p ≤ 1−Xj1,j2 ∀d1 < d2 ∈ {1, ..., D},
∀p ∈ {1, ..., P}.

(B.15)

−Yj1,p + Yj2,p ≤ 1−Xj1,j2 ∀d1 < d2 ∈ {1, ..., D},
∀p ∈ {1, ..., P}.

(B.16)

If dosage d takes place in discharge s and discharge s takes place at weigher w, then dosage d
completes at least S0,d + pDd later than startingcondition CS

0,w:

M(Y SW
s,w + Y DS

d,s − 2) + CS
0,w + S0,d + pDd ≤ CD

d ∀d ∈ {1, ..., D},
∀s1 < s2 ∈ {1, ..., S},

∀w ∈ {1, ...,W}.
(B.17)

If dosages d1 < d2 both take place in discharge s, then dosage d2 completes at least Sd1,d2
+ pDd2

later than dosage d1:

M(Y DS
d1,s + Y DS

d2,s − 2) + CD
d1

+ Sd1,d2
+ pDd2

≤ CD
d2

∀d1 < d2 ∈ {1, ..., D},
∀s ∈ {1, ..., S}.

(B.18)

Similarly, if discharges s1 < s2 both take place at weigher w and dosage d takes place in dis-
charge s2, then dosage d completes at least S0,d + pDd later than discharge s1:

M(Y SW
s1,w + Y SW

s2,w + Y DS
d,s2 − 3) + CS

s1 + S0,d + pDd ≤ CD
d ∀d ∈ {1, ..., D},

∀s1 < s2 ∈ {1, ..., S},
∀w ∈ {1, ...,W}.

(B.19)

If batch b1 takes place in p1 < p2 and dosage d takes place in period p2, then dosage d completes
at least S0,d + pDd later than batch b1:

M(Ωb1,p1
+Ψd,b2 +Ωb2,p2

− 3) + CB
b1 + pDd + S0,d ≤ CD

d ∀d ∈ {1, ..., D},
∀b1 < b2 ∈ {1, ..., B},
∀p1 < p2 ∈ {1, ..., P}.

(B.20)

Note that in order to check whether dosage d takes place in period p2, data parameters Ψd,b2 and
Ωb2,p2

are used.

Discharge s completes at least pSs later than discharge s− 1:

CS
s−1 + pSs ≤ CS

s ∀s ∈ {1, ..., S}.
(B.21)
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Note that s = 1 requires data parameter CS
0 .

If discharge s takes place in batch b2 > b1, then discharge s completes at least pSs later than CB
b1
:

CB
b1 + pSs +M(Θs,b2 − 1) ≤ CS

s ∀s ∈ {1, ..., S},
∀b1 < b2 ∈ {1, ..., B}.

(B.22)

If dosage d takes place in discharge s, then discharge s completes at least Sd,0 + pSs later than
dosage d:

M(Y DS
d,s − 1) + CD

d + Sd,0 + pSs ≤ CS
s ∀d ∈ {1, ..., D},

∀s ∈ {1, ..., S}.
(B.23)

If dosage d containing raw material g takes place at silo l, then the dosing time is determined by
the dosing constant and the mass of the dosage md:

M(Y DL
d,l + Y LG

l,g − 2) + cDl,g +
md

vDl,g
≤ pDd ∀d ∈ {1, ..., D},

∀g ∈ {1, ..., G},
∀l ∈ {1, ..., L}.

(B.24)

Furthermore, if discharge s takes place at weigher w, then the discharge time is determined by the
discharge constant and the mass

∑D
d=1 mdY

DS
d,s of all dosages in that discharge:

M(Y SW
s,w − 1) + cSwY

S
s +

1

vSw

D∑
d=1

mdY
DS
d,s ≤ pSs ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W}.
(B.25)

If no dosages take place in a discharge, then the discharge is empty, i.e.: Y S
s = 0. This results in:

D∑
d=1

Y DS
d,s ≥ Y S

s ∀s ∈ {1, ..., S}.

(B.26)

On the other hand, if one or more dosages take place in a discharge, then that discharge is not
empty, i.e.: Y S

s = 1. This results in:

1

D

D∑
d=1

Y DS
d,s ≥ Y S

s ∀s ∈ {1, ..., S}.

(B.27)

Only if dosage d contains more mass than the required minimum dosage mass mmin
w of weigher w,

dosage d may take place on that weigher:

L∑
l=1

Λl,wY
DL
d,l ≤ 1 if mmin

w ≤ md,

∀w ∈ {1, ...,W},
∀d ∈ {1, ..., D}.

(B.28)
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If discharge s takes place at weigher w, then the mass and volume of all dosages in discharge s
cannot not exceed the maximum allowed dosage mass and volume of weigher w:

M(Y SW
s,w − 1) +

D∑
d=1

mdY
DS
d,s ≤ mmax

w ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W},
(B.29)

M(Y SW
s,w − 1) +

D∑
d=1

VdY
DS
d,s ≤ V max

w ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W}.
(B.30)

The lower and upper limit of the allowed dosing interval of raw material g at weigher w may not
be larger than the maximum allowed dosage mass of weigher w:

fWG1
w,g ≤ mmax

w ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},

(B.31)

fWG2
w,g ≤ mmax

w ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(B.32)

The dosing interval of raw material g at weigher w1 may not overlap with the interval at w2. Thus,
if the allowed dosing interval of raw material g at weigher w1 is smaller or equal the interval at
weigher w2, then the upper limit at weigher w1 should be smaller or equal to the lower limit at
weigher w2:

fWG1
w2,g +M(1− Fw1,w2,g) ≥ fWG2

w1,g ∀w1 �= w2 ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(B.33)

If the dosing interval of raw material g at weigher w1 is smaller than the interval at w2, then
Fw1,w2,g = 1 and Fw2,w1,g = 0. If the dosing interval of raw material g at weigher w2 is smaller
than the interval at w1, then Fw1,w2,g = 0 and Fw2,w1,g = 1. If no dosages of raw material g take
place at either weighers w1 or w2, then both intervals are ‘empty’, i.e.: fWG1

w1,g = fWG2
w1,g = fWG1

w2,g =

fWG2
w2,g = 0, resulting in, Fw1,w2,g = Fw2,w1,g = 1. This means in any situation either one or both
variables Fw1,w2,g and Fw2,w1,g should equal 1:

Fw1,w2,g + Fw2,w1,g ≥ 1 ∀w1 < w2 ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(B.34)
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If a raw material g is not placed on weigher w, then the interval is ‘empty’, i.e.: fWG1
w,g = fWG2

w,g = 0.

To check whether raw material g is placed on weigher w, binary variable Y GW
g,w is needed, which

comes to expression using
∑D

d=1 Δd,gY
DW
d,w in which Y DW

d,w =
∑L

l=1 Λl,wY
DL
d,l .

M

D∑
d=1

Δd,g

L∑
l=1

Λl,wY
DL
d,l ≥ fWG1

w,g ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},
(B.35)

M
D∑

d=1

Δd,g

L∑
l=1

Λl,wY
DL
d,l ≥ fWG2

w,g ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G}.
(B.36)

If dosage d takes place at weigher w and if dosage d contains raw material g, then the mass of
dosage d must be contained in the allowed dosing interval of raw material g at weigher w, i.e.: the
mass of dosage d should be larger than the lower limit and smaller than the upper limit of the
dosing interval:

md − δ +M(2− Y DW
d,w −Δd,g) ≥ fWG1

w,g ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},
∀d ∈ {1, ..., D},

(B.37)

md +M(Y DW
d,w +Δd,g − 2) ≤ fWG2

w,g ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},
∀d ∈ {1, ..., D}.

(B.38)

Consider that the mass md of dosage d consists of raw material g. Then md may not correspond
to both the lower limit if the dosing interval of raw material g at weigher w1 and the upper limit of
raw material g at weigher w2, since dosage d is only allowed to be executed on one installation. To
prevent this, at least one of the limits of the weighers should be excluded from executing dosage d.
Therefore, in (B.37), the lower limit of the allowed dosing interval of raw material g at weigher w
should be smaller than md with a margin δ.

If dosages d1 < d2 take place at silos l1 and l2 respectively, the setup time should be equal to
Σl1,l2 :

M(Y DL
d1,l1 + Y DL

d2,l2 − 2) + Σl1,l2 ≤ Sd1,d2 ∀d1 < d2 ∈ {1, ..., D},
∀l1 ∈ {1, ..., L},
∀l2 ∈ {1, ..., L}.

(B.39)

Similarly, for silo 0 this results in:

M(Y DL
d,l − 1) + Σ0,l ≤ S0,d ∀d ∈ {1, ..., D},

∀l ∈ {1, ..., L},
(B.40)

M(Y DL
d,l − 1) + Σl,0 ≤ Sd,0 ∀d ∈ {1, ..., D},

∀l ∈ {1, ..., L}.
(B.41)
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Dosages must be executed in order, i.e.: if dosages d1 < d2 take place in discharges s1 and s2
respectively, then discharge s2 can take place at earliest together with discharge s1:

M(Y DS
d1,s1 + Y DS

d2,s2 − 2) + CS
s1 ≤ CS

s2 ∀d1 < d2 ∈ {1, ..., D},
∀s1 ∈ {1, ..., S},
∀s2 ∈ {1, ..., S}.

(B.42)

If discharge s takes place in batch b, batch b finishes at least later than CS
s + cB :

CS
s + cB +M(Θs,b − 1) ≤ CB

b ∀s ∈ {1, ..., S},
∀b ∈ {1, ..., B}.

(B.43)

The final batch in the final period determines the total makespan:

CB
b ≤ C ∀b ∈ {1, ..., B}.

(B.44)

Some of the continuous variables have to be lower-bounded:

fWG1
w,g ≥ 0 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},
(B.45)

fWG2
w,g ≥ 0 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G}.
(B.46)

Note that all other continuous variables have already been (implicitly) lower-bounded by their
constraints.

Optional constraints
The following constraints are not necessary to solve the optimization problem. However, they
reduce the number of possible solutions or make a implicit constraint explicit.

It is assumed that placing a raw material more than once on an installation probably does not sig-
nificantly improve the performance as the weigher can only be located at one silo simultaneously.
The benefit of placing a raw material more than once is a potential decrease in driving time in
an installation with a movable weigher. Furthermore, placing a raw material more than once on
an installation implies that another raw material cannot be placed on that installation. Placing
another raw material on the installation decreases the potential idle time of that installation. It is
assumed that the reduction in makespan from a decrease in idle time exceeds the reduction from
a decrease in driving time. Hence, it is assumed that a raw material g can only occur once on a
dosing installation with weigher w:

L∑
l=1

Λl,wY
LG
l,g ≤ 1 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G}.
(B.47)
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The lower limit of a dosing interval of raw material g at weigher w must be smaller or equal to
the upper limit of raw material g at weigher w:

fWG1
w,g ≤ fWG2

w,g ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(B.48)

Note that this implicitly follows from (B.37) and (B.38).

Furthermore, all time-based continuous variables cannot be negative. Thus:

pDd ≥ 0 ∀d ∈ {1, ..., D},
(B.49)

pSs ≥ 0 ∀s ∈ {1, ..., S},
(B.50)

Sd1,d2 ≥ 0 ∀d1 ∈ {1, ..., D},
∀d2 ∈ {1, ..., D},

(B.51)

CD
d ≥ 0 ∀d ∈ {1, ..., D},

(B.52)

CB
b ≥ 0 ∀b ∈ {1, ..., B},

(B.53)

C ≥ 0. (B.54)

These variables are already implicitly lower-bound. For example: pDd is constrained by (B.24), in
which all terms are explicitly positive except for M(Y DL

d,l + Y LG
l,g − 2). However, from (B.5) and

(B.6) it follows that there is always some silo l and some raw material g for which Yd,l = Yl,g = 1.
Therefore, pDd is always lower-bounded by at least 0.

B.5 Objective function

The objective function follows straightforward from the constraints as the objective is to minimize
the makespan:

minC (B.55)
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Appendix C

MILP concerning 1 period

In the following appendix a simplification of the MILP of Chapter 4 is presented in case the
number of periods is 1. This leads to a decrease in the number of variables.

C.1 Required input data

The relevant input data required in the MILP formulation as presented in Section C.3 is given
below.

• W weighers with required minimum dosing mass mmin
w , maximum allowed dosage mass mmax

w

en maximum allowed dosing volume V max
w for weigher w ∈ {1, ...,W}.

• G raw materials.

• L silos, in which L ≥ max(G,W ).

• B batches.

• Sb discharges in each batch b with
∑B

b=1 Sb batches in total, in which
∑B

b=1 Sb ≥ W

• Db dosages in each batch b with
∑B

b=1 Db dosages in total. Each dosage d has weight md,
volume Vd, in which Db ≥ max(L, Sb), ∀b.

• Δ is a D ×G allocation matrix of D dosages to G raw materials, i.e.:

Δd,g =

{
1, if dosage d consists of raw material g

0, otherwise.

Furthermore, it should hold that each dosage consists of exactly 1 raw material
∑G

g=1 Δd,g =
1, ∀d.

• Λ is an L×W allocation matrix of L silos W weighers, i.e.:

Λl,w =

{
1, if silo l belongs to weigher w

0, otherwise.

Furthermore, it should hold that each location belongs to exactly 1 weigher
∑W

w=1 Λl,w =
1, ∀l.

• Θ is a
∑B

b=1 Sb ×B allocation matrix of
∑B

b=1 Sb discharges to B batches, i.e.:

Θs,b =

{
1, if discharge s in batch b

0, otherwise.

Furthermore, it should hold that each discharge belongs to exactly 1 batch
∑B

b=1 Θs,b =
1, ∀s.
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• Ψ is a
∑B

b=1 Db ×B allocation matrix of
∑B

b=1 Db dosages to B batches, i.e.:

Ψd,b =

{
1, if dosage b in batch b

0, otherwise.

Furthermore, it should hold that each dosage belongs to exactly 1 batch
∑B

b=1 Θd,b = 1, ∀d.
• Set of silos at a weigher: Lw = {0} ∪ {l|Λl,w = 1}, in which silo 0 represents the discharge

location.

• γ0 set of {silo l and corresponding raw material g}-combinations that exclude raw material
g at silo l.

• γ1 set of {silo l and corresponding raw material g}-combinations that forces raw material g
at silo l.

• ηg the maximum number of silos at which a raw material g occurs.

• Setup time from location l1 to location l2: Σl1,l2 for l1, l2 ∈ Lw, ∀w. In this case, the setup
time solely consists of the relocation time due to driving from location l1 to location l2.

• Dosing time for x[kg] of raw material g at silo l, dependent of the dosing constant cDl,g and

dosing speed cDl,g:
1

vD
l,g

x + cDl,g[s]. Using the dosability factor Kg, the silo and raw material

dependent dosing constant and dosing speed are expressed by cDl,g = Kgc
D
l and vDl,g =

vD
l

Kg
.

• Discharge time for x[kg] at weigher w: 1
vS
w
x+ cSw[s].

• Completion time of the last discharge (from a previous planning) at weigher w: CS
0,w.

• Completion time of the last discharge (from a previous planning): CS
0 = max

w
CS

0,w.

• M a sufficient large value, at least larger than the mass of the largest batch.

• δ a sufficient small value, at least smaller than the smallest weighing accuracy among all
weighers.

C.2 Assumptions

Besides the assumptions presented in the previous section the following time based assumptions
are taken in consideration:

• If batch b1 < b2, then b1 is completed before b2.

• If dosages d1 < d2 both in discharge s, then d1 is completed before d2

• If discharge s1 < s2, then s1 is completed before s2 (without loss of generality).

• Dosages are discharged in order, that is, d2 is never discharged before d1 for d1 < d2.

Furthermore, the dosing order policy, as introduced in Section 2.3.1, is altered to simplify the
MILP. In the MILP it is assumed that the periods, batches are carried out in the exact order as
imposed by the production schedule. The dosages of the batches should arrive in the batch mixer
in the order as imposed by the production schedule. Consecutive dosages may arrive at the mixer
simultaneously.

More precisely, this implies the following: if dosage d1 is listed before dosage d2 in the production
schedule and both dosages take place in batch b, then d1 arrives before or at the same time at the
batch mixer as d2. Thus, the following two situations are possible:
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1. If d1 and d2 take place at the same dosing installation, then they may be discharged together
and they may arrive at the mixer simultaneously if the capacity of the weigher allows so, as
is the case with the general dosing and discharge order policy.

2. If d1 and d2 do not take place at the same installations, then d1 arrives at the mixer before
d2. This does not imply that dosages are carried out in order. The installation carrying out
d2 may start dosing d2 before d1 is carried out on the other installation, as long as d1 is
discharged before d2.

For the solution methods other than MILP, the general dosing order policy, as introduced in
Section 2.3.1, is applied.

C.3 Design variables

The binary variables to this MILP formulation are:

• Y DS
d,s =

{
1, if dosage d takes place in discharge s

0, otherwise.

• Y SW
s,w =

{
1, if discharge s is executed at weigher w

0, otherwise.

• Y DL
d,l =

{
1, if dosage d is extracted from silo l

0, otherwise.

• Y LG
l,g =

{
1, if silo l contains raw material g

0, otherwise.

• Y S
s =

{
1, if discharge s contains one or more dosages

0, otherwise.

• Fw1,w2,g =

{
1, if fWG2

w1,g ≤ fWG1
w2,g

0, otherwise.

The continuous variables to this MILP formulation are:

• fWG1
w,g = lower limit of an allowed dosing interval of raw material g at weigher w

• fWG2
w,g = upper limit of an allowed dosing interval of raw material g at weigher w

• pDd = duration of dosage d.

• pSs = duration of discharge s.

• CD
d = completion time of dosage d.

• CS
s = completion time of discharge s.

• Sd1,d2
= setup time due to driving from dosage d1 to dosage d2 > d1, in which dosage 0

represents the discharge.

• CB
b = completion time of batch b.

• C = completion time of the schedule, i.e.: the total makespan.
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C.4 Constraints

The MILP is built around:

• binary variables Y DS
d,s , Y SW

s,w , Y DL
d,l , Y LG

l,g and Y S
s , which fix the location of raw materials and

execution order of dosages;

• binary variable Fw1,w2,g and continuous variables fWG1
w,g and fWG2

w,g , which fix the allowed
dosing interval of raw materials at installations;

• time variables pDd , pSs , C
D
d , CS

s , Sd1,d2 , C
B
b and C, which are fixed by variables mentioned

above.

The constraints describing the posed problem of Chapter 2 concerning 1 period are introduced
below.

Equality constraints
Below, the equality constraints of the proposed MILP are presented. Equations C.1–C.5 represent
constraints that describe how the production on the system is tied to the physical design of the
system. Equations C.6 and C.7 represent constraints that describe the architecture of the produc-
tion itself. The physical limitations of the system are described by (C.8).

Due to several reasons some raw materials may be excluded from or forced on certain silos.
Therefore, silo l may not contain raw material g if this is specified in γ0 and silo l must contain
raw material g if this is specified in γ1, which results in:

Y LG
l,g = 0 ∀(l, g) ∈ γ0,

(C.1)

Y LG
l,g = 1 ∀(l, g) ∈ γ1.

(C.2)

It is required that each discharge s is executed at exactly one weigher w, each dosage d originates
from exactly one silo l, each silo l contains exactly one raw material g and each dosage d is executed
in exactly one discharge s. Hence, the following four constraints are introduced:

W∑
w=1

Y SW
s,w = 1 ∀s ∈ {1, ..., S},

(C.3)

L∑
l=1

Y DL
d,l = 1 ∀d ∈ {1, ..., D},

(C.4)

G∑
g=1

Y LG
l,g = 1 ∀l ∈ {1, ..., L},

(C.5)

S∑
s=1

Y DS
d,s = 1 ∀d ∈ {1, ..., D}.

(C.6)
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Note that these constraints do not rule out that a discharge may consist of multiple dosages, a
weigher may perform multiple discharges, multiple dosages may originate from a silo and a raw
material may be placed on multiple silos.

Furthermore, if batch b contains dosage d, but does not contain discharge s, then dosage d can-
not take place in discharge s. Similarly, if batch b does not contain dosage d, but does contain
discharge s, then dosage d cannot take place in discharge s:

Y DS
d,s = 0 if Θs,b +Ψd,b = 1,

∀s ∈ {1, ..., S},
∀d ∈ {1, ..., D},
∀b ∈ {1, ..., B}.

(C.7)

Note that (C.7) does not apply in case dosage d and discharge s both take place in batch b or in
case dosage d and discharge s both do not take place in b.

If the mass of dosage d is less than the minimum required mass on weigher w due to the weighing
accuracy, then dosage d may not take place at weigher w:

L∑
l=1

Λl,wY
DL
d,l = 0 if mmin

w > md,

∀w ∈ {1, ...,W},
∀d ∈ {1, ..., D}.

(C.8)

Note that in order to check whether dosage d takes place at weigher w no extra binary vari-
abele Y DW

d,w is required, since Y DW
d,w =

∑L
l=1 Λl,wY

DL
d,l . In words: dosages that take place at

weigher w can be expressed by the product of the silos at weigher w and the dosages that are
performed at those silos. Thus, if a dosage may not take place at weigher w then it must hold
true that the silo at which dosage d is performed is not located at weigher w.

Inequality constraints
It is undesired to place a raw material on a large number of silos as this indicates that the given
set of dosing installations with its corresponding specifications is not fit for the given production.
Restricting the number of silos that may contain raw material g could influence the outcome of
the MILP optimization, the makespan, negatively. Even though the set of dosing installations is
considered fixed input parameters, it is penalized in the makespan and thus returning the indication
that the given input parameters should be changed. To make this come to expression in the MILP
formulation the number of silos that contain raw material g is restricted to maximum ηg:

L∑
l=1

Y LG
l,g ≤ ηg ∀g ∈ {1, ..., G}.

(C.9)

It must hold true that if (1) dosage d takes place at silo l and (2) raw material g is located at
silo l, then dosage d must contain raw material g. Moreover, if dosage d does not contain raw
material g, statement (1) and/or statement (2) must be false, resulting in the following inequality:

1 + Δd,g ≥ Y DL
d,l + Y LG

l,g ∀d ∈ {1, ..., D},
∀g ∈ {1, ..., G},
∀l ∈ {1, ..., L}.

(C.10)
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Furthermore, it must hold true that if (1) dosage d takes place in discharge s and (2) discharge s
takes place at weigher w, then dosage d must be executed by weigher w. Moreover, if dosage d
does not take place at weigher w, statement (1) and/or statement (2) must be false, resulting in
the following inequality:

1 +
L∑

l=1

Y DL
d,l Λl,w ≥ Y DS

d,s + Y SW
s,w ∀d ∈ {1, ..., D},

∀s ∈ {1, ..., S},
∀w ∈ {1, ...,W}.

(C.11)

If dosage d takes place in discharge s and discharge s takes place at weigher w, then dosage d
completes at least S0,d + pDd later than startingcondition CS

0,w:

M(Y SW
s,w + Y DS

d,s − 2) + CS
0,w + S0,d + pDd ≤ CD

d ∀d ∈ {1, ..., D},
∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W}.
(C.12)

If dosages d1 < d2 both take place in discharge s, then dosage d2 completes at least Sd1,d2 + pDd2

later than dosage d1:

M(Y DS
d1,s + Y DS

d2,s − 2) + CD
d1

+ Sd1,d2
+ pDd2

≤ CD
d2

∀d1 < d2 ∈ {1, ..., D},
∀s ∈ {1, ..., S}.

(C.13)

Similarly, if discharges s1 < s2 both take place at weigher w and dosage d takes place in dis-
charge s2, then dosage d completes at least S0,d + pDd later than discharge s1:

M(Y SW
s1,w + Y SW

s2,w + Y DS
d,s2 − 3) + CS

s1 + S0,d + pDd ≤ CD
d ∀d ∈ {1, ..., D},

∀s1 < s2 ∈ {1, ..., S},
∀w ∈ {1, ...,W}.

(C.14)

Note that in order to check whether dosage d takes place in period p2, data parameters Ψd,b2 and
Ωb2,p2 are used.

Discharge s completes at least pSs later than discharge s− 1:

CS
s−1 + pSs ≤ CS

s ∀s ∈ {1, ..., S}.
(C.15)

Note that s = 1 requires data parameter CS
0 .

If discharge s takes place in batch b2 > b1, then discharge s completes at least pSs later than CB
b1
:

CB
b1 + pSs +M(Θs,b2 − 1) ≤ CS

s ∀s ∈ {1, ..., S},
∀b1 < b2 ∈ {1, ..., B}.

(C.16)
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If dosage d takes place in discharge s, then discharge s completes at least Sd,0 + pSs later than
dosage d:

M(Y DS
d,s − 1) + CD

d + Sd,0 + pSs ≤ CS
s ∀d ∈ {1, ..., D},

∀s ∈ {1, ..., S}.
(C.17)

If dosage d containing raw material g takes place at silo l, then the dosing time is determined by
the dosing constant and the mass of the dosage md:

M(Y DL
d,l + Y LG

l,g − 2) + cDl,g +
md

vDl,g
≤ pDd ∀d ∈ {1, ..., D},

∀g ∈ {1, ..., G},
∀l ∈ {1, ..., L}.

(C.18)

Furthermore, if discharge s takes place at weigher w, then the discharge time is determined by the
discharge constant and the mass

∑D
d=1 mdY

DS
d,s of all dosages in that discharge:

M(Y SW
s,w − 1) + cSwY

S
s +

1

vSw

D∑
d=1

mdY
DS
d,s ≤ pSs ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W}.
(C.19)

If no dosages take place in a discharge, then the discharge is empty, i.e.: Y S
s = 0. This results in:

D∑
d=1

Y DS
d,s ≥ Y S

s ∀s ∈ {1, ..., S}.

(C.20)

On the other hand, if one or more dosages take place in a discharge, then that discharge is not
empty, i.e.: Y S

s = 1. This results in:

1

D

D∑
d=1

Y DS
d,s ≥ Y S

s ∀s ∈ {1, ..., S}.

(C.21)

Only if dosage d contains more mass than the required minimum dosage mass mmin
w of weigher w,

dosage d may take place on that weigher:

L∑
l=1

Λl,wY
DL
d,l ≤ 1 if mmin

w ≤ md,

∀w ∈ {1, ...,W},
∀d ∈ {1, ..., D}.

(C.22)
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If discharge s takes place at weigher w, then the mass and volume of all dosages in discharge s
cannot not exceed the maximum allowed dosage mass and volume of weigher w:

M(Y SW
s,w − 1) +

D∑
d=1

mdY
DS
d,s ≤ mmax

w ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W},
(C.23)

M(Y SW
s,w − 1) +

D∑
d=1

VdY
DS
d,s ≤ V max

w ∀s ∈ {1, ..., S},

∀w ∈ {1, ...,W}.
(C.24)

The lower and upper limit of the allowed dosing interval of raw material g at weigher w may not
be larger than the maximum allowed dosage mass of weigher w:

fWG1
w,g ≤ mmax

w ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},

(C.25)

fWG2
w,g ≤ mmax

w ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(C.26)

The dosing interval of raw material g at weigher w1 may not overlap with the interval at w2. Thus,
if the allowed dosing interval of raw material g at weigher w1 is smaller or equal the interval at
weigher w2, then the upper limit at weigher w1 should be smaller or equal to the lower limit at
weigher w2:

fWG1
w2,g +M(1− Fw1,w2,g) ≥ fWG2

w1,g ∀w1 �= w2 ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(C.27)

If the dosing interval of raw material g at weigher w1 is smaller than the interval at w2, then
Fw1,w2,g = 1 and Fw2,w1,g = 0. If the dosing interval of raw material g at weigher w2 is smaller
than the interval at w1, then Fw1,w2,g = 0 and Fw2,w1,g = 1. If no dosages of raw material g take
place at either weighers w1 or w2, then both intervals are ‘empty’, i.e.: fWG1

w1,g = fWG2
w1,g = fWG1

w2,g =

fWG2
w2,g = 0, resulting in, Fw1,w2,g = Fw2,w1,g = 1. This means in any situation either one or both
variables Fw1,w2,g and Fw2,w1,g should equal 1:

Fw1,w2,g + Fw2,w1,g ≥ 1 ∀w1 < w2 ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(C.28)
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If a raw material g is not placed on weigher w, then the interval is ‘empty’, i.e.: fWG1
w,g = fWG2

w,g = 0.

To check whether raw material g is placed on weigher w, binary variable Y GW
g,w is needed, which

comes to expression using
∑D

d=1 Δd,gY
DW
d,w in which Y DW

d,w =
∑L

l=1 Λl,wY
DL
d,l .

M

D∑
d=1

Δd,g

L∑
l=1

Λl,wY
DL
d,l ≥ fWG1

w,g ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},
(C.29)

M
D∑

d=1

Δd,g

L∑
l=1

Λl,wY
DL
d,l ≥ fWG2

w,g ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G}.
(C.30)

If dosage d takes place at weigher w and if dosage d contains raw material g, then the mass of
dosage d must be contained in the allowed dosing interval of raw material g at weigher w, i.e.: the
mass of dosage d should be larger than the lower limit and smaller than the upper limit of the
dosing interval:

md − δ +M(2− Y DW
d,w −Δd,g) ≥ fWG1

w,g ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},
∀d ∈ {1, ..., D},

(C.31)

md +M(Y DW
d,w +Δd,g − 2) ≤ fWG2

w,g ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G},
∀d ∈ {1, ..., D}.

(C.32)

Consider that the mass md of dosage d consists of raw material g. Then md may not correspond
to both the lower limit if the dosing interval of raw material g at weigher w1 and the upper limit of
raw material g at weigher w2, since dosage d is only allowed to be executed on one installation. To
prevent this, at least one of the limits of the weighers should be excluded from executing dosage d.
Therefore, in (C.31), the lower limit of the allowed dosing interval of raw material g at weigher w
should be smaller than md with a margin δ.

If dosages d1 < d2 take place at silos l1 and l2 respectively, the setup time should be equal to
Σl1,l2 :

M(Y DL
d1,l1 + Y DL

d2,l2 − 2) + Σl1,l2 ≤ Sd1,d2 ∀d1 < d2 ∈ {1, ..., D},
∀l1 ∈ {1, ..., L},
∀l2 ∈ {1, ..., L}.

(C.33)

Similarly, for silo 0 this results in:

M(Y DL
d,l − 1) + Σ0,l ≤ S0,d ∀d ∈ {1, ..., D},

∀l ∈ {1, ..., L},
(C.34)

M(Y DL
d,l − 1) + Σl,0 ≤ Sd,0 ∀d ∈ {1, ..., D},

∀l ∈ {1, ..., L}.
(C.35)
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Dosages must be executed in order, i.e.: if dosages d1 < d2 take place in discharges s1 and s2
respectively, then discharge s2 can take place at earliest together with discharge s1:

M(Y DS
d1,s1 + Y DS

d2,s2 − 2) + CS
s1 ≤ CS

s2 ∀d1 < d2 ∈ {1, ..., D},
∀s1 ∈ {1, ..., S},
∀s2 ∈ {1, ..., S}.

(C.36)

If discharge s takes place in batch b, batch b finishes at least later than CS
s + cB :

CS
s + cB +M(Θs,b − 1) ≤ CB

b ∀s ∈ {1, ..., S},
∀b ∈ {1, ..., B}.

(C.37)

The final batch in the final period determines the total makespan:

CB
b ≤ C ∀b ∈ {1, ..., B}.

(C.38)

Some of the continuous variables have to be lower-bounded:

fWG1
w,g ≥ 0 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G},
(C.39)

fWG2
w,g ≥ 0 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G}.
(C.40)

Note that all other continuous variables have already been (implicitly) lower-bounded by their
constraints.

Optional constraints
The following constraints are not necessary to solve the optimization problem. However, they
reduce the number of possible solutions or make a implicit constraint explicit.

It is assumed that placing a raw material more than once on an installation probably does not sig-
nificantly improve the performance as the weigher can only be located at one silo simultaneously.
The benefit of placing a raw material more than once is a potential decrease in driving time in
an installation with a movable weigher. Furthermore, placing a raw material more than once on
an installation implies that another raw material cannot be placed on that installation. Placing
another raw material on the installation decreases the potential idle time of that installation. It is
assumed that the reduction in makespan from a decrease in idle time exceeds the reduction from
a decrease in driving time. Hence, it is assumed that a raw material g can only occur once on a
dosing installation with weigher w:

L∑
l=1

Λl,wY
LG
l,g ≤ 1 ∀w ∈ {1, ...,W},

∀g ∈ {1, ..., G}.
(C.41)
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The lower limit of a dosing interval of raw material g at weigher w must be smaller or equal to
the upper limit of raw material g at weigher w:

fWG1
w,g ≤ fWG2

w,g ∀w ∈ {1, ...,W},
∀g ∈ {1, ..., G}.

(C.42)

Note that this implicitly follows from (C.31) and (C.32).

Furthermore, all time-based continuous variables cannot be negative. Thus:

pDd ≥ 0 ∀d ∈ {1, ..., D},
(C.43)

pSs ≥ 0 ∀s ∈ {1, ..., S},
(C.44)

Sd1,d2 ≥ 0 ∀d1 ∈ {1, ..., D},
∀d2 ∈ {1, ..., D},

(C.45)

CD
d ≥ 0 ∀d ∈ {1, ..., D},

(C.46)

CB
b ≥ 0 ∀b ∈ {1, ..., B},

(C.47)

C ≥ 0. (C.48)

These variables are already implicitly lower-bound. For example: pDd is constrained by (C.18), in
which all terms are explicitly positive except for M(Y DL

d,l + Y LG
l,g − 2). However, from (C.4) and

(C.5) it follows that there is always some silo l and some raw material g for which Yd,l = Yl,g = 1.
Therefore, pDd is always lower-bounded by at least 0.

C.5 Objective function

The objective function follows straightforward from the constraints as the objective is to minimize
the makespan:

minC (C.49)
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Appendix D

Additional results heuristics

In this appendix additional data is provided to the heuristics as presented in Chapter 5. Further-
more, additional figures and numerical results of the heuristic solutions to the four case studies as
given in Section 5.10 are provided.

The applied weight factors for the weighted sum method are given in Table D.1. If a number
of bins n that are involved in a certain dosing interval, then the weighting factors for these bins
correspond to the n first numbers in Table D.1. The first two bins both have a weighting factor
of 1, because the greatest bulk of dosages is usually spread over two or three bins. In that way, it
is ensured that these bins are incorporated in the larger dosing installation. The weighting factor
for calculating the priority score is simply the absolute bin number. In this case, if two bins have
the same number of dosages, it is ensured that the larger bin is always prioritized.

Table D.1: Weighting factors for the weighted sum method

Bin 1 2 3 4 5 6 7 and above

Weighting factor 1 1 0.5 0.33 0.25 0.2 0.1

Figures D.1, D.2 and D.3 show the results of the applied heuristics for case studies 1, 2 and 4.
In each of these figures, the results are separated by the type of sorting method applied in the
initial optimization. In case study 2 no local optimization has taken place, hence, no figure of case
study 3 is provided. Numerical results for each of the different heuristics for case studies 1–4 are
given in Tables D.2–D.5.

Table D.2: Results case study 1, minimum achieved production time [hours] for each of the applied
heuristics. The production time for the original allocation is 3103.3 hours

������������Init. opt.
Loc. opt.

Descending
mass

Descending
frequency

Descending
rec. occup.

Descending mass 2941.1 2891.9 2919.2
Descending frequency 3082.2 3023.1 3078.6
Descending rec. occup. 3897.8 3775.6 3792.8

Finally, Table D.6 shows the mean batch time of the heuristic with the minimum production time
for each case study.
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Table D.3: Results case study 2, minimum achieved production time [hours] for each of the applied
heuristics. The production time for the original allocation is 1430.5 hours

������������Init. opt.
Loc. opt.

Descending
mass

Descending
frequency

Descending
rec. occup.

Descending mass 2362.7 2362.7 2362.7
Descending frequency 2255.7 2255.7 2255.7
Descending rec. occup. 2262.7 2262.7 2262.7

Table D.4: Results case study 3, only initial optimization is possible for this case study

Sorting method Descending
mass

Descending
frequency

Descending
rec. occup.

Original al-
location

Production time [hours] 1772.6 1769.2 1550.0 1119.2

Table D.5: Results case study 4, minimum achieved production time [hours] for each of the applied
heuristics. The production time for the original allocation is 1146.6 hours

������������Init. opt.
Loc. opt.

Descending
mass

Descending
frequency

Descending
rec. occup.

Descending mass 1141.4 1173.4 1150.5
Descending frequency 1159.2 1200.2 1160.9
Descending rec. occup. 1177.4 1221.7 1187.6

Table D.6: Mean batch time of the best performing heuristic for each case study

Case study 1 2 3 4

Mean batch time [s] 363.5 664.6 813.6 385.9
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Figure D.1: Results case study 1
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Figure D.2: Results case study 2
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Figure D.3: Results case study 4
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