How to control traffic lights or factories

Erjen Lefeber

Lustrum TW
Enschede, June 9, 2018.

Where innovation starts

Why Applied Mathematics in Twente?

- Enjoyed mathematics (member Dutch team IMO 1990)

- Interested in application. So no pure mathematics.
- Disliked atmosphere in Delft; Liked campus of UT

Introduction

TU/e

Abacus

Abacus

- Mathematical Café
- Parents day
- Kaleidoscoopdag (Symposium)
- IKTW 1993 (Twick-In)
- Board 1993-1994
- Ideaal!
- Coco
- Advisory councils
- Cash audit committees
- Former board members day

Drienerlo

- Church (elder)

Vierkant voor Wiskunde
\square

Pythagoras

Graduation

TU/e

PhD defense

Marriage

TU/e Technische Universiteit
Eindisvenen
University of Technology

Family

$\mathrm{TU} / \mathrm{e}=$

Hobby: scuba diving

TU/e

Problem

How to control these networks?
Decisions: When to switch, and to which job-type
Goals: Minimal number of jobs, minimal flow time

Current approach

Start from policy, analyze resulting dynamics
Kumar, Seidman (1990)

Important questions

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Single machine

Optimal periodic behavior

Remarks

- Many existing policies assume non-idling a-priory
- Slow-mode optimal if $\left(\frac{\lambda_{1}}{\mu_{1}}+\frac{\lambda_{2}}{\mu_{2}}\right)+\left(\lambda_{2}-\lambda_{1}\right)\left(1-\frac{\lambda_{2}}{\mu_{2}}\right)<0$.
- Trade-off in wasting capacity: idle \Leftrightarrow switch more often

Resulting Controller

Two modes:

Examples

- Intersection
- Hot ingots
- Constrained polling

Conflict graph:

Conflict graph

Minimal green times

$$
\begin{array}{ll}
g_{1}^{\min }=4 & g_{3}^{\min }=4 \\
g_{2}^{\min }=4 & g_{4}^{\min }=4
\end{array}
$$

Clearance times

$$
\begin{array}{lll}
\sigma_{1,2}=1 & \sigma_{2,3}=2 & \sigma_{3,4}=1 \\
\sigma_{2,1}=0 & \sigma_{3,2}=0 & \sigma_{4,3}=0
\end{array}
$$

Arrival/Service rates
$\lambda_{1}=1200 \quad \mu_{1}=3800$
$\lambda_{2}=400 \quad \mu_{2}=1900$
$\lambda_{3}=1200 \quad \mu_{3}=5360$
$\lambda_{4}=400 \quad \mu_{4}=3400$

Optimal periodic schedule

Standard numbering of traffic lights in then Netherlands

1-12 Cars (clockwise)
21-28 Bicycles
31-38 Pedestrians
41-52 Public Transport

Higher numbers when more than one intersection per controller, e.g., 61-72 Cars, etc.

Intersection

Conflict graph:

Optimal schedule (data from Grontmij: A2/N279)

Optimal schedule

Extended graph

Event times

i	$t(i)$	$t(i+6)$	$i+6$
1	0.0	31.3	7
2	6.8	31.3	8
3	10.5	35.3	9
4	31.3	35.3	10
5	31.3	6.8	11
6	35.3	5.5	12

Conflict graph

Data

- Arrival rates: λ_{i}
- Service rates: μ_{i}
- Clearance times: $\sigma_{i, j}$
- Minimal/maximal green time: $g_{i}^{\min }, g_{i}^{\max }$.
- Minimal/maximal period: $T^{\text {min }}, T^{\text {max }}$.
- Conflict graph:

Design variables

- $x(i, j)$ fraction of period from event i to event j.
- T^{\prime} reciprocal of duration of period, i.e. $T^{\prime}=1 / T$.

Constraints

- Stable system: $\rho_{i}=\lambda_{i} / \mu_{i} \leq x(i, i+n)$
- Minimal/maximal green time: $g_{i}^{m i n} T^{\prime} \leq x(i, i+n) \leq g_{i}^{m i n} T^{\prime}$
- Clearance time: $\sigma_{i, j} T^{\prime} \leq x(i, j)$
- Minimal/maximal period: $1 / T^{\text {max }} \leq T^{\prime} \leq 1 / T^{\text {min }}$
- Conflict: $x(i, i+n)+x(i+n, j)+x(j, j+n)+x(j+n, i)=1$
- Integer cycle: $\sum_{(i, j) \in C^{+}} x(i, j)-\sum_{(i, j) \in C^{+}} x(i, j)=z_{C}$.

Extended graph

Cycle
Cycle: $\{(4,10),(10,2),(12,2),(12,4)\}$
$C^{+}=\{(4,10),(10,2),(12,4)\}$.
$C^{-}=\{(12,2)\}$.
Integer cycle constraint:
$\sum_{(i, j) \in C^{+}} x(i, j)-\sum_{(i, j) \in c^{+}} x(i, j)=z_{c}$.
Only for cycles from integer cycle base.

Extended graph

Cycle

$$
\begin{array}{cccccccccccccccccc}
A & B & C & D & E & F & G & H & 1 & J & K & L & M & N & O & P & Q & R \\
{[0} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}
$$

Cycle basis
$\left.\begin{array}{cccccccccccccccccc}A & B & C & D & E & F & G & H & I & J & K & L & M & N & O & P & Q & R \\ {[1} & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {[0} & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {[0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0] \\ {[0} & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1] \\ {[0} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0] \\ {[0} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1] \\ {[0} & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1\end{array}\right]$

Observation 1

Let graph consist of 1 component, n edges and m vertices. Then

- Spanning tree consists of $n-1$ vertices.
- Dimension of cycle basis: $m-n+1$.

Observation 2

Only integer combination of cycles is allowed.

Constraints

- Stable system: $\rho_{i}=\lambda_{i} / \mu_{i} \leq x(i, i+n)$
- Minimal/maximal green time: $g_{i}^{m i n} T^{\prime} \leq x(i, i+n) \leq g_{i}^{m i n} T^{\prime}$
- Clearance time: $\sigma_{i, j} T^{\prime} \leq x(i, j)$
- Minimal/maximal period: $1 / T^{\text {max }} \leq T^{\prime} \leq 1 / T^{\text {min }}$
- Conflict: $x(i, i+n)+x(i+n, j)+x(j, j+n)+x(j+n, i)=1$
- Integer cycle: $\sum_{(i, j) \in C^{+}} x(i, j)-\sum_{(i, j) \in C^{+}} x(i, j)=z_{C}$.

Objective
Minimize weighted average delay (Fluid, Webster, Miller, v.d. Broek):

$$
\sum_{i=1}^{n} \frac{r_{i}}{2 \lambda_{i}\left(1-\rho_{i}\right) T}\left(r_{i} \lambda_{i}+\frac{s_{i}^{2}}{1-\rho_{i}}+\frac{r_{i} \rho_{i}^{2} s_{i}^{2} T^{2}}{\left(1-\rho_{i}\right)\left(T-r_{i}\right)^{2}\left(\left(1-\rho_{i}\right) T-r_{i}\right)}\right)
$$

Real life example

Subsequent steps (mathematically more involved)

- Given optimal periodic behavior
- How to control system towards optimal behavior?
- Solution
- Identify modes
- Determine duration of modes (function of state)
- Prove that resulting controller works
- We have developed general method.
- Convergence to optimal behavior
- Robustness for deviations in arrival rates, service rates, clearance/setup times

Future

- Cars will drive autonomously
- No traffic lights anymore
- Cars resolve the problems themselves (wireless communication)
- Underlying mathematics: same as for traffic lights
- Result...

Future

