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Abstract

We consider a polling system with two queues, exhaustive service, no switchover times,
and exponential service times with rate μ in each queue. The waiting cost depends
on the position of the queue relative to the server: it costs a customer c per time unit
to wait in the busy queue (where the server is) and d per time unit in the idle queue
(where there is no server). Customers arrive according to a Poisson process with rate λ.
We study the control problem of how arrivals should be routed to the two queues in order
to minimize the expected waiting costs and characterize individually and socially optimal
routeing policies under three scenarios of available information at decision epochs: no,
partial, and complete information. In the complete information case, we develop a
new iterative algorithm to determine individually optimal policies (which are symmetric
Nash equilibria), and show that such policies can be described by a switching curve.
We use Markov decision processes to compute the socially optimal policies. We observe
numerically that the socially optimal policy is well approximated by a linear switching
curve. We prove that the control policy described by this linear switching curve is indeed
optimal for the fluid version of the two-queue polling system.
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1. Introduction

Polling systems have applications in diverse fields such as manufacturing, telecommunica-
tions, time-sharing computer systems, and wireless networks. There is a very large body of
research devoted to polling systems, and we refer the reader to [4], [17], [22], and [25] for an
overview of the full range of issues for such systems.

Takagi [22] considered a simple polling system consisting of a single server serving N

queues in an exhaustive cyclic fashion, which means that it serves the customers in the ith
queue until it becomes empty and then moves to queue i + 1 (or 1 if i = N ). Results were
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obtained, for example, about the limiting distribution of the number of customers in the N

queues, their means, and their waiting times. These results were quickly extended to service
policies other than exhaustive, for example, gated, k-limited, and Bernoulli, as well as noncyclic
server routeing, and nonzero switchover times. We refer the reader to the sources mentioned
above for the detailed references.

The control issues of polling systems have received less attention than the performance
analysis of polling systems. There are several possible control problems arising in polling
systems. First, the order in which the queues are served can be determined to optimize system
performance (such as weighted expected waiting times), assuming that the service discipline
is fixed (such as exhaustive or gated); see [7], [24], and [29]. When the server can switch after
every service, the optimal dynamic service order can be studied in greater detail, and may lead
to simple rules such as the cμ rule; see, for example, [10], [12], and [13]. We refer the reader
to [25] for many more references in this area.

Customer routeing in polling systems has received less attention. Takine et al. [23], Sidi et
al. [21], and Boon et al. [5] studied a Jackson network style routeing of customers among N

queues, served cyclically by a single server. The control of customer routeing is the focus of this
paper. This subject is also less studied in comparison with the control of server routeing. To the
best of the authors’ knowledge, the only paper on this topic is [20]. The authors considered the
problem where the customers arriving at one of the queues can be routed to any of the others,
while customers arriving at the other queues have no flexibility. The authors studied static
randomized routeing policies and considered the optimal fraction to be routed to each queue in
order to minimize the weighted expected waiting cost. This approach comes somewhat close to
our model that we will describe in the next section. However, our cost model is very different
from the one in [20] and we consider optimal policies under several scenarios of availability of
information, and who is controlling the system. We consider a cyclic exhaustive polling system
where every arriving customer needs to be routed to one of the queues, and distinguish three
levels of observability of the system. We use the terminology of [9].

• Unobservable. We do not know the queue lengths or the position of the server (that is,
which queue the server is serving) at decision epochs.

• Almost unobservable. We know where the server is, but not the queue lengths, at decision
epochs.

• Fully observable. We know the position of the server, and the queue lengths, at decision
epochs.

If the cost of waiting in all the queues is identical, or joining the busy queue (where there is
a server) is cheaper than joining the idle queue (where there is no server), the resulting routeing
policies are fairly straightforward. Interesting routeing policies arise when we assume that the
waiting cost in the idle queue is less than that in the busy queue. This may be the result of the
fact that it is costlier to operate the busy queue as compared to the idle queue. It creates the
interesting tradeoff that customers might be able to reduce the waiting cost by joining the idle
queue, even though it may increase their total waiting time.

Finally, we consider the control problem from two different viewpoints: the customer (or
individually optimal) and the system manager (socially optimal). Socially versus individually
optimal policies have been well studied in the literature on queueing; see [11] and [18].
Computation of individually optimal policies becomes complicated when the decisions of later
customers can influence a customer’s waiting cost. For example, Altman and Shimkin [1]
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studied individually optimal policies in processor sharing queues, where the decisions by
later customers influenced the earlier customer’s waiting costs, since they affect the effective
service rate available to any customer. The authors also introduced an iterative algorithm to
determine Nash equilibria. In our case, the analysis of individually optimal policies is similarly
complicated by the fact that a customer’s total cost is affected by the behavior of the customers
subsequently arriving. We provide a new iterative algorithm to derive Nash equilibria in such
a case.

To keep the analysis simple, we consider an exponential system with only two queues and
no switchover times. Even for such a simple system, the analysis provides interesting insights,
and can be quite involved. We introduce the model and notation in Section 2. The case of the
unobservable system is studied in Section 3, and the almost unobservable system in Section 4.
In both cases, we study Nash equilibria in the individually optimal analysis, and minimize
the long-run average cost rate in the socially optimal case. The case of a fully observable
system is studied in Section 5. We present a new iterative algorithm to determine individually
optimal policies, and show that such policies can be described by a switching curve. The
socially optimal policies can be derived by using negative dynamic programming. We present
a novel proof of the existence of average cost optimal policies, but we have not been able to
derive structural results in this case. However, numerical experimentation suggests a simple
approximate socially optimal routeing policy, which can be described by a linear switching
curve. In Section 6 we formulate the problem as a control problem of a fluid polling queueing
system, and prove that the approximate policy mentioned in Section 5 is, in fact, optimal in the
fluid model. We conclude the paper with a numerical example and summary in Section 7.

2. Polling model

We consider a polling system with two queues; see Figure 1. Customers arrive at this system
according to a Poisson process with rate λ. The service times are independent and exponentially
distributed with rate μ at each queue. A single server serves the two queues in a cyclic fashion
with exhaustive service. The switchover times are assumed to be 0. For stability, we assume
that ρ = λ/μ < 1. The only costs in the system are waiting costs: it costs a customer c dollars
to wait in a queue that is being served (called the busy queue), while it costs him/her d per
unit time to wait in a queue that is not being served (called the idle queue). We study how the
arrivals should be routed to the two queues in order to minimize expected waiting costs. In the
following sections we characterize individually optimal and socially optimal routeing policies

Exp(μ)
PP(λ)

Figure 1: The two-queue exponential polling model with exhaustive service. Customers arrive at this
system according to a Poisson process with rate λ (PP(λ)). The service times are independent and

exponentially distributed with rate μ (Exp(μ)) at each queue.
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under the various levels of observability of the system: unobservable, almost unobservable,
and fully observable.

3. Unobservable system

Suppose that arriving customers have no information about the state of the system, that is,
they do not know where the server is and what the queue lengths are. In this case, the most
general policy is described by a single parameter p ∈ [0, 1]. Each customer joins queue 1 with
probability p1 = p and queue 2 with probability p2 = 1 − p1. We use the notation ρi = ρpi

(i = 1, 2). Define Lij as the expected number of customers in queue i given that the server
is serving queue j . In the next theorem we state these quantities; see, for example, [3], [27],
and [28].

Theorem 1. Under the above routeing policy, we have, for all 0 ≤ p ≤ 1,

L11 = ρ1(1 − ρ + ρ1ρ2 + ρ2
2 )

(1 − ρ)(1 − ρ + 2ρ1ρ2)
+ 1, L12 = ρ1(ρ1ρ2 + (1 − ρ1)

2)

(1 − ρ)(1 − ρ + 2ρ1ρ2)
,

L21 = ρ2(ρ1ρ2 + (1 − ρ2)
2)

(1 − ρ)(1 − ρ + 2ρ1ρ2)
, L22 = ρ2(1 − ρ + ρ1ρ2 + ρ2

1 )

(1 − ρ)(1 − ρ + 2ρ1ρ2)
+ 1.

Using the above theorem, we derive the socially optimal policies in the next theorem.

Theorem 2. (Socially optimal policies.) (i) If c > d , there is a unique socially optimal policy
p = 1

2 (customers join either queue with probability 1
2 ).

(ii) If c = d , all policies p ∈ [0, 1] are socially optimal.

(iii) If c < d , there are two socially optimal policies p = 0 and p = 1 (everyone joins queue 1
or everyone joins queue 2).

Proof. The socially optimal policy minimizes the expected cost of a customer in the steady
state, which is given by

C = p1C1 + p2C2,

where C1 and C2 are the expected cost of joining queue 1 and 2, respectively. To compute C1
we argue as follows. The expected number of customers in queue 1, as seen by an arrival, is
given by (using PASTA),

L1 = ρ1L11 + ρ2L12.

This many customers will have to be served by the server before serving the new arrival at the
start of serving queue 1. Hence, the cost incurred by the customer, once the service starts in
the queue that he/she has joined, is c(L1 + 1)/μ. Now, let W be the expected time until the
server starts serving queue 1. It is 0 if the server is already at queue 1, which happens with
probability ρ1. With probability ρ2, the server is at queue 2. Hence, W is the expected busy
period of queue 2, started by the number of customers there in the steady state. So we have

W = ρ1 · 0 + ρ2
L22

μ − λp2
= 1

μ

ρ2

1 − ρ2
L22

and, thus,

C1 = c(L1 + 1)

μ
+ dW = 1

μ

(
c(ρ1L11 + ρ2L12) + d

ρ2

1 − ρ2
L22 + c

)
.
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A similar argument yields

C2 = 1

μ

(
c(ρ1L21 + ρ2L22) + d

ρ1

1 − ρ1
L11 + c

)
.

It then follows that
dC

dp1
= c − d

μ

ρ(ρ2 + 2(1 − ρ))(2p1 − 1)

(1 − ρ + 2ρ1ρ2)2 .

Now if c > d, the above expression implies that C decreases as p1 increases from 0 to 1
2 and

increases as p1 increases from 1
2 to 1. Hence, C is minimized at p1 = 1

2 . If c < d , C increases
as p1 increases from 0 to 1

2 , and decreases as p1 increases from 1
2 to 1. From symmetry both

these minima are identical. Thus, C is minimized at p1 = 0 and p1 = 1. When c = d, C does
not depend on p1. Hence, the result follows. �

In the next theorem we state the results concerning the individually optimal (Nash equilib-
rium) policies.

Theorem 3. (Nash equilibrium policies.) (i) If c(1−ρ) > d , there is a unique Nash equilibrium
policy p = 1

2 . This policy is socially optimal.

(ii) If c(1 − ρ) = d , every policy p ∈ [0, 1] is a Nash equilibrium policy, but only p = 1
2 is

socially optimal.

(iii) If c(1−ρ) < d , there are three Nash equilibrium policies p = 0, p = 1
2 , and p = 1. Only

policy p = 1
2 is socially optimal if c > d , each of them is socially optimal if c = d, and p = 0

and p = 1 are socially optimal if c < d .

Proof. Suppose that arriving customers join queue 1 with probability p1 = p and queue 2
with probability p2 = 1 − p1. Now suppose that a smart customer knows how the other
customers are behaving and decides to use this system to minimize his/her own waiting costs.
If the customer joins queue 1, his/her expected cost is C1; otherwise, if the customer joins
queue 2, his/her expected cost is C2. It then follows that

C1 − C2 = ρ(1 − 2p1)(d − c(1 − ρ))

μ(1 − ρ)(1 − ρ + 2ρ1ρ2)
.

Consider the c(1 − ρ) > d case. If all customers use p1 > 1
2 then C1 > C2 and the smart

customer will join queue 2, that is, use p1 = 0; and if all customers use p1 < 1
2 , he/she will use

p1 = 1. Thus, none of these policies is a Nash equilibrium. If all the customers follow policy
p1 = 1

2 , the smart customer is indifferent between the two options and can choose p1 = 1
2 .

Thus, p1 = 1
2 is a Nash equilibrium. If c(1 − ρ) = d, the smart customer is also indifferent,

so all policies are a Nash equilibrium. Next, in the c(1 − ρ) < d case, it is readily verified
that there are three Nash equilibrium policies, p1 = 0, p1 = 1

2 , and p1 = 1. Together with
Theorem 2, this concludes the proof. �

Remark 1. From Theorem 3(iii), there is a follow-the-crowd policy that is individually and
socially optimal. There is only one such policy (p = 1

2 ) if c > d, two such policies (p = 0 and
p = 1) if c < d , and three such policies (p = 0, p = 1

2 , and p = 1) if c = d. This phenomena
is frequently observed in game theoretic models in queues; see [11].
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4. Almost unobservable system

In this section we consider the case of partial information. Specifically, we assume that all
customers know which queue is being served by the server, but the individual queue lengths
at the two queues are not known. We call the queue that the server is at the busy queue and
the other queue the idle queue. We assume that if both queues become empty after a service
completion, the server stays at the queue it served last. Thus, the busy queue and idle queue
are well defined at all times.

Now the most general policy that a customer can follow is described by a single parameter
p ∈ [0, 1] as follows: join the busy queue with probability p1 = p and join the idle queue
with probability p2 = 1 − p1. Hence, under this policy, the Poisson arrival rates in the two
queues depend on the server location. This system with ‘smart customers’ was analyzed by
Boon et al. [6]. Let LB be the expected number of customers in the busy queue, and LI be the
expected number of customers in the idle queue, in the steady state, under this policy. In the
next theorem, we state these two quantities; see, for example, [6].

Theorem 4. Under the above policy, we have, for all 0 ≤ p ≤ 1,

LB = ρ(1 − ρ1)

(1 − ρ1)2 − ρ2
2

, LI = ρρ2

(1 − ρ1)2 − ρ2
2

.

Using the above theorem we derive the socially optimal policies in the next theorem.

Theorem 5. (Socially optimal policies.) (i) If c > d , the socially optimal policy is for everyone
to join the idle queue.

(ii) If c = d , all policies are socially optimal.

(iii) If c < d , the socially optimal policy is for everyone to join the busy queue.

Proof. The socially optimal policy minimizes the expected cost of a customer in the steady
state. The expected cost of an arriving customer in the steady state is

C = p1CB + p2CI

with

CB = 1

μ
(cLB + c), CI = 1

μ

(
dLB

1

1 − ρ1
+ cLI + c

)
,

where CB and CI are the expected cost of joining the busy and idle queues, respectively. This
can be simplified to

C = c

μ(1 − ρ)
+ (d − c)ρ2

μ(1 − ρ)(1 + ρ2 − ρ1)
.

Using ρ2 = ρ − ρ1, direct calculations yield

dC

dρ1
= c − d

μ(1 − ρ1 + ρ2)2 .

Thus, if c > d , C is an increasing function of ρ1; hence, it is minimized at ρ1 = 0. That is, the
socially optimal policy is for everyone to join the idle queue. On the other hand, if c < d , C is
a decreasing function of ρ1; hence, it is minimized at ρ1 = 1. Then the socially optimal policy
is for everyone to join the busy queue. If c = d then the cost does not depend on ρ1, and all
policies are optimal. �
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In the next theorem we state the results concerning the individually optimal (Nash equilib-
rium) policies.

Theorem 6. (Nash equilibrium policies.) (i) If c(1 − ρ) > d , the Nash equilibrium policy is
to join the idle queue. It is socially optimal.

(ii) If c(1 − ρ) ≤ d < c, the Nash equilibrium policy is to join the busy queue. It is not
socially optimal.

(iii) If c ≤ d , the Nash equilibrium policy is to join the busy queue. It is socially optimal.

Proof. Suppose that arriving customers join the busy queue with probability p1 and the idle
queue with probability p2 = 1 − p1. Now suppose that a smart customer knows how the other
customers are behaving and decides to use this system to minimize his/her own waiting costs. If
the customer joins the busy queue, his/her expected cost is CB; otherwise, if the customer joins
idle queue, his/her expected cost is CI. Using the equations for LB and LI from Theorem 4, we
obtain

CB − CI = ρ

μ(1 − ρ)

c(1 − ρ) − d

1 − ρ1 + ρ2
. (1)

Note that the sign of CB − CI does not depend on p1, the policy followed by all the other
customers. We now consider three cases.

Case (i): c(1 − ρ) > d . Equation (1) implies that CB > CI and, hence, the smart customer
will also join the idle queue, regardless of what the other customers are doing. Thus, joining
the idle queue is a Nash equilibrium. In this case, we also have c > d . Hence, from Theorem 5,
the socially optimal policy is to join the idle queue. Thus, Nash equilibrium is also the socially
optimal policy.

Case (ii): c(1 − ρ) ≤ d < c. In this case CB ≤ CI and, hence, the smart customer will
join the busy queue, regardless of what the other customers are doing. Hence, joining the busy
queue is a Nash equilibrium policy. However, the socially optimal policy is for everyone to join
the idle queue. Thus, the Nash equilibrium is to join the busy queue, but the socially optimal
policy is to join the idle queue. Individual optimization in this case actually maximizes the
social cost.

Case (iii): c ≤ d . The analysis is similar. �
Remark 2. We can write the condition c(1 − ρ) > d as

c

μ
>

d

μ − λ
.

The left-hand side is the expected cost of waiting in the busy queue for one service time,
while the right-hand side is the expected cost of waiting in the idle queue for a busy period
initiated by a single customer. It makes sense that the smart customers consider these two
costs in order to make a decision, while the social optimizer compares c and d. This results
in the Nash equilibrium policies sending more customers to the busy queue than the socially
optimal policies.

5. Fully observable system

Now suppose that every customer has complete knowledge of the state of the system; namely,
the server location and the length of each queue. We consider how the customers would use
this information to decide which queue to join.
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5.1. Single smart customer

Suppose that the static routeing policy p is applicable (which does not have to be optimal)
and that a special customer wants to use this information to minimize his/her own expected
total waiting cost. The special customer can observe the number of customers in the two queues
when he/she arrives at the system: i in the busy queue and j in the idle queue. We now consider
the choice of queue to join.

If the special customer joins the busy queue, his/her total expected cost is ci/μ. If the special
customer joins the idle queue, the total expected waiting cost is di/(μ − λp) + cj/μ. Here the
first term represents the i busy periods that he/she must wait before the server starts serving the
idle queue (and making it the busy queue). Thus, it is optimal for the special customer to join
the queue under service if

ci

μ
<

di

μ − λp
+ cj

μ
,

and to join the idle queue if
ci

μ
≥ di

μ − λp
+ cj

μ
.

Clearly, he/she could choose either queue if equality holds. If d = 0, the decision rule reduces
to joining the shortest queue. Otherwise, the decision rule is a linear switching curve.

5.2. Smart customer population: symmetric Nash equilibrium policies

Now suppose that all customers are smart and each makes a decision to minimize his/her
own total expected waiting cost, assuming that other customers will do the same. If d = 0, each
customer will decide to join the shortest queue, and since this decision is independent of how
the other customers behave, this produces a Nash equilibrium. The d ≥ c case is also obvious:
each customer will decide to join the busy queue, which is a Nash equilibrium. However, the
0 < d < c case is not so obvious. In this case, the single smart customer’s decision was made
under the assumption that all other customers join the busy queue with probability p and the
idle queue with probability 1 − p. However, if every customer chooses the policy derived by
the single smart customer then the single customer’s analysis is no longer valid. We show that
in this case the individually optimal policy is described by a switching curve h(·) such that it
is optimal for every customer to join the busy queue in state (i, j) if j > h(i), and that h is a
nondecreasing function of i. Note that it is not clear a priori that a pure equilibrium policy exists
in the fully observable case. There are instances (as described by Altman and Shimkin [1])
where mixed equilibrium policies exist, but no pure ones. In our case, we restrict our quest to
the class of pure policies and provide a constructive proof that within this class there exists an
equilibrium policy.

So suppose we are given a decision function f : {0, 1, 2, . . .} × {0, 1, 2, . . .} → {I, B} such
that f (i, j) = B(f (i, j) = I ) implies that an arriving customer that finds i customers in the
busy queue and j customers in the idle queue joins the busy (idle) queue. Let τf (i, j) be the
expected time until the busy queue empties if the system starts with i customers in the busy
queue, and j in the idle queue, under decision function f . Note that τf (i, j) is bounded by
i/(μ − λ), which is the expected time to empty the busy queue if all future arrivals are sent to
the busy queue. It is individually optimal to join the busy queue if

ci

μ
< dτf (i, j + 1) + cj

μ
,
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and to join the idle queue if
ci

μ
≥ dτf (i, j + 1) + cj

μ
.

We say that f ∗ is an individually optimal decision function if

f ∗(i, j) =
{

B if and only if ci/μ < dτf ∗(i, j + 1) + cj/μ,

I if and only if ci/μ ≥ dτf ∗(i, j + 1) + cj/μ.

The function f ∗ also describes a Nash equilibrium policy.
We now present a recursive method to compute f ∗. We consider a finite horizon system that

operates as follows. Let n ≥ 0 be a given integer (the ‘horizon’). Let (i, j) be the initial state
of the system (i ≥ 1, j ≥ 0). We assume that after n events (arrivals or departures), arrivals
are turned off and only departures are allowed to occur, and the system ceases operation once it
becomes empty. Let δn(i, j) represent the new state of the system if a customer arrives when the
horizon is n, and the system is in state (i, j) and the customer chooses an action that minimizes
his/her own cost. Let τn(i, j) be the expected time until the busy queue becomes empty if the
system with horizon n starts in state (i, j), and all the arrivals behave in an individually optimal
way. We have

τ0(i, j) = i

μ
, i ≥ 1, j ≥ 0.

This reflects that a zero-horizon system has no more arrivals and, hence, the server completes
the work in the current queue after an expected time of i/μ. Now recursively define, for all
n ≥ 0, i ≥ 1, j ≥ 0,

δn(i, j) =
{

(i + 1, j) if ci/μ < dτn(i, j + 1) + cj/μ,

(i, j + 1) if ci/μ ≥ dτn(i, j + 1) + cj/μ,

τn+1(i, j) = 1

λ + μ
+ μ

λ + μ
τn(i − 1, j) + λ

λ + μ
τn(δn(i, j)),

where τn(0, j) = 0.
In the next lemma we formulate the monotonicity properties of τn(i, j).

Lemma 1. For all n ≥ 0, i ≥ 1, j ≥ 0,

τn(i, j) ≤ τn(i, j + 1), (2)

τn(i, j + 1) ≤ τn(i + 1, j), (3)

τn(i, j) ≤ i

μ − λ
, (4)

τn(i, j) ≤ τn+1(i, j). (5)

Proof. By induction. For n = 0, we have

τ0(i, j) = τ0(i, j + 1) = i

μ
<

i + 1

μ
= τ0(i + 1, j),

τ1(i, j) ≥ 1

λ + μ
+ μ

λ + μ

i − 1

μ
+ λ

λ + μ

i

μ
= i

μ
= τ0(i, j).
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Hence, (2)–(5) hold for n = 0. Now assume that (2)–(5) hold for n. Then we show that these
inequalities also hold for n + 1. To establish (2) for n + 1, consider

τn+1(i, j + 1) − τn+1(i, j) = μ

λ + μ
(τn(i − 1, j + 1) − τn(i − 1, j))

+ λ

λ + μ
(τn(δn(i, j + 1) − τn(δn(i, j))).

The first term is nonnegative due to (2). If δn(i, j + 1) = (i + 1, j + 1) then for both
δn(i, j) = (i + 1, j) and δn(i, j) = (i, j + 1), we can conclude that the second term is
nonnegative by an application of (2) and (3). If δn(i, j+1) = (i, j+2) then δn(i, j) = (i, j+1)

using (2) and, thus, we can again conclude that the second term is nonnegative by (2). For (3),
we have

τn+1(i + 1, j) − τn+1(i, j + 1) = μ

λ + μ
(τn(i, j) − τn(i − 1, j + 1))

+ λ

λ + μ
(τn(δn(i + 1, j)) − τn(δn(i, j + 1))).

The first term on the right-hand side is nonnegative due to (3). If δn(i + 1, j) = (i + 2, j) then
for both δn(i, j + 1) = (i + 1, j + 1) and δn(i, j + 1) = (i, j + 2), we find that the second
term is nonnegative by (repeated) application of (3). If δn(i + 1, j) = (i + 1, j + 1), we arrive
at the same conclusion. From (2),

τn+1(i, j) ≤ 1

λ + μ
+ μ

λ + μ
τn(i − 1, j) + λ

λ + μ
τn(i + 1, j)

and, thus, using (4),

τn+1(i, j) ≤ 1

λ + μ
+ μ

λ + μ

i − 1

μ − λ
+ λ

λ + μ

i + 1

μ − λ
= i

μ − λ
.

Finally, to prove (5) for n + 1,

τn+2(i, j) − τn+1(i, j) = μ

λ + μ
(τn+1(i − 1, j) − τn(i − 1, j))

+ λ

λ + μ
(τn+1(δn+1(i, j)) − τn(δn(i, j))).

The first term is nonnegative due to (5). If δn+1(i, j) = (i + 1, j) then for both δn(i, j) =
(i + 1, j) and δn(i, j) = (i, j + 1), it follows that the second term is nonnegative by an
application of (3) for n + 1 and (5). If δn+1(i, j) = (i, j + 1) then also δn(i, j) = (i, j + 1)

by (2), and, thus, the second term is nonnegative using (5). �
In the following theorem we state that this recursive procedure generates an individually

optimal decision function f ∗.

Theorem 7. For all i ≥ 1, j ≥ 0,

lim
n→∞ τn(i, j) = τ(i, j) = τf ∗(i, j), lim

n→∞ δn(i, j) = δ(i, j),

where f ∗ is defined as

f ∗(i, j) =
{

B if and only if δ(i, j) = (i + 1, j),

I if and only if δ(i, j) = (i, j + 1).
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Proof. By virtue of (4) and (5), the sequence τn(i, j) is nondecreasing in n and bounded.
Hence, the limits of τn(i, j) and δn(i, j) exist and satisfy, for all i ≥ 1, j ≥ 0,

δ(i, j) =
{

(i + 1, j) if ci/μ < dτ(i, j + 1) + cj/μ,

(i, j + 1) if ci/μ ≥ dτ(i, j + 1) + cj/μ,

and

τ(i, j) = 1

λ + μ
+ μ

λ + μ
τ(i − 1, j) + λ

λ + μ
τ(δ(i, j)),

where τ(0, j) = 0. The equation for τ(i, j) follows from two properties:

(a) in case of a tie, we choose the action I , and

(b) τn is nondecreasing in n, from (5).

Without the latter monotonicity property, the strict inequality ci/μ < dτn(i, j + 1) + cj/μ

(even if it holds for all n) could turn into an inequality in the limit, thereby changing the limit
policy. The expected values τf ∗(i, j) satisfy, for all i ≥ 1, j ≥ 0,

τf ∗(i, j) = 1

λ + μ
+ μ

λ + μ
τf ∗(i − 1, j) + λ

λ + μ
τf ∗(δ(i, j)),

where τf ∗(0, j) = 0. To prove τf ∗(i, j) = τ(i, j), consider v(i, j) = τf ∗(i, j) − τ(i, j)

satisfying

v(i, j) = μ

λ + μ
v(i − 1, j) + λ

λ + μ
v(δ(i, j)), i ≥ 1, j ≥ 0,

or in vector-matrix notation
v = Pv, (6)

where P is the (transient) transition probability matrix with

P(i,j),(i−1,j) = 1 − P(i,j),δ(i,j) = μ

λ + μ
, i ≥ 1, j ≥ 0.

Iterating (6) yields v = P nv. Since transitions are restricted to neighboring states, we have
P n

(i,j),(k,l) = 0 for all (k, l) with k > i + n. Hence, since τ(i, j) and τf ∗(i, j) are bounded by
i/(μ − λ),

|v(i, j)| = |(P nv)(i,j)| ≤ (P n1)(i,j)

2(n + i)

μ − λ
, (7)

where 1 is the vector of all ones and (P n1)(i,j) is the probability that the Markov chain P does
not reach the absorbing boundary i = 0 in n transitions when starting in (i, j). This probability
is bounded by P(Xi > n), where Xi is the number of transitions to reach 0 of the random walk
on the nonnegative integers with one-step probabilities Pj,j−1 = 1 − Pj,j+1 = μ/(λ + μ)

when it starts in state i. This random walk reflects that all future arrivals are sent to the busy
queue. By Markov’s inequality, P(Xi > n) ≤ E(X2

i )/n2. Hence, from (7),

|v(i, j)| ≤ P(Xi > n)
2(n + i)

μ − λ
≤ E(X2

i )

n2

2(n + i)

μ − λ
.

Letting n → ∞, we conclude that v(i, j) = 0, which completes the proof. �
Next we describe the main structural properties of the policy f ∗.
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Theorem 8. It holds that f ∗(i, j) = B for all 1 ≤ i ≤ j .

Proof. For 1 ≤ i ≤ j ,
ci

μ
< dτ(i, j + 1) + cj

μ
,

since τ(i, j + 1) > 0. Hence, f ∗(i, j) = B by definition. �

From the above theorem we see that if the busy queue is no longer than the idle queue, then
the individually optimal decision for any customer is to join the busy queue. In the theorem
below we state the monotonicity of the individually optimal policy in j .

Theorem 9. For all i ≥ 1, j ≥ 0, if f ∗(i, j) = B then f ∗(i, j + 1) = B.

Proof. Suppose that f ∗(i, j) = B for some i ≥ 1, j ≥ 0. This implies that

ci

μ
< dτ(i, j + 1) + cj

μ
< dτ(i, j + 1) + c(j + 1)

μ
≤ dτ(i, j + 2) + c(j + 1)

μ
,

where the last inequality follows from (2) by taking n → ∞. Hence, f ∗(i, j + 1) = B. �

To prove monotonicity in i, we first need a technical result.

Theorem 10. Suppose that f ∗(k, j) = B for every 1 ≤ k ≤ i and fixed j ≥ 0. Then τ(k, j)

is concave for 1 ≤ k ≤ i.

Proof. Fix j ≥ 0. First, we show by induction that, for all 1 ≤ k ≤ i − 1,

τ(k + 1, j) − τ(k, j) ≤ 1

μ − λ
. (8)

For k = 1,

τ(2, j) − τ(1, j) = τ(2, j) − 1

λ + μ
− λ

λ + μ
τ(2, j)

= μ

λ + μ
τ(2, j) − 1

λ + μ

≤ μ

λ + μ

2

μ − λ
− 1

λ + μ

= 1

μ − λ
,

where the inequality follows from the bound τ(2, j) ≤ 2/(μ − λ). Now we assume that (8)
holds for k ≤ i − 2 and then show that it also holds for k + 1. Thus,

τ(k + 2, j) − τ(k + 1, j)

= τ(k + 2, j) − 1

λ + μ
− μ

λ + μ
τ(k, j) − λ

λ + μ
τ(k + 2, j)

= μ

λ + μ
[τ(k + 2, j) − τ(k, j)] − 1

λ + μ

= μ

λ + μ
[τ(k + 2, j) − τ(k + 1, j)] + μ

λ + μ
[τ(k + 1, j) − τ(k, j)] − 1

λ + μ
.
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Hence,

τ(k + 2, j) − τ(k + 1, j) = μ

λ
[τ(k + 1, j) − τ(k, j)] − 1

λ
≤ μ

λ(μ − λ)
− 1

λ
= 1

μ − λ
,

which concludes the proof of (8).
Next, to establish concavity, we have, for 1 ≤ k ≤ i − 2,

[τ(k + 2, j) − τ(k + 1, j)] − [τ(k + 1, j) − τ(k, j)]
= τ(k + 2, j) − 2

[
1

λ + μ
+ μ

λ + μ
τ(k, j) + λ

λ + μ
τ(k + 2, j)

]
+ τ(k, j)

= μ − λ

μ + λ
[τ(k + 2, j) − τ(k, j)] − 2

λ + μ

≤ μ − λ

μ + λ

2

μ − λ
− 2

λ + μ

= 0,

where the inequality follows by a repeated application of (8). �
With the above result we can prove monotonicity in i.

Theorem 11. For all i ≥ 2, j ≥ 0, if f ∗(i, j) = B then f ∗(i − 1, j) = B.

Proof. Fix i ≥ 2. By downward induction we will prove for j ≥ 0 that f ∗(i, j) = B implies
that f ∗(k, j) = B for all 1 ≤ k ≤ i. By Theorem 8, this holds for j ≥ i. Now we assume
that it holds for j and then show that it also holds for j − 1. Suppose that f ∗(i, j − 1) = B.
If j > 1 then f ∗(1, j − 1) = B by Theorem 8. To show that this is also valid for j = 1, first
note that f ∗(i, 0) = B implies that

ci

μ
< dτ(i, 1)

and, thus, using τ(i, 1) ≤ i/(μ − λ),

d

μ − λ
>

c

μ
.

Hence,

dτ(1, 1) = d

[
1

λ + μ
+ λ

λ + μ
τ(2, 1)

]
≥ d

[
1

λ + μ
+ λ

λ + μ

2

μ − λ

]
= d

μ − λ
>

c

μ
,

so f ∗(1, 0) = B. Since f ∗(1, j − 1) = f ∗(i, j − 1) = B, we have

c

μ
< dτ(1, j) + c(j − 1)

μ
,

ci

μ
< dτ(i, j) + c(j − 1)

μ
,

and, thus, for 1 ≤ k ≤ i,

ck

μ
= i − k

i − 1

c

μ
+ k − 1

i − 1

ci

μ

< d

[
i − k

i − 1
τ(1, j) + k − 1

i − 1
τ(i, j)

]
+ c(j − 1)

μ

≤ dτ(k, j) + c(j − 1)

μ
,

where the second inequality follows from Theorem 10. Hence, f ∗(k, j − 1) = B. �
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Theorems 9 and 11 imply that the individually optimal policy is described by a switching
curve h(·) such that it is optimal for a customer to join the busy queue in state (i, j) if j > h(i),
and that h is a nondecreasing function of i. Note that h depends on the costs c and d. This
completes the discussion of the individually optimal policy.

5.3. Socially optimal policy

Finally, suppose there is a central controller who can route the customers so as to minimize
the long-run expected waiting cost per unit time. Let Z(t) be the total number of customers in
the system (those in the busy queue plus those in the idle queue) at time t . We begin with a
straightforward but important observation.

Lemma 2. It holds that {Z(t), t ≥ 0} is the queue length process in an M/M/1 queue regardless
of the routeing policy followed.

Proof. The total arrival process to the system is a Poisson process with rate λ, the service
times are independent and exponential with rate μ, and the polling service discipline is work
conserving. Hence, the lemma follows. �

Now let X(t) be the number of customers in the busy queue and Y (t) be the number in the
idle queue at time t . Then the total cost C(t) over (0, t] is

C(t) =
∫ t

0
(cX(u) + dY (u)) du, t ≥ 0.

The process {C(t), t ≥ 0} does depend on the routeing policy. Let Tn be the nth time when
the system busy cycle ends, that is, when Z(t) reaches 0. Let

Cn =
∫ Tn+1

Tn

(cX(u) + dY (u)) du

be the total cost incurred over the interval (Tn, Tn+1]. An important implication of the above
lemma is that {C(t), t ≥ 0} is a (delayed in the Z(0) > 0 case) renewal reward process, since
{(Cn, Tn+1 − Tn), n ≥ 1} is a sequence of independent and identically distributed bivariate
random variables. Furthermore, {Tn+1−Tn, n ≥ 1} is a sequence of independent busy cycles in
an M/M/1 queue. Hence, their common distribution does not depend on the routeing policy, and

E(Tn+1 − Tn) = μ

λ(μ − λ)
< ∞.

Then, from the results on renewal reward processes (see [14]), we obtain

lim
t→∞

C(t)

t
= lim

t→∞
E(C(t))

t
= λ(μ − λ)

μ
E

(∫ T1

0
C(u) du

∣∣∣∣ Z(0) = 1

)
.

Also, we have the following bound:

lim
t→∞

C(t)

t
= lim

t→∞
E(C(t))

t
≤ max(c, d) lim

t→∞ E(Z(t)) = max(c, d)
λ

μ − λ
< ∞.

Thus, the long-run average cost exists and is finite, and it is proportional to the total cost in
the first busy cycle started with one customer in the system. Thus, the problem of finding an
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average cost optimal policy reduces to the problem of finding an optimal policy that minimizes
the total expected cost C over a busy period T starting in state (1, 0). This can be written as

C = E

(∫ T

0
(cX(t) + dY (t)) dt

)
= dE

(∫ T

0
Z(t) dt

)
+ (c − d)E

(∫ T

0
X(t) dt

)
.

Clearly, the first term is independent of the routeing policy followed. Thus, to minimize C,
we need to minimize the integral X(t) dt if c > d and maximize it if c < d. If c = d,
any policy is optimal. Clearly, when c ≤ d, it is optimal to send all traffic to the busy queue.
The interesting case arises when c > d . Hence, we deal with this case below.

The above discussion implies that, without loss of generality, we can assume c = 1 and
d = 0. Note that this is in stark contrast with the individually optimal policies that depend
on both c and d . We can now formulate the cost minimization as a standard negative dynamic
programming problem, see, for example, [19]. Below we make the details precise.

Let v(i, j) be the minimum expected total cost starting in state (X(0), Y (0)) = (i, j) over
the time interval [0, T ), where

T = min{t ≥ 0 : Z(t) = 0 | Z(0) = i + j}.
Without loss of generality, we can assume that λ + μ = 1. From [19], it follows that v satisfies
the optimality equations

v(i, j) = i + μv(i − 1, j) + λ min(v(i + 1, j), v(i, j + 1)), i ≥ 2, j ≥ 0,

v(1, j) = 1 + μv(j, 0) + λ min(v(2, j), v(1, j + 1)), j ≥ 0,

where v(0, 0) = 0. We are interested in the solution to the above equations, which can be
obtained by the following value iteration for n ≥ 0:

vn+1(i, j) = i + μvn(i − 1, j) + λ min(vn(i + 1, j), vn(i, j + 1)), i ≥ 2, j ≥ 0,

vn+1(1, j) = 1 + μvn(j, 0) + λ min(vn(2, j), vn(1, j + 1)), j ≥ 0,

with initially v0(i, j) = 0 for all i ≥ 1, j ≥ 0, and vn(0, 0) = 0 for all n ≥ 0.
Note that the vn in the above iteration is guaranteed to converge to v as n → ∞, even though

the costs are unbounded. Once v is computed, the theory of negative dynamic programming
says that the optimal policy in state (i, j) is to route an incoming customer to the busy queue
if v(i + 1, j) < v(i, j + 1) and to the idle queue otherwise.

Unfortunately, we have been unable to formally derive any structural results for a socially
optimal policy, the main stumbling block being the term vn(j, 0) on the right-hand side of
the equation for vn+1(1, j). However, based on extensive numerical experimentation we see
that a switching curve policy is optimal. That is, for each i ≥ 1, there is a critical number
g(i) such that the optimal policy in state (i, j) is to route the incoming customer to the busy
queue if j > g(i) and to the idle queue otherwise. Furthermore, based on our numerical
experimentation, we have the following linear approximation to the switching curve:

g(i) = αi, i ≥ 0, (9)

where

α = 2ρ

−1 + ρ + √
(1 − ρ)(1 + 3ρ)

. (10)
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It is straightforward to see that α > 1. We also observe numerically that h(i) ≤ g(i) for
all i ≥ 1, where h is the switching curve for the individually optimal policy. That is, more
customers join the busy queue under the individually optimal policy than under the socially
optimal policy. We illustrate these comments with a numerical example in Section 7.

In the next section we develop a fluid model of this scenario and derive an optimal route-
ing policy.

6. Fluid model and optimal routeing policies

We see from the previous section that it is difficult to characterize the optimal policy for the
fully observable system using the Markov decision process approach. Hence, in this section
we study a fluid version of this problem. We first address the fluid model in the next subsection
and then obtain the optimal policies for this fluid system in the following subsection.

6.1. Fluid scaling limit

We begin with a derivation of the fluid model. Consider {(X(t), Y (t)), t ≥ 0} as defined in
the previous section, where X(t) is the number of customers in the busy queue and Y (t) is the
number of customers in the idle queue. Suppose that we follow a stationary routeing policy that
routes an incoming arrival in state (i, j) to the busy queue with probability p(i, j) ∈ [0, 1] and
to the idle queue with probability 1 − p(i, j) for some pre-specified function p(·, ·). Assume
that X(0) = x0 > 0, Y (0) = 0, and let T = min(t ≥ 0 : X(t−) = 0}. That is, the servers
switch from one queue to another at time T . Then we have X(T ) = Y (T −) and Y (T ) = 0,
and the process repeats from time T onwards as before. Note that as long as λ < μ this is a
stable system for all routeing functions p(·, ·).

Now create a sequence of stochastic processes {(Xn(t), Y n(t)), t ≥ 0} indexed by a
parameter n = 1, 2, 3, . . . with arrival and service rates

λn = nλ, μn = nμ,

and initial state
Xn(0) = nx0, Y n(0) = 0.

Furthermore, let α(x, y) (x ≥ 0, y ≥ 0) be a function such that

α(x, y) = lim
n→∞ p(	nx
, 	ny
).

Now let T n be the first time when the server switches queues in the nth system. We modify the
(Xn, Y n) process beyond T n by assuming that

Xn(t) = 0, Y n(t) = Yn(T n−) for t ≥ T n.

Thus, the (Xn, Y n) process does not change after T n. Then a straightforward application of
[15, Theorem 3.1] yields the following result.

Theorem 12. Let τ = x0/(μ−λ), and {(x(t), y(t)), 0 ≤ t ≤ τ } be a solution to the following
system of differential equations:

d

dt
x(t) =

{
λα(x(t), y(t)) − μ if x(t) > 0,

0 if x(t) = 0,
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and

d

dt
y(t) =

{
λ(1 − α(x(t), y(t))) if x(t) > 0,

0 if x(t) = 0,

with (x(0), y(0)) = (x0, 0). Then, for every δ > 0,

lim
n→∞ P

(
sup

0≤t≤τ

max

(∣∣∣∣Xn(t)

n
− x(t)

∣∣∣∣,
∣∣∣∣Yn(t)

n
− y(t)

∣∣∣∣
)

> δ

)
= 0. (11)

To understand the above theorem, define

T̂ = min{t ≥ 0 : x(t) = 0}.
Then from the above theorem, we see that as the arrival rate (λn) and departure rate (μn) in the
nth system increase so that

λn

n
→ λ,

μn

n
→ μ > λ,

Xn(0)

n
→ x0,

then {(Xn(t)/n, Y n(t)/n), 0 ≤ t < T n} converges to {(x(t), y(t)), 0 ≤ t < T̂ } in the sense
of (11). We say that {(x(t), y(t)), 0 ≤ t < T̂ } is the fluid limit of {(X(t), Y (t)), 0 ≤ t < T }.
Once the server switches to the other queue, we can use a similar fluid model over the second
interval that finishes with the second switch, and so on. However, this cannot be made precise
using the result of [15]; the basic problem being the jump in the (X(t), Y (t)) process at t = T .

Since x(t) and y(t) are deterministic functions of t (they do depend on x0, but we ignore
that to simplify the notation), we can write

r(t) = λ(1 − α(x(t), y(t))), 0 ≤ t ≤ T̂ .

We can think of r(t) as the rate at which fluid is being routed to the idle queue at time t and,
thus, we can now talk about the optimal routeing control in the fluid system as the problem
of picking the optimal routeing function r(·). However, to the best of the authors’ knowledge,
there is no theory that connects the optimal r function to the optimal p function in the original
system. We establish such a connection using numerical experimentation in Section 7.

6.2. Optimal control of the fluid model

In this subsection we consider a fluid system {(x(t), y(t), t ≥ 0} that operates as follows.
Denote by x(t) the amount of fluid in the busy queue and y(t) the amount of fluid in the idle
queue at time t . Customers arrive as a fluid with deterministic rate λ per unit time. The rate at
which the fluid is routed to the idle queue at time t is denoted by r(t) and the rate at which it is
routed to the busy queue is given by λ − r(t). The cost structure remains the same. Once the
server empties a queue, it switches to the other queue and continues to empty it. The fluid is
removed at a deterministic rate μ > λ as long as there is fluid to be removed. Once the system
becomes empty, the fluid is removed at rate λ and the system stays empty forever.

Suppose that the initial state is x(0) = x0 ≥ 0 and y(0) = y0 ≥ 0. Let z(t) = x(t)+y(t) be
the total fluid in the system at time t . Then z(0) = x(0) + y(0) and regardless of the routeing
policy followed, z(t) decreases at rate λ − μ < 0, until it hits 0 at time

T = x0 + y0

μ − λ
,



Optimal routeing in two-queue polling systems 961

and then z(t) remains 0 for t ≥ T . Note that this T is different than the T defined in the
previous subsection, however, this should not cause any confusion. As in the previous section,
the total cost incurred can be written as∫ T

0
(cx(t) + dy(t)) dt = d

∫ T

0
z(t) dt + (c − d)

∫ T

0
x(t) dt.

We want to determine the optimal routeing policy for the incoming fluid so as to minimize this
cost. Since the routeing policy does not affect the trajectory of z, the optimal policy needs to
minimize the second integral if c > d , and maximize it if c < d . Related work on the optimal
control of service (instead of routeing) in fluid systems can be found in [16], [26], and [30].

The optimal routeing policy for t ≥ T is obvious: keep sending the incoming fluid to the
busy queue, and both the queues will remain empty forever. Thus, we concentrate on the
optimal policy for 0 ≤ t ≤ T . If c < d, the optimal policy is to route all traffic to the busy
queue. If c = d , all routeing policies are optimal. Hence, we further concentrate on the c > d

case in the rest of this section.
We assume the server has just switched to queue 1 at time 0 and the system is nonempty.

Thus, x0 > 0 and y0 = 0, and queue 1 is the busy queue at time 0. Now let t (0) = 0 and tk be
the kth time at which the server switches from one queue to the other, called the kth switching
time. These times are completely determined by the function {r(t), t ≥ 0} as follows:

t1 = min

{
t ≥ 0 : x(t) = x0 +

∫ t

0
(λ − r(u)) du − μt = 0

}
.

Thus, queue 2 becomes the busy queue at time t1 and now has

x1 = x(t1) =
∫ t1

0
r(u) du

amount of fluid in it. Queue 1 becomes the idle queue and has no fluid in it. Thus, we can
recursively obtain, for k ≥ 1,

tk+1 = min

{
t ≥ tk : x(t) = xk +

∫ t

tk

(λ − r(u)) du − μ(t − tk) = 0

}
, (12)

xk+1 = x(tk+1) =
∫ tk+1

tk

r(u) du. (13)

We call [tk, tk+1) the kth cycle. Note that xk+1 also represents the total amount of fluid routed
to the idle queue during the kth cycle. In the next theorem we state an important preliminary
result on the optimal policy.

Theorem 13. Let {r(t), t ≥ 0} be a given routeing policy, where r(t) is the instantaneous rate
at which incoming fluid is routed to the idle queue at time t . Let {tk, k ≥ 0} and {xk, k ≥ 0}
be as given in (12) and (13). Let

vk = xk+1

λ
, k ≥ 0,

and define a new routeing policy {s(t), t ≥ 0} (with switchover times {tk, k ≥ 0}) as follows:

s(t) =
{

λ for tk ≤ t ≤ tk + vk ,

0 for tk + vk ≤ t < tk+1.



962 I. J. B. F. ADAN ET AL.

Then the total cost incurred by the routeing policy {s(t), t ≥ 0} is no greater than that of policy
{r(t), t ≥ 0}.

Proof. Let x(t) and y(t) be the fluid levels at time t under the routeing policy {r(t), t ≥ 0},
and xs(t) and ys(t) be the fluid levels at time t under the routeing policy {s(t), t ≥ 0}. First
note that the amount of fluid routed to the idle queue under the {s(t), t ≥ 0} policy during the
kth cycle is λvk = xk+1, which is the same as under the {r(t), t ≥ 0} policy. However, this
fluid is routed at the fastest rate possible; namely, λ. Hence,

ys(t) ≥ y(t), tk ≤ t < tk+1, k ≥ 0.

Since x(t) + y(t) = xs(t) + ys(t) for all t (since the total fluid content is independent of the
routeing policy), it follows that

xs(t) ≤ x(t), tk ≤ t < tk+1, k ≥ 0.

In fact, we have

xs(t) =
{

xk − μt for tk ≤ t ≤ tk + vk ,

xk − μvk − (μ − λ)(t − vk) for tk + vk ≤ t < tk+1.

Thus, xs(t) > 0 for tk ≤ t < tk+1, and {xs(t), t ≥ tk} reaches 0 for the first time at time tk+1.
Thus, the switching times under routeing policy s are the same as under policy r , and xs

k = xk

for all k ≥ 0. Thus, we have

∫ t1

0
(cxs(t) + dys(t)) dt =

∫ t1

0
(cxs(t) + d(z(t) − xs(t))) dt

= d

∫ t1

0
z(t) dt + (c − d)

∫ t1

0
xs(t) dt

≤ d

∫ t1

0
z(t) dt + (c − d)

∫ t1

0
x(t) dt

=
∫ t1

0
(cx(t) + dy(t)) dt.

Thus, the cost under s is no greater than that under r over the first cycle. Since the state of the
polling system under both policies is the same at time t1, the above argument can be repeated
to show that policy s performs at least as well as policy r over every cycle, and, hence, for all
0 ≤ t ≤ T . �

The above theorem implies that a policy is equally well characterized by the switching times
{tk, k ≥ 0} it induces (with t0 = 0) and, among all the policies with these switching times, a
policy that sends all the traffic to the idle queue first as long as possible in each cycle is optimal.
Thus, all that remains to be done is to identify the optimal switching times.

Since the system is deterministic, determining optimal {tk, k ≥ 0} is equivalent to deter-
mining the optimal fluid levels {xk, k ≥ 1} with a given initial level x0. In the next theorem
we show that this can be modeled and solved as a linear quadratic regulator (LQR) problem;
see [2] and [8].
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Theorem 14. The optimal {xk, k ≥ 1} are obtained by solving the following infinite horizon
constrained LQR:

minimize
uk∈R

∞∑
k=0

(1 − ρ)x2
k + ρu2

k, (14a)

subject to xk+1 = ρ(xk − uk), (14b)

0 ≤ uk ≤ xk. (14c)

Proof. Let {tk, k ≥ 0} be the switching times of the optimal policy. From Theorem 13 we
see that there exist {vk, k ≥ 0} such that over the kth cycle [tk, tk+1) it is optimal to route
all fluid to the idle queue over [tk, tk + vk) and then route all fluid to the busy queue over
[tk + vk, tk+1).

Thus, during the interval [tk, tk + vk), the fluid level in the busy queue decreases at rate μ

from xk to xk − μvk , after which it decreases at rate μ − λ from xk − μvk to 0. For the idle
queue, the fluid level increases at rate λ from 0 to λvk over [tk, tk + vk) and then stays constant
over [tk + vk, tk+1). It is straightforward to show that

tk+1 − vk − tk = xk − μvk

μ − λ
.

Therefore, the cost during the kth cycle is

c

(
2xk − μvk

2
vk + (xk − μvk)

2

2(μ − λ)

)
+ d

(
λv2

k

2
+ λvk(xk − μvk)

μ − λ

)
. (15)

Furthermore, we obtain the following dynamics:

xk+1 = λvk

subject to the constraint 0 ≤ μvk ≤ xk . Note that using the dynamics, we have

∞∑
k=0

(x2
k − λ2v2

k ) =
∞∑

k=0

(x2
k − x2

k+1) = x2
0 . (16)

So subtracting a multiple d/2(μ − λ) of the left-hand side of (16) (which is like subtracting a
constant) from the sum of (15) over all k, we need to solve the following problem:

minimize
vk∈R

c − d

2(μ − λ)

∞∑
k=0

(x2
k − 2λxkvk + λμv2

k ),

subject to xk+1 = λvk, 0 ≤ μvk ≤ xk.

To eliminate the product λxkvk , we define the new variable

uk = xk − μvk,

which allows us to write our problem as (14). �

In the next theorem we present the solution to the above problem.
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Theorem 15. The optimal solution to the constrained LQR in Theorem 14 is

uk = −(1 − ρ) + √
(1 − ρ)(1 + 3ρ)

1 + ρ + √
(1 − ρ)(1 + 3ρ)

xk, k ≥ 0, (17)

and
xk+1 = βxk, k ≥ 0, (18)

where

β = 2ρ

1 + ρ + √
(1 − ρ)(1 + 3ρ)

.

Proof. Without constraint (14c), problem (14) is the standard (infinite-horizon discrete-time)
LQR problem. Initially, we ignore constraint (14c). Then the solution to the optimal control
problem (14) is

uk = −f xk,

where
f = (r + bpb)−1bpa

and p is the (unique) nonnegative solution of the discrete time algebraic Ricatti equation, that is,

p = q + a(p − pb(r + bpb)−1bp)a,

where
a = ρ, b = −ρ, q = (1 − ρ), r = ρ.

That is, the optimal solution is

uk = −(1 − ρ) + √
(1 − ρ)2 + 4ρ(1 − ρ)

1 + ρ + √
(1 − ρ)(1 + 3ρ)

xk,

which can be written as (17). Recall that we ignored constraint (14c). However, solution (17)
satisfies (14c), so (17) is also the optimal solution for problem (14) including constraint (14c).
Using (17) in xk+1 = λvk and uk = xk − μvk , leads to (18). �

One can show that 0 ≤ β < 1. Thus, the amount of fluid at the switchover times decreases
geometrically to 0. The optimal policy goes through an infinite number of switchovers before
the system becomes empty. In the next theorem we specify the optimal policy implied by the
above theorem.

Theorem 16. Let α be as in (10). It is optimal to route all incoming fluid to the idle queue at
time t if

y(t) < αx(t) (19)

and all incoming fluid to the busy queue otherwise.

Proof. Let y(0) = y0. We consider three cases.
Case 1: y0 = 0. This was assumed in the proof of the previous theorems in this subsection.

Note that at time vk , the fluid level of the busy queue reduces to

q1 = −(1 − ρ) + √
(1 − ρ)(1 + 3ρ)

1 + ρ + √
(1 − ρ)(1 + 3ρ)

xk
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and that of the idle queue increases from 0 to

q2 = ρ

(
xk − −(1 − ρ) + √

(1 − ρ)(1 + 3ρ)

1 + ρ + √
(1 − ρ)(1 + 3ρ)

xk

)
= 2ρ

1 + ρ + √
(1 − ρ)(1 + 3ρ)

xk.

Thus, (19) is satisfied for t ∈ [tk +vk, tk+1), and not satisfied for t ∈ [tk, tk +vk). At t = tk +vk

it is satisfied at equality.
Case 2: 0 < y0 ≤ αx0. Consider a system starting at time τ = −y(0)/λ, in state

x(τ) = x0 + μτ , and y(τ) = 0. Then following the policy dictated by the switching curve in
(19) from time t ≥ τ will bring the system to state x(0) = x0 and y(0) = y0. Hence, the same
optimal policy will continue to hold for t ≥ 0 from the principle of optimality.

Case 3: 0 < αx0 < y(0) = y0. In this case, define

τ1 = y(0) − x0

α(μ − λ)
, τ2 = y(0)

λ
.

Now consider a system starting at time τ = −(τ1 +τ2), in state x(τ) = x0 +α(μ−λ)τ1 +μτ2,
and y(τ) = 0. Then following the optimal policy dictated by the switching curve in (19) from
time t ≥ τ will bring the system to state x(0) = x0 and y(0) = y0. Hence, the same optimal
policy will continue to hold for t ≥ 0 from the principle of optimality. �

Note that the switching curve in (19) matches the numerically observed curve in (9).

7. Numerical example and conclusions

In this section we present a numerical example with the following parameters:

λ = 0.3, μ = 0.7, c = 6, d = 1.

In Figure 2 we present a plot of the three switching curves . The lower curve corresponds to
the switching curve h of the individually optimal policy. It is optimal to join the busy queue in
all states (i, j) that lie above this curve. We have numerically observed that as d approaches 0,
the switching curve moves up and it reaches h(i) = i when d = 0, that is, the individually
optimal policy is to join the shortest queue when d = 0. On the other hand, as d increases, the
switching curve moves down and reaches h(i) = 0 when d ≥ c, that is, the optimal policy is
to always join the busy queue.

The upper curve in Figure 2 corresponds to the switching curve g of the socially optimal
policy. As we discussed before, this is independent of c and d as long as c > d. The middle
curve corresponds to the fluid switching curve αi, where α is as in (10). The fluid curve is also
independent of c and d as long as c > d . It is interesting to see that the two curves are quite
close. For both policies, it is optimal to join the busy queue in all states (i, j) that lie above
the curve.

Observe that both the socially optimal and the fluid switching curves are above the curve
j = i, while the individually optimal curve is below it. This observation for the individually
optimal policies was proved in Theorem 8. It follows for the fluid policy, since we know that
α > 1. We have not been able to prove it for the socially optimal policy.

In Figure 2 we also see that more customers join the busy queue under the individually
optimal policy than under the socially optimal policy. This is consistent with the general
observation in other queueing systems, and it is a result of externalities: in individually optimal
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Figure 2: The switching curves for the three policies.

policies, customers are selfish and ignore the cost their decision imposes on other customers
and, hence, tend to over-utilize the resources.

It would be interesting to formally prove these observations, but we leave that as future work.
In this paper we considered a simple exhaustive polling system with two queues, identical
exponential service times, and no switchover times and switchover costs. We considered three
levels of observability: unobservable, almost unobservable, and fully observable, and derived
individually and socially optimal policies. The almost unobservable case assumes that we know
where the server is, but not the queue lengths. One can also consider the case where the queue
lengths are known, but not where the server is (this could be called the almost observable case).
Although it is possible to derive this expression, it becomes rather involved (since we need to
know where the server is, given the queue lengths), and, hence, we have not considered this
case here. We expect that the analysis will be necessarily of a numerical nature.

Clearly, several other extensions are possible: to more than two queues, nonidentical
exponential service times, general service times, service policies other than exhaustive service,
nonzero switchover times or costs, and so on. Each of these extensions makes the analysis
more difficult, since the expressions for the expected queue lengths become more involved.
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