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2 Preliminaries

I Sphere of radius r: Br , {x ∈ Rn | ‖x‖ < r} .
I A function f : Rn → Rm is said to be uniformly continuous on a set S if:

∀ε > 0 ∃δ > 0 : ‖x − y‖ < δ ⇒ ‖f (x)− f (y)‖ < ε ∀x , y ∈ S .

Lemma: Consider a differentiable function f : R→ R. If a constant M ∈ R exists such that

sup
x∈R

∣∣∣∣ df
dx

(x)

∣∣∣∣ ≤ M ,

then f is uniformly continuous on R.
I A continuous function α : [0, a)→ [0,∞) is said to belong to class K (α ∈ K) if:

• it is strictly increasing, and
• α(0) = 0.

I A continuous function β : [0, a)× [0,∞)→ [0,∞) is said to belong to class KL (β ∈ KL) if
• for each fixed s the mapping β(r, s) belongs to classK with respect to r, and if
• for each fixed r the mapping β(r, s) is decreasing with respect to s and β(r, s)→ 0 as s →∞.
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Consider the system

ẋ = f (t , x) where f (t ,0) = 0 ∀t ≥ 0 (1)

I The equilibrium point x = 0 of (1) is said to be globally asymptotically stable (GAS) if for all t0 ∈ R+ a
function β ∈ KL exists such that for all x(t0) ∈ Rn

‖x(t)‖ ≤ β(‖x(t0)‖ , t − t0) ∀t ≥ t0 ≥ 0

I The equilibrium point x = 0 of (1) is said to be uniformly globally asymptotically stable (UGAS) if a
function β ∈ KL exists such that for all (t0, x(t0)) ∈ R+ × Rn

‖x(t)‖ ≤ β(‖x(t0)‖ , t − t0) ∀t ≥ t0 ≥ 0

4 Preliminaries

Example (Panteley, Loría, Teel, 1999)
Consider the system

ẋ =


1

1+t if x ≤ − 1
1+t

−x if |x | ≤ 1
1+t

− 1
1+t if x ≥ 1

1+t

For each r > 0 and t0 ≥ 0 there exist k > 0 and γ > 0 such that for all t ≥ t0 and |x(t0)| ≤ r:

|x(t)| ≤ k |x(t0)|e−γ(t−t0) ∀t ≥ t0 ≥ 0

However, always a bounded (arbitrarily small) additive perturbation δ(t , x) and a constant t0 ≥ 0 exist
such that the trajectories of the perturbed system ẋ = f (t , x) + δ(t , x) are unbounded.
Main reason for this negative result: the constants k and γ are allowed to depend on t0, i.e., for each value
of t0 different constants k and γ may be chosen.
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Lemma (Khalil 1996, Lemma 5.3: Robustness to perturbations for UGAS)

Let x = 0 be a uniformly asymptotically stable equilibrium point of the nominal system ẋ = f (t , x) where
f : R+ × Br → Rn is continuously differentiable, and the Jacobian

[
∂f
∂x

]
is bounded on Br , uniformly in t .

Then one can determine constants ∆ > 0 and R > 0 such that for all perturbations δ(t , x) that satisfy the
uniform bound ‖δ(t , x)‖ ≤ δ < ∆ and all initial conditions ‖x(t0)‖ ≤ R , the solution x(t) of the perturbed
system ẋ = f (t , x) + δ(t , x) satisfies

‖x(t)‖ ≤ β(‖x(t0)‖ , t − t0) ∀t0 ≤ t ≤ t1

and

‖x(t)‖ ≤ ρ(δ) ∀t ≥ t1

for some β ∈ KL and some finite time t1, where ρ(δ) is a class K function of δ.
Furthermore, if x = 0 is a uniformly globally exponentially stable equilibrium point, we can allow for
arbitrarily large δ by choosing R > 0 large enough.

6 Problem

Lesson learned from example

For robustness we need uniform global asymptotic stability.

Subject of this talk

How to show this when we do not have a proper Lyapunov function, i.e, when V̇ is negative semi-definite.

We will see:
I Using Barbălat (+ signal chasing) shows only GAS, whereas we want UGAS.
I How to show UGAS using different tools

We need one more slide with preliminaries before we move to an illustrative example. . .
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Lemma (Barbălat, 1959)
Let φ : R+ → R be a uniformly continuous function. Suppose that limt→∞

∫ t
0 φ(τ)dτ exists and is finite.

Then lim
t→∞

φ(t) = 0.

Corollary

If f ∈ L∞, ḟ ∈ L∞, and f ∈ Lp for some p ∈ [1,∞), then lim
t→∞

f (t)p = 0, so lim
t→∞

f (t) = 0.

Lemma (Micaelli, Samson, 1993)
Let f : R+ → R be any differentiable function. If limt→∞ f (t) = 0 and

ḟ (t) = f0(t) + η(t) t ≥ 0

where f0 is a uniformly continuous function (e.g., ḟ0 is bounded) and limt→∞ η(t) = 0, then
limt→∞ ḟ (t) = limt→∞ f0(t) = 0.

8 Example (Jiang, Nijmeijer, 1997)

Consider tracking error dynamics for kinematic model of mobile robot tracking a reference, expressed in its
body fixed frame:

ẋe = ωye − v + vr cos θe

ẏe = −ωxe + vr sin θe

θ̇e = ωr − ω

where ωr and vr are given functions of time, and 0 < vmin
r ≤ vr (t) ≤ vmax

r , |v̇r | ≤ amax, |ωr | ≤ ωmax. Using

v = vr cos θe + k1xe

ω = ωr + k2ye vr
sin θe

θe
+ k3θe NB: More correct:

sin θe

θe
⇒
∫ 1

0
cos(θe s)ds

with k1, k2, k3 > 0, results in the closed-loop system

ẋe = ωye − k1xe

ẏe = −ωxe + vr sin θe

θ̇e = −k2ye vr
sin θe

θe
− k3θe
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Closed-loop system:

ẋe = ωye − k1xe ẏe = −ωxe + vr sin θe θ̇e = −k2ye vr
sin θe

θe
− k3θe

Lyapunov function candidate: V = 1
2 x2

e + 1
2 y2

e + 1
2k2
θ2

e

Differentiating along solutions:

V̇ = xe (ωye − k1xe ) + ye (−ωxe + vr sin θe ) +
1
k2
θe (−k2ye vr

sin θe

θe
− k3θe ) = −k1x2

e −
k3

k2
θ2

e

Barbălat (or Corollary): V̇ ∈ L∞, ˙̇V ∈ L∞, V̇ ∈ L1, so lim
t→∞

V̇ (t) = 0, i.e., lim
t→∞

xe (t) = lim
t→∞

θe (t) = 0.

Lemma of Micaelli and Samson: θ̇e = − k2ye vr︸ ︷︷ ︸
f0(t)

+ k2ye vr

(
1− sin θe

θe

)
− k3θe︸ ︷︷ ︸

η(t)

f0 uniformly continuous, lim
t→∞

η(t) = 0, so lim
t→∞

ye (t)vr (t) = 0 and therefore lim
t→∞

ye (t) = 0.

From the above we can conclude global asymptotic stability of the closed-loop system.

10 Standard form

Previous example is standard proof. More general case: ẋ1 = f1(x1, x2, t), ẋ2 = f2(x1, x2, t)

I Lyapunov function: V (x1, x2, t) positive definite.
I Derivative along dynamics: V̇ (x1, t) negative semi-definite.
I Using Barbălat: x1 → 0.
I Using Micaelli, Samson: f1(0, x2, t)→ 0, which implies x2 → 0.

Or even more general: ẋ1 = f1(x1, x2, x3, t), ẋ2 = f2(x1, x2, x3, t), ẋ3 = f3(x1, x2, x3, t)

I Lyapunov function: V (x1, x2, x3, t) positive definite.
I Derivative along dynamics: V̇ (x1, t) negative semi-definite.
I Using Barbălat: x1 → 0.
I Using Micaelli, Samson: f1(0, x2, x3, t)→ 0, which implies x2 → 0.
I Using Micaelli, Samson: f2(0,0, x3, t)→ 0, which implies x3 → 0.

Or even more general. . .

Using this approach we can show global asymptotic stability. However, we look for uniform result!
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Theorem (Corollary of Matrosov like theorem by Loría, Panteley, Popović, Teel, 2005)

Consider the dynamical system

ẋ = f (t , x) x(t0) = x0 f (t ,0) = 0 (2)

f : R+ × Rn → Rn locally bounded, continuous almost everywhere, and locally uniformly continuous in t .
If there exist
◦ j differentiable functions Vi : R+ × Rn → R, bounded in t , and
◦ continuous functions Yi : Rn → R for i ∈ {1,2, . . . j} such that
I V1 is positive definite and radially unbounded,
I V̇i (t , x) ≤ Yi (x), for all i ∈ {1,2, . . . , j},
I Yi (x) = 0 for i ∈ {1,2, . . . , k − 1} implies Yk (x) ≤ 0, for all k ∈ {1,2, . . . , j},
I Yi (x) = 0 for all i ∈ {1,2, . . . , j} implies x = 0,

then the origin x = 0 of (2) is uniformly globally asymptotically stable.

Question: how to determine suitable functions Vi and Yi (for i > 1)?

12 Example (revisited)

Closed-loop system:

ẋe = ωye − k1xe ẏe = −ωxe + vr sin θe θ̇e = −k2ye vr
sin θe

θe
− k3θe

Lyapunov function candidate: V1 = 1
2 x2

e + 1
2 y2

e + 1
2k2
θ2

e

Differentiating along solutions:

V̇1 = −k1x2
e −

k3

k2
θ2

e = Y1

Consider V2 = −θe θ̇e . Then

V̇2 = −θ̇2
e − θe θ̈e = −

(
−k2ye vr + k2ye vr

(
1− sin θe

θe

)
− k3θe

)2

− θe θ̈e

= −(k2ye vr )2 + 2k2ye vr
[
k2ye vr

(
1− sin θe

θe

)
− k3θe

]
−
[
k2ye vr

(
1− sin θe

θe

)
− k3θe

]2 − θe θ̈e = Y2

Note that Y1 = 0 implies Y2 ≤ 0. Furthermore, Y1 = Y2 = 0 implies xe = ye = θe = 0.
Therefore: uniform global asymptotic stability.
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More general case: ẋ1 = f1(x1, x2, t), ẋ2 = f2(x1, x2, t)

I Lyapunov function: V1(x1, x2, t) positive definite.
I Derivative along dynamics: V̇1(x1, t) ≤ Y1(x1) negative semi-definite.
I Use V2 = −xT

1 ẋ1. Then V̇2 = Y2.
I Note that Y1 = 0 implies Y2 = −f1(0, x2, t)2 ≤ 0. Furthermore Y1 = Y2 = 0 implies x1 = x2 = 0.
I Conclusion: uniform global asymptotic stability.

Or even more general: ẋ1 = f1(x1, x2, x3, t), ẋ2 = f2(x1, x2, x3, t), ẋ3 = f3(x1, x2, x3, t)

I Lyapunov function: V1(x1, x2, x3, t) positive definite.
I Derivative along dynamics: V̇1(x1, t) ≤ Y1(x1) negative semi-definite.
I Use V2 = −xT

1 ẋ1. Then V̇2 = Y2.
I Note that Y1 = 0 implies Y2 = −f1(0, x2, x3, t)2 ≤ 0. Furthermore Y1 = Y2 = 0 implies x1 = x2 = 0.
I Use V3 = −xT

2 ẋ2. Then V̇3 = Y3.
I Y1 = Y2 = 0 implies Y3 = −f2(0,0, x3, t)2 ≤ 0. Also, Y1 = Y2 = Y3 = 0 implies x1 = x2 = x3 = 0.
I Conclusion: uniform global asymptotic stability.

14 Conclusions

Conclusions

I We showed the need for uniform asymptotic stability
I We provided a way how to modify commonly used techniques for showing GAS to prove UGAS

instead.


