
An Example of a Bounded Tracking Controller 

A prototype example for designing a globally 
bounded tracking controller is presented. 

The solution obtained by using composite or 
switching controllers. 
First, the system is steered 'close' to the desired 
trajectory, after which a local tracking controller is 
applied. 
For the considered system, both controllers are 
bounded and therefore boundedness of the 
composite controller follows. 

A simulation illustrates the idea. 

1 Introduction 

In this paper we study the problem of finding global tracking controllers 
that meet input constraints, This study is motivated by the existence of 
actuator saturation or constraints on actuators as commonly encoun- 
tered in control engineering. 
Very often controllers are designed without taking into account the actu- 
ator constraints and simply saturating the designed controller in case 
the actuator limits are encountered. 
For one or two-dimensional linear systems this strategy may work, but 
in [3] it has been shown that for a triple integrator such saturated linear 
feedback is not sufficient. 

The fact that even linear feedback laws when saturated can even lead 
to instability, known as anti-windup (AWR), has motivated a large 
amount of research. 
Solutions to the bounded feedback stabilisation of linear systems can 
be found in [ I  21 and [I 31. 
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On the other hand, for nonlinear systems relatively few results on 
bounded feedback stabilisation are available. Most of today's results in 
nonlinear saturated control deal with rigid robot systems, see e.g. [ I  31, 
or mobile robots, see 141. Also extensions with bounded output feed- 
back and tracking can be found in [9] and references therein. 
Another recent contribution on nonlinear saturated feedback is [2] where 
a backstepping procedure for the design of globally stabilising state 
feedback control laws that meet input constraints is presented. 

In this paper we treat the problem of finding global tracking controllers 
that meet input constraints by introducing the idea of composite con- 
trollers. 
The control scheme essentially combines a bounded stabilising con- 
troller with a local asymptotically stable tracking controller and is illus- 
trated on the driven van der Pol system. 
However, the idea is applicable for general second order nonlinear sys- 
tems for state feedback, output feedback and adaptive state feedback, 
as is shown in [6], see also [7,8]. 

The organisation of this paper is as follows. Section 2 contains the prob- 
lem formulation and preliminaries. In section 3 the key idea for the con- 
struction of a globally bounded controller is explained, In section 4 the 
controller design for the driven van der Pol system in case of state feed- 
back is considered in detail. 
The resulting performance is shown in section 5 by means of numerical 
simulations. Section 6 contains concluding remarks, 

2 Preliminaries and problem formulation 

2.1 The van der Pol system 

The example on which we illustrate the main ideas is the van der Pol 
system. 

Fig. 2.1. The van der Pol c~rcu~t 
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The van der Pol system can be realised as the electrical circuit of Fig- 
ure 2.1. 
We assume the inductor and capacitor to be linear, time-invariant and 
passive, i.e. L > 0 and C > 0. 
The resistive element is an active circuit characterised by the voltage- 

1 ? 
controlled i - v characteristic " ( v )  = - " 
Using Kirchhoff's current law we obtain 

Differentiating with respect to t and rescaling the time-variable results in 

In case we add a source of alternating voltage to the clrcurt, we obtaln 

i i + p ( v 2  - l ) i , + v = q c o s w t  
(1 

which is known as the driven van der Pol oscillator, with 
P = & .  

Van der Pol used this equation to model an electrical circuit with a tri- 
ode valve. 

It is interesting to note that this system exhibits chaotic behaviour, for 
various parameter values as for instance IJ. = 5, and q = 5, and o = 
2.463, cf. [I I ] ,  showing that the dynamics is very rich and complex. 

Throughout, we consider a controlled version of the driven van der Pol 
equation : 

where p. > 0, q and o are known constants and u is the input. 

2.2 Problem formulation 

Consider the (complex) system (2). Suppose that measurements of x 
and x are available. Let xd(t) be a desired trajectory for the system (2), 
and assume that xd(t) is at least two times continuously differentiable in 
t and satisfies 

Ix, (t)l< B,, Ix., (t>l< B1, 
(3) 

for given positive constants Bn, 6. and 82. Then the tracking control 
problem under actuator constraints consists of designing, if possible, a 
state feedback law u ( t )  = cr (x, x, x, ,id , t )  for the control u(t) 
such that x(t) and x(t) approach their desired values xo(t) and xd(t) while 
keeping the applied input u(t) within in advance specified bounds, i.e. 
there exists a constant urnaxsuch that 

lu(t)l< u,,,, for all t  2 0 

In other words : design a controller for u(t) such that 

while satisfying (4) for all initial conditions (x(O),x(O)). 

3 The main idea: using composite controllers 

The problem under consideration is that of finding a controller 

t l( t)  = a (x, i, xx, , ,id , t )  that guarantees the tracking condition 
(5) under the constraint (4). No matter how large the initial errors are, the 
control effort has to remain within the bounds (4). 
To solve this problem we introduce the idea of composite controllers. 
The problem of finding an a priori bounded tracking controller can be 
divided into two subproblems. First of all we need to find a local track- 
ing controller. In general this controller is not a priori bounded : the larg- 
er the errors are, the larger the control action becomes. How do we 
meet the input constraints globally ? 

Notice that even though this local tracking controller might not be a pri- 
ori bounded, we can determine a bound on the input when we restrict 
our selves to a (small) region of attraction around the origin of the track- 
ing-error dynamics. That is, we can find a subset of points in the error- 
dvnamics state-space that is such that if we start in this set, we will 
remain in that set for all future time. Furthermore for any point in the set 
the tracking control meets the input constraints. There is no need to 
modify the controller on this set. We only need to redefine the controller 
due to the input constraints on the other points in state space. 

If we are able to find a controller that globally brings our system into the 
region of attraction of the local tracking controller, while meeting the 
input constraints, our problem has been solved. Since, then we first use 
this controller until we are in the region of attraction of the tracking con- 
troller and then switch to the tracking controller to achieve tracking. This 
composite controller yields global tracking and meets the input con- 
straints 

region of attraction 
e=x-x, of local tracking 

controller 

Fig. 3.1. A graphical representation of the main idea 

The idea can be depicted as follows (see Figure 3.1). Assume we have 
a local tracking controller with the solid circle as its region of attraction. 
On this region the tracking controller is bounded. Then we look for a 
second controller that is bounded and brings our system into this region 
of attraction. Using these two controllers we can compose an a priori 
bounded global tracking controller. The composition consists of first 
applying the bounded global controller that brings us into the region of 
attraction (solid circle) and when we are in that region of attraction, e.g. 
in the dashed circle OE, we switch to the tracking controller. 

The key-idea is that when the tracking error is large we mainly have to 
concentrate on reducing the tracking error rather than on tracking itself. 
Only when the tracking errors have become small enough we start 
tracking. In this way we find a global controller that guarantees tracking 
while meeting the input constraints. 

Therefore the problem of finding a global tracking controller that meets 
input constraints can be divided into two subproblems, namely that of 
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1. Finding a tracking controller. 2 

2 .  Finding a bounded controller that brings us into the region of attrac- , 
tion of the controller found in 1. 

Since the desired trajectory is assumed to be a priori bounded (c.f, (3)) 1 

the bounded controller that brings us into the region of attraction of the 
tracking controller is for simplicity chosen to be a controller that steers O 5  

the system towards a fixed point for the system (2). Of course several - 
other, more sophisticated, choices are possible. f - 0 

4 Bounded tracking control of 
the van der Pol system 

In thls section we conslder the problem of flndlng a global tracking con- - - - - - - - 

troller for the drlven van der Pol system (2), that remains a prior1 bound- 5 4 3 2 1  0 1 2 3 4 5  

ed We assume that the reference trajectory to be tracked 1s bounded, 
Y 

I e that ~t satlsfles (3) To arrive at a bounded tracking controller we use F I ~  4 1 The function tanhly) 

the compos~te controller Idea as presented In the prevlous section 

First we need to have a (not necessarily a priori bounded) tracking con- 
troller Following section 3, we combine the two control laws (6) and (8) into a 

globally tracking controller that is bounded. We first use the controller 
Proposition 4.1. Consider the system (2) together with the feedback-lin- (8) to reduce the tracking error within reasonable bounds. Since the 
earising control law desired trajectory to track satisfies (3) we know that, no matter what ini- 

tial conditions we have, eventually our tracking errors will be within in 
2 u =id - / ( l - x  ) i + x - K , e - K , e - q c o s w t  advance known bounds. 1.t can be shown that we are guaranteed to 

enter the set 

. . .  
where KD>O and Ks>O are constant and e = x - x,, e = x  - x,  . QFb{(e,2)lie2 + + K ~  e2  5 +B; $ 4 ~ ~  ( B ~  +2)?  + E } (9) 
The resulting closed-loop system is globally asymptot~cally stable. 

The proof of this proposition in given in [6] and merely follows from the 
fact that the error dynamics is given by for all E > 0. That is, for all E > 0 we have that for all initial conditions, 

x(O),,i(O) , no matter how large, there exists a time tc 2 0 
e + K , e + K , e = O ,  

(7) (depending on the initial conditions) such that when applying (8) to (2) 
we e\ient~la!!y  ha\^^! ( ~ ( t  ), P( t ,  )) E Qc 

v v i i i b ;  I is dsy~~~p iu i i~a i i y  siabit: ior K0allu iio posiiive. 

Although the controller (6) is a global tracking controller, it is not a 
bounded tracking controller. As proposed in section 3 we now look for 
a globally bounded controller that steers the system towards a fixed 
point for the system (2). In this case the point (x,xj=(2,0) in order to arrive 
at a simple controller. As mentioned in section 3, more clever choices 
for bounded controllers that bring us into the region of attraction of the 
tracking controller can be made. 

Proposition 4.2 Consider the system (2) together with the control law 

Once we are in RE we can switch to the controller (6). From the proof of 
Proposition 4.1 we know that when we are in 0 6  and apply the controller 
(6) we remain in Qe. 

Furthermore we have asymptotic stability. Since we only use (6) once we 
are in QE we can determine a bound on u(tj for t r tS. It is clear that (8) 
also results in a bounded control. Therefore, the composite controller 
yields global asymptotic stability of the tracking error dynamics, while 
meeting the input constraints. 

u = 2  - q  cos ccjt - K p  tanh(A(x - 2) )  
(8) 

The forego~ng can be summarised as follows. 

e >  - e-' 
where K, 2 0 and X > 0 are constants and tanh(y) = , see Proposition 4.3 Cons~der the system (2) Then there extsts a switchtng 

e' + e-' bme t. 2 0 such that the composite controller 

Figure 4.1, For the resulting closed-loop system we have 2  - qcos wt  - K,,,, tanh(1~ (x - 2))  for t  i t )  

lim 11 = ,, 

s, - , u ( l - x 2 ) , t + x - K ,  i - K p e - q c o s w t  j o ~ t 2 t ~  
x ( t )  = 2 .  (1 0) 

t - 4 ~  

A proof of this proposition can be found in [6]. 
ylelds global asymptotic stability of the track~ng error dynamics. Fur- 
thermore, we can determine upex such that ~ ( t )  5 u-,for all t r 0. 
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5 Simulations We see that in the beginning the main emphasis is put on decreasing x. 
At time t = 3.88 s the controller (8) has brought our system into the 

TO illustrate the results we simulated the system (2) with (1 = 5, q = 5, region where the tracking controller is guaranteed to remain  mall' we 
and = 2.463, We consider the problem of tracking the desired trajec- switch to the tracking controller resulting in tracking of the desired tra- 
tory xd(t) = sin t. We start our simulations from the initial conditions x(0) jectory. 
= 3, x(0) = -2. The control effort needed for the composite controller to achieve track- 

ina is onlv two times the control effort needed to track the desired tra- 
jegtory, i h i c h  forms a clear reduction. 

For our first simulation we use feedback linearising controller The price we obviously have to pay is a slower convergence, which is 

u = :i., - 5(1- xZ)i + x - 4P - 4e - 5cos 2.463t not surprising since we use less control effort. 
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Fig. 5.1. Feedback linearising controller 

The results are depicted in Figure 5.1. We see that a quick convergence 
to the desired trajectory. The price we have to pay is that we need an 
initial control effort of u(0) = -82, almost ten times as much as will be 
needed for tracking. 

In our second simulation, we use the same local tracking controller, but 
in combination with the controller (8), as proposed in the previous sec- 
tion. This to reduce the control effort needed. To be precise: we use the 
control law (10) with A =  5 , K ,  = 4 ,  K ,  = 4 , where ti- is 

defined as the first time-instant that 8(x - 2)2 + ,t2 5 0.01 . The 
resulting performance is depicted in Figure 5.2. 

3 =_--. --- 
tme Is]  

--- --- -- .~- 
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2 t  

--- -- Y I -  
\ x. 
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time Is] 

~~ . .- - .... 7 -  , 

Fig. 5.2. Composite controller 

6 Concluding remarks 

We introduced the idea of using composite controllers as a solution to 
the tracking control problem under input constraints. The idea has been 
illustrated by means of the driven van der Pol system. A solution to the 
tracking control problem using state feedback has been presented and 
illustrated bv numerical simulations. 

The idea of composite controllers is also applicable for the problem of 
output feedback and for the adaptive tracking control problem. It is not 
restricted to the driven van der Pol system but applicable to any second 
order nonlinear system. Using this idea bounded tracking controllers 
(both state feedback, output feedback and adaptive state feedback) are 
presented in [6] for the driven Duffing system, the van der Pol system, 
and rigid robot manipulators. 

The idea of using composite controllers turned out to be useful for 
showing global asymptotic stability of (delayed) PID control for rigid 
robot manipulators [lo]. The controller presented in [ lo]  is the composi- 
tion of a local PID controller and a global PD controller that brings the 
system into the region of attraction of the PID controller. The switch sim- 
ply consists of turning on the integrator when the errors have become 
small enough. 

lm Vol. 39, no 2. 1998 



An Example of a Bounded Tracking Controller 

References 
1. Burkov, I.V., 'Stabilisation of mechanical systems via bounded control and without 

velocity measurement" In: Proc. 2nd Russ~an-Swedish Control conf., pages 37-41, 
St, Petersburg, Russia, (1 995). 

2. Freedman, R. and L. Praly. "Integrator backstepping for bounded controls and con- 
trol rates", IEEE Transactions on Automatic. Control, Vol. 43 (Z), 258-262 (1998). 

3. Fuller, A.T. "In the large stability of relay and saturated control systems with linear 
controllers.", International Journal of Control, Vol. 10, 457-480 (1969). 

4. Jiang, Z.-P., E. Lefeber and H. Nijmeijer, "Stabilisation and Tracking of a Nonholo- 
nomlc Moblle Robot with Saturating Actuators", to appear in 3rd Portuguese Con- 
ference on Automatic Control (Control 98), Colmbra, Portugal (1998). 

5. Kelly, R., V. SantibaAez and H. Berghuis, "Point-to-point robot control under actua- 
tor constraints" Control engineering practice, Vol. 5 (1 l ) ,  1555-1562 (1997). 

6. Lefeber, E. "(Adaptive) control of chaotic and robot systems via bounded feedback 
control1' Master's thesis, Faculty of Mathematical Sciences, University of Twente, 
The Netherlands, April 1996. 

7 .  Lefeber, E., and H. Nijmeijer, "Globally bounded tracking controllers for rigid robot 
systems", In: Proceedings 4th European Control Conference, Brussels, Belgium. 
July 1-4, VOI. 5. TH-E-G3,6pp (1997). 

8. Lefeber, E, and H. Nijmeijer, "Bounded tracking controllers for the chaotic (forced) 
Duffing equation", In: Proceedings 1st International Conference on Control of Oscil- 
lations and Chaos (F.L. Chernousko & A.L. Fradkov, Eds.), St. Petersburg, Russia. 
August 27-29, Vol. 3. pp 415-41 8 (1997). 

9. Loria, A,, and H. Nijmeijer, "Bounded output feedback track~ng control of fully actu- 
ated Euler-Lagrange systems", Systems & Control Letters, Vol. 33 (3), 151-162 
i i  998). 

10. Loria, A,, E. Lefeber and H. N~jrneijer, 'Global asymptotic stability of robot manipu- 
lators with linear PID and P12D control", submitted to IEEE Transactions on Auto- 
matic Control. 

11. Parlitz, U, and W. Lauterborn, "Period-doubling cascades and devil's staircases of 
the driven van der Pol equation". Physical Review A. Vol. 36 (3), 1428-1434 (1 987). 

12. Sussmann, H.J.. E.D. Sontag and Y Yang, "A general result on the stabilisation of 
linear systems using bounded controls1', IEEE Transactions on Automatic Control, 
Voi. 39. 241 1-2425 (1 994). 

13. Teel. A.R., "Global stabilisation and restricted tracking for multiple integrators with 
bounded control". Systems & Control Letters 18. 165-1 71 (1 992). 

Erjen Lefeber 

Erjen Lefeber graduated in 1996 at the Depart- 
ment of Applied Mathematics of the University of 
Twente. 
His thesis was on "(Adaptive) control of chaotic 
and robot systems via bounded feedback control" 
and was awarded the Klvl-regeltechniekprijs 
1996. 
In May 1996 he started his Ph.0 on "(Adaptive) 
control of nonlinear mechanical systems with 
nonholonomic constraints". 
His main research interest is in the field of nonlin- 
ear control. 

In the department of Applied Physics of the University of Twente, The Netherlands, there is a vacancy for a 

Full Professor in Control and Measurement 
in Physics Instrumentation 
full time position 

You are an engineering scientist, preferably physicist, know- 

ledgeable and experienced in the apllication of system 

dynamics, simulation, measurement and control techniques in 

instrumentation, based upon physical principles derived from 

(at least one of) the areas Optics, Materials Science or Fluid 

Dynamics. 

For further information you are invited to consult our www-site: 
University of Twente 


