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Problem

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

Kumar, Seidman (1990)

Clearing
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Problem

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

Do existing policies yield satisfactory network performance?

How to obtain pre-specified network behavior?

Main subject of study (modest)

Fixed, deterministic flow networks (not evolving, constant inflow)
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Approach

Notions from control theory

1 Generate feasible reference trajectory

2 Design (static) state feedback controller

3 Design observer

4 Design (dynamic) output feedback controller

Parallels with this problem

1 Determine desired system behavior

2 Derive non-distributed/centralized controller

3 Can state be reconstructed?

4 Derive distributed/decentralized controller
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Example 1: Single machine

Single machine

x1

x2

µ1 = 8

µ2 = 9

λ1 = 3

λ2 = 1

σ12 = 3, σ21 = 1
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Example 1: Single machine

Single machine

x1

x2

µ1 = 8

µ2 = 9

λ1 = 3

λ2 = 1

σ12 = 3, σ21 = 1

State

x0 remaining setup time
xi buffer contents (i = 1, 2)
m mode ∈ {1, 2}

Input

u0 activity ∈ {➀, ➁, ➊, ➋}
ui service rate step i = 1, 2
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Example 1: Single machine

Single machine

x1

x2

µ1 = 8

µ2 = 9

λ1 = 3

λ2 = 1

σ12 = 3, σ21 = 1

Continuous dynamics

ẋ0(t) =

{
−1 if u0 ∈ {➊, ➋}
0 if u0 ∈ {➀, ➁}

ẋ1(t) = λ1 − u1(t)

ẋ2(t) = λ2 − u2(t)

Discrete event dynamics

x0 := σ21 m := 1 if u0 = ➊ and m = 2

x0 := σ12 m := 2 if u0 = ➋ and m = 1
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Example 1: Single machine

Input contraints

u0 ∈ {➊, ➋} u1 = 0 u2 = 0 if x0 > 0

u0 ∈ {➀, ➋} u1 ≤ µ1 u2 = 0 if x0 = 0, x1 > 0, m = 1

u0 ∈ {➀, ➋} u1 ≤ λ1 u2 = 0 if x0 = 0, x1 = 0, m = 1

u0 ∈ {➊, ➁} u1 = 0 u2 ≤ µ2 if x0 = 0, x2 > 0, m = 2

u0 ∈ {➊, ➁} u1 = 0 u2 ≤ λ2 if x0 = 0, x2 = 0, m = 2

Objective

Minimize:

lim sup
t→∞

1

t

∫ t

0
x1(τ) + x2(τ) d τ or

1

T

∫ T

0
x1(τ) + x2(τ) d τ
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Desired behavior

Single machine

x1

x2

µ1 = 8

µ2 = 9

λ1 = 3

λ2 = 1

Desired behavior

0 5 10 15

5

x1

x2

Remarks

Many existing policies assume non-idling a-priori

Slow-mode optimal if (λ1
µ1

+ λ2
µ2

) + (λ2 − λ1)(1− λ2
µ2

) < 0.

Trade-off in wasting capacity: idle ⇔ switch more often
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Controller design

Main idea

Lyapunov: if energy is decreasing all the time ⇒ system settles
down at constant energy level

Lyapunov function candidate

0 5 10 15 20 25 30

5

10

x1

x2
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Controller design

Lyapunov function candidate

The smallest additional mean amount of work from all feasible
curves for state (work:x1/µ1 + x2/µ2).

Phase plane

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

1

2

3

4

5

6

7

8

9

10

11

x1

x2

Time evolution work

0 1 2 3 4 5 6 7 8
0

1

2

3

4

-4 -3 -2 -1 0
0

1

2

3

4
Work

Time

Ê À Ë Á

Ê À Ë Á

Controller design

Let Lyapunov function candidate decrease as quickly as possible
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Controller design (Result)

Single machine

x1

x2

µ1 = 8

µ2 = 9

λ1 = 3

λ2 = 1

Desired behavior

0 5 10 15

5

x1

x2

Resulting Controller, cf. [Lefeber, Rooda (2006)]

When serving type 1:
1 empty buffer
2 serve until x2 ≥ 5
3 switch to type 2

When serving type 2:
1 empty buffer
2 serve until x1 ≥ 12
3 switch to type 1
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Recap

Notions from control theory

1 Generate feasible reference trajectory

2 Design (static) state feedback controller

3 Design observer

4 Design (dynamic) output feedback controller

Parallels with this problem

1 Determine desired system behavior

2 Derive non-distributed/centralized controller

3 Can state be reconstructed?

4 Derive distributed/decentralized controller
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Example 2: Kumar-Seidman case

Transactions on Automatic Control, Vol 35, No 3, March 1990

A B

λ = 1
x1 x2

x3x4

µ1 = 1
0.3 µ2 = 1

0.6

µ3 = 1
0.3µ4 = 1

0.6

σ14 = σ41 = 50 σ23 = σ32 = 50

Observation

Sufficient capacity (consider period of at least 1000).
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Desired behavior

Desired behavior

➊
➋

➀
➁

➍
➁

➃
➁

➃
➌

➃
➂
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Resulting controller

Network Desired behavior

Resulting controller

Mode (1,2): to (4,2) when both x1 = 0 and x2 + x3 ≥ 1000

Mode (4,2): to (4,3) when both x2 = 0 and x4 ≤ 831
3

Mode (4,3): to (1,2) when x3 = 0

Remark:

Non-distributed/centralized controller
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Observability

Network Assumptions

Clearing policy used for
machine B

At t = t1: ➂ starts

At t = t2 > t1: ➂ stops

System state can be reconstructed at machine A

x3(t2) = 0, and x3(t1 − 50) = x3(t1) = (t2 − t1)/0.6

x2(t1 − 50) = 0, and x2(t2) =
∫ t2
t1−50 u1(τ) d τ

Observation

Observablity determined by network topology
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Distributed controller, cf. [Lefeber, Rooda (2008)]

Network Desired behavior

Distributed controller

Serving 1: Serve at least 1000
jobs until x1 = 0, then switch.
Let x̄1 be nr of jobs served.

Serving 2: Serve at least 1000
jobs until x2 = 0, then switch.

Serving 4: Let x̄4 be nr of jobs
in Buffer 4 after setup. Serve
x̄4 + 1

2 x̄1 jobs, then switch.

Serving 3: Empty buffer, then
switch.
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Conclusions

New approach

1 Determine desired system behavior (trajectory generation)
2 Derive non-distributed/centralized controller (state feedback)
3 Derive distributed/decentralized controller (output feedback)

Advantage

All three problems can be considered separately

Centralized control

Approach can deal with

Arbitrary networks
Finite buffers
Transportation delays

Decentralized control

Observer based approach
results in new,
tailor-made controllers
that perform better
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Future work

Research

Centralized control

Modify existing approach to overcome some shortcomings
Derive class of controllers (instead of only one)
Finite buffers: reachability of desired orbit
Deal with parametric uncertainty; robustness if parameters are
either different or time-varying.

Decentralized control

Observability (including tests)
Observer design
Stability analysis of distributed policies

Stochastic extensions

Analyze performance of derived (de)centralized controllers for
stochastic queueing networks
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