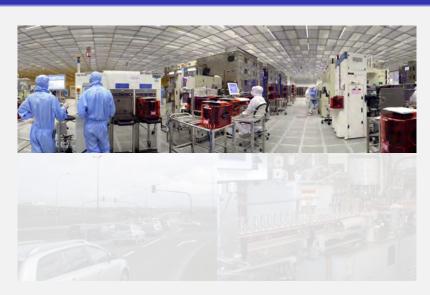
Controller design for flow networks of switched servers with setup times

The Kumar-Seidman case as an illustrative example

Erjen Lefeber

Eindhoven University of Technology

Mathematical modeling of transport and production logistics January 11, 2008, Bremen



Motivation

Problem

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Maximal throughput, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

Kumar, Seidman (1990)

Problem

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Maximal throughput, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

Kumar, Seidman (1990)

Problem

Problem

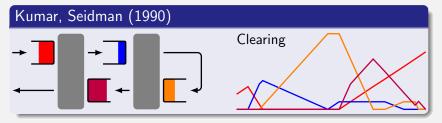
How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Maximal throughput, minimal flow time

Current approach

Start from policy, analyze resulting dynamics



Problem

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Main subject of study (modest)



Problem

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Main subject of study (modest)



Problem

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Main subject of study (modest)



Problem

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Main subject of study (modest)

Main idea

Important observation

"The main interest is in the resulting behavior. So why not use that as a starting point?"

Approach

Start from desired behavior and *design* policy, instead of start from policy and analyze resulting dynamics

Consequence

Separation of concern: desired behavior and controller can be designed separately.

Main idea

Important observation

"The main interest is in the resulting behavior. So why not use that as a starting point?"

Approach

Start from desired behavior and *design* policy, instead of start from policy and analyze resulting dynamics

Consequence

Separation of concern: desired behavior and controller can be designed separately.



Main idea

Important observation

"The main interest is in the resulting behavior. So why not use that as a starting point?"

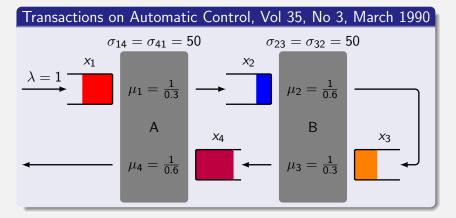
Approach

Start from desired behavior and *design* policy, instead of start from policy and analyze resulting dynamics

Consequence

Separation of concern: desired behavior and controller can be designed separately.

Kumar-Seidman case



Observation

Sufficient capacity (consider period of at least 1000).

Model (hybrid)

State

$$x_0^A, x_0^B$$

 X_i

$$m = (m^A, m^B)$$

remaining setup time machine A,B

buffer contents $(i \in \{1, 2, 3, 4\})$

 $\mathsf{mode} \in \{(1,2), (1,3), (4,2), (4,3)\}$

Input

$$u_0^A, u_0^B$$

activity $\in \{0, 2, 3, 4, \mathbf{0}, \mathbf{2}, \mathbf{3}, \mathbf{4}\}$

service rate step $i \in \{1, 2, 3, 4\}$)

Model (hybrid)

State

$$x_0^A, x_0^B$$
 remaining setup time machine A,B
 x_i buffer contents $(i \in \{1, 2, 3, 4\})$
 $m = (m^A, m^B)$ mode $\in \{(1, 2), (1, 3), (4, 2), (4, 3)\}$

Input

Model (hybrid)

Continuous dynamics

$$\dot{x}_0^A(t) = \begin{cases} -1 & \text{if } u_0^A \in \{\mathbf{0}, \mathbf{0}\} \\ 0 & \text{if } u_0^A \in \{\mathbf{0}, \mathbf{0}\} \end{cases}$$

$$\dot{x}_1(t) = \lambda - u_1(t)$$

$$\dot{x}_4(t) = u_3(t) - u_4(t)$$

$$\dot{x}_0^B(t) = egin{cases} -1 & ext{if } u_0^B \in \{\mathbf{Q}, \mathbf{G}\} \\ 0 & ext{if } u_0^B \in \{2, 3\} \end{cases}$$

$$\dot{x}_2(t) = u_1(t) - u_2(t)$$

$$\dot{x}_3(t) = u_2(t) - u_3(t).$$

Discrete event dynamics

$$x_0^A := \sigma_{14}; \qquad m^A := 4$$

$$x_0^A := \sigma_{41}; \qquad m^A := 1$$

$$x_0^B := \sigma_{23}; \qquad m^B := 3$$

$$x_0^B := \sigma_{32}; \qquad m^B := 2$$

if
$$u_0^A = \mathbf{0}$$
 and $m^A = 1$

if
$$u_0^A = \mathbf{0}$$
 and $m^A = 4$

if
$$u_0^B = \mathbf{3}$$
 and $m^B = 2$

if
$$u_0^B = 2$$
 and $m^B = 3$

 $\dot{x}_3(t) = u_2(t) - u_3(t).$

Model (hybrid)

Continuous dynamics

$$\dot{x}_0^A(t) = \begin{cases}
-1 & \text{if } u_0^A \in \{\mathbf{0}, \mathbf{0}\} \\
0 & \text{if } u_0^A \in \{\mathbf{0}, \mathbf{0}\}
\end{cases} \quad \dot{x}_0^B(t) = \begin{cases}
-1 & \text{if } u_0^B \in \{\mathbf{0}, \mathbf{0}\} \\
0 & \text{if } u_0^B \in \{\mathbf{0}, \mathbf{0}\}
\end{cases}$$

$$\dot{x}_1(t) = \lambda - u_1(t) \qquad \qquad \dot{x}_2(t) = u_1(t) - u_2(t)$$

Discrete event dynamics

 $\dot{x}_4(t) = u_3(t) - u_4(t)$

$$x_0^A := \sigma_{14};$$
 $m^A := 4$ if $u_0^A = \mathbf{0}$ and $m^A = 1$
 $x_0^A := \sigma_{41};$ $m^A := 1$ if $u_0^A = \mathbf{0}$ and $m^A = 4$
 $x_0^B := \sigma_{23};$ $m^B := 3$ if $u_0^B = \mathbf{0}$ and $m^B = 2$
 $x_0^B := \sigma_{32};$ $m^B := 2$ if $u_0^B = \mathbf{0}$ and $m^B = 3$

Model (hybrid)

Input constraints

$$u_{0}^{A} \in \{ \mathbf{0}, \mathbf{0} \}, u_{1} = 0, u_{4} = 0 \qquad \text{if } x_{0}^{A} > 0$$

$$u_{0}^{A} \in \{ \mathbf{0}, \mathbf{0} \}, u_{1} \leq \mu_{1}, u_{4} = 0 \qquad \text{if } x_{0}^{A} = 0, x_{1} > 0, m^{A} = 1$$

$$u_{0}^{A} \in \{ \mathbf{0}, \mathbf{0} \}, u_{1} \leq \lambda, u_{4} = 0 \qquad \text{if } x_{0}^{A} = 0, x_{1} = 0, m^{A} = 1$$

$$u_{0}^{A} \in \{ \mathbf{0}, \mathbf{0} \}, u_{1} = 0, u_{4} \leq \mu_{4} \qquad \text{if } x_{0}^{A} = 0, x_{4} > 0, m^{A} = 4$$

$$u_{0}^{A} \in \{ \mathbf{0}, \mathbf{0} \}, u_{1} = 0, u_{4} \leq \min(u_{3}, \mu_{4}) \quad \text{if } x_{0}^{A} = 0, x_{4} = 0, m^{A} = 4$$

$$u_{0}^{B} \in \{ \mathbf{0}, \mathbf{0} \}, u_{2} = 0, u_{3} = 0 \qquad \text{if } x_{0}^{B} > 0$$

$$u_{0}^{B} \in \{ \mathbf{0}, \mathbf{0} \}, u_{2} \leq \mu_{2}, u_{3} = 0 \qquad \text{if } x_{0}^{B} = 0, x_{2} > 0, m^{B} = 2$$

$$u_{0}^{B} \in \{ \mathbf{0}, \mathbf{0} \}, u_{2} \leq \min(u_{1}, \mu_{2}), u_{3} = 0 \quad \text{if } x_{0}^{B} = 0, x_{2} = 0, m^{B} = 2$$

$$u_{0}^{B} \in \{ \mathbf{0}, \mathbf{0} \}, u_{2} = 0, u_{3} \leq \mu_{3} \qquad \text{if } x_{0}^{B} = 0, x_{3} > 0, m^{B} = 3$$

$$u_{0}^{B} \in \{ \mathbf{0}, \mathbf{0} \}, u_{2} = 0, u_{3} \leq u_{2} \qquad \text{if } x_{0}^{B} = 0, x_{3} = 0, m^{B} = 3$$

$$u_{0}^{B} \in \{ \mathbf{0}, \mathbf{0} \}, u_{2} = 0, u_{3} \leq u_{2} \qquad \text{if } x_{0}^{B} = 0, x_{3} = 0, m^{B} = 3$$

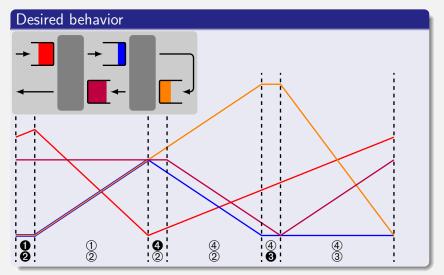
Model (hybrid)

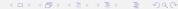
Input constraints

$$\begin{array}{llll} u_0^A \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_1 = 0, u_4 = 0 & \text{if } x_0^A > 0 \\ u_0^A \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_1 \leq \mu_1, u_4 = 0 & \text{if } x_0^A = 0, x_1 > 0, m^A = 1 \\ u_0^A \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_1 \leq \lambda, u_4 = 0 & \text{if } x_0^A = 0, x_1 = 0, m^A = 1 \\ u_0^A \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_1 = 0, u_4 \leq \mu_4 & \text{if } x_0^A = 0, x_4 > 0, m^A = 4 \\ u_0^A \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_1 = 0, u_4 \leq \min(u_3, \mu_4) & \text{if } x_0^A = 0, x_4 = 0, m^A = 4 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 = 0, u_3 = 0 & \text{if } x_0^B > 0 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 \leq \mu_2, u_3 = 0 & \text{if } x_0^B = 0, x_2 > 0, m^B = 2 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 = 0, u_3 \leq \mu_3 & \text{if } x_0^B = 0, x_3 > 0, m^B = 3 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 = 0, u_3 \leq u_2 & \text{if } x_0^B = 0, x_3 = 0, m^B = 3 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 = 0, u_3 \leq u_2 & \text{if } x_0^B = 0, x_3 = 0, m^B = 3 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 = 0, u_3 \leq u_2 & \text{if } x_0^B = 0, x_3 = 0, m^B = 3 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 = 0, u_3 \leq u_2 & \text{if } x_0^B = 0, x_3 = 0, m^B = 3 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 = 0, u_3 \leq u_2 & \text{if } x_0^B = 0, x_3 = 0, m^B = 3 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 = 0, u_3 \leq u_2 & \text{if } x_0^B = 0, x_3 = 0, m^B = 3 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 = 0, u_3 \leq u_2 & \text{if } x_0^B = 0, x_3 = 0, m^B = 3 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 = 0, u_3 \leq u_2 & \text{if } x_0^B = 0, x_3 = 0, m^B = 3 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_2 = 0, u_3 \leq u_2 & \text{if } x_0^B = 0, x_3 = 0, m^B = 3 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}} \}, u_3 = 0 & \text{if } x_0^B = 0, x_3 = 0, m^B = 3 \\ u_0^B \in \{ \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}}, \ensuremath{\mathbf{0}}, \ensuremath{\mathbf$$

4 D > 4 D > 4 D > 4 D > 4 D > 9

Desired behavior





Controller design

Main idea

Lyapunov: If energy is decreasing all the time \Rightarrow system should settle down at constant energy level

Challenge

Determine energy-function (based on desired periodic orbit)

Observation

Desired periodic orbit provides a fixed sequence of modes, with a given duration.

Controller design

Main idea

Lyapunov: If energy is decreasing all the time \Rightarrow system should settle down at constant energy level

Challenge

Determine energy-function (based on desired periodic orbit)

Observation

Desired periodic orbit provides a fixed sequence of modes, with a given duration.

Controller design

Main idea

Lyapunov: If energy is decreasing all the time \Rightarrow system should settle down at constant energy level

Challenge

Determine energy-function (based on desired periodic orbit)

Observation I

Desired periodic orbit provides a fixed sequence of modes, with a given duration.

Controller design

Observation II

Blindly applying fixed sequence of modes for corresponding duration makes system converge to translated desired periodic orbit, i.e. with additional lots in buffers (A.V. Savkin, 1998)

Observation II

Remaining duration of current mode can still be chosen

Final ingredient

Amount of work: $1.8x_1 + 1.5x_2 + 0.9x_3 + 0.6x_4$

Controller design

Observation II

Blindly applying fixed sequence of modes for corresponding duration makes system converge to translated desired periodic orbit, i.e. with additional lots in buffers (A.V. Savkin, 1998)

Observation III

Remaining duration of current mode can still be chosen

Final ingredient

Amount of work: $1.8x_1 + 1.5x_2 + 0.9x_3 + 0.6x_4$



Controller design

Observation II

Blindly applying fixed sequence of modes for corresponding duration makes system converge to translated desired periodic orbit, i.e. with additional lots in buffers (A.V. Savkin, 1998)

Observation III

Remaining duration of current mode can still be chosen

Final ingredient

Amount of work: $1.8x_1 + 1.5x_2 + 0.9x_3 + 0.6x_4$

Controller design

Notice

- Current state
- Remaining duration of current mode

Additional amount of work

Lyapunov function candidate

For given state: the lowest possible additional amount of work

Controller design

Over all possible inputs: pick one which makes Lyapunov function candidate decrease the most.

Controller design Distributed controller Motivation Problem Case Conclusions 000000

Controller design

Notice

- Current state
- Remaining duration of current mode

Additional amount of work

Lyapunov function candidate

For given state: the lowest possible additional amount of work

Controller design

Notice

- Current state
- Remaining duration of current mode

Additional amount of work

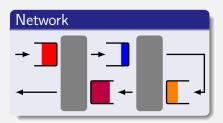
Lyapunov function candidate

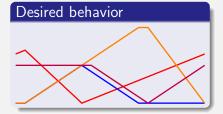
For given state: the lowest possible additional amount of work

Controller design

Over all possible inputs: pick one which makes Lyapunov function candidate decrease the most.

Resulting controller





Resulting controller

Mode (1,2): to (4,2) when both $x_1 = 0$ and $x_2 + x_3 \ge 1000$

Mode (4,2): to (4,3) when both $x_2 = 0$ and $x_4 \le 83\frac{1}{3}$

Mode (4,3): to (1,2) when $x_3 = 0$

Resulting controller

Proof

Buffer amounts as A starts serving 1 for k^{th} time: $(x_1^k, x_2^k, x_3^k, x_4^k)$ Then for k > 2:

$$x_1^{k+1} = 100 + \frac{3}{7}x_1^k + \max(\frac{3}{7}x_1^k, \frac{3}{5}x_4^k) \qquad x_2^{k+1} = 0$$
$$x_4^{k+1} = \max(500, \frac{5}{7}x_1^k) \qquad x_3^{k+1} = 0$$

Since
$$x_1^{k+1} \le 100 + \frac{3}{7}x_1^k + \frac{3}{7}\max(x_1^k, x_1^{k-1})$$
: Contraction with fixed point (700, 0, 0, 500).

Remark

Centralized controller, i.e. non-distributed

Main idea

Conclusions

Resulting controller

Proof

Buffer amounts as A starts serving 1 for k^{th} time: $(x_1^k, x_2^k, x_3^k, x_4^k)$ Then for k > 2:

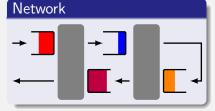
$$x_1^{k+1} = 100 + \frac{3}{7}x_1^k + \max(\frac{3}{7}x_1^k, \frac{3}{5}x_4^k) \qquad x_2^{k+1} = 0$$
$$x_4^{k+1} = \max(500, \frac{5}{7}x_1^k) \qquad x_3^{k+1} = 0$$

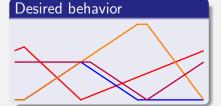
Since
$$x_1^{k+1} \le 100 + \frac{3}{7}x_1^k + \frac{3}{7}\max(x_1^k, x_1^{k-1})$$
: Contraction with fixed point (700, 0, 0, 500).

Remark

Centralized controller, i.e. non-distributed

Distributed controller





Distributed controller

Serving 1: Serve at least 1000 jobs until $x_1 = 0$, then switch. Let \bar{x}_1 be nr of jobs served.

Serving 4: Let \bar{x}_4 be nr of jobs in Buffer 4 after setup. Serve $\bar{x}_4 + \frac{1}{2}\bar{x}_1$ jobs, then switch.

Serving 2: Serve at least 1000 jobs until $x_2 = 0$, then switch.

Serving 3: Empty buffer, then switch.

Conclusions

Non-distributed/centralized control

- Given a feasible periodic orbit, a controller can be derived.
- Approach can deal with
 - General networks
 - Finite buffers
 - Transportation delays

Distributed control

- For case was shown that distributed implementation exists
- Relates to observability

Conclusions

Non-distributed/centralized control

- Given a feasible periodic orbit, a controller can be derived.
- Approach can deal with
 - General networks
 - Finite buffers
 - Transportation delays

Distributed control

- For case was shown that distributed implementation exists
- Relates to observability

Problem Motivation Case Controller design Distributed controller Conclusions

Concluding remarks

Ideas from control theory can be useful

- Determine optimal behavior (trajectory generation)
- Derive centralized controller (state feedback control)
- Oerive decentralized controllers (dyn. output feedback)

- How to find good (or even optimal) network behavior?
- How to design decentralized controllers (observability)?
- Robustness against parameter changes?

- What if routing is not fixed?

Problem Case Controller design Distributed controller Conclusions

Concluding remarks

Ideas from control theory can be useful

- Determine optimal behavior (trajectory generation)
- Derive centralized controller (state feedback control)
- Oerive decentralized controllers (dyn. output feedback)

Many questions remaining

- How to find good (or even optimal) network behavior?
- How to design decentralized controllers (observability)?
- Robustness against parameter changes?
- What if network is modified?
- What if arrival rate not constant?
- What if routing is not fixed?

