Modeling and control of manufacturing systems

Erjen Lefeber

May 24, 2007

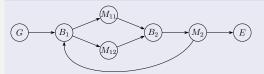
Contents

- Modeling
 - Effective Process Times
 - Fluid models
- 2 Control
 - Networks of switching servers with setup times

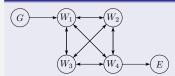
Manufacturing Systems

Line

Re-entrant



Job-shop



Process times

Disturbances

- setups
- machine failure
- machine maintenance (software upgrade)
- operators (talking, breaks)
- rework
- ...

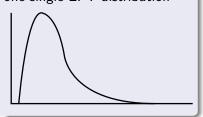
Control

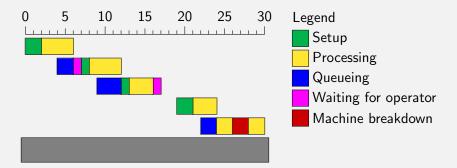
Disturbances

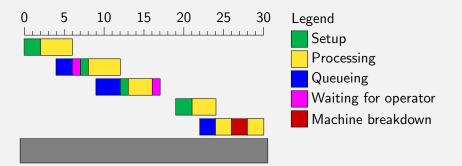
- setups
- machine failure
- machine maintenance (software upgrade)
- operators (talking, breaks)
- rework
- ...

Effective Process Times

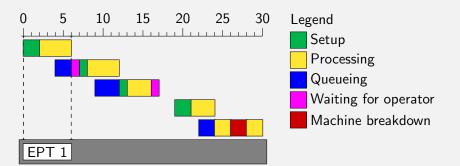
Combine all disturbances in one single EPT distribution



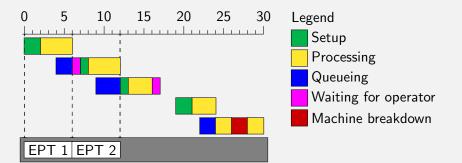




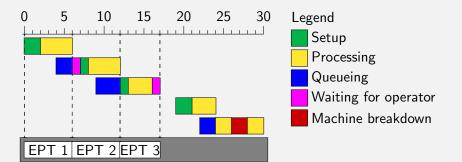
Important question



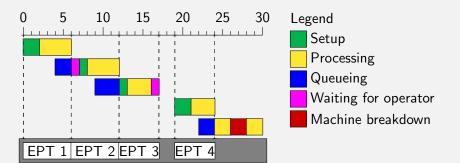
Important question



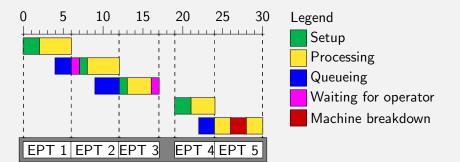
Important question



Important question



Important question



Important question

Fluid models

Modeling manufacturing flow

- density $\rho(x, t)$,
- speed v(x, t),
- flow $u(x, t) = \rho(x, t)v(x, t)$,
- Conservation of mass: $\frac{\partial \rho}{\partial t}(x,t) + \frac{\partial \rho v}{\partial x}(x,t) = 0$.
- Boundary condition: $u(0, t) = \lambda(t)$

Note

Several options for additional equation(s)

Fluid models: several options

Armbruster et al.:

• Single queue:
$$\frac{1}{\nu(x,t)} = \frac{1}{\mu} (1 + \int_0^1 \rho(s,t) \, ds)$$

• Single queue:
$$\frac{\partial \rho v}{\partial t}(x,t) + \frac{\partial \rho v^2}{\partial x}(x,t) = 0$$
$$\rho v^2(0,t) = \frac{\mu \cdot \rho v(0,t)}{1 + \int_0^1 \rho(s,t) \, \mathrm{d} \, s}$$

• Re-entrant:
$$v(x,t) = v_0 \left(1 - \frac{\int_0^1 \rho(s,t) \, \mathrm{d} \, s}{W_{\text{max}}}\right)$$

• Re-entrant:
$$\frac{\partial \rho v}{\partial t}(x,t) + \frac{\partial \rho v^2}{\partial x}(x,t) = 0$$
$$\rho v^2(0,t) = \rho v(0,t) \cdot v_0 \left(1 - \frac{\int_0^1 \rho(s,t) \, \mathrm{d} s}{W_{\text{max}}}\right)$$

Lefeber et al.:

• Line of m identical queues: $v(x,t) = \frac{\mu}{m+\rho(x,t)}$

Fluid models

DE model only

DE model & 3 PDE Models

Contents

- Modeling
 - Effective Process Times
 - Fluid models
- 2 Control
 - Networks of switching servers with setup times

Networks of switching servers with setup times

Networks of switching servers with setup times

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Maximal throughput, minimal flow time

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Maximal throughput, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Maximal throughput, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

Kumar, Seidman (1990) Clearing

Current status (after two decades)

Several policies exist that guarantee stability of the network

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

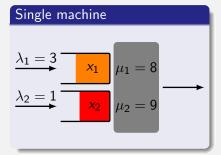
Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

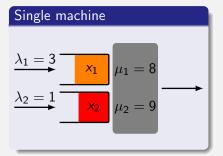
Important observation

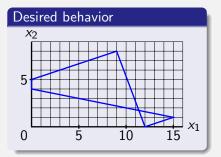
"The main interest is in the resulting behavior. So why not use that as a starting point?"

Example



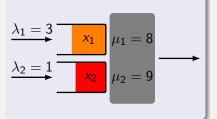
Example

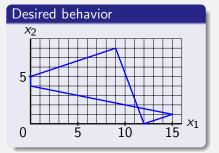




Example

Single machine





Resulting Controller

- When serving type 1:
 - empty buffer
 - 2 serve until $x_2 \ge 5$
 - 3 switch to type 2

- When serving type 2:
 - empty buffer
 - 2 serve until $x_1 \ge 12$
 - 3 switch to type 1

Conclusions

Modeling

Aggregation

- Effective Proces Times
- PDE models

Conclusions

Modeling

Aggregation

- Effective Proces Times
- PDE models

Control

Given a desired periodic orbit, a controller can be derived.

Approach can deal with

- General networks
- Finite buffers
- Transportation delays