

Control of networks of switching servers with setup times

Erjen Lefeber

PALS-seminar: December 21, 2005

Introduction

Side step: Control Theory

FU/e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Kumar-Seidman, 1990

Clearing results in

Introduction

Side step: Control Theory

TU/e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Observation

• Even though ρ < 1: instability

Introduction

Side step: Control Theory

TU/e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Observation

• Even though ρ < 1: instability

Claim

- Due to policy, not to system
- ρ < 1 at each server is necessary and sufficient

Introduction

Side step: Control Theory

IU/e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Observation

• Even though ρ < 1: instability

Claim

- Due to policy, not to system
- ρ < 1 at each server is necessary and sufficient

Objective

Do not start from policy, then study closed-loop behavior But start from desired behavior and derive policy

Introduction

Side step: Control Theory

TU/e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Standard Linear Control Theory

Control theorists study

$$\dot{x} = Ax + Bu$$
 $x \in R^n$, $u \in R^k$ (1a)

$$y = Cx \qquad \qquad y \in R^m \qquad (1b)$$

where $u(\cdot)$ is a *function* to be designed.

Introduction

Side step: Control Theory

IU/e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Standard Linear Control Theory

Control theorists study

$$\dot{x} = Ax + Bu$$
 $x \in R^n, u \in R^k$ (2a)

$$y = Cx \qquad \qquad y \in R^m \qquad (2b)$$

where $u(\cdot)$ is a *function* to be designed.

Lemma: The system (2) is *controllable* iff rank $\begin{bmatrix} B & | & AB & | & A^2B & | & \dots & | & A^{n-1}B \end{bmatrix} = n$ Lemma: The system (2) is *observable* iff $\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = n$

Introduction

Side step: Control Theory

e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Controller design: Static state feedback

technische universiteit eindhoven

Consider the system

 $\dot{x} = Ax + Bu$

 $x \in R^n$, $u \in R^k$

Using the (static state) feedback

u = -Kx

results in the closed-loop dynamics

 $\dot{x} = (A - BK)x$

Lemma: If the system is controllable, then the poles of the matrix A - BK can be placed arbitrarily.

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Observer design

Consider the system

 $\dot{x} = Ax + Bu \qquad x \in \mathbb{R}^n, u \in \mathbb{R}^k$ $y = Cx \qquad y \in \mathbb{R}^m$

Consider the observer

 $\dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y})$

 $\hat{y} = C\hat{x}$

Define the observer-error $e = x - \hat{x}$. Then we get

 $\dot{e} = Ae - LCe = (A - LC)e$

Lemma: If the system is observable, then the poles of the matrix A - LC can be placed arbitrarily.

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Controller design: Dynamic output feedback

Consider the system

$\dot{x} = Ax + Bu$	$m{x}\in m{R}^n$, $m{u}\in m{R}^k$
y = Cx	$m{y}\inm{R}^{m}$

where only the output *y* can be measured.

Introduction

Side step: Control Theory

e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Controller design: Dynamic output feedback

Consider the system

$\dot{x} = Ax + Bu$	$m{x}\in m{R}^n$, $m{u}\in m{R}^k$
y = Cx	$y \in R^m$

where only the output *y* can be measured.

Strategy: use dynamic output feedback

$$u = -K\hat{x}$$
$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y})$$
$$\hat{y} = C\hat{x}$$

The poles of the closed-loop dynamics are given by the poles of the matrices A - BK and A - LC.

Introduction

Side step: Control Theory

IU/e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Summarizing

Separate problems:

- Design controller using full state
- Design observer, reconstructing state from measurements
- Design dynamic controller using measurements

Other separate problem:

• Specify desired behavior (trajectory generation)

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Single machine: switched linear system

- Constant arrival rates λ_1 and λ_2
- Maximal service rates μ_1 and μ_2
- Setup times σ_{12} and σ_{21}
- Buffer contents x₁ and x₂
- Activities: **0**: setup for Type 1 jobs
 - ①: serve Type 1 jobs
 - **❷**: setup for Type 2 jobs
 - ②: serve Type 2 jobs

Introduction

Side step: Control Theory

TU/e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Design a policy which controls this system towards optimal behavior.

Two (separate) sub-problems

- Determine optimal behavior
- Derive policy

Goal

Introduction

Side step: Control Theory

FU/e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Problem 1: Optimal behavior

Determine "optimal periodic orbit"

$$\frac{1}{T} \int_0^T c_1 x_1(t) + c_2 x_2(t) \, \mathrm{d}t$$

where $c_1 = c_2 = 1$

Introduction

Side step: Control Theory

e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Problem 1: Optimal behavior

Determine "optimal periodic orbit"

$$\frac{1}{T} \int_0^T c_1 x_1(t) + c_2 x_2(t) \, \mathrm{d}t$$

Solution

~~

Introduction

Side step: Control Theory

8

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Problem 1: Optimal behavior

Determine "optimal periodic orbit"

$$\frac{1}{T} \int_0^T c_1 x_1(t) + c_2 x_2(t) \, \mathrm{d}t$$

Solution

Introduction

Side step: Control Theory

e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Problem 2: Design policy

Design feedback which make system converge towards "op-

timal periodic orbit"

technische universiteit eindhoven

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Controller design: main idea

Lyapunov: If energy is decreasing all the time \Rightarrow system

should settle down at constant energy level

technische universiteit eindhoven

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Controller design: main idea

Lyapunov: If energy is decreasing all the time \Rightarrow system

should settle down at constant energy level

Amount of work in system: $\frac{x_1}{\mu_1} + \frac{x_2}{\mu_2}$

Associate with periodic orbit: mean amount of work.

Introduction

Side step: Control Theory

e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Lyapunov function candidate

For given point X

• Of all curves going through X, take the one with mini-

mal mean amount of work

Introduction

Side step: Control Theory

e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Lyapunov function candidate

For given point X

• Of all curves going through X, take the one with mini-

mal mean amount of work

Introduction

Side step: Control Theory

P

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Lyapunov function candidate

For given point X

- Of all curves going through *X*, take the one with minimal mean amount of work
- Subtract from this amount of work, that of the desired periodic orbit
- This number is the value *V*(*X*) of the Lyapunov function candidate in *X*

Controller design

Of all possible control-actions, take the one which makes V(X) decrease the most.

Introduction

Side step: Control Theory

- Example: Single machine
- Controller design
- Kumar-Seidman (global)
- Kumar-Seidman (local)

Conclusions

Resulting controller

- If in Mode 1: Stay in this mode until both $x_1 = 0$ and
 - $x_2 \ge 5$. Then switch to Mode 2.
- If in Mode 2: Stay in this mode until both $x_2 = 0$ and
 - $x_1 \ge 12$. Then switch to Mode 1.

Introduction

Side step: Control Theory

- Example: Single machine
- Controller design
- Kumar-Seidman (global)
- Kumar-Seidman (local)

Conclusions

Resulting controller

- If in Mode 1: Stay in this mode until both $x_1 = 0$ and
 - $x_2 \ge 5$. Then switch to Mode 2.
- If in Mode 2: Stay in this mode until both $x_2 = 0$ and
 - $x_1 \ge 12$. Then switch to Mode 1.

Finite buffers

If $x_1 \leq x_1^{\max}$ and $x_2 \leq x_2^{\max}$ with $x_1^{\max} \geq 15$ and $x_2^{\max} \geq 8$:

Introduction

Side step: Control Theory

- Example: Single machine
- Controller design
- Kumar-Seidman (global)
- Kumar-Seidman (local)

Conclusions

Resulting controller

- If in Mode 1: Stay in this mode until both $x_1 = 0$ and
 - $x_2 \ge 5$. Then switch to Mode 2.
- If in Mode 2: Stay in this mode until both $x_2 = 0$ and
 - $x_1 \ge 12$. Then switch to Mode 1.

Finite buffers

If $x_1 \leq x_1^{\max}$ and $x_2 \leq x_2^{\max}$ with $x_1^{\max} \geq 15$ and $x_2^{\max} \geq 8$:

• If in Mode 1: Stay in this mode until either both $x_1 = 0$

and $x_2 \ge 5$ or $x_2 = x_2^{\text{max}} - 3$. Then switch to Mode 2.

• If in Mode 2: Stay in this mode until either both $x_2 = 0$

and $x_1 \ge 12$ or $x_1 = x_1^{\text{max}} - 3$. Then switch to Mode 1.

Introduction

Side step: Control Theory

IU

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Kumar-Seidman

System

6

Two (separate) problems

- Desired behavior
- Derive policy

Introduction

Side step: Control Theory

e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

~~

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local) Conclusions

Observations

Largest amount of work at start of Mode (1, 2) **Mode** (1, 2) Only x_1 and x_2 can decrease. At end of mode: $x_1 = 0, x_2 = 500$. x_2 and x_3 can increase. At end: $x_2 = 500$, $x_3 = 500$. **Mode** (4, 2) Only x_2 and x_4 can decrease. At the end of mode: $x_2 = 0$ and $x_4 = 83\frac{1}{3}$. x_1 and x_3 can increase. At end: $x_1 = 300$, $x_3 = 1000$. **Mode** (4, 3) Only x_3 and x_4 can decrease. At end of the mode: $x_3 = 0$ and $x_4 = 500$. x_1 and x_4 can increase. At end: $x_1 = 650$, $x_4 = 500$.

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Resulting controller

e

- If initially in Mode (1, 3), go to Mode (1, 2).
- If in Mode (1, 2), serve both types at maximal rate until

 $x_1 = 0, x_2 = 500, x_3 \ge 500.$

Then go to Mode (4, 2).

- If in Mode (4, 2), serve both types at maximal rate until either $x_2 = 0$ or $x_4 \le 83\frac{1}{3}$, $x_1 \ge 300$, $x_3 \ge 1000$. Then go to Mode (4, 3).
- If in Mode (4, 3), serve both types at maximal rate until $x_3 = 0, x_1 \ge 650, x_4 \ge 500.$

Then go to Mode (1, 2).

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Resulting controller

A

- If initially in Mode (1, 3), go to Mode (1, 2).
- If in Mode (1, 2), serve both types at maximal rate until

 $x_1 = 0, x_2 = 500, x_3 \ge 500.$

Then go to Mode (4, 2).

- If in Mode (4, 2), serve both types at maximal rate until either $x_2 = 0$ or $x_4 \le 83\frac{1}{3}$, $x_1 \ge 300$, $x_3 \ge 1000$. Then go to Mode (4, 3).
- If in Mode (4, 3), serve both types at maximal rate until

 $x_3 = 0, x_1 \ge 650, x_4 \ge 500.$

Then go to Mode (1, 2).

Even though $\dot{V} \leq 0$ we do not have $\lim_{t\to\infty} V(t) = 0$.

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Resulting controller

P

- If initially in Mode (1, 3), go to Mode (1, 2).
- If in Mode (1, 2), serve both types at maximal rate until

 $x_1 = 0, x_2 = 500, x_3 \ge 500.$

Then go to Mode (4, 2).

- If in Mode (4, 2), serve both types at maximal rate until both $x_2 = 0$ and $x_4 \le 83\frac{1}{3}$, $x_1 \ge 300$, $x_3 \ge 1000$. Then go to Mode (4, 3).
- If in Mode (4, 3), serve both types at maximal rate until

 $x_3 = 0, x_1 \ge 650, x_4 \ge 500.$

Then go to Mode (1, 2).

Now have $\lim_{t\to\infty} V(t) = 0$ (but not always $\dot{V} \leq 0$).

Introduction

Side step: Control Theory

TU/e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Proof

Buffer contents when M1 starts processing Type 1 for k^{th}

time: $(x_1^k, x_2^k, x_3^k, x_4^k)$

Then for k > 2:

$$x_1^{k+1} = 100 + \frac{3}{7}x_1^k + \max(\frac{3}{7}x_1^k, \frac{3}{5}x_4^k)$$
$$x_2^{k+1} = 0$$
$$x_3^{k+1} = 0$$
$$x_4^{k+1} = \max(500, \frac{5}{7}x_1^k)$$

Since

$$x_1^{k+1} \leq 100 + \frac{3}{7}x_1^k + \frac{3}{7}\max(x_1^k, x_1^{k-1})$$

Contraction with fixed point (700, 0, 0, 500).

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Global policy

Machine 1

- If serving 1: continue until both x₁ = 0 and 1000 jobs served.
- If serving 4: continue until $x_3 = 0$. If $x_4 \le 83\frac{1}{3}$ then possible idling to guarantee $x_2 = 0$, next continu at full rate again.

Machine 2

- If serving 2: continue until both x₂ = 0 and x₄ ≤ 83¹/₃. If x₂ < 500 and x₁ = 0 then possible idling to guarantee x₂ = 500 and x₃ > 0, next continue at full rate again.
- If serving 3: continue until $x_3 = 0$.

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Global policy

Machine 1

- If serving 1: continue until both x₁ = 0 and 1000 jobs served.
- If serving 4: continue until $x_3 = 0$. If $x_4 \le 83\frac{1}{3}$ then possible idling to guarantee $x_2 = 0$, next continu at full rate again.

Machine 2

- If serving 2: continue until both $x_2 = 0$ and $x_4 \le 83\frac{1}{3}$. If $x_2 < 500$ and $x_1 = 0$ then possible idling to guarantee $x_2 = 500$ and $x_3 > 0$, next continue at full rate again.
- If serving 3: continue until $x_3 = 0$.

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local) Conclusions

Modified policy (1)

Machine 1

- If serving 1: continue until both x₁ = 0 and 1000 jobs served.
- If serving 4: continue until $x_3 = 0$.

Machine 2

• If serving 2: continue until both $x_2 = 0$ and $x_4 \le 83\frac{1}{3}$.

• If serving 3: continue until $x_3 = 0$.

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local) Conclusions

Modified policy (1)

Machine 1

- If serving 1: continue until both x₁ = 0 and 1000 jobs served.
- If serving 4: continue until $x_3 = 0$.

Machine 2

- If serving 2: continue until both $x_2 = 0$ and $x_4 \le 83\frac{1}{3}$.
- If serving 3: continue until $x_3 = 0$.

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Modified policy (1)

Machine 1

- If serving 1: continue until both x₁ = 0 and 1000 jobs served.
- If serving 4: continue until $x_3 = 0$.

Machine 2

- If serving 2: continue until both $x_2 = 0$ and $x_4 \le 83\frac{1}{3}$.
- If serving 3: continue until $x_3 = 0$.

In case $x_4 > 83\frac{1}{3}$ and $x_2 = 0$: Idling of Machine 2. Can be shifted.

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Improved policy (2)

Machine 1

- If serving 1: continue until both x₁ = 0 and 1000 jobs served.
- If serving 4: continue until x₃ = 0. Switch (possible) idling duration of Machine 2 later.
 Machine 2
- If serving 2: continue until $x_2 = 0$.
- If serving 3: continue until $x_3 = 0$.

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Improved policy (2)

Machine 1

- If serving 1: continue until both x₁ = 0 and 1000 jobs served.
- If serving 4: continue until x₃ = 0. Switch (possible) idling duration of Machine 2 later.
 Machine 2
 - If serving 2: continue until $x_2 = 0$.
 - If serving 3: continue until $x_3 = 0$.

Machine 2: Local policy.

Machine 1: Global information needed.

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Improved policy (2)

Machine 1

- If serving 1: continue until both x₁ = 0 and 1000 jobs served.
- If serving 4: continue until x₃ = 0. Switch (possible) idling duration of Machine 2 later.
 Machine 2
 - If serving 2: continue until $x_2 = 0$.
 - If serving 3: continue until $x_3 = 0$.

Machine 2: Local policy.

Machine 1: Global information needed. Or not?

TU/e^{te}

Introduction

Side step: Control Theory

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local) Conclusions

Improved policy (2)

Machine 1

- If serving 1: continue until both x₁ = 0 and 1000 jobs served.
- If serving 4: continue until $x_4 = \max(500, \frac{5}{7}x_1^{\text{prev}})$ where $x_1^{\text{prev}} = \text{duration of previous serving period} + 100$ Machine 2
 - If serving 2: continue until $x_2 = 0$.
 - If serving 3: continue until $x_3 = 0$.

Machine 2: Local policy.

Machine 1: Local policy.

Introduction

Side step: Control Theory

6

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Conclusions

- Given a desired periodic orbit, a policy has been *derived*.
- Buffer constraints can be taken into account easily
- Transportation delays might also be incorporated
- Policy is not necessarily clearing
- Policy is neither gated nor k-limited
- Policy is global (non-autonomous)
- For Kumar-Seidman case: distributed policy (local)

Introduction

Side step: Control Theory

TU/e

Example: Single machine

Controller design

Kumar-Seidman (global)

Kumar-Seidman (local)

Conclusions

Networks

An acyclic network

A non-acyclic network

