

On discrete event simulation and manufacturing system dynamics

A.A.J. Lefeber and J.E. Rooda

Intel (morning)

4 March 2004

Outline

- discrete event simulation
 - a detailed model
 - effective process times
- understanding dynamics
 - a ramp up study
 - a second ramp up study

Production characteristics

- 161 equipments
- over 300 process steps
- 20 layers per wafer
- several wafer types (routings)
- normal lots and priority lots
- large unscheduled down times
- re-entrant flow shop

Model

- discrete-event simulation
- processes; generator, buffer and equipments
- communications: lots and information
- equipments

EB batch (Furnace)

EC cascade (Litho, Wetbench)

El ion

EM measure

Results

- smaller mean flow time
- smaller variance flow time

The effective process time method

- ullet raw process time t_0 and c_0
- ullet setups $t_{
 m s}$ and $c_{
 m s}$
- ullet TBF $t_{
 m f}$ and $c_{
 m f}$, TTR $t_{
 m r}$ and $c_{
 m r}$
- operator delays
- rework
- ...(!)

Idea:

Combine all disturbances in one single EPT probability density function

Measured data:

Track-in and track-out data

Fourteen equipment families with only single-lot machines

Data from 6 months

Results:

arphi mean flow time in workstation t_0 mean raw process time c_0^2 squared coefficient of variation of t_0 utilization $c_{\mathbf{a}}^2$ squared coefficient of variation of inter arrival time $t_{\mathbf{a}}$ mean effective process time $c_{\mathbf{e}}^2$ squared coefficient of variation of $t_{\mathbf{e}}$

Outline

- discrete event simulation
 - a detailed model
 - effective process times
- understanding dynamics
 - a ramp up study
 - a second ramp up study

Case

L.M. Wein. Scheduling semiconductor wafer fabrication. IEEE TSM. 1(3):115–129. 1988

10, 1(3),113 123, 1300							
No.	Name	Operation	Fab 1	Fab 2	Fab 3	NV/L	MPT
1	CLEAN	Deposition	2	2	1	19	1.55
2	TMGOX	Deposition	2	2	1	5	4.98
3	TMNOX	Deposition	2	2	1	5	5.45
4	TMFOX	Deposition	1	1	1	3	4.68
5	TU11	Deposition	1	1	1	1	6.14
6	TU43	Deposition	1	1	1	2	7.76
7	TU72	Deposition	1	1	1	1	6.23
8	TU73	Deposition	1	1	1	3	4.35
9	TU94	Deposition	1	1	1	2	4.71
10	PLM5L	Deposition	1	1	1	3	4.05
11	PLM5U	Deposition	1	1	1	1	7.86
12	SPUT	Lithography	1	1	2	2	6.1
13	PHPPS	Lithography	4	4	3	13	4.23
14	PHGCA	Lithography	3	3	1	12	7.82
15	PHHB	Lithography	1	1	1	15	0.87
16	PHBI	Lithography	2	2	1	11	2.96
17	PHFI	Lithography	1	1	1	10	1.56
18	PHJPS	Lithography	1	1	1	4	3.59
19	PLM6	Etching	2	2	1	2	13.88
20	PLM7	Etching	1	1	1	2	5.41
21	PLM8	Etching	2	2	1	4	7.58
22	PHWET	Etching	2	2	1	21	1.04
23	PHPLO	Resist strip	2	2	1	23	1.09
24	IMP	Ion implant	2	1	1	8	3.86

department of mechanical engineering

Case

- Recipe: 172 steps
- Processing times: exponential
- Batch size: 1 (no batching)
- Cascade machine (litho): after 80% of processing time has passed new lot can be started

- Formalism chi (χ -0.7)
- General recipe (read from file)
- General fab-layout (read from file)

Ramp up policies

Policy A: • Release all WIP at once

Use CONWIP

Policy B: • Release lots at desired output rate

Policy D: • Use higher rate, until 1st lot leaves fab

• From then on: feed at desired output rate

Policy E: • Use higher rate, until desired WIP level

• From then on: apply CONWIP

Scheduling policies

- FIFO
- Push/FBFS: priority to 'younger' lots
- Pull/LBFS: priority to 'older' lots

Experiment

- Utilization 95%
- Higher rate: utilization 113.6%
- Run length: 2000 days
- CONWIP-level: mean WIP at u=95% (using FIFO)
- At least 30 experiments
 Extra, until 95%-confidence interval of mean flow time after 2000 days has width < 0.05

/department of mechanical engineering

Push/FBFS

/department of mechanical engineering

Pull/LBLS

/department of mechanical engineering

Conclusions

- Policy A and E better than B and D: same WIP-level, lower flow time (constant WIP better than push)
- Behavior of ramp up policy similar for each scheduling rule
- Scheduling by Push/FBFS (slightly) higher flow times
- Similar results for FIFO and Pull/LBFS
- Influence of scheduling relatively low

A second ramp up study

Case

- Line of 15 identical workstations
- Infinite buffers (FIFO)
- Processing times: exponential (mean 1.0)
- Inter arrival times: exponential (mean $1/\lambda$)

Experiments

- From one steady state to the other
- ramp up: from initially empty to 25%, 50%, 75%, 90%, 95% utilization
- Batches of 1000 experiments
- 1000 batches (99% confidence interval: relative width less than 0.01 for utilization of 95%)

MOVIE

Conclusions

First part

 Introduced effective processing times for obtaining simpler meta-models

Ramp up study I:

- CONWIP better than push
- Start policy more relevant than buffering policy

Ramp up study II:

 Movies, generated from several discrete event simulations, provide insight in dynamics

Overall conclusion

 Discrete event simulation can provide insight in dynamics, not only steady state