Controller design for networks of switching servers

Erjen Lefeber

Eindhoven University of Technology Department of Mechanical Engineering

Queueing Colloquium November 21, 2008, CWI

Introduction

Acknowledgements

Introduction

This work was supported by the Netherlands Organization for Scientific Research (NWO-VIDI grant 639.072.072).

Inspired by discussions with:

- Varvara Feoktistova, Alexey Matveev (St. Petersburg)
- Jan van der Wal, Josine Bruin
- Stefan Lämmer (TU Dresden)
- Gideon Weiss, Yoni Nazarathy (Haifa)

2 / 34

Introduction 0000

Motivation

3 / 34

Problem

Introduction

0000

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

Problem

Introduction

0000

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

Kumar, Seidman (1990) Clearing

TU/e NWO

Kumar-Seidman Single server Additional

Problem

Introduction

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

TU/e

Control theory Single server Kumar-Seidman Conclusions Additional concoco conditions con

Problem

Introduction

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Main subject of study (modest)

Control theory Single server Kumar-Seidman Conclusions Additional concoco conditions con

Problem

Introduction

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Main subject of study (modest)

Problem

Introduction

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Main subject of study (modest)

Control theory Single server Kumar-Seidman Conclusions Additional 0000000 0000000 00 000000

Problem

Introduction

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Main subject of study (modest)

 Introduction
 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Addition

 000 ◆
 0000000
 0000000
 0000000
 00
 000000

Approach

Approach

Use ideas/concepts from control theory

Background: Control theory

System dynamics (linear)

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$

$$x \in R^n, u \in R^k$$

 $y \in R^m$

where $u(\cdot)$ is a function to be designed.

Problem I: Trajectory generatior

Determine feasible functions $x_r(t)$, $u_r(t)$.

Problem II: State feedback tracking control

Given arbitrary feasible $x_r(t)$, $u_r(t)$, find a controller $u(\cdot)$, such that

$$\lim_{t\to\infty}\|x(t)-x_r(t)\|=0$$

Additional

Introduction

Background: Control theory

System dynamics (linear)

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x \in \mathbb{R}^n, u \in \mathbb{R}^k$$

$$v(t) = Cx(t) \qquad v \in \mathbb{R}^m$$

where $u(\cdot)$ is a function to be designed.

Problem I: Trajectory generation

Determine feasible functions $x_r(t)$, $u_r(t)$.

Problem II: State feedback tracking contro

Given arbitrary feasible $x_r(t)$, $u_r(t)$, find a controller $u(\cdot)$, such that

$$\lim_{t\to\infty}\|x(t)-x_r(t)\|=0$$

7 / 34

Additional

NWO

Introduction

Additional

Background: Control theory

System dynamics (linear)

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 $x \in \mathbb{R}^n, u \in \mathbb{R}^k$
 $y(t) = Cx(t)$ $y \in \mathbb{R}^m$

where $u(\cdot)$ is a function to be designed.

Problem I: Trajectory generation

Determine feasible functions $x_r(t)$, $u_r(t)$.

Problem II: State feedback tracking control

Given arbitrary feasible $x_r(t)$, $u_r(t)$, find a controller $u(\cdot)$, such that

$$\lim_{t\to\infty}\|x(t)-x_r(t)\|=0.$$

TU/e NWO

Background: Control theory, Example tracking control

Controller

Introduction

$$u = u_r + K(x - x_r)$$

Error dynamics

Define $e = x - x_r$, then:

$$\dot{e} = Ax + B(u_r + Ke) - (Ax_r + Bu_r) = (A + BK)\epsilon$$

Make sure that K is such that eigenvalues of A + BK are in left half of complex plane.

Remark

The controller design holds for arbitrary reference

Background: Control theory, Example tracking control

Controller

Introduction

$$u = u_r + K(x - x_r)$$

Error dynamics

Define $e = x - x_r$, then:

$$\dot{e} = Ax + B(u_r + Ke) - (Ax_r + Bu_r) = (A + BK)e$$

Make sure that K is such that eigenvalues of A + BK are in left half of complex plane.

Additional

Background: Control theory, Example tracking control

Controller

$$u = u_r + K(x - x_r)$$

Error dynamics

Define $e = x - x_r$, then:

$$\dot{e} = Ax + B(u_r + Ke) - (Ax_r + Bu_r) = (A + BK)e$$

Make sure that K is such that eigenvalues of A + BK are in left half of complex plane.

Remark

The controller design holds for arbitrary reference.

TU/e NWO

Background: Control theory

Introduction

System dynamics (linear)

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 $x \in R^n, u \in R^k$
 $y(t) = Cx(t)$ $y \in R^m$

Problem I: Trajectory generation

Determine feasible functions $x_r(t)$, $u_r(t)$.

Problem II: State feedback tracking control

Given arbitrary feasible $x_r(t)$, $u_r(t)$, find a controller

Problem III: Observer design

Reconstruct x using only measurement of y

Background: Control theory

Introduction

System dynamics (linear)

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 $x \in \mathbb{R}^n, u \in \mathbb{R}^k$
 $y(t) = Cx(t)$ $y \in \mathbb{R}^m$

Problem I: Trajectory generation

Determine feasible functions $x_r(t)$, $u_r(t)$.

Problem II: State feedback tracking control

Given arbitrary feasible $x_r(t)$, $u_r(t)$, find a controller

Problem III: Observer design

Reconstruct x using only measurement of y

Background: Control theory, Example observer design

Observer

Introduction

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y})$$
$$\hat{y} = C\hat{x}$$

Observer error dynamics

Define $e = x - \hat{x}$, then

$$\dot{e} = A\hat{x} + Bu + LCe - (Ax + Bu) = (A + LC)e$$

Make sure that L is such that eigenvalues of A + LC are in left half of complex plane.

Background: Control theory

Introduction

Problem I: Trajectory generation

Determine feasible functions $x_r(t)$, $u_r(t)$.

Problem II: State feedback tracking control

Given arbitrary feasible $x_r(t)$, $u_r(t)$, find a controller assuming x is available for measurement

Problem III: Observer design

Reconstruct x using only measurement of y

Problem IV: Output feedback tracking control

Given arbitrary feasible $x_r(t)$, $u_r(t)$, find a controller assuming only y is available for measurement

11 / 34

Background: Control theory

Problem I: Trajectory generation

Determine feasible functions $x_r(t)$, $u_r(t)$.

Problem II: State feedback tracking control

Given arbitrary feasible $x_r(t)$, $u_r(t)$, find a controller assuming x is available for measurement

Problem III: Observer design

Reconstruct x using only measurement of y

Problem IV: Output feedback tracking control

Given arbitrary feasible $x_r(t)$, $u_r(t)$, find a controller assuming only y is available for measurement

Introduction

Background: Control theory, Example tracking control

System dynamics (linear)

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x \in R^n, u \in R^k$$

$$y(t) = Cx(t) \qquad y \in R^m$$

Dynamic output feedback tracking controller

$$u = u_r + K(\hat{x} - x_r)$$

$$\dot{\hat{x}} = A\hat{x} + Bu(t) + L(y - \hat{y})$$

$$\hat{y} = C\hat{x}$$

where K and L from previous designs can be used.

TU/e NWO

Introduction

Approach

Introduction

Notions from control theory

- Generate feasible reference trajectory
- Design (static) state feedback controller
- Observer
 Observer
- Oesign (dynamic) output feedback controller

Parallels with this problem

- Determine desired system behavior
- ② Derive non-distributed/centralized controller
- Can state be reconstructed?
- Operive distributed/decentralized controller

IntroductionControl theorySingle serverKumar-SeidmanConclusionsAdditional00000000000000000000000

Approach

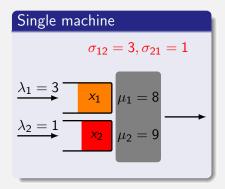
Notions from control theory

- Generate feasible reference trajectory
- ② Design (static) state feedback controller
- Observer
 Observer
- Design (dynamic) output feedback controller

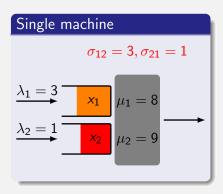
Parallels with this problem

- Determine desired system behavior
- ② Derive non-distributed/centralized controller
- Can state be reconstructed?
- Oerive distributed/decentralized controller

Example 1: Single machine



Introduction



State

 x_0 remaining setup time

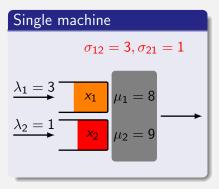
 x_i buffer contents (i = 1, 2)m mode $\in \{1, 2\}$

Input

$$u_0$$
 activity $\in \{ \textcircled{1}, \textcircled{2}, \textcircled{0}, \textcircled{2} \}$
 u_i service rate step $i = 1, 2$

Example 1: Single machine

Introduction



Continuous dynamics

$$\dot{x}_0(t) = \begin{cases}
-1 & \text{if } u_0 \in \{ \mathbf{0}, \mathbf{2} \} \\
0 & \text{if } u_0 \in \{ \mathbf{0}, \mathbf{2} \} \end{cases}$$

$$\dot{x}_1(t) = \lambda_1 - u_1(t)$$

$$\dot{x}_2(t) = \lambda_2 - u_2(t)$$

Discrete event dynamics

$$x_0 := \sigma_{21}$$
 $m :=$

$$x_0 := \sigma_{12}$$
 m

$$m := 1$$
 if $u_0 = \mathbf{0}$ and $m = 2$

if
$$u_0 = 2$$
 and $m = 1$

TU/e

Additional

Example 1: Single machine

Single machine $\sigma_{12} = 3, \sigma_{21} = 1$

Continuous dynamics

$$\dot{x}_0(t) = \begin{cases}
-1 & \text{if } u_0 \in \{ \mathbf{0}, \mathbf{2} \} \\
0 & \text{if } u_0 \in \{ \mathbf{0}, \mathbf{2} \} \end{cases}$$

$$\dot{x}_1(t) = \lambda_1 - u_1(t)$$

$$\dot{x}_2(t) = \lambda_2 - u_2(t)$$

Discrete event dynamics

$$x_0 := \sigma_{21}$$

$$m := 1$$

$$x_0 := \sigma_{12}$$

$$m := 2$$

if
$$u_0 = \mathbf{0}$$
 and $m = 2$

if
$$u_0 = \mathbf{2}$$
 and $m = 1$

TU/e NWO

Additional

Introduction

 Introduction
 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Additional occord

 0000
 0000000
 0000000
 0000000
 00
 000000

Example 1: Single machine

Input contraints

$$u_0 \in \{ \mathbf{0}, \mathbf{2} \}$$
 $u_1 = 0$ $u_2 = 0$ if $x_0 > 0$
 $u_0 \in \{ \mathbf{0}, \mathbf{2} \}$ $u_1 \le \mu_1$ $u_2 = 0$ if $x_0 = 0, x_1 > 0, m = 1$
 $u_0 \in \{ \mathbf{0}, \mathbf{2} \}$ $u_1 \le \lambda_1$ $u_2 = 0$ if $x_0 = 0, x_1 = 0, m = 1$
 $u_0 \in \{ \mathbf{0}, \mathbf{2} \}$ $u_1 = 0$ $u_2 \le \mu_2$ if $x_0 = 0, x_2 > 0, m = 2$
 $u_0 \in \{ \mathbf{0}, \mathbf{2} \}$ $u_1 = 0$ $u_2 \le \lambda_2$ if $x_0 = 0, x_2 = 0, m = 2$

Objective

Minimize

$$\limsup_{t \to \infty} \frac{1}{t} \int_0^t x_1(\tau) + x_2(\tau) d\tau \qquad \text{or} \qquad \frac{1}{T} \int_0^T x_1(\tau) + x_2(\tau) d\tau$$

TU/e

 Introduction
 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Additional occord

 0000
 0000000
 0000000
 0000000
 00
 000000

Example 1: Single machine

Input contraints

$$u_0 \in \{ \mathbf{0}, \mathbf{2} \}$$
 $u_1 = 0$ $u_2 = 0$ if $x_0 > 0$
 $u_0 \in \{ \mathbf{0}, \mathbf{2} \}$ $u_1 \le \mu_1$ $u_2 = 0$ if $x_0 = 0, x_1 > 0, m = 1$
 $u_0 \in \{ \mathbf{0}, \mathbf{2} \}$ $u_1 \le \lambda_1$ $u_2 = 0$ if $x_0 = 0, x_1 = 0, m = 1$
 $u_0 \in \{ \mathbf{0}, \mathbf{2} \}$ $u_1 = 0$ $u_2 \le \mu_2$ if $x_0 = 0, x_2 > 0, m = 2$
 $u_0 \in \{ \mathbf{0}, \mathbf{2} \}$ $u_1 = 0$ $u_2 \le \lambda_2$ if $x_0 = 0, x_2 = 0, m = 2$

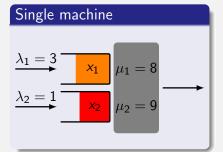
Objective

Minimize:

$$\limsup_{t\to\infty}\frac{1}{t}\int_0^t x_1(\tau)+x_2(\tau)\,\mathrm{d}\,\tau\qquad\text{or}\qquad\frac{1}{T}\int_0^T x_1(\tau)+x_2(\tau)\,\mathrm{d}\,\tau$$

TU/e

Desired behavior (Problem I)



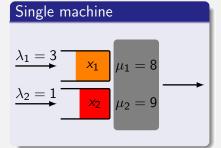
Remarks

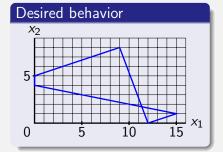
- Many existing policies assume non-idling a-priori
- Slow-mode optimal if $\lambda_1(\frac{\lambda_1}{\mu_1} + \frac{\lambda_2}{\mu_2}) (\lambda_1 \lambda_2)(1 \frac{\lambda_2}{\mu_2}) < 0$.
- Trade-off in wasting capacity: idle
 ⇔ switch more often

TU/e

16 / 34

Desired behavior (Problem I)





Remarks

Introduction

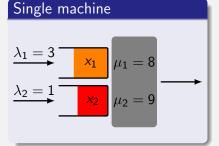
- Many existing policies assume non-idling a-priori
- Slow-mode optimal if $\lambda_1(\frac{\lambda_1}{\mu_1} + \frac{\lambda_2}{\mu_2}) (\lambda_1 \lambda_2)(1 \frac{\lambda_2}{\mu_2}) < 0$.
- Trade-off in wasting capacity: idle ⇔ switch more often

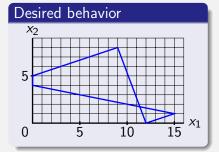
TU/e

 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Additional

 0000000
 000000
 000000
 00
 00000

Desired behavior (Problem I)





Remarks

Introduction

- Many existing policies assume non-idling a-priori
- Slow-mode optimal if $\lambda_1(\frac{\lambda_1}{\mu_1} + \frac{\lambda_2}{\mu_2}) (\lambda_1 \lambda_2)(1 \frac{\lambda_2}{\mu_2}) < 0$.
- Trade-off in wasting capacity: idle
 ⇔ switch more often

TU/e

Control theory Single server Kumar-Seidman Conclusions Additional concoco con

Controller design (Problem II)

Main idea

Introduction

Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

Lyapunov function candidate

17 / 34

 Introduction
 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Additional occord

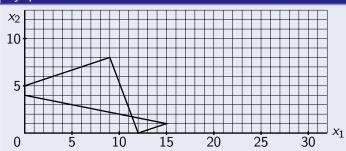
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Controller design (Problem II)

Main idea

Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

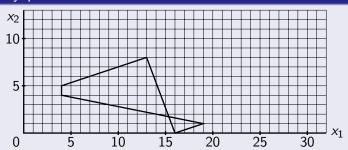
Lyapunov function candidate



Controller design (Problem II)

Main idea

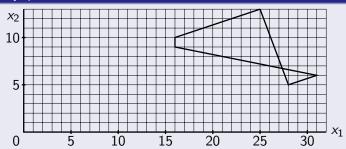
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



Controller design (Problem II)

Main idea

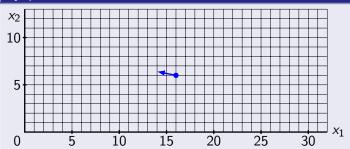
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



Controller design (Problem II)

Main idea

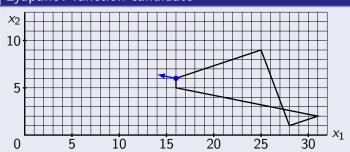
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



Controller design (Problem II)

Main idea

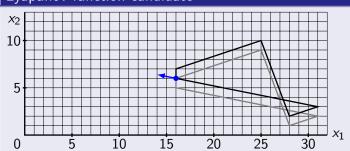
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



Controller design (Problem II)

Main idea

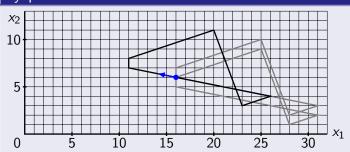
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



Controller design (Problem II)

Main idea

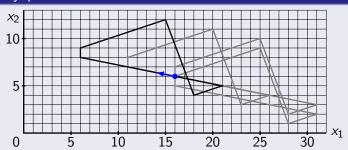
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



Controller design (Problem II)

Main idea

Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

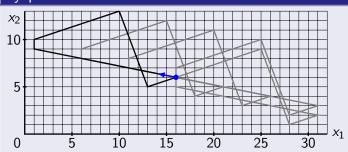


Controller design (Problem II)

Main idea

Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

Lyapunov function candidate



 Introduction
 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Additional

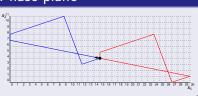
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000

Controller design

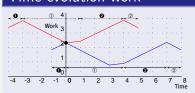
Lyapunov function candidate

The smallest additional mean amount of work from all feasible curves for state (work: $x_1/\mu_1 + x_2/\mu_2$).

Phase plane



Time evolution work



Controller design

Let Lyapunov function candidate decrease as quickly as possible

 Introduction
 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Additional

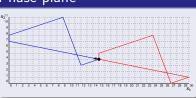
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000

Controller design

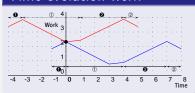
Lyapunov function candidate

The smallest additional mean amount of work from all feasible curves for state (work: $x_1/\mu_1 + x_2/\mu_2$).

Phase plane



Time evolution work

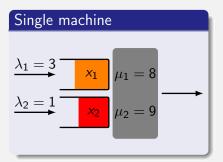


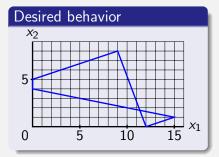
Controller design

Let Lyapunov function candidate decrease as quickly as possible

Controller design (Result)

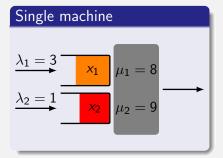
Introduction

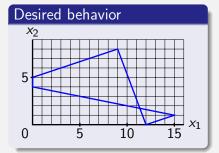




Controller design (Result)

Introduction





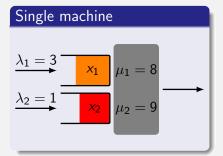
Resulting Controller, cf. [Lefeber, Rooda (2006)]

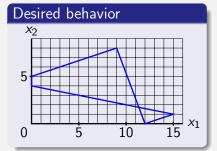
- When serving type 1:
 - empty buffer
 - serve until $x_2 \ge 5$
 - 3 switch to type 2

- When serving type 2:
 - empty buffer
 - 2 serve until $x_1 \ge 12$
 - switch to type :

Controller design (Result)

Introduction





Resulting Controller, cf. [Lefeber, Rooda (2006)]

- When serving type 1:
 - empty buffer
 - 2 serve until $x_2 > 5$
 - 3 switch to type 2

- When serving type 2:
 - empty buffer
 - ② serve until $x_1 \ge 12$
 - 3 switch to type 1

TU/e NWO

Recap

Notions from control theory

- Generate feasible reference trajectory
- Design (static) state feedback controller
- Observer
 Observer
- Design (dynamic) output feedback controller

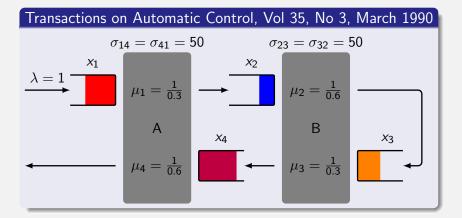
Parallels with this problem

- Determine desired system behavior
- ② Derive non-distributed/centralized controller
- Can state be reconstructed?
- Derive distributed/decentralized controller

 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Additional

 0000000
 0000000
 00
 00000

Example 2: Kumar-Seidman case



Observation

Sufficient capacity (consider period of at least 1000).

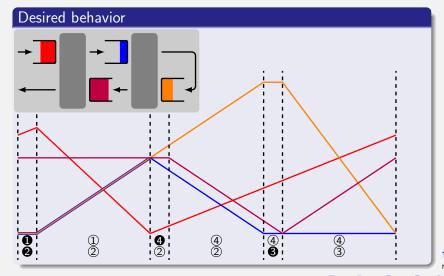
TU/e

NWO.

troduction Control theory Single server Kumar-Seidman Conclusions Additiona

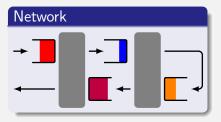
000 000000 0000000 00 000000

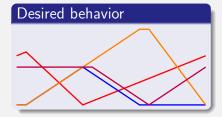
Desired behavior



IntroductionControl theorySingle serverKumar-SeidmanConclusionsAdditional0000000000000000000000000

Resulting controller





Resulting controller

Mode (1,2): to (4,2) when both $x_1 = 0$ and $x_2 + x_3 \ge 1000$

Mode (4,2): to (4,3) when both $x_2 = 0$ and $x_4 \le 83\frac{1}{3}$

Mode (4,3): to (1,2) when $x_3 = 0$

Remark:

Non-distributed/centralized controller

Proof

Introduction

Monodromy operator

 x_i^k : buffer contents at k^{th} start of mode (1,2). For k > 2:

$$x_1^{k+1} = 50 + \frac{3}{7}(x_1^k + 50) + \max\left(\frac{3}{7}(x_1^k + 50), \frac{3}{5}x_4^k\right)$$

$$x_2^{k+1} = 0 \qquad x_3^{k+1} = 0 \qquad x_4^{k+1} = \frac{5}{7}(x_1^k + 50)$$
(1)

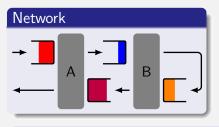
Observation

With $y_1^k = (x_1^k - 650)/7$, $y_4^k = (x_4^k - 500)/5$ we get from (1):

$$0 \leq \max(y_1^{k+2}, y_4^{k+2}) \leq \frac{6}{7} \max(y_1^k, y_4^k)$$

So system converges to fixed point (650, 0, 0, 500).

Observability



Assumptions

- Clearing policy used for machine B
- At $t = t_1$: ③ starts
- At $t = t_2 > t_1$: ③ stops

System state can be reconstructed at machine A

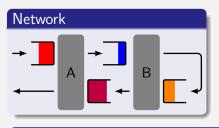
- $x_3(t_2) = 0$, and $0.3(t_2 t_1) = x_3(t_1) = x_3(t_1 50)$
- $x_2(t_1 50) = 0$, and $x_2(t_2) = \int_{t_1 50}^{t_2} u_1(\tau) d\tau$

Observation

Observability determined by network topology

 Introduction
 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Additional occord

Observability



Assumptions

- Clearing policy used for machine B
- At $t = t_1$: ③ starts
- At $t = t_2 > t_1$: ③ stops

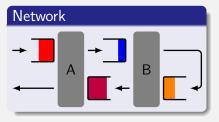
System state can be reconstructed at machine A

- $x_3(t_2) = 0$, and $0.3(t_2 t_1) = x_3(t_1) = x_3(t_1 50)$
- $x_2(t_1 50) = 0$, and $x_2(t_2) = \int_{t_1 50}^{t_2} u_1(\tau) d\tau$

Observation

Observability determined by network topology

Observability



Assumptions

- Clearing policy used for machine B
- At $t = t_1$: ③ starts
- At $t = t_2 > t_1$: ③ stops

System state can be reconstructed at machine A

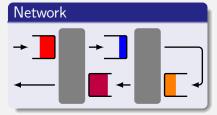
- $x_3(t_2) = 0$, and $0.3(t_2 t_1) = x_3(t_1) = x_3(t_1 50)$
- $x_2(t_1 50) = 0$, and $x_2(t_2) = \int_{t_1 50}^{t_2} u_1(\tau) d\tau$

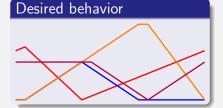
Observation

Observability determined by network topology

Kumar-Seidman Introduction Control theory Single server Additional

Distributed controller, cf. [Lefeber, Rooda (2008)]





Distributed controller

Serving 1: Serve at least 1000 jobs until $x_1 = 0$, then switch. Let \bar{x}_1 be nr of jobs served.

Serving 4: Let \bar{x}_4 be nr of jobs in Buffer 4 after setup. Serve $\bar{x}_4 + \frac{1}{2}\bar{x}_1$ jobs, then switch.

Serving 2: Serve at least 1000 jobs until $x_2 = 0$, then switch.

Serving 3: Empty buffer, then switch.

> TU/e NWO

Queueing Colloquium

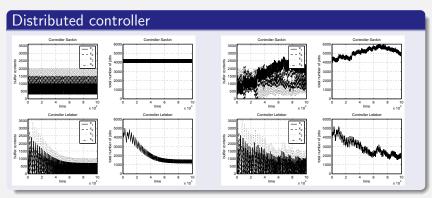
 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Additional

 0000000
 000000●
 00
 00000

Simulation results

Introduction

Initial condition (1000, 1000, 1000, 1000). Deterministic/Exponential service times, setup times.



Conclusions

New approach

- Determine desired system behavior (trajectory generation)
- ② Derive non-distributed/centralized controller (state feedback)
- Oerive distributed/decentralized controller (output feedback)

Advantag ϵ

All three problems can be considered separately

Centralized control

Approach can deal with

- Arbitrary networks
- Finite buffers
- Transportation delays

Decentralized contro

 Observer based approach results in new, tailor-made controllers that perform better

Conclusions

New approach

- Determine desired system behavior (trajectory generation)
- ② Derive non-distributed/centralized controller (state feedback)
- Oerive distributed/decentralized controller (output feedback)

Advantage

All three problems can be considered separately

Centralized control

Approach can deal with

- Arbitrary networks
- Finite buffers
- Transportation delays

Decentralized control

 Observer based approach results in new, tailor-made controllers that perform better



Conclusions

New approach

- Determine desired system behavior (trajectory generation)
- ② Derive non-distributed/centralized controller (state feedback)
- Oerive distributed/decentralized controller (output feedback)

Advantage

All three problems can be considered separately

Centralized control

Approach can deal with

- Arbitrary networks
- Finite buffers
- Transportation delays

Decentralized contro

 Observer based approach results in new, tailor-made controllers that perform better

Conclusions

New approach

- Determine desired system behavior (trajectory generation)
- ② Derive non-distributed/centralized controller (state feedback)
- Oerive distributed/decentralized controller (output feedback)

Advantage

All three problems can be considered separately

Centralized control

Approach can deal with

- Arbitrary networks
- Finite buffers
- Transportation delays

Decentralized control

 Observer based approach results in new, tailor-made controllers that perform better



Future work

Introduction

Research

- Centralized control
 - Finalize techniques for convergence proofs
 - Derive class of controllers (instead of only one)
 - Finite buffers: reachability of desired orbit
 - Deal with parametric uncertainty; robustness if parameters are either different or time-varying.
- Decentralized control (!!PhD vacency!!)
 - Observability (including tests)
 - Observer design
 - Stability analysis of distributed policies
- Stochastic extensions
 - Analyze performance of derived (de)centralized controllers for stochastic queueing networks

Future work

Research

- Centralized control
 - Finalize techniques for convergence proofs
 - Derive class of controllers (instead of only one)
 - Finite buffers: reachability of desired orbit
 - Deal with parametric uncertainty; robustness if parameters are either different or time-varying.
- Decentralized control (!!PhD vacency!!)
 - Observability (including tests)
 - Observer design
 - Stability analysis of distributed policies
- Stochastic extensions
 - Analyze performance of derived (de)centralized controllers for stochastic queueing networks

Future work

Research

- Centralized control
 - Finalize techniques for convergence proofs
 - Derive class of controllers (instead of only one)
 - Finite buffers: reachability of desired orbit
 - Deal with parametric uncertainty; robustness if parameters are either different or time-varying.
- Decentralized control (!!PhD vacency!!)
 - Observability (including tests)
 - Observer design
 - Stability analysis of distributed policies
- Stochastic extensions
 - Analyze performance of derived (de)centralized controllers for stochastic queueing networks

Queueing Colloquium

Adaptive control

Introduction

System dynamics

$$\dot{x} = ax + u$$
 a unknown parameter

Controller

$$u = -\hat{a}x - kx$$

$$\hat{a} = \gamma x^2$$

$$\gamma > 0$$

Result

$$\lim_{t\to\infty} x(t) = 0$$

Furthermore, $\hat{a}(t)$ converges to a constant (not to a!)

Adaptive control

Introduction

System dynamics

$$\dot{x} = ax + u$$
 a unknown parameter

Controller

$$u = -\hat{a}x - kx$$

$$\dot{\hat{a}} = \gamma x^2$$

$$\gamma > 0$$

Result

$$\lim_{t\to\infty} x(t) = 0$$

Furthermore, $\hat{a}(t)$ converges to a constant (not to a!)

Adaptive control

System dynamics

$$\dot{x} = ax + u$$
 a unknown parameter

Controller

$$u = -\hat{a}x - kx$$

$$\dot{\hat{a}} = \gamma x^2$$

$$\gamma > 0$$

Result

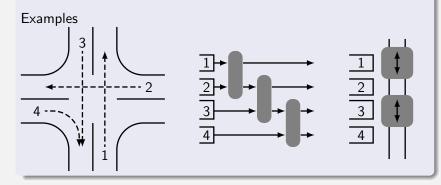
$$\lim_{t\to\infty}x(t)=0$$

Furthermore, $\hat{a}(t)$ converges to a constant (not to a!)

System

System

Server can serve several queues simultaneously, each queue at rate μ_i , independent of the number of queues being served.



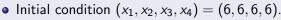
Problem

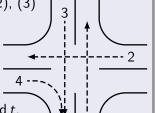
Introduction

Example

- Modes: (1,4), (2,4), (1,3), (4), (1), (2), (3)
- Deterministic fluid queues
- No arrivals, i.e. $\lambda_i = 0$
- $\mu_i = 1$
- Objective: minimize

 $\int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) dt.$





Possible policies

Mode (1,4) for 6, Mode (2) for 6, Mode (3) for 6: costs 504.
 Mode (2,4) for 6, Mode (1,3) for 6: costs 468

Optimal costs: 456.

32 / 34

 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Additional

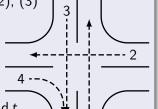
 000000
 000000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</

Problem

Introduction

Example

- Modes: (1,4), (2,4), (1,3), (4), (1), (2), (3)
- Deterministic fluid queues
- No arrivals, i.e. $\lambda_i = 0$
- $\mu_i = 1$
- Objective: minimize
 - $\int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) dt.$
- Initial condition $(x_1, x_2, x_3, x_4) = (6, 6, 6, 6)$.



Possible policies

- Mode (1,4) for 6, Mode (2) for 6, Mode (3) for 6: costs 504.
- Mode (2,4) for 6, Mode (1,3) for 6: costs 468.
- Optimal costs: 456

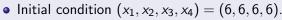
Problem

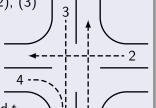
Introduction

Example

- Modes: (1,4), (2,4), (1,3), (4), (1), (2), (3)
- Deterministic fluid queues
- No arrivals, i.e. $\lambda_i = 0$
- $\mu_i = 1$
- Objective: minimize

 $\int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) dt.$





Possible policies

- Mode (1,4) for 6, Mode (2) for 6, Mode (3) for 6: costs 504.
- Mode (2,4) for 6, Mode (1,3) for 6: costs 468.
- Optimal costs: 456

TU/e NWO

32 / 34

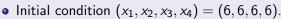
Problem

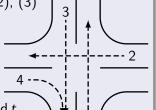
Introduction

Example

- Modes: (1,4), (2,4), (1,3), (4), (1), (2), (3)
- Deterministic fluid queues
- No arrivals, i.e. $\lambda_i = 0$
- $\mu_i = 1$
- Objective: minimize

 $\int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) dt.$





Possible policies

- Mode (1,4) for 6, Mode (2) for 6, Mode (3) for 6: costs 504.
- Mode (2,4) for 6, Mode (1,3) for 6: costs 468.
- Optimal costs: 456.

TU/e NWO

Optimal controller

Introduction

Initialization: Start in Mode (1,4).

- Mode (1,4): Stay in mode until either $x_1 = 0$, or $x_4 = 0$, or $x_4 \le x_2 \land x_1 \le x_3 \land \left(\mu_1 c_1 \mu_2 c_2 + \mu_3 c_3\right) \left(\frac{x_1}{\mu_1} + \frac{x_4}{\mu_4}\right) \le \mu_3 c_3 \left(\frac{x_2}{\mu_2} + \frac{x_3}{\mu_3}\right)$ then switch to Mode (2,4).
- Mode (2,4): Stay in mode until either $x_2 = 0$ or $x_4 = 0$, then switch to Mode (1,3).
- Mode (1,3): Stay in mode until either $x_1 = 0$ or $x_3 = 0$, then switch to Mode (4).
 - Mode (4): Stay in mode until $x_4 = 0$, then switch to Mode (1).
 - Mode (1): Stay in mode until $x_1 = 0$, then switch to Mode (2).
 - Mode (2): Stay in mode until $x_2 = 0$, then switch to Mode (3).
 - Mode (3): Stay in mode until $x_3 = 0$.

 Control theory
 Single server
 Kumar-Seidman
 Conclusions
 Additional

 000000
 000000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</

With arrival rates

Introduction

Some observations

- Can be formulated as SCLP (NO setup times)
- Combined modes
- μc -like rule (only for NO setup times)
- Stability conditions (odd cycle graph)
- Setup times: no μc -like rule:

$$c = (0.34, 0.33, 0.32, 0.35)^T$$
 $x_0 = (30, 20, 20, 40)$

No arrivals

 μc rule: (1,4), (2,4), (1,3), 3: costs 1039.68 optimal: (2,4), (1,4), (1,3), 3: costs 1039.60

