

Controller design for networks of switching servers with setup times

Erjen Lefeber

Alumni lunchlezing, Universiteit Twente

Abacus verleden

- Mathematisch Café
- Ouderdag
- Kaleidoscoopdag
- TWIK'93 (toen: IKTW)
- Bestuur '93-'94
- Ideaal!
- Coco
- Beleidscommissies
- Kascommissies
- Oud-bestuursledendag

Abacus verleden

- Mathematisch Café
- Ouderdag
- Kaleidoscoopdag
- TWIK'93 (toen: IKTW)
- Bestuur '93-'94
- Ideaal!
- Coco
- Beleidscommissies
- Kascommissies
- Oud-bestuursledendag

Ander vrijwilligerswerk

- Vierkant voor Wiskunde
- Onderwijs visitatie commissie
- NOCW (Nederlandse Onderwijscommissie voor de Wiskunde)
- Redactie Pythagoras
- Wiskunde Olympiade

Kerk

Wat doe ik

Universitair Docent

- Onderwijs
- Onderzoek

Wat doe ik

Universitair Docent

- Onderwijs
- Onderzoek

This work was supported by the Netherlands Organization for Scientific Research (NWO-VIDI grant 639.072.072)

Motivation

6/24

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

How to control these networks?

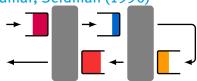
Decisions: When to switch, and to which job-type

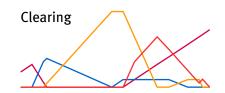
Goals: Minimal number of jobs, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

Kumar, Seidman (1990)





Current status (after two decades)

Several policies exist that guarantee stability of the network

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Current status (after two decades)

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Main subject of study (modest)

Fixed, deterministic flow networks (not evolving, constant inflow)

Approach
Use ideas/concepts from control theory

Notions from control theory

- 1. Generate feasible reference trajectory
- 2. Design (static) state feedback controller
- 3. Design observer
- 4. Design (dynamic) output feedback controller

Notions from control theory

- 1. Generate feasible reference trajectory
- 2. Design (static) state feedback controller
- 3. Design observer
- 4. Design (dynamic) output feedback controller

Parallels with this problem

- Determine desired system behavior
- 2. Derive non-distributed/centralized controller
- 3. Can state be reconstructed?
- 4. Derive distributed/decentralized controller

Example 1: Single machine

Single machine

$$\sigma_{12} = 3, \sigma_{21} = 1$$

$$\lambda_1 = 3$$

$$\lambda_2 = 1$$

$$\lambda_2 = 1$$

$$\lambda_2 = 9$$

$$\sigma_{12} = 3, \sigma_{21} = 1$$

$$\lambda_1 = 3$$

$$\lambda_2 = 1$$

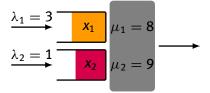
$$\lambda_2 = 1$$

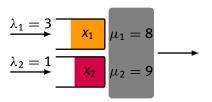
$$\lambda_2 = 9$$

Objective

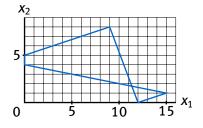
Minimize:

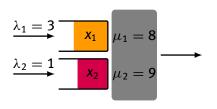
$$\limsup_{t \to \infty} \frac{1}{t} \int_0^t x_1(\tau) + x_2(\tau) \, \mathrm{d} \, \tau \qquad \text{or} \qquad \frac{1}{T} \int_0^T x_1(\tau) + x_2(\tau) \, \mathrm{d} \, \tau$$
The interior mechanical engineering are universely of Technical Foundation (and the content of t



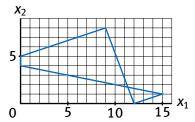


Desired behavior





Desired behavior

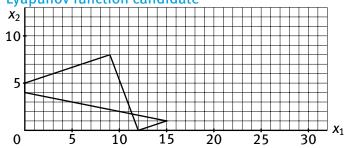


Remarks

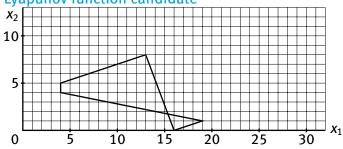
- Many existing policies assume non-idling a-priori
- ► Slow-mode optimal if $\lambda_1(\frac{\lambda_1}{\mu_1} + \frac{\lambda_2}{\mu_2}) (\lambda_1 \lambda_2)(1 \frac{\lambda_2}{\mu_2}) < 0$.
- ► Trade-off in wasting capacity: idle ⇔ switch more often

Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

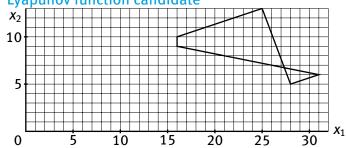
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



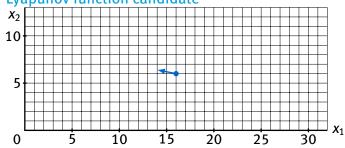
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



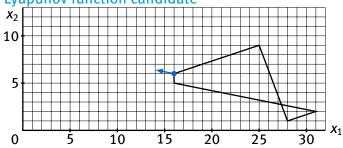
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



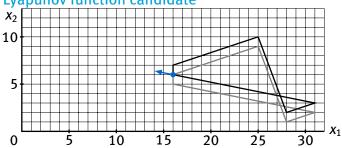
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



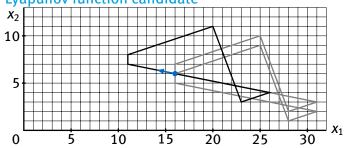
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



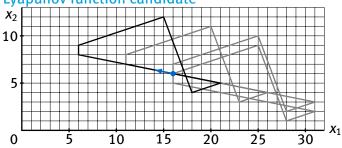
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



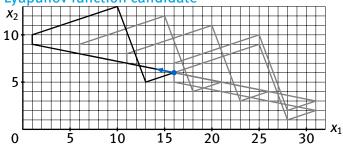
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



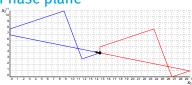
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level



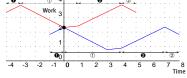
Lyapunov function candidate

The smallest additional mean amount of work from all feasible curves for state (work: $x_1/\mu_1 + x_2/\mu_2$).

Phase plane

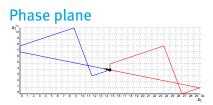


Time evolution work



Lyapunov function candidate

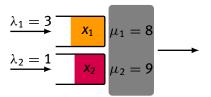
The smallest additional mean amount of work from all feasible curves for state (work: $x_1/\mu_1 + x_2/\mu_2$).



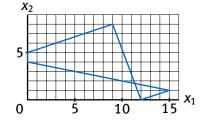


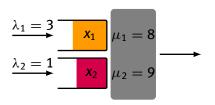
Controller design

Let Lyapunov function candidate decrease as quickly as possible

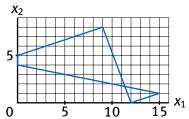


Desired behavior





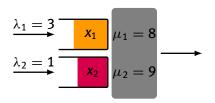
Desired behavior



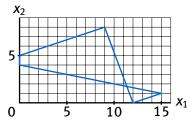
Resulting Controller, cf. [Lefeber, Rooda (2006)]

- When serving type 1:
 - empty buffer
 - 2. serve until $x_2 \geq 5$
 - 3. switch to type 2

Single machine



Desired behavior



Resulting Controller, cf. [Lefeber, Rooda (2006)]

- When serving type 1:
 - empty buffer
 - 2. serve until $x_2 \geq 5$
 - 3. switch to type 2

- When serving type 2:
 - empty buffer
 - 2. serve until $x_1 \geq 12$
 - 3. switch to type 1

Recap

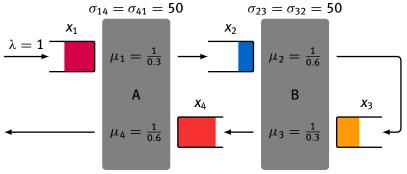
Notions from control theory

- 1. Generate feasible reference trajectory
- 2. Design (static) state feedback controller
- 3. Design observer
- 4. Design (dynamic) output feedback controller

Parallels with this problem

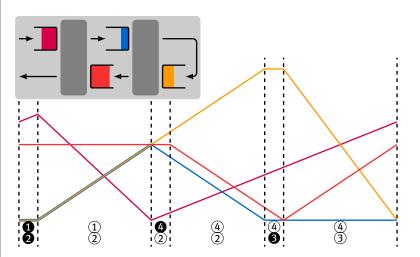
- Determine desired system behavior
- 2. Derive non-distributed/centralized controller
- 3. Can state be reconstructed?
- 4. Derive distributed/decentralized controller

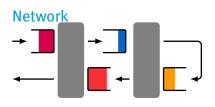
Transactions on Automatic Control, Vol 35, No 3, March 1990

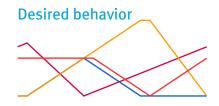


Observation

Sufficient capacity (consider period of at least 1000).







Resulting controller

Mode (1,2): to (4,2) when both $x_1 = 0$ and $x_2 + x_3 \ge 1000$

Mode (4,2): to (4,3) when both $x_2 = 0$ and $x_4 \le 83\frac{1}{3}$

Mode (4,3): to (1,2) when $x_3 = 0$

Remark:

Non-distributed/centralized controller

Monodromy operator

 x_i^k : buffer contents at k^{th} start of mode (1,2). For k > 2:

$$x_1^{k+1} = 50 + \frac{3}{7}(x_1^k + 50) + \max\left(\frac{3}{7}(x_1^k + 50), \frac{3}{5}x_4^k\right)$$

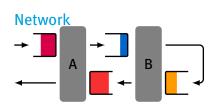
$$x_2^{k+1} = 0 \qquad x_3^{k+1} = 0 \qquad x_4^{k+1} = \frac{5}{7}(x_1^k + 50)$$
(1)

Observation

With $y_1^k = (x_1^k - 650)/7$, $y_4^k = (x_4^k - 500)/5$ we get from (1):

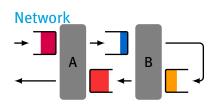
$$0 \leq \max(y_1^{k+2}, y_4^{k+2}) \leq \frac{6}{7} \max(y_1^k, y_4^k)$$

So system converges to fixed point (650, 0, 0, 500).



Assumptions

- Clearing policy used for machine B
- At $t = t_1$: 3 starts
- At $t = t_2 > t_1$: ③ stops

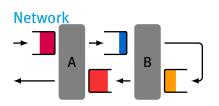


Assumptions

- Clearing policy used for machine B
- At $t = t_1$: 3 starts
- At $t = t_2 > t_1$: ③ stops

System state can be reconstructed at machine A

- $x_3(t_2) = 0$, and $(t_2 t_1)/0.3 = x_3(t_1) = x_3(t_1 50)$
- $x_2(t_1 50) = 0$, and $x_2(t_2) = \int_{t_1 50}^{t_2} u_1(\tau) d\tau$



Assumptions

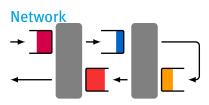
- Clearing policy used for machine B
- At $t = t_1$: 3 starts
- At $t = t_2 > t_1$: ③ stops

System state can be reconstructed at machine A

- $x_3(t_2) = 0$, and $(t_2 t_1)/0.3 = x_3(t_1) = x_3(t_1 50)$
- $x_2(t_1 50) = 0$, and $x_2(t_2) = \int_{t_1 50}^{t_2} u_1(\tau) d\tau$

Observation

Observability determined by network topology



Distributed controller

Serving 1: Serve at least 1000 jobs until $x_1 = 0$, then switch. Let \bar{x}_1 be nr of jobs served.

Serving 4: Let \bar{x}_4 be nr of jobs in Buffer 4 after setup. Serve $\bar{x}_4 + \frac{1}{2}\bar{x}_1$ jobs, then switch.

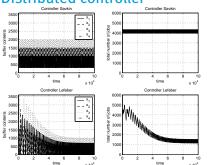
Serving 2: Serve at least 1000 jobs until $x_2 = 0$, then switch.

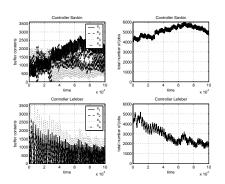
Serving 3: Empty buffer, then switch.

Initial condition (1000, 1000, 1000, 1000).

Deterministic/Exponential service times, setup times.

Distributed controller





Conclusions

New approach

- 1. Determine desired system behavior (trajectory generation)
- 2. Derive non-distributed/centralized controller (state feedback)
- 3. Derive distributed/decentralized controller (output feedback)

Conclusions

New approach

- 1. Determine desired system behavior (trajectory generation)
- 2. Derive non-distributed/centralized controller (state feedback)
- 3. Derive distributed/decentralized controller (output feedback)

Advantage

All three problems can be considered separately

New approach

- 1. Determine desired system behavior (trajectory generation)
- 2. Derive non-distributed/centralized controller (state feedback)
- 3. Derive distributed/decentralized controller (output feedback)

Advantage

All three problems can be considered separately

Centralized control

Approach can deal with

- Arbitrary networks
- Finite buffers
- Transportation delays

New approach

- 1. Determine desired system behavior (trajectory generation)
- 2. Derive non-distributed/centralized controller (state feedback)
- 3. Derive distributed/decentralized controller (output feedback)

Advantage

All three problems can be considered separately

Centralized control

Approach can deal with

- Arbitrary networks
- Finite buffers
- Transportation delays

Decentralized control

 Observer based approach results in new, tailor-made controllers that perform better

E. Lefeber and J.E. Rooda.

Controller Design for Flow Networks of Switched Servers with Setup Times: the Kumar-Seidman Case as an Illustrative Example.

Asian Journal of Control, 10(1), 55-66, 2008.

