Modeling, Validation and Control of Manufacturing Systems

Erjen Lefeber, Roel van den Berg, Koos Rooda

ACC 2004, Boston, MA

2 July 2004

Outline

- Modeling manufacturing systems
- Effective Processing Times
- Overview of available models
- Introduction of PDE models
- Validation of PDE models
- Control using PDE models
- Conclusions

Modeling problem

IU/e

Modeling for control (supply chain/mass production).

- Like to understand dynamics of factories
- Throughput, flow time, variance of flow time
- Answer questions like: How to perform ramp up?

Two main structures

• Re-entrant line

<u>TU/e</u>

• Acyclic line

Typical signal + Nonlinear relation

Effective Processing Times

TU/e

Effective Processing Times

- Time a lot experiences (from a logistic point of view)
- Time a lot either was or could have been processed

Effective Processing Times

- Time a lot experiences (from a logistic point of view)
- Time a lot either was or could have been processed

Effective Processing Times

- Time a lot experiences (from a logistic point of view)
- Time a lot either was or could have been processed

Effective Processing Times

- Time a lot experiences (from a logistic point of view)
- Time a lot either was or could have been processed

Effective Processing Times

- Time a lot experiences (from a logistic point of view)
- Time a lot either was or could have been processed

Effective Processing Times

- Time a lot experiences (from a logistic point of view)
- Time a lot either was or could have been processed

Modeling problem

TU/e

Some observations from practice:

- Quick answers ("What if ...").
- A factory is (almost) never in steady state
- Throughput and flow time are related

We look for a model that

- is computationally feasible,
- describes dynamics, and
- incorporates both throughput and flow time

Available models

Discrete Event

Advantages

- Include dynamics
- Throughput and flow time related
- Disadvantage
 - Clearly infeasible for entire supply chain

Available models

Queueing Theory

• Advantages

- Throughput and flow time related
- Computationally feasible (approximations)
- Disadvantage
 - Only steady state, no dynamics

Available models

Fluid models

<u>TU/e</u>

- Kimemia and Gershwin: Flow model
- Queuing theorists: Fluid models/Fluid queues

$$\begin{split} \dot{x}_1 &= u_0 - u_1 & x_1(k+1) = x_1(k) + u_0(k) - u_1(k) \\ \dot{x}_2 &= u_1 - u_2 \text{ or } x_2(k+1) = x_2(k) + u_1(k) - u_2(k) \\ \dot{x}_3 &= u_2 & x_3(k+1) = x_3(k) + u_2(k) \end{split}$$

• Cassandras: Stochastic Fluid Model

Available models

Fluid models

• Advantages

- Dynamical model
- Computationally feasible
- Disadvantage
 - Only throughput incorporated in model, no flow time
 - Possible to run factory with no WIP

Available models (conclusion)

- Discrete Event: Not computationally feasible Queuing Theory: No dynamics Fluid models: No flow time
- Need something else!

TU/e

• Discrete event models (and queuing theory) have proved themselves. Can be used for verification!

Traffic flow: LWR model

Lighthill, Whitham ('55), and Richards ('56)

Traffic behavior on one-way road:

 \bullet density $\rho(x,t)\text{,}$

TU/e

- $\bullet \ {\rm speed} \ v(x,t){\rm ,}$
- $\bullet \ {\rm flow} \ u(x,t) = \rho(x,t) v(x,t).$

Conservation of mass:

$$\frac{\partial \rho}{\partial t}(x,t) + \frac{\partial u}{\partial x}(x,t) = 0.$$

Static relation between flow and density:

$$u(x,t)=S(\rho(x,t)).$$

Modeling manufacturing flow

 \bullet density $\rho(x,t)$,

- $\bullet \ {\rm speed} \ v(x,t){\rm ,}$
- $\bullet \ {\rm flow} \ u(x,t) = \rho(x,t) v(x,t) {\rm ,}$
- Conservation of mass: $\frac{\partial \rho}{\partial t}(x,t) + \frac{\partial \rho v}{\partial x}(x,t) = 0.$
- \bullet Boundary condition: $u(0,t)=\lambda(t)$

Modeling manufacturing flow

Armbruster, Marthaler, Ringhofer (2002):

- Single queue: $\frac{1}{v(x,t)} = \frac{1}{\mu} (1 + \int_0^1 \rho(s,t) \, \mathrm{d}s)$
- Single queue: $\frac{\partial \rho v}{\partial t}(x,t) + \frac{\partial \rho v^2}{\partial x}(x,t) = 0$ $\rho v^2(0,t) = \frac{\mu \cdot \rho v(0,t)}{1 + \int_0^1 \rho(s,t) \, \mathrm{d}s}$
- Re-entrant: $v(x,t) = v_0 \left(1 \frac{\int_0^1 \rho(s,t) \, \mathrm{d}s}{W_{\max}}\right)$
- Re-entrant: $\frac{\partial \rho v}{\partial t}(x,t) + \frac{\partial \rho v^2}{\partial x}(x,t) = 0$ $\rho v^2(0,t) = \rho v(0,t) \cdot v_0 \left(1 - \frac{\int_0^1 \rho(s,t) \, \mathrm{d}s}{W_{\max}}\right)$

Lefeber (2003):

TU/e

• Line of m identical queues: $v(x,t) = \frac{\mu}{m + \rho(x,t)}$

Validation

TU/e

- Line of 15 identical machines
- Infinite queues
- FIFO-policy
- Exponential Effective Processing Times
- Step-response (initially empty, start rate λ)
- Model 1, 2, 5 versus averaged discrete event

Show movie

Control

TU/e

- Lyapunov (boundary) controller design
- MPC on discretization of PDE
- Hamiltonian system (power conserving interconnection)
- Hybrid system

Conclusions

TU/e

Need for computationally feasible dynamical models incorporating both throughput and flow time.

- NOT: Discrete event, Queueing theory, Fluid models
- Possible: PDE-models
 - Correct steady state behavior
 - Better description transient needed
 - Queueing theory, discrete event models can be used for validation of PDE models
- PDE-based controller design (boundary control)