
Feedback control of 2-product server with setups and bounded buffers

J.A.W.M. van Eekelen, E. Lefeber and J.E. Rooda

Abstract— A manufacturing machine processing two product
types arriving at constant rate and setup times involved is
considered in this study. An optimal process cycle is derived
with respect to minimal weighted time averaged work in process
(wip) level. In addition, a feedback law is proposed that steers
the system to this optimal process cycle from arbitrary start
point. The analysis has been done for both unbounded and
bounded buffer capacity. Although the analysis is done for
continuous models, the feedback law has been implemented
successfully in a discrete event simulation.

I. INTRODUCTION

In a lot of applications servers have to share capacity

over competing resources. One could think of (Internet)

communication, traffic lights, call-centers, or manufacturing

systems. Switching between resources might take time. In

this paper we consider a server in a manufacturing context,

serving two job types, with nonzero setup times. We regard

the scheduling problem in which a minimal (weighted) mean

work-in-process (wip) level is looked for, assuming no setup

costs. First, an optimal process cycle is determined. Then, a

feedback policy is proposed that brings the trajectory to this

optimal cycle. Next, the optimal cycle and feedback policy

are determined for the situation with finite buffer capacity.

For deterministic systems, Savkin regards a similar type of

problem [12], [13], where a switched server system serves n
queues and stable limit cycle solutions are found with

minimal cycle period. The control policy consists of fixed

process periods for each job type before a setup to another

type is performed. The schedule therefore is predetermined.

The analysis is done for networks. The control policy does

not account for uncertainties or perturbations. In this paper

we determine a control action which depends on the state of

the system.

For queueing systems, Boxma et al. [3], [4] provide

some papers in which they propose a certain policy for

getting a stable process cycle. In [11] systems are analyzed

under a heavy traffic assumption. In most work, analysis

and optimization is done within the given policy. Clearing

policies (serve a queue until it is empty then switch to another

queue) of threshold services (serve a queue until a value has

been reached) are mostly considered in this area for both

stochastic and deterministic environments, while ‘idling’ is

not allowed. In this paper however, we do not start from

a policy but we start with an objective and then propose a

policy, in which we find trajectories with ‘idling’. Related

work but then for stochastic systems has been done by Hofri

All authors are with the Department of Mechanical Engineering, Tech-
nische Universiteit Eindhoven, The Netherlands,
[j.a.w.m.v.eekelen,a.a.j.lefeber,j.e.rooda]@tue.nl

and Ross [9]. However, they restrict themselves to equal

maximum process rates for both product types. Moreover,

they perform the analysis with infinite buffer capacities,

whereas we consider finite buffer capacities.

Lan and Olsen [10] present a fluid model for a multi-

product server which has to choose between competing

queues (polling). They define a convex optimization problem

which determines a, not necessarily achievable, lower bound

on the waiting costs in a deterministic environment with

both setup times and setup costs. They also claim that the

polling table resulting from their optimization problem is

rare to find and in most cases unachievable. Therefore, they

propose heuristics to get close to the lower bound. In this

paper however, we present a perfectly achievable optimal

deterministic process cycle for 2 product types, even in an

environment with limited buffer capacity (Lan and Olsen [10]

assume infinite buffers).

A well known scheduling heuristic is based on the cμ-rule
(see e.g. [5]) where switching (without switchover times)

takes place according to a cμ index where c is some cost
rate and μ a process rate. Job types with highest indices
have priority. In this paper, we derive an optimal process

curve, in which a ‘slow mode’ may occur (also referred

to as ‘idling’ [6] or ‘cruising’ [10]). In this mode, lots are

processed at a lower rate, equal to their arrival rate until the

other queue reaches some value. One could say that jobs of

the former queue have higher priority than switching to the

latter. If the ‘slow mode’ occurs, it takes place at the queue

with the highest cλ index, even if the cμ index of the other
job type is higher, as is shown in an example in Section IV.

A different topic is studying optimal transient behavior:

how to reach the steady state in an optimal way. Less

attention is paid to deriving the actual optimal process cycle.

The ‘slow mode’ had not been recognised by Connolly

et al. in [7] and Boccadoro and Valigi only study symmetric

systems in [2]. Although their work on transient behavior

is interesting, this study focuses on the optimal steady state

process cycle rather than optimal transient behavior.

The remainder of this paper is organized as follows. In

Section II, we present the optimal steady state process cycle

with respect to time averaged work in process (wip) level.

Next we propose a feedback policy that brings a process

trajectory to this optimal curve. The analysis is done based on

continuous fluid models. In Section III we analyze the system

with finite buffers. The optimal process cycle might change

due to this limitation. The feedback policy is adjusted in a

way that buffer capacities are never violated. In Section IV

the feedback controller is successfully implemented in a

discrete event example.

Proceedings of the 2006 American Control Conference
Minneapolis, Minnesota, USA, June 14-16, 2006

WeA16.2

1-4244-0210-7/06/$20.00 ©2006 IEEE 544

λ1

λ2

μ1

μ2

x1

x2 σ12, σ21

Fig. 1. Manufacturing machine.

II. INFINITE BUFFERS ANALYSIS

We consider a manufacturing workstation as shown in

Figure 1. Two different product types arrive at the work-

station. The arrival stream is considered to be a continuous

constant flow with rates λ1 > 0 and λ2 > 0 (in lots/hour)

for products of type 1 and products of type 2 respectively.

Products (lots) are stored in infinite buffers. The numbers of

lots in the buffers are x1 ≥ 0 and x2 ≥ 0 respectively. The
machine processes one product type at a time. The process

rate for product type i is μi > 0 (in lots/hour) with i ∈ {1,2}.
Switching from product type 1 to 2 takes σ12 hours and σ21
hours in opposite direction. We define the utilization for

product type i as

ρi =
λi

μi
with i ∈ {1,2} . (1)

To be able to reach a steady state situation, the machine

capacity must not be exceeded. This implies that

∑
i

ρi < 1. (2)

This sum must be strictly less than 1, since setup times

are involved. Objective is to reach a steady state cycle with

minimum time averaged (weighted) wip level. The weighted

time averaged wip level J is defined as:

J =
1

T

∫ T

0
c1x1(s)+ c2x2(s)ds (3)

where ci is a weighting factor for queue length xi with i ∈
{1,2} and T denotes the period of the process cycle. A steady
state point can never be reached because of the nonzero setup

times involved.

Without loss of generality we assume that c1λ1 ≥ c2λ2.
Moreover, we define σ=σ12+σ21, the sum of the setup times.

Lemma 2.1: The steady state cycle which has the form
depicted in Figure 2 minimizes the time averaged weighted

work-in-process level.

In the left part of Figure 2, the queue lengths x1 and x2 are
on the axes, the arrows indicate the direction of the cycle.

During τ1 > 0, lots of type 1 are processed at rate μ1. During
τ2 > 0, lots of type 2 are processed at rate μ2. During τ3 ≥ 0,
lots of type 1 are processed at rate λ1. Setups from type 1
to 2 and vice versa have a duration of σ12 > 0 and σ21 > 0

hours respectively. On the right, the queue lengths are plotted

against time for one period.

Proof: A first observation is that for an optimal steady
state cycle, the machine either works at maximal rate μi or at

τ1

τ1

τ2

τ2

τ3

τ3

x1

x1

x2

x2

σ12

σ12

σ21
σ21

0

0

0
time

Fig. 2. Trajectory of steady state cycle.

the arrival rate λi in case xi = 0, cf. [10, Proof of Lemma 2].
A second observation is that for an optimal steady state cycle

both buffers will be emptied. Therefore, it only remains to

be shown that an optimal steady state cycle does not contain

a slow mode for each product type. This can be shown

analytically along the lines of the proof of Lemma 2.2, but

also made clear from the following reasoning. If the optimal

steady state cycle would have a slow mode for each product

type, we can reduce the duration of both slow modes. As a

result both the mean wip-level of type 1 and type 2 reduces.

Since we assumed to have no setup costs, this results in lower

costs J.
An other way to prove this lemma is to use the fact

that in [10, Theorem 1] a lower bound on the optimal

costs J has been given by minimizing the time averaged wip
level for each product type separately, ignoring the interplay

between different product types. This lower bound might

not be achievable, since product types do interact. However,

the trajectory of Figure 2 minimizes the time averaged wip

level for each product type separately and achieves the lower

bound derived in [10]. Therefore, this trajectory minimizes

the time averaged work-in-process level.

In the remainder of this paper, processing lots of type 1 or

type 2 is abbreviated as ① and ② respectively. Performing

a setup to type 1 or type 2 is abbreviated as ❶ and ❷

respectively. The system is always in 1 of the 4 modes

{①,②,❶,❷}. Notice that when the system is in ①, it might

be processing at rate μ1 or λ1. The latter mode is referred
to as the ‘slow mode’.

Lemma 2.2: For the minimal time averaged weighted wip
level steady state cycle, we have a ‘slow mode’, i.e. τ3 > 0,

iff c1λ1(ρ1+ ρ2)+ (c2λ2− c1λ1)(1−ρ2) < 0.

Proof: In steady state, the system reaches the same
situation after completing one (periodic) cycle. So during

processing at full rate, as many lots are processed as arrive

during setups and processing of the other type. In other

words:

λ1(σ12+ σ21+ τ2) = (μ1−λ1)τ1
λ2(σ12+ σ21+ τ1+ τ3) = (μ2−λ2)τ2.

(4)

We define: τ3 = α(σ12+σ21) with α ≥ 0. Using (4) expres-

545

sions can be derived for all τ’s and setup times:⎡
⎢⎢⎣

σ
τ1
τ2
τ3

⎤
⎥⎥⎦ =

σ12+ σ21
1−ρ1−ρ2

⎡
⎢⎢⎣

1−ρ1−ρ2
ρ1(1+ αρ2)

ρ2(1+ α(1−ρ1))
α(1−ρ1−ρ2)

⎤
⎥⎥⎦ (5)

We determine the mean wip (as defined in (3)) by computing

the area of the right hand graphs of Figure 2 and divide it

by the total period T :

1

T

∫ T

0
x1(s)ds =

1
2 · (σ + τ1+ τ2) · (μ1−λ1)τ1

σ + τ1+ τ2+ τ3
1

T

∫ T

0
x2(s)ds =

1
2 · (σ + τ1+ τ2+ τ3) · (μ2−λ2)τ2

σ + τ1+ τ2+ τ3

(6)

Using (1), (5) and (6) the time averaged weighted wip

level (3) can be written as:

x1x1

x2x2

x�
2

x̂2

x�
2

x∗2

00

x̂∗2

x∗1x�
1 x̂∗1x̂1

Fig. 3. Truncated bow tie (left) and bow tie (right).

J = σ
c1 [1+αρ2]2λ1(1−ρ1)+ c2 [1+α(1−ρ1)]2λ2(1−ρ2)

2(1−ρ1−ρ2)(1+ α(1−ρ1))
.

(7)

Minimizing J with respect to α gives:

min
α

c1 [1+ αρ2]2λ1(1−ρ1)+ c2 [1+ α(1−ρ1)]2λ2(1−ρ2)
1+ α(1−ρ1)

s.t. α ≥ 0.
(8)

From dJ
dα = 0 we obtain:[

c1λ1ρ22 (1−ρ1)+ c2λ2(1−ρ1)2(1−ρ2)
]

α2+ . . .

2
[
c1λ1ρ22 + c2λ2(1−ρ1)(1−ρ2)

]
α + . . .

[c1λ1(ρ1+ ρ2)+ (c2λ2− c1λ1)(1−ρ2)] = 0. (9)

The coefficients in front of α2 and α are both strictly
positive, so this parabola has a positive real root iff c1λ1(ρ1+
ρ2) + (c2λ2 − c1λ1)(1 − ρ2) < 0. Note that this is only

possible if c1λ1 > c2λ2. The value of α can be obtained by
solving (9) taking into account that it has to be non-negative:

α =

{
0 if c1λ1(ρ1+ ρ2)+ (c2λ2− c1λ1)(1−ρ2) ≥ 0
positive real root of (9) otherwise.

(10)

Summarizing from Lemma 2.1 and Lemma 2.2:

Proposition 2.1: The optimal steady state periodic cycle
for a machine processing two constantly arriving product

flows with respect to minimal time averaged wip level has

period 1 and the shape of Figure 2. The slow mode (τ3 > 0)

only occurs when c1λ1(ρ1+ρ2)+(c2λ2−c1λ1)(1−ρ2) < 0.

In addition to the optimal process cycle, we also consider

the steady state trajectory that has minimal extreme values

for x1 and x2. For this cycle, the slow mode does not occur
(i.e. τ3 = 0). Both curves are shown in Figure 3. We refer
to these curves as the truncated bow tie (left) and bow tie

(right). Notice that even though the truncated bow tie always

lies above the pure bow tie, it has a smaller mean wip level.

Both trajectories have some interesting points that we refer

to in the remainder of this paper. We use hats (̂) for denoting

extreme values and stars (∗) for points on the pure bow tie

trajectory. Furthermore, coordinates with flat (�) and sharp (�)

symbols denote the points where the slow mode starts and

ends respectively. On the x1-axis, these coordinates are equal
and denoted by x�

1 (cf. Figure 3). The coordinates of the
interesting points of the trajectory are given by:

x�
2 = λ2(σ21+ τ1)

= λ2σ21+ λ2σ
ρ1(1+ αρ2)
1−ρ1−ρ2

x�
2 = λ2(σ21+ τ1+ τ3)

= λ2σ21+ λ2σ
α(1−ρ1)(1−ρ2)+ ρ1

1−ρ1−ρ2
x̂2 = λ2(σ21+ τ1+ τ3+ σ12)

= λ2σ
(
1+

α(1−ρ1)(1−ρ2)+ ρ1
1−ρ1−ρ2

)
(11)

with α as stated in (10). Note that if τ3 = 0, the pure bow tie
trajectory is obtained: x�

2= x�
2 = x∗2 and consequently x�

1= x∗1.
As can be seen in (11) and in Figure 3, x∗2 ≤ x�

2 ≤ x�
2. We

use this property in the proof of the feedback control policy

in Proposition 2.2. For the interesting points on the x1-axis,
the coordinates can be determined in a similar way.

Now that we characterized the optimal trajectory and

the trajectory with minimal extreme values, we want to

bring trajectories from arbitrary start points to the optimal

trajectory.

Proposition 2.2: The following feedback control law
brings the system of Figure 1 to the optimal periodic cycle

with respect to minimal time averaged wip level. Dependent

on the state of the system, the controller is in 1 of the 6

modes initially. This follows trivially from the controller

mode descriptions.

• Mode 1: ① at μ1 as long as x1 > 0, then go to Mode 2.

• Mode 2: ① at λ1 as long as x2<x�
2, then go to Mode 3.

• Mode 3: perform ❷, after σ12 go to Mode 4.
• Mode 4: ② at μ2 as long as x2 > 0, then go to Mode 5.

• Mode 5: ② at λ2 as long as x1<x�
1, then go to Mode 6.

• Mode 6: perform ❶, after σ21 go to Mode 1.
Remark: Mode 2 and Mode 5 might have a duration of zero.

Proof: Assume the nth start of ❷ is from coordinate (0,xn
2).

546

Now we wonder from which coordinate the (n + 1)st start
of❷ takes place. Assuming a duration of zero in both Mode 2

and Mode 5 we obtain:

(0,xn
2)

❷
−→ (λ1σ12,xn

2+ λ2σ12)
②
−→

(
λ1

(
σ12+

xn
2+ λ2σ12
μ2−λ2

)
,0

)
❶
−→

(
λ1

(
σ +

xn
2+ λ2σ12
μ2−λ2

)
,λ2σ21

)

①
−→

⎛
⎝0,λ2

⎛
⎝σ21+

λ1
(

σ +
xn
2+λ2σ12
μ2−λ2

)
μ1−λ1

⎞
⎠

⎞
⎠

(12)

which results in:

xn+1
2 = λ2

⎛
⎝σ21+

λ1
(

σ +
xn
2+λ2σ12
μ2−λ2

)
μ1−λ1

⎞
⎠

=
ρ1ρ2

(1−ρ1)(1−ρ2)
(xn
2− x∗2)+ x∗2.

(13)

In case it happens that either Mode 2 or Mode 5 has a strictly

positive duration we end up on the optimal curve and get:

xn+1
2 = x�

2 (14)

Combining (13) and (14) results in:

xn+1
2 =max

(
ρ1ρ2

(1−ρ1)(1−ρ2)
(xn
2− x∗2)+ x∗2, x�

2

)
(15)

which has a solution

xn
2 =max

([
ρ1ρ2

(1−ρ1)(1−ρ2)

]n

(x02− x∗2)+ x∗2, x�
2

)
. (16)

Since

0<
ρ1ρ2

(1−ρ1)(1−ρ2)
= 1−

1−ρ1−ρ2
(1−ρ1)(1−ρ2)

< 1 (17)

we get

lim
n→∞

xn
2 =max(x∗2, x�

2) = x�
2. (18)

Note that for x∗2 < x�
2 (i.e. τ3 > 0) as well as x02 < x�

2, we
obtain convergence in finite time.

Remark: Hofri and Ross [9] also use a similar double thresh-

old policy: exhaustive processing and switch only whenever

the other buffer length has reached some value.

In the next sections we consider finite buffers. The feed-

back control law needs to be adjusted and the optimal process

cycle might be influenced.

III. FINITE BUFFERS ANALYSIS

In the previous section, the optimal process cycle with

respect to wip level and a feedback have been proposed for

the situation with infinite buffer capacity. In the remainder

we extend the feedback to handle finite buffer capacities.

The maximum buffer capacities are denoted as xmax1 and

xmax2 . Notice that we need xmax1 ≥ x̂∗1 and xmax2 ≥ x̂∗2 since
otherwise no periodic cycle exists which meets the buffer

constraints. If the optimal process cycle (as determined in

Section II) exceeds the buffer capacities xmax1 or xmax2 , a new

optimal process cycle must be constructed meeting the buffer

bounds. Note that this can only happen if τ3 > 0, because

if τ3 = 0, the optimal process cycle already equals the cycle
with minimal extreme values.
So assume that xmax1 < x̂1 or xmax2 < x̂2. Figure 4 shows how

the coordinates characterizing the (possibly) new optimal

curve are determined. These coordinates (using bars (̄) to

indicate that we refer to the bounded buffer situation) are:

x1x1

x2x2
00 x̄�

1x̄�
1 ˆ̄x1xmax1

x̄�
2

x̄�
2

x̄�
2

x̄�
2

ˆ̄x2 xmax2

Fig. 4. Optimal curve subject to buffer constraints.

x̄�
1 =min

(
xmax1 −λ1σ21, λ1

(
σ12+

xmax2
μ2−λ2

)
, x�
1

)
ˆ̄x1 =min

(
xmax1 , λ1

(
σ +

xmax2
μ2−λ2

)
, x̂1

)
x̄�
2 =min

(
λ2

(
σ21+

xmax1
μ1−λ1

)
,

λ2
(

σ21+
λ1

μ1−λ1

(
σ +

xmax2
μ2−λ2

))
, x�
2

)

x̄�
2 =min

(
μ2−λ2

λ1
(xmax1 −λ1σ)−λ2σ12, xmax2 −λ2σ12, x�

2

)
ˆ̄x2 =min

(
μ2−λ2

λ1
(xmax1 −λ1σ), xmax2 , x̂2

)
.

(19)

Note that if τ3 = 0, x̄�
2 = x̄�

2 = x�
2 = x�

2 = x∗2, ˆ̄x2 = x̂2 = x̂∗2,
x̄�
1 = x�

1 = x∗1 and ˆ̄x1 = x̂1 = x̂∗1.

Before we adjust the feedback control policy to handle

buffer bounds properly, we first look closer to the x1-x2-
plane. We identify some regions in this plane from which

it is either possible or impossible to get on a steady state

process cycle.

Lemma 3.1: Regardless of the feedback policy, the x1-x2
space can be divided into regions from which it is impossible

to reach the steady state process cycle when in a certain

mode, see Figure 5. The regions marked with ①† and ②†
indicate that if the trajectory enters that region processing ①

or ② respectively, the trajectory becomes infeasible (i.e. the

buffer constraint will be violated). If the trajectory is on the

bow tie shifted into the upper right corner of the x1-x2 space,
the trajectory stays there.

Proof: It is easy to see that once the trajectory has
crossed the dashed lines (Fig. 5), a setup will cause the buffer

constraint to be violated. For the regions in or above the

upper-right bow tie, the proof is included in the feedback

control law proof.

547

x̄�
2

xmax2

xmax1

xmax2 −λ2σ12

xmax1 −λ1σ21

0

①†①†

②†

②†

①†②†

xmax1 − x̂∗1

xmax2 − x̂∗2

λ1

μ2−λ2

x1

x2

projection

Fig. 5. Feasible and infeasible regions for constrained problem.

Now that we have defined the optimal process cycle under

buffer constraints and having identified infeasible regions, we

can adjust the feedback in a way that it brings a trajectory

from arbitrary start point to the (new) optimal process cycle.

Proposition 3.1: The feedback that stabilizes a trajectory
to the optimal process cycle if started from a feasible start

point (see Section III and Fig. 5), consists of 6 modes.

Dependent on the state of the system, the controller is in

one of these modes, which follows trivially from the mode

description.

• Mode 1: ① at μ1 as long as x1 > 0 and x2 < xmax2 −
λ2σ12, then go to Mode 2.

• Mode 2: ① at λ1 as long as x2< x̄�
2, then go to Mode 3.

• Mode 3: perform ❷, after σ12 go to Mode 4.
• Mode 4: ② at μ2 as long as x2 > 0 and x1 < xmax1 −

λ1σ21, then go to Mode 5.
• Mode 5: ② at λ2 as long as x1< x̄�

1, then go to Mode 6.
• Mode 6: perform ❶, after σ21 go to Mode 1.

Proof: Similar to the proof of the case with unbounded
buffers we are interested where the (n+1)st start of ❷ takes

place given from which coordinate the nth start of ❷ took
place. With a point (x1, xmax2 −λ2σ12) we associate the point
(0, x2) where x2 is given by:

x2 =
μ2−λ2

λ1
x1+(xmax2 −λ2σ12) (20)

and vice versa. The choice of (20) has been made in such

a way that it is the point in the unbounded x1-x2-plane
from where ❷ and then ② results in the same trajectory

in the feasible area (i.e. within the buffer bounds). See also

Figure 5 for the projection. So given xn
2 we are interested

in xn+1
2 . In case we do not suffer from the buffer constraints,

we obtain (15) again. However, in case one or two buffer

x̄�
2

x∗2

xmax1

xmax1 − x̂∗1projected

projected

0

xn
2|A =B

xn
2|B=C

xn
2|C=D

Fig. 6. Evolution of xn
2 at start of ❷.

constraints become active, the resulting xn+1
2 will be larger,

since switching earlier makes the system move along a line

which is located higher. For the case one constraint becomes

active, we introduce an auxiliary variable Z whose value
depends on which constraint is active.

Z =min

⎛
⎜⎜⎜⎝μ2−λ2

λ1
(xmax1 −λ1σ)−x̂∗2︸ ︷︷ ︸

is the smallest if xmax1 active

,
μ1−λ1

λ2
(xmax2 −λ2σ)−x̂∗1︸ ︷︷ ︸

is the smallest if xmax2 active

⎞
⎟⎟⎟⎠
(21)

We now distinguish 4 situations:

A : no active constraints, iteration as in (14);

B: no active constraints, iteration as in (12);

C : one active buffer constraint during iteration;

D : two active buffer constraints during iteration.

The endpoint of one iteration using the feedback law of

Proposition 3.1 now becomes

xn+1
2 =max

⎛
⎜⎜⎜⎝

x̄�
2 (A)

ρ1ρ2
(1−ρ1)(1−ρ2)

(xn
2− x∗2)+ x∗2 (B)

xn
2−

1−ρ1−ρ2
(1−ρ1)(1−ρ2)

·Z (C)
(1−ρ1)(1−ρ2)

ρ1ρ2 (xn
2− [xmax1 − x̂∗1])+ [xmax1 − x̂∗1](D)

⎞
⎟⎟⎟⎠
(22)

where the calligraphic capital refers to 1 of the 4 situations.

The evolution of an arbitrary point (0, xn
2) along the x1 = 0

axis where ❷ starts can now be visualized, see Figure 6.

The arrows indicate the direction in which xn
2 evolves. The

distance between the arrows is a measure for the rate of the

evolution. First consider being in region D . Note that for

xn
2 > xmax1 − x̂∗1 (projected), i.e. we start to the right from
the upper right bow tie (Figure 5), we have divergence,

since
(1−ρ1)(1−ρ2)

ρ1ρ2
> 1, cf. (17). When starting on the upper

right bow tie, we stay on it. This completes the proof of

Lemma 3.1. For xn
2 < xmax1 − x̂∗1 we have divergence from the

upper right bow tie in the correct direction, i.e. towards the

bottom left, and we will leave region D after a finite number

548

of steps. If we are in C we also move in the correct direction

with constant jumps and therefore after a finite number of

steps leave region C . So after a finite number of steps we

will be in either region A or region B. From the analysis

in the previous section, convergence to x̄�
2 follows.

IV. DISCRETE EVENT EXAMPLE

Although the analysis in this paper has been done for

continuous (fluid) models, the feedback control law as pro-

posed in Proposition 3.1 has been implemented in a discrete

event manufacturing system. The system was modeled in

the discrete event specification language χ , see [8], [1].
The settings that have been used are in Table I. With these

settings, α = 1
4 , x̄

�
1= x�

1= 27, ˆ̄x1= x̂1= 45, x̄
�
2= x�

2= 18, x̄
�
2=

x�
2= 15 and ˆ̄x2= x̂2= 24. The x̄�

2 value is implemented in the
discrete event control policy. The results of the simulation

are shown in figures 7 (buffer lengths over time) and 8

(trajectory). In this figure, the trajectory goes from light gray

to black for better visual understanding. As can be seen, both

buffer constraints become active (setup is performed before

a buffer has been cleared). Convergence to the optimal cycle

is reached.

TABLE I

DISCRETE EVENT SIMULATION SETTINGS.

λ1: 9 lots/hr. xmax1 : 60 lots
λ2: 3 lots/hr. xmax2 : 30 lots

μ1: 24 lots/hr. x01: 36 lots

μ2: 27 lots/hr. x02: 24 lots
σ12: 2 hrs. initial: ②
σ21: 2 hrs.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

→ time

→
x 1
(d
as
h
ed
),

x 2
(s
o
li
d
)

xmax1

xmax2

Fig. 7. Simulation results over time.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we studied a switched server manufacturing

system for 2 product types with setup times involved. First

we determined an optimal process cycle with respect to

minimal weighted time averaged work in process level for

the case with infinite buffer capacity. For this optimal process

cycle, we proposed a feedback control law that brings a

trajectory to the optimal trajectory. Then, we considered

finite buffers. The optimal process cycle might be adjusted

to meet the buffer constraints. This (possibly) new optimal

0 10 20 30 40 50 60
0

5

10

15

20

25

30

→ x1

→
x 2

Fig. 8. Simulation results trajectory.

process cycle has been determined prior to the proposal of

an adjusted feedback law. This new feedback law takes into

account the buffer constraints. Although the complete anal-

ysis has been done with continuous (fluid-type) models, the

controller has been implemented successfully in a discrete

event simulation example.

Future work includes extension of the analysis to more

product types as well as to queueing networks. Another topic

is to perform the analysis for stochastic inter-arrival times or

process times. Both research topics should be applied to the

case with both infinite and finite buffer capacities.

REFERENCES

[1] D.A. van Beek and J.E. Rooda. Languages and applications in hybrid
modelling and simulation: Positioning of Chi. Control Engineering
Practice, 8(1):81–91, January 2000.

[2] M. Boccadoro and P. Valigi. A modelling approach for the dynamic
scheduling problem of manufacturing systems with non negligible
setup times and finite buffers. In Proceedings of the 42nd IEEE
Conference on Decision and Control, pages 5472–5477, 2003.

[3] O.J. Boxma and D.G. Down. Dynamic server assignment in a two-
queue model. European Journal of Operational Research, 103(3):595–
609, 1997.

[4] O.J. Boxma, H. Levy, and J.A. Westrate. Efficient visit frequencies
for polling tables: minimization of waiting cost. Queueing systems
theory and applications, 9(1–2):133–162, 1991.

[5] C. Buyukkoc, P. Varaiya, and J. Walrand. The cμ-rule revisited.
Advances in applied probability, 17:237–238, 1985.

[6] C. Chase and P.J. Ramadge. On real-time scheduling policies for
flexible manufacturing systems. IEEE transactions on automatic
control, 37(4):491–496, 1992.

[7] S. Connolly, Y. Dallery, and S.B. Gershwin. A real-time policy for
performing setup changes in a manufacturing system. In Proceedings
of the 31st IEEE Conf. on Decision and Control, pages 764–770, 1992.

[8] A.T. Hofkamp and J.E. Rooda. χ reference manual. Internal report
Technische Univ. Eindhoven, http://se.wtb.tue.nl/documentation, 2002.

[9] M. Hofri and K.W. Ross. On the optimal control of two queues
with server setup times and its analysis. SIAM Journal on computing,
16(2):399–420, 1987.

[10] W.L. Lan and T.L. Olsen. Multi-product systems with both setup
times and costs: fluid bounds and schedules. To appear in Operations
Research.

[11] D.M. Markowitz and L.M. Wein. Heavy traffic analysis of dynamic
cyclic policies: a unified treatment of the single machine scheduling
problem. Operations Research, 49(2):246–270, 2001.

[12] A.V. Savkin. Regularizability of complex switched server queueing
networks modelled as hybrid dynamical systems. Systems & Control
letters, 35:291–299, 1998.

[13] A.V. Savkin and A.S. Matveev. A switched server system of order n
with all its trajectories converging to (n−1)! limit cycles. Automatica,
37(2):303–306, 2001.

549

