Control of Multi-class Queueing Networks with Infinite Virtual Queues

Erjen Lefeber (TU/e)
INFORMS 2012 Annual Meeting

Multi-class queueing network with IVQs

Example: Push pull queueing system

Kopzon, Weiss (2002); Kopzon, Nazarathy, Weiss (2009); Nazarathy, Weiss (2010)

Static production planning problem

$$
\max w^{\prime} \alpha
$$

α_{1}, α_{2} nominal input rates

$$
\text { u. fraction of time snent on class } i
$$

Example: Push pull queueing system

Kopzon, Weiss (2002); Kopzon, Nazarathy, Weiss (2009); Nazarathy, Weiss (2010)

Static production planning problem

$$
\max _{u, \alpha} w^{\prime} \alpha
$$

α_{1}, α_{2} nominal input rates
u_{i} fraction of time spent on class i

Example: Push pull queueing system

$$
\begin{aligned}
& \max _{u, \alpha} w_{1} \alpha_{1}+w_{2} \alpha_{2} \\
& \text { s.t. } \\
& {\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
\lambda_{1} & -\mu_{1} & 0 & 0 \\
0 & 0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{2} & -\mu_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{1} \\
0 \\
\alpha_{2} \\
0
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right] \leq\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
\end{aligned}
$$

$$
u, \alpha \geq 0
$$

Example: Push pull queueing system

Three possible solutions (excluding singular case)

1. $\alpha_{1}=\min \left\{\lambda_{1}, \mu_{1}\right\}, \alpha_{2}=0$,
2. $\alpha_{1}=0, \alpha_{2}=\min \left\{\lambda_{2}, \mu_{2}\right\}$,
3. $\alpha_{1}=\frac{\lambda_{1} \mu_{1}\left(\lambda_{2}-\mu_{2}\right)}{\lambda_{1} \lambda_{2}-\mu_{1} \mu_{2}}, \alpha_{2}=\frac{\lambda_{2} \mu_{2}\left(\lambda_{1}-\mu_{1}\right)}{\lambda_{1} \lambda_{2}-\mu_{1} \mu_{2}}$.

Interesting solution: solution 3

- $\rho_{1}=\rho_{2}=1$ (full utilization of servers)

Example: Push pull queueing system

Three possible solutions (excluding singular case)

1. $\alpha_{1}=\min \left\{\lambda_{1}, \mu_{1}\right\}, \alpha_{2}=0$,
2. $\alpha_{1}=0, \alpha_{2}=\min \left\{\lambda_{2}, \mu_{2}\right\}$,
3. $\alpha_{1}=\frac{\lambda_{1} \mu_{1}\left(\lambda_{2}-\mu_{2}\right)}{\lambda_{1} \lambda_{2}-\mu_{1} \mu_{2}}, \alpha_{2}=\frac{\lambda_{2} \mu_{2}\left(\lambda_{1}-\mu_{1}\right)}{\lambda_{1} \lambda_{2}-\mu_{1} \mu_{2}}$.

Interesting solution: solution 3

- $\rho_{1}=\rho_{2}=1$ (full utilization of servers)
- $\tilde{\rho}_{1}=\frac{\lambda_{2}\left(\lambda_{1}-\mu_{1}\right)}{\lambda_{1} \lambda_{2}-\mu_{1} \mu_{2}}<1, \tilde{\rho}_{2}=\frac{\lambda_{1}\left(\lambda_{2}-\mu_{2}\right)}{\lambda_{1} \lambda_{2}-\mu_{1} \mu_{2}}<1$.

Example: Push pull queueing system

Question

Can we stabilize system with $\rho_{i}=1$ and $\tilde{\rho}_{i}<1$?

Two cases

inherently stable case: $\lambda_{1}<\mu_{1}$ and $\lambda_{2}<\mu_{2}$
inherently unstable case: $\lambda_{1}>\mu_{1}$ and $\lambda_{2}>\mu_{2}$

Example: Push pull queueing system

Question

Can we stabilize system with $\rho_{i}=1$ and $\tilde{\rho}_{i}<1$?

Two cases

inherently stable case: $\lambda_{1}<\mu_{1}$ and $\lambda_{2}<\mu_{2}$ inherently unstable case: $\lambda_{1}>\mu_{1}$ and $\lambda_{2}>\mu_{2}$

Inherently stable case: $\lambda_{1}>\mu_{1}, \lambda_{2}>\mu_{2}$

Positive result

Pull priority stabilizes network

Observation

For inherently unstable case: pull priority is not stabilizing.

Inherently stable case: $\lambda_{1}>\mu_{1}, \lambda_{2}>\mu_{2}$

Positive result

Pull priority stabilizes network

Observation

For inherently unstable case: pull priority is not stabilizing.

Inherently unstable case: $\lambda_{1}<\mu_{1}, \lambda_{2}<\mu_{2}$

Kopzon, Nazaraty, Weiss (2009); Nazarathy, Weiss (2010):

Positive result

Threshold policy stabilizes network

Observation

Global network state needs to be taken into account.

Inherently unstable case: $\lambda_{1}<\mu_{1}, \lambda_{2}<\mu_{2}$

Kopzon, Nazaraty, Weiss (2009); Nazarathy, Weiss (2010):

Positive result

Threshold policy stabilizes network

Observation

Global network state needs to be taken into account.

Problem

Guo, Lefeber, Nazarathy, Weiss, Zhang (2011):
Key research question
Can we stabilize a MCQN-IVQ with $\tilde{\rho}_{i}<1$ for all servers?

Some positive results

- IVQ re-entrant line (LBFS stable; FBFS not necessarily)
- Two re-entrant lines on two servers (pull priority)
- Ring of machines (pull priority)

Fluid model framework for verifying stability

Problem

Guo, Lefeber, Nazarathy, Weiss, Zhang (2011):
Key research question
Can we stabilize a MCQN-IVQ with $\tilde{\rho}_{i}<1$ for all servers?

Some positive results

- IVQ re-entrant line (LBFS stable; FBFS not necessarily)
- Two re-entrant lines on two servers (pull priority)
- Ring of machines (pull priority)

Fluid model framework for verifying stability

Problem setting

s Servers

- 1 IVQ, $n_{i} \geq 0$ std queues
- $\rho=1, \tilde{\rho}<1$

Assumptions

- P has spectral radius <1, i.e. $\left(I-P^{\prime}\right)$ invertible

Data

- constituency matrix C
- $n \times n$ Routing matrix P
- $s \times n$ matrix $P_{\text {IVQ }}$
- IVQ: $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{s}\right)>0$
- Std: $\boldsymbol{M}=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)>0$

Dynamics fuid model ($u_{j}(t)$ fraction of time spent on std. queue $\left.j\right)$

$$
\dot{Q}(t)=P_{\mathrm{IVQ}}^{\prime} \wedge[1-C u(t)]-\left(I-P^{\prime}\right) M u(t) \quad Q(0)=Q_{0}
$$

subject to

$$
0 \leq Q(t)
$$

s Servers

- 1 IVQ, $n_{i} \geq 0$ std queues
- $\rho=1, \tilde{\rho}<1$

Assumptions

- P has spectral radius <1, i.e. $\left(I-P^{\prime}\right)$ invertible

Data

- constituency matrix C
- $n \times n$ Routing matrix P
- $s \times n$ matrix $P_{\text {IVQ }}$
- IVQ: $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{s}\right)>0$
- Std: $\boldsymbol{M}=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)>0$

Dynamics fluid model $\left(u_{j}(t)\right.$ fraction of time spent on std. queue $\left.j\right)$

$$
\dot{Q}(t)=P_{\text {ivQ }}^{\prime} \wedge[1-C u(t)]-\left(I-P^{\prime}\right) M u(t) \quad Q(0)=Q_{0}
$$

subject to

$$
0 \leq Q(t) \quad 0 \leq u(t) \quad C u(t) \leq 1
$$

Problem setting

Dynamics fluid model

$$
\begin{array}{rlr}
\dot{Q}(t) & =P_{\mathrm{IVQ}}^{\prime} \wedge[1-\mathrm{Cu}(t)]-\left(I-P^{\prime}\right) M u(t) \quad Q(0)=Q_{0} \\
& =\underbrace{P_{\mathrm{VQ}}^{\prime} \wedge 1}_{\alpha}-\underbrace{\left[P_{\mathrm{iVQ}}^{\prime} \wedge C+\left(I-P^{\prime}\right) M\right]}_{R} u(t)
\end{array}
$$

subject to

$$
0 \leq Q(t) \quad 0 \leq u(t) \quad C u(t) \leq 1
$$

Additional assumptions

- Controllable system, i.e. R is invertable

Problem setting

Dynamics fluid model

$$
\begin{array}{rlr}
\dot{Q}(t) & =P_{\mathrm{iVQ}}^{\prime} \wedge[1-C u(t)]-\left(I-P^{\prime}\right) M u(t) \quad Q(0)=Q_{0} \\
& =\underbrace{P_{\mathrm{IVQ}}^{\prime} \wedge 1}_{\alpha}-\underbrace{\left[P_{\mathrm{IVQ}}^{\prime} \wedge C+\left(I-P^{\prime}\right) M\right]}_{R} u(t)
\end{array}
$$

subject to

$$
0 \leq Q(t) \quad 0 \leq u(t) \quad C u(t) \leq 1
$$

Additional assumptions

- Controllable system, i.e. R is invertable
- All standard queues are served: $u^{*}=R^{-1} \alpha>0$
- $\tilde{\rho}<1$, i.e. $C R^{-1} \alpha<1$

Problem setting (summary)

Dynamics

$$
\begin{array}{rlrlrl}
\dot{Q}(t) & =\alpha-R u(t) & & Q(0) & =Q_{0} \\
\text { subject to } & 0 & \leq Q(t) & 0 \leq u(t) & C u(t) & \leq 1
\end{array}
$$

Assumptions

- $I-P^{\prime}$ and R are invertible (also $\left(I-P^{\prime}\right)^{-1} \geq 0$)
- $0<R^{-1} \alpha=u^{*}$
- $C R^{-1} \alpha<1$

Problem

Determine stabilizing u (preferably not $u(t)$ but $u[Q(t)]$)

Example

Dynamics:

$$
\left[\begin{array}{l}
\dot{Q}_{1}(t) \\
\dot{Q}_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]-\left[\begin{array}{ll}
\mu_{1} & \lambda_{1} \\
\lambda_{2} & \mu_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Constraints

$$
0 \leq Q(t) \quad 0 \leq u(t) \quad u(t) \leq 1
$$

Assumptions:

R invertible: $\mu_{1} \mu_{2} \neq \lambda_{1} \lambda_{2}$ or $\frac{\lambda_{1}}{\mu_{1}} \frac{\lambda_{2}}{\mu_{2}}=\varrho_{1} \varrho_{2} \neq 1$

Example

Dynamics:

$$
\left[\begin{array}{l}
\dot{Q}_{1}(t) \\
\dot{Q}_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]-\left[\begin{array}{ll}
\mu_{1} & \lambda_{1} \\
\lambda_{2} & \mu_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Constraints

$$
0 \leq Q(t) \quad 0 \leq u(t) \quad u(t) \leq 1
$$

Assumptions:
R invertible: $\mu_{1} \mu_{2} \neq \lambda_{1} \lambda_{2}$ or $\frac{\lambda_{1}}{\mu_{1}} \frac{\lambda_{2}}{\mu_{2}}=\varrho_{1} \varrho_{2} \neq 1$
$0<R^{-1} \alpha, C R^{-1} \alpha<1: \frac{1-\varrho_{1}}{1-\varrho_{1} \varrho_{2}}>0, \frac{1-\varrho_{2}}{1-\varrho_{1} \varrho_{2}}>0$

Example

Conditions: $\varrho_{1} \varrho_{2} \neq 1, \frac{1-\varrho_{1}}{1-\varrho_{1} \varrho_{2}}>0, \frac{1-\varrho_{2}}{1-\varrho_{1} \varrho_{2}}>0$

Example: uncontrollable case

Some words about case $\lambda_{1}=\mu_{1}, \lambda_{2}=\mu_{2}$, i.e., R not invertible
Uncontrollable dynamics

Define change of coordinates:

Then we have

In particular the variable $z_{2}(t)$ evolves independent of the policy chosen.

Example: uncontrollable case

Some words about case $\lambda_{1}=\mu_{1}, \lambda_{2}=\mu_{2}$, i.e., R not invertible Uncontrollable dynamics

$$
\left[\begin{array}{l}
\dot{Q}_{1}(t) \\
\dot{Q}_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]-\left[\begin{array}{ll}
\lambda_{1} & \lambda_{1} \\
\lambda_{2} & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right]
$$

Define change of coordinates:

Then we have

In particular the variable $z_{2}(t)$ evolves independent of the policy chosen.

Example: uncontrollable case

Some words about case $\lambda_{1}=\mu_{1}, \lambda_{2}=\mu_{2}$, i.e., R not invertible Uncontrollable dynamics

$$
\left[\begin{array}{l}
\dot{Q}_{1}(t) \\
\dot{Q}_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]-\left[\begin{array}{ll}
\lambda_{1} & \lambda_{1} \\
\lambda_{2} & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right]
$$

Define change of coordinates:

$$
z_{1}(t)=Q_{1}(t)+Q_{2}(t) \quad z_{2}(t)=\lambda_{2} Q_{1}(t)-\lambda_{1} Q_{2}(t)
$$

Then we have

In particular the variable $z_{2}(t)$ evolves independent of the policy chosen.

Example: uncontrollable case

Some words about case $\lambda_{1}=\mu_{1}, \lambda_{2}=\mu_{2}$, i.e., R not invertible Uncontrollable dynamics

$$
\left[\begin{array}{l}
\dot{Q}_{1}(t) \\
\dot{Q}_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]-\left[\begin{array}{ll}
\lambda_{1} & \lambda_{1} \\
\lambda_{2} & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right]
$$

Define change of coordinates:

$$
z_{1}(t)=Q_{1}(t)+Q_{2}(t) \quad z_{2}(t)=\lambda_{2} Q_{1}(t)-\lambda_{1} Q_{2}(t)
$$

Then we have

$$
\left[\begin{array}{c}
\dot{z}_{1}(t) \\
\dot{z}_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\lambda_{1}+\lambda_{2} \\
0
\end{array}\right]-\left[\begin{array}{cc}
\lambda_{1}+\lambda_{2} & \lambda_{1}+\lambda_{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right]
$$

In particular the variable $z_{2}(t)$ evolves independent of the policy chosen.

Example: controller design

System

$$
\begin{array}{cr}
\dot{Q}(t)=\alpha-R u(t) & Q(0)=Q_{0} \\
0 \leq Q(t) & 0 \leq u(t) \leq 1
\end{array}
$$

Basic idea

Decouple state from input, i.e. what does u_{i} control?

Define change of coordinates $z^{(t)}=R^{-1} Q^{\prime}(t):$

Transformed system

Example: controller design

System

$$
\begin{array}{cr}
\dot{Q}(t)=\alpha-R u(t) & Q(0)=Q_{0} \\
0 \leq Q(t) & 0 \leq u(t) \leq 1
\end{array}
$$

Basic idea

Decouple state from input, i.e. what does u_{i} control?

Define change of coordinates $z(t)=R^{-1} Q(t)$:

Transformed system

Example: controller design

System

$$
\begin{array}{cr}
\dot{Q}(t)=\alpha-R u(t) & Q(0)=Q_{0} \\
0 \leq Q(t) & 0 \leq u(t) \leq 1
\end{array}
$$

Basic idea

Decouple state from input, i.e. what does u_{i} control?
Define change of coordinates $z(t)=R^{-1} Q(t)$:
Transformed system

Example: controller design

System

$$
\begin{array}{cr}
\dot{Q}(t)=\alpha-R u(t) & Q(0)=Q_{0} \\
0 \leq Q(t) & 0 \leq u(t) \leq 1
\end{array}
$$

Basic idea

Decouple state from input, i.e. what does u_{i} control?
Define change of coordinates $z(t)=R^{-1} Q(t)$:

Transformed system

$$
\begin{array}{cr}
\dot{z}(t)=R^{-1} \alpha-u(t)=u^{*}-u(t) & z(0)=z_{0}=R^{-1} Q_{0} \\
0 \leq R z(t) & 0 \leq u(t) \leq 1
\end{array}
$$

Example

Change of coordinates

$$
\begin{aligned}
& z_{1}(t)=\frac{\mu_{2}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{1}(t)-\frac{\lambda_{1}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{2}(t) \\
& z_{2}(t)=\frac{-\lambda_{2}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{1}(t)+\frac{\mu_{1}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{2}(t)
\end{aligned}
$$

Resulting control problem

$$
\begin{array}{ll}
z_{1}(t)=u_{1}^{*}-u_{1}(t) & 0 \leq u_{1}(t) \leq 1 \\
z_{2}(t)=u_{2}^{*}-u_{2}(t) & 0 \leq u_{2}(t) \leq 1
\end{array}
$$

while making sure that

$$
0 \leq\left[\begin{array}{ll}
\mu_{1} & \lambda_{1} \\
\lambda_{2} & \mu_{2}
\end{array}\right]\left[\begin{array}{l}
z_{1}(t) \\
z_{2}(t)
\end{array}\right]
$$

Example

Neglecting the latter constraint, the problem of controlling

$$
\begin{array}{ll}
z_{1}(t)=u_{1}^{*}-u_{1}(t) & 0 \leq u_{1}(t) \leq 1 \\
z_{2}(t)=u_{2}^{*}-u_{2}(t) & 0 \leq u_{2}(t) \leq 1
\end{array}
$$

becomes easy:

$$
u_{1}(t)=\left\{\begin{array}{ll}
1 & \text { if } z_{1}(t)>0 \\
u_{1}^{*} & \text { if } z_{1}(t)=0 \\
0 & \text { if } z_{1}(t)<0
\end{array} \quad u_{2}(t)= \begin{cases}1 & \text { if } z_{2}(t)>0 \\
u_{2}^{*} & \text { if } z_{2}(t)=0 \\
0 & \text { if } z_{2}(t)<0\end{cases}\right.
$$

Observations

- Above controller also solves problem with constraint
- Optimal controller for minimizing $\int_{0}^{\infty}\|z(t)\|_{1} d t$.
- Minimal time controller

Example

Neglecting the latter constraint, the problem of controlling

$$
\begin{array}{ll}
z_{1}(t)=u_{1}^{*}-u_{1}(t) & 0 \leq u_{1}(t) \leq 1 \\
z_{2}(t)=u_{2}^{*}-u_{2}(t) & 0 \leq u_{2}(t) \leq 1
\end{array}
$$

becomes easy:

$$
u_{1}(t)=\left\{\begin{array}{ll}
1 & \text { if } z_{1}(t)>0 \\
u_{1}^{*} & \text { if } z_{1}(t)=0 \\
0 & \text { if } z_{1}(t)<0
\end{array} \quad u_{2}(t)= \begin{cases}1 & \text { if } z_{2}(t)>0 \\
u_{2}^{*} & \text { if } z_{2}(t)=0 \\
0 & \text { if } z_{2}(t)<0\end{cases}\right.
$$

Observations

- Above controller also solves problem with constraint
- Optimal controller for minimizing $\int_{0}^{\infty}\|z(t)\|_{1} d t$.
- Minimal time controller

Example: Controller

Controller for stochastic queueing network

$$
\begin{aligned}
& u_{1}(t)= \begin{cases}1 & \text { if } \frac{\mu_{2}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{1}(t)>\frac{\lambda_{1}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{2}(t) \text { and } Q_{1}(t)>0 \\
0 & \text { if } \frac{\mu_{2}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{1}(t)<\frac{\lambda_{1}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{2}(t) \text { or } Q_{1}(t)=0\end{cases} \\
& u_{2}(t)= \begin{cases}1 & \text { if } \frac{\lambda_{2}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{1}(t)<\frac{\mu_{1}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{2}(t) \text { and } Q_{2}(t)>0 \\
0 & \text { if } \frac{\lambda_{2}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{1}(t)>\frac{\mu_{1}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{2}(t) \text { or } Q_{2}(t)=0\end{cases}
\end{aligned}
$$

Lyapunov function: cost-to-go from optimal control problem

Example: Controller

Controller for stochastic queueing network

$$
\begin{aligned}
& u_{1}(t)= \begin{cases}1 & \text { if } \frac{\mu_{2}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{1}(t)>\frac{\lambda_{1}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{2}(t) \text { and } Q_{1}(t)>0 \\
0 & \text { if } \frac{\mu_{2}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{1}(t)<\frac{\lambda_{1}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{2}(t) \text { or } Q_{1}(t)=0\end{cases} \\
& u_{2}(t)= \begin{cases}1 & \text { if } \frac{\lambda_{2}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{1}(t)<\frac{\mu_{1}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{2}(t) \text { and } Q_{2}(t)>0 \\
0 & \text { if } \frac{\lambda_{2}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{1}(t)>\frac{\mu_{1}}{\mu_{1} \mu_{2}-\lambda_{1} \lambda_{2}} Q_{2}(t) \text { or } Q_{2}(t)=0\end{cases}
\end{aligned}
$$

Lyapunov function: cost-to-go from optimal control problem

$$
V(z)= \begin{cases}z_{1}^{2} /\left(1-u_{1}^{*}\right)+z_{2}^{2} /\left(1-u_{2}^{*}\right) & \text { if } z_{1} \geq 0 \text { and } z_{2} \geq 0 \\ z_{1}^{2} / u_{1}^{*}+z_{2}^{2} /\left(1-u_{2}^{*}\right) & \text { if } z_{1} \leq 0 \text { and } z_{2} \geq 0 \\ z_{1}^{2} /\left(1-u_{1}^{*}\right)+z_{2}^{2} / u_{2}^{*} & \text { if } z_{1} \geq 0 \text { and } z_{2} \leq 0 \\ z_{1}^{2} / u_{1}^{*}+z_{2}^{2} / u_{2}^{*} & \text { if } z_{1} \leq 0 \text { and } z_{2} \leq 0\end{cases}
$$

Controller design: general case

System

\[

\]

Change of coordinates: $z(t)=R^{-1} Q(t)$

Transformed system

Objective

Controller design: general case

System

$$
\begin{array}{cr}
\dot{Q}(t)=\alpha-R u(t) & Q(0)=Q_{0} \\
0 \leq Q(t) & 0 \leq u(t)
\end{array} \quad C u(t) \leq 1 \text { }
$$

Change of coordinates: $z(t)=R^{-1} Q(t)$

Transformed system

Objective

Controller design: general case

System

$$
\begin{array}{cr}
\dot{Q}(t)=\alpha-R u(t) & Q(0)=Q_{0} \\
0 \leq Q(t) & 0 \leq u(t)
\end{array} \quad C u(t) \leq 1 \text { }
$$

Change of coordinates: $z(t)=R^{-1} Q(t)$

Transformed system

$$
\begin{array}{crr}
z(t)=u^{*}-u(t) & z(0)=z_{0} \\
0 \leq R z(t) & 0 \leq u(t) & C u(t) \leq 1
\end{array}
$$

Objective

Controller design: general case

System

\[

\]

Change of coordinates: $z(t)=R^{-1} Q(t)$

Transformed system

$$
\begin{array}{ccc}
z(t)=u^{*}-u(t) & z(0)=z_{0} \\
0 \leq R z(t) & 0 \leq u(t) & C u(t) \leq 1
\end{array}
$$

Objective

$$
\min _{u(t)} \int_{0}^{\infty}\|z(t)\|_{1} d t
$$

mpSCLP

Multi parametric Separated Continuous Linear Program:

$$
\min _{u(t)} \int_{0}^{\infty}\left\|z_{1}(t)\right\| d t
$$

subject to

$$
\begin{array}{rlrl}
\dot{z}(t) & =u^{*}-u(t) & z(0) & =z_{0} \\
0 & \leq u(t) & C u(t) & \leq 1 \\
0 & \leq R z(t) &
\end{array}
$$

Multi parametric since we want solution as function of z_{0}.

Solution
 mpSCLP can be solved explicitely and solution has nice structure

mpSCLP

Multi parametric Separated Continuous Linear Program:

$$
\min _{u(t)} \int_{0}^{\infty}\left\|z_{1}(t)\right\| d t
$$

subject to

$$
\begin{array}{rlrl}
\dot{z}(t) & =u^{*}-u(t) & z(0) & =z_{0} \\
0 & \leq u(t) & C u(t) & \leq 1 \\
0 & \leq R z(t) &
\end{array}
$$

Multi parametric since we want solution as function of z_{0}.

Solution

mpSCLP can be solved explicitely and solution has nice structure

mpSCLP: structure

