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Tracking control of drones

Three approaches for modeling dynamics and deriving controllers:
» Euler angles
» (Unit) quaternions
» SE(3)
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Tracking control of drones

Three approaches for modeling dynamics and deriving controllers:

» Euler angles
» (Unit) quaternions
» SE(3)

Euler angles

Singularities in representation (gimbal lock)

(Unit) quaternions

Let both g and g represent same attitude.
Need same control actions: u(q) = u(q), otherwise: ambiguity.
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Introduction

Remaining option: SE(3)

Both problems are overcome by considering dynamics on SE(3)

Shortcoming of most papers on SE(3)

Almost global result under assumption of non-zero thrust follower.
Consequence: only local result.

Contribution

Almost global result under assumption of non-zero thrust reference.
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Introduction

Comparable result

M.-D. Hua, T. Hamel, P. Morin, and C. Samson, "A control approach for
thrust-propelled underactuated vehicles and its application to VTOL
drones," IEEE Transactions on Automatic Control, vol. 54, no. 8, pp.
1837-1853, 2009.
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Comparable result

M.-D. Hua, T. Hamel, P. Morin, and C. Samson, "A control approach for
thrust-propelled underactuated vehicles and its application to VTOL
drones," IEEE Transactions on Automatic Control, vol. 54, no. 8, pp.
1837-1853, 2009.

Major differences

In this paper
» torques as input (vs. velocities)
» uniform almost global asymptotic stability
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Department of Mechanical Engineering TU/E Tefty of Technology



Problem

Drone dynamics

p = Rv

v=—-Sw)v+gRTe; — Le;

R = RS(w)
Jo=S(Jw)w + T,
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Problem

Drone dynamics Reference dynamics

p = Rv pPr= Rrvy

D:—S(w)l/—l—gRTE3—%63 vr = —S(wr)vr + gR, 93—£e

R = RS(w) R = R:S(wr)
Jo=S(Jw)w+T, Jor = S(Jwr)wr + 74
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Drone dynamics Reference dynamics

p = Rv pPr= Rrvy

D:—S(w)l/—f—gRTe3—%e3 vr = —S(wr)vr + gR, 93—£e

R = RS(w) R = R:S(wr)
Jo=S(Jw)w+T, Jor = S(Jwr)wr + 74

Feasible reference trajectory

Trajectpry (pr, Ry, vr, wr, fr, 7/) satisfying reference dynamics, with
0 < f™ < f(t) and w(t) bounded.
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Problem

p=Rl(p—pr)
p=—R"S(w)p+v—Ru o=
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Problem

p=Rl(p—pr)
Dz—kTS(w,)ﬁ+u—I~?TV, & =

Error measure

e(p, R, 7,@) = |16l + Il log Rl + ]| + [l&]
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Error coordinates

p=Rl(p—pr)
Dz—kTS(w,)ﬁ—i-l/—I"?Tu, 0=

Error measure

e(p, R, 7,@) = |16l + Il log Rl + ]| + [l&]

Problem
For (pr, Ry, vr,wr, fr, 7r) being a given feasible reference trajectory, find
appropriate control laws

f: f(ﬂ, R7V7W7Pr7RraVrawr) > 07 T = T(p7 R7V7w7pf7Rl’7Vl’7wl’)
such that for the resulting closed-loop system

lim < (5(t), R(8), (1), &(1)) =
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Approach

Controller design

Two steps:
» Position tracking (body-fixed accelerations as virtual input)
» Attitude control (using actual inputs)

Show stability result using cascade analysis
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Position tracking

Error definition

Express tracking error in body
fixed frame of the reference:

o= [ )]
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Position tracking

Error definition

Express tracking error in body
fixed frame of the reference:

pe| _ [RI(pr = p)
Ve Vr — R,TRI/
Tracking error dynamics

Pe = _S(Wr)/)e + Ve

Ve = —S(wr)ve + R Res — Ire;
N —
u
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Error definition Failing alternative

Express tracking error in body Express tracking error in body

fixed frame of the reference: fixed frame of the drone:
pe| _ [RI(pr = p) pe| _ [R7(p = pr)
Ve Vr — R,TRI/ Ve v —RTRv,
Tracking error dynamics Tracking error dynamics
pe = —S(wr)pe + ve pe = —S(w)pe + ve
= —S(wr)ve + oR'Res — es  pe = —S(w)ve + LRTRes — Les
— = ~~ d
u no full control

T h h Uni
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Consider the dynamics

pe = —S(wr)pe + Ve
Ve = —S(wr)ve + U
in closed loop with the dynamic state feedback
u = RT(KpPe + Kppe) — RTKpR:o1(pe + R Pe)
— k,02(pe + RTPe) — K,o3(rve + R pe)
Pe = Pe
Pe = —KpPe — Kppe + KpRra1(pe + R} Pe)
where Kp = KJ > 0, K, = K] > 0, K, = K] > 0,and k, > 0.
The origin of the closed-loop system is UGAS.
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Proof
Define pe = pe + R/ Pe, Ue = e + R] pe. Then
Pe = Pe
pe = —KpPe — Kppe + KPRra'l(ﬁe)
,Be = _S(Wr)ﬁe + Ve
Ve = —S(wr)Ve — kyoa(pe) — Kyo3(Te)
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Proof
Define pe = pe + R/ Pe, Ue = e + R] pe. Then
Pe = Pe
pe = —KpPe — Kppe + KPRra'l(ﬁe)
,Be = _S(Wr)ﬁe + Ve
Ve = —S(wr)Ve — kyoa(pe) — Kyo3(Te)
Differentiating Vi (pe, 7e) = K, Vi, (Pe) + 371 7e yields
Vi(Pe, 7e) = —1 K, 03(7e) = Y1(7e) < 0
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Proof
Define pe = pe + R/ Pe, Ue = e + R] pe. Then
Pe = Pe
pe = —KpPe — Kppe + KpRro1(pe)
[L)e = —5(wr)pe + Ve
Ve = —S(wr)Ve — kyoa(pe) — Kyo3(Te)
Differentiating Vi (pe, 7e) = K, Vi, (Pe) + 371 7e yields
Vl(ﬁevﬂe) = _DZKIIU3(DE) = Yl(De) <0
Differentiating V5 (pe, 7e) = 7! pe yields

VZ(ﬁe’ ve) = ’7eT’7e - ﬁzkuﬁ(ﬂe) - ﬁgkpUZ(ﬁe) = Y2(pe, Ve).
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Position tracking
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Define pe = pe + R/ Pe, Ue = e + R] pe. Then
Pe = Pe
pe = —KpPe — Kppe + KpRro1(pe)
,Be = _S(Wr)ﬁe + Ve
Ve = —S(wr)Ve — kyoa(pe) — Kyo3(Te)
Differentiating Vi (pe, 7e) = K, Vi, (Pe) + 371 7e yields

Vi(Pe, 7e) = —LKy03(7e) = Y1 (7e) < 0
Differentiating V5 (pe, 7e) = 7! pe yields
VZ(ﬁe’ ve) = ’7eT’7e - ﬁzkuﬁ(ﬂe) - ﬁgkpUZ(ﬁe) = Y2(pe, Ve).

Use a nested Matrosov result and a cascaded result to show UGAS
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Attitude control
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Desired thrust and orientation

From position tracking we have desired virtual input u = %R,TRe3 — %e3.

:
Then f = ||mu + f,e3| and RTRe3 = % =fy=[fnn fa2 fas3] .
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Attitude control

11/22

Desired thrust and orientation

From position tracking we have desired virtual input u = %R,TRe3 — %e3.
f; T

Then f = ||mu aF f,e3|| and R,TRe3 = szi—frgzﬂ_: fg = [fdl fa2 de] .

(D —¢

m

Since 0 < fM" < £,(t), we can make |u|| <

, SO fg3 > 0.
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Attitude control
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Desired thrust and orientation

From position tracking we have desired virtual input u = %R,TRe3 — %e3.
f; T

Then f = ||mu aF f,—e3|| and R,TReg = szi—frgzﬂ_: fg = [fdl fa2 de] .

(D —¢

m

Since 0 < fM" < £,(t), we can make |u|| <

, 50 fg3 > 0. Define

—_fdz + fuafas ]

fi o f,
_ _d _ Td1lda 1+fy3
1 1+fy3 1+fy3 fd1 -
Ry = fa1fao fi, € S0(3) wyg = | fyq — fy1f4s
d T 14fys T fa2 & dl ™ 14fy;
_fdl _fd2 fd3 fdz.fd1—fd1.fd2
L 1+fy43 ]

Then Ryes3 = fy. Note: Ry rotates from es to f; in spanned plane.
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Desired thrust and orientation

From position tracking we have desired virtual input u = %R,TRe3 — %e3.
f; T

Then f = ||mu aF f,—e3|| and R,TReg = szi—frgzﬂ_: fg = [fdl fa2 de] .

(D —¢

m

Since 0 < fM" < £,(t), we can make |u|| <

, 50 fg3 > 0. Define

—_fdz + fuafas ]

fi o f,
_ _d _ Td1lda 1+fy3
1 1+fy3 1+fy3 fd1 -
Ry = fa1fao fi, € S0(3) wyg = | fyq — fy1f4s
d T 14fys T fa2 & dl ™ 14fy;
_fdl _fd2 fd3 fdz.fd1—fd1.fd2
L 1+fy43 ]

Then Ryes3 = fy. Note: Ry rotates from es to f; in spanned plane.

Define attitude errors:
Re = RJ(RTR) we = w — RTRw; — Rlwy
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Attitude control

Attitude error dynamics

Re = ReS(we)
Jire = T — JRTRS TS (Jwr)wr + 7] + S(Jw)w
+ JS(we)[w — we] + JRI[S (wa)RIwr — ).

Th hU
TU/e i
(leh\gy

Department of Mechanical Engineering




Attitude control .

Attitude error dynamics

Re = ReS(we)
Jise =T — JRTRJ TS (Jwr)wr + 7¢] + S(Jw)w
+ JS(we)[w — we] + JRI[S (wa)RIwr — ).

Controller (standard)
3

T=—Kowe+Ke > ki(ei x RIe;) + JRTRJ (S (Jwr)wr + 7]
i=1
— S(Jw)w — JS(we)[w — we] — JRG [S(wq)Riwr — ]

with distinct k; > 0 and K, = KT > 0, Kg = K} > 0.
Result: (Re,we) = (/,0) ULES and UaGAS
Department of Mechanical Engineering TU/e it :/L:T chnology



Combined result
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Cascaded system

Pe = Pe

Pe = —KpPe — Kppe + KpRro1(pe)

pe = —S(wr)pe + e

Ve = —S(wr)Te — kyoa(fe) — Kyo3(7e) + LRTR(I — Rl)es
Re = ReS(we)

Jise = —Kowe + K Y _ ki(ej x Rie;)
i—1
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Combined result
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Cascaded system

Pe = Pe

Pe = —KpPe — Kppe + KpRro1(pe)

pe = —S(wr)pe + e

Ve = —S(wr)Te — kyoa(fe) — Kyo3(7e) + LRTR(I — Rl)es
Re = ReS(we)

Jise = —Kowe + K Y _ ki(ej x Rie;)
i=1

If the functions o4, o>, 03, and Pe(to) and pe(to) are properly chosen

guaranteeing that ||u|| < 22< for some 0 < ¢ < fmin then the origin
(Pe, pPe,p, 7, Re,we) = (0,0, 0 ,0,1,0) is ULES and UaGAS.
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Problem: we have solved a different problem

We have shown convergence of (P, Pe; P, 7, Re, we) 10 (0,0,0,0,/,0).
However, we need to show that (3, R, 7, &) converges to 0.
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Problem: we have solved a different problem

We have shown convergence of (P, Pe. P, 7, Re, we) 10 (0,0,0,0,/,0).
However, we need to show that (3, R, 7, &) converges to 0.

Corollary (final result)

‘

TheNderived controller also makes (3, R, 7, &) converge to 0, i.e.,
(p,R,,&) converges to (0,1, 0,0).
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AR-Drone: m=0.456 [kg]
)=diag(0.0022,0.0025,0.0045) [kgm?]
£=9.81 [m/s?]
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AR-Drone: m=0.456 [kg]
J=diag(0.0022,0.0025,0.0045) [kgm?]
£=9.81 [m/s?]

Reference trajectory: p,(t) = [cost sint 1.5-+sint] !

R, defined (from p, as presented earlier).
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AR-Drone: m=0.456 [kg]

£=9.81 [m/s?]

Initial conditions:

Department of Mechanical Engineering

[—1

p(to) = |0.7 R(to) =
| 4
[ 0.1

I/(to) = |-0.8 w(to) =
| 0.7

J=diag(0.0022,0.0025,0.0045) [kgm?]

Reference trajectory: p,(t) = [cost sint 1.5-+sint] !
R, defined (from p, as presented earlier).

[-0.25 —0.433 0.866
0.533 —-0.808 -0.25
10.808 0.34 0.433
[—1
0.3
—2
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Disturbances (more realistic)

» Mass discrepancy: m = 0.456[kg], m, = 0.48[kg].
» Add model of sensors and actuators

e sampling

o delays

] noisy measurements

» Use filtered measurements
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Results: Filtered errors e = p,(t) — p(t) in the inertial frame

» without integral
control (dashed)

» with integral control
(solid)
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Results: Attitude errors (metric: angle of rotation)

L ! i L

10 15 20 25 30
time [s]

» with respect to the desired attitude, R, (solid),
» with respect to the reference attitude, R/ R, (dashed)
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[video]
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Conclusions

» Avoid singularities of Euler angles, ambiguity of quaternions,
allows for large angular maneuvers.
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Conclusions

» Avoid singularities of Euler angles, ambiguity of quaternions,
allows for large angular maneuvers.

» Explicitly took into account the constraint of non-zero total thrust in
our controller design

» uniform almost global asymptotic stability on SE(3).

» Validated by simulations with added disturbances

- difference in actual and expected mass
 used sampled, delayed, and noisy measurements.

» Implemented on AR.Drone 2.0.

» works well at low velocities
 noticeable mismatch at high velocities
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Future work

» Extend to model including velocity-dependent disturbance
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Future work

» Extend to model including velocity-dependent disturbance

» Extend the state feedback controller to an output feedback
controller (body-fixed velocity v not available for measurement).
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