
Master’s Thesis

Extended non linear dynamics for quadrotor control in
aggressive maneuvering

H.J.K. de Kleuver

DC 2017.092

Coach: dr. ir. A.A.J. Lefeber
Supervisor: prof. dr. H. Nijmeijer

Eindhoven, October, 2017

Dynamics and Control

Department of Mechanical Engineering

Eindhoven University of Technology

PO Box 513

5600 MB Eindhoven

The Netherlands





Abstract

Lately, the trend in development of drone applications increasingly focuses on cooperation
between drones. For collision avoidance the drones in the formation need to accurately follow
their trajectory. Previous work on this topic resulted in a quadrotor capable of tracking a
trajectory, however, while in slow varying trajectories the tracking performance is good, in fast
varying trajectories the performance significantly decreases. Adjustments to the previous work
are required to improve the tracking performance for all flight cases. The main objective of this
thesis is to improve the tracking performance by improving the quadrotor’s dynamical model
and perform a redesign of the controller to account for the new dynamics. A partially improved
controller, designed by van der Eijnden and Lefeber, is implemented, which solved part of
the tracking accuracy, however, the large position error still existed. Experiments are used to
determine the the nature of the tracking problem. Blade flapping and induced inflow generate
drag forces acting on the quadrotor’s in plane dynamics. Blade element theory and Momentum
theory are used for inflow modeling, and blade flapping is modeled based on the work of Prouty.
A thorough investigation is performed to investigate the limitations and modeling assumptions
of Blade element theory, Momentum theory, and the blade flapping model. Furthermore, several
flight cases of Blade element and momentum theory are combined to allow for three-dimensional
trajectories. The blade flapping model of Prouty is adjusted to incorporate inflow coefficients
and remove the assumptions of high speed forward flight. An extended model is developed to
include those aerodynamics into the rigid body dynamics developed previously. This extended
model has been implemented into a simulation environment, where it has been tested with three
different cases, a three dimensional circular trajectory, a two dimensional circular trajectory, and
a height varying trajectory. Compared to the experimental results the new model is capable
of accurately estimating the z-dynamics, whereas the old model was not accurate enough.
The performance in estimating the x and y-position in simulation has increased significantly
compared to the simulation results of the old rigid body model, however, improvements are
necessary. The simulation results of the new extended model are 50% more accurate compared
to the experimental results than the old simulation results. The mismatch between the new
simulation results and the experiments most probably is due to limitations in the blade flapping
and inflow model. The inflow model does not capture the wake behavior under the rotors
while it is known that these dynamics play an important role in the rotor dynamics, and
consequently in the quadrotor dynamics. Furthermore, the inflow is based on a first order
inflow variation, whereas higher order inflow variations are needed to fully describe the inflow
behavior. Momentum and blade element theory are both static inflow models and are only valid
in steady forward or axial flight and thereby neglecting the quadrotor’s constant acceleration
and deceleration necessary for trajectory following.
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Chapter 1

Introduction

1.1 Background

In the last decade the interest in Unmanned Aerial Vehicles (UAVs) has grown substantially.
Even though UAVs have mainly been used for military applications, a considerable increase in
interest for civilian and research applications is observed. One of the main advantages of UAVs
is the possibility to automate several processes in a relative simple manner. For example, UAVs
can be applied in agriculture, for automating tasks such as the dusting of crops and monitoring
of livestock [1], assisting in rescue operations [2], wildfire detection, or emergency response.
Lately, the trend in development of drone applications increasingly focuses on cooperation and
formation flying, such as cooperatively carying a payload [3]. In search and rescue missions a
significant larger area can be searched when drones are capable of flying in formation. In the
field of farming, such as dusting of crops, it would be an advantage if multiple drones can be
deployed at the same time. Deploying multiple drones in a formation requires a tight formation
and consequently collaboration between the drones.

In military applications the focus in UAV’s is mostly on fixed wing UAV’s. In commercial and
research areas the focus is mainly on small, multi-rotor Unmanned Aerial Vehicles capable of
vertical take off and landing (VTOL). The main advantages of these type of UAVs is their ability
for vertical take off and landing, their high maneuverability, and ability to hover. Because of
their simple geometry and fixed-pitch rotor designs they are mechanically simple and robust,
which makes them economically interesting. From the multi-rotors the quadrotor is of particular
interest, since it is the simplest configuration stabilizable for all six degrees of freedom by control
of the four rotors. The system is unstable from nature due to its underactuation. Quadrotors
have been the subject of a significant amount of studies concerning their dynamics and flight
regulations, however, cooperation between drones is much less explored area.

This thesis is part of a larger research project, which strives to deploy a swarm of drones, capable
of vertical take off and landing, in order to expand the applicability of drones. Deploying a swarm
of drones or fly in formation requires close cooperation between the drones to avoid collision
and perform their task accurately. Furthermore, as many applications will be in in the area
of automation some level of autonomy is required. In this project the drones are required to
perform a complete autonomous flight.

1



2 Chapter 1. Introduction

1.2 Motivation and Objectives

As already mentioned this thesis is part of a larger project on cooperation of drones. A major
requirement in formations is collision avoidance, each drone needs to accurately holds its position
in the formation. Because many application areas require some level of automation, the larger
project specifies that the drones need to be able to fly completely autonomously.

In the larger project already some work has been done by [4] and [5], which were the first to work
on this project. A sensor and actuator analysis is performed and an observer is designed by [4]
to determine the position and orientation of the drone. Furthermore, a simulation environment
for testing purposes and a graphical interface for communication with the drone were developed.
In [5] a non-linear controller for autonomous trajectory tracking is developed together with an
position and velocity observer. The combined result of [4] and [5] is a quadrotor capable of
autonomously tracking a trajectory, however, for fast time-varying trajectories the tracking
performance is insufficient. In a formation high accuracy trajectory tracking is of importance,
therefore, adjustments to the previous work are required. The goal of this thesis is to improve
the tracking performance by improving the quadrotor’s dynamical model and perform a redesign
of the controller to account for the new dynamics.

To achieve the main objective several sub-objectives can be distinguished

• Conduct experiments to determine the nature of the tracking problem,

• Study literature to obtain insight in the problem,

• Determine the current state in literature on quadrotor dynamic modeling,

• Make improvements to the rigid body model,

• Adjust the control to account for the new model,

• Validate the improvements.

These sub-objectives can be interpreted as an iterative process. From the results of the last sub-
objective new problems might arise, or it might be concluded that the implemented adjustments
are not sufficient enough.

1.3 Thesis outline

This thesis is organized as follows:

• Chapter 2 Problem identification
In this chapter the work of Jeurgens and van der Eijnden is closely examined. A short
overview of their work is given, the rigid body model proposed for quadrotor control, the
test environment, and the sensor data fusion. Furthermore, experiments are conducted to
investigate the nature of the tracking problem.

• Chapter 3 Aerodynamic modeling of a UAV rotor system
Because in quadrotor literature not much information is found on aerodynamics of rotor
systems, first a general elaboration on rotor systems, based on helicopter literature, is
given. Furthermore, the interaction of the blade vorticity with the wake, and the wake
influence regions are explained. Based on several common flight conditions the tendency
of the rotor to flap up and down is described.
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• Chapter 4 Literature study
In this chapter a literature study is performed to study the various methods and models
to describe the inflow, wake, and blade flapping behavior.

• Chapter 5 Theoretical model
In this chapter the theory behind Blade element theory, Momentum theory, and blade
flapping, is explained to create a deeper understanding of the fundamentals behind theses
theories. Furthermore, an extended model is proposed to incorporate these aerodynamics
into the rigid body dynamics. The performance of the new quadrotor model is investigated
and compared to the experimental results and the simulation results of Jeurgens and van
der Eijnden.

• Chapter 6 Conclusions and Recommendations
The conclusions of this work and recommendations for future research are presented.





Chapter 2

Problem identification

This project is part of a larger research project, which strives to perform formation flying with
quadrotors in order to expand the applicability of drones. In the larger project already some
work has been done by [4] and [5] on implementation and trajectory tracking.

The work of [4] and [5] has resulted in a quadrotor capable of tracking a reference trajectory,
although the performance is dissatisfactory. The work of [5] in modeling the quadrotor’s behav-
ior is summarized in section 2.1. The combined work, together with their experimental results
is elaborated on in sections 2.2 and 2.3. Furthermore, additional experiments are performed
using an improved controller to further investigate the nature of the tracking problem.

2.1 Quadrotor dynamics

I

B

ρ

b3

b1 b2

e1
e2

e3

T1

T2

T3

T4

2l

w

v
u

r

qp

Figure 2.1: Schematic view of the quadrotor with Inertial frame I and Body fixed frame B.

The AR Drone is a quadrotor in x-configuration, the principal axis of the body frame are
not aligned with the motor arms, see Figure 2.1. In modeling the simplified dynamics of the
quadrotor, two right-handed orthonormal reference frames are introduced, an inertial reference
frame I with basis vectors {e1, e2, e3}, and a body fixed frame B with basis vectors {b1, b2, b3},
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6 Chapter 2. Problem identification

whose origin is aligned with the quadrotor’s center of mass. In developing the simplified model
of the quadrotor, the following assumptions are made:

Assumption 2.1.1. Modeling assumptions:

(i) The quadrotor is axis symmetric

(ii) The quadrotor behaves as a rigid body

(iii) The propellers are rigid

(iv) The ground effect can be neglected

(v) The aerodynamic forces can be neglected

The first assumption aligns the geometric center of the quadrotor and its center of mass and the
second assumption neglects bending in the quadrotor’s structure. The third assumption rules
out any bending of the rotors and implies that the rotor plane is always perpendicular to the b3
axis of the body frame. The influence of ground effects become important near z/r < 1, where
z is the height of the quadrotor and r the radius of the rotor [6]. In case of the AR Drone this
is about a height of z = 0.1[m]. Therefore, the ground effect can be neglected during flight.
The last assumption neglects possible existing aerodynamic drag forces.

The position of the center of mass of the quadrotor, with respect to the inertial frame, is given
by ρ = (x, y, z) ∈ R

3. The linear and angular velocities of the quadrotor, within the body frame,
are defined as ν = (u, v, w) and ω = (p, q, r). The orientation of the body frame with respect to
the inertial frame is represented by the rotation matrix R ∈ SO(3) with the special orthonormal
group SO(3) = {R ∈ R

3×3|RTR = I, det(R) = 1}. The orientation of the quadrotor, also called
the attitude of the quadrotor, is parametrized by means of R, excluding singularities of Euler
angles and the ambiguity of quaternions, [5, 7].

The quadrotor is controlled by the angular speeds of the four separate rotors. Each rotor
produces a thrust and torque dependent on the angular speed of the rotor. A combination of
these thrusts and torques generates the total thrust (f), the roll torque (τ1), the pitch torque
(τ2) and the yaw torque (τ3), such that holds⎡

⎢⎢⎣
f
τ1
τ2
τ3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

T1 + T2 + T3 + T4
l(T1 − T2 − T3 + T4)
l(−T1 − T2 + T3 + T4)
d(T1 − T2 + T3 − T4)

⎤
⎥⎥⎦ (2.1)

with d the drag constant of the blade and l the distance from the rotor to the axis of rotation
[4].

Using Newton-Euler and the Poisson equation, the simplified dynamics of the quadrotor in the
body frame are defined as [5]

ρ̇ = Rν (2.2a)

ν̇ = −S(ω)ν + gRT e3 − f

m
e3 (2.2b)

Ṙ = RS(ω) (2.2c)

Jω̇ = S(Jω)ω + τ, (2.2d)
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with

J =

⎡
⎣Jxx 0 0

0 Jyy 0
0 0 Jzz

⎤
⎦ ,

and with S(ω) a skew symmetric matrix, such that any cross product can be written as a× b =
S(a)b:

S(ω) = −S(ω)T =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ . (2.3)

2.2 Testbed

In [4] an actuator analysis is performed, in which the motor PWM commands are related to the
generated thrust, torque, and rotor angular velocities. The results of this analysis are used to
calculate the required thrust and torques for the motion controller designed in [5]. An observer,
which consists of two linear Kalman filters, is designed to fuse the signals of several sensors of
the internal measurement unit (IMU) and a top camera, to estimate the drone’s position and
orientation. The observer uses two linear Kalman filters in parallel are used to filter and fuse the
signals The implementation of these Kalman filters reduces the influence of noise and improves
the accuracy. Furthermore, a supervisory controller is provided for controlling the drone at high
level, allowing for sensor calibration, and safety precautions. Additionally, Jeurgens developed
a simulation environment for testing purposes and a graphical interface for communication
with the drone. The simulation environments contains the rigid body model to account for
the quadrotor dynamics, his position observer, and the controller designed by van der Eijnden,
including his velocity observer.

The position estimation of [4] is also based on position measurements of a top camera situated
above the test area. This position measurement is developed by [8] and is based on a blob
detection algorithm and capable of determining the drone’s x, y coordinates and yaw angle.
Because of the limitations of the AR Drone’s processor the algorithm runs on a base laptop
which receives the data from the camera, estimates the position and communicates this position
with the drone via the wifi connection of the drone itself. A LED-strip is placed on top of the
drone from which specific sequences of LED’s can be on or off enabling identification of a specific
drone and the drone’s front.

Most developed control strategies are based on a linearization of the non-linear drone dynamics
and use PID or LQR techniques to close loop stabilize the drone. Drawbacks of these strategies
is that linearization limits the flight to small angle maneuvers and slow varying trajectories. To
enable more aggressive maneuvering and track faster varying trajectories, [5] designed a cascade
based controller based on non-linear PID control with conditional integrators. This controller
requires both position and velocity measurements. However, the observer designed in [4] only
determines the position and angles of the drone. Therefore, [5] implemented a position and
velocity observer that estimates and filters the position and velocity of the AR Drone.

2.3 Experimental results

Both [4] and [5] performed experiments to test their implemented solutions and some of the re-
sults are discussed below. Figure 2.2 shows the results of the drone tracking a three dimensional
circle, described by

ρr = [cos(att) sin(att) 1.5 + sin(att)]
T . (2.4)
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with at a time constant and at = 1. It can be seen that there is a difference in the desired
trajectory, red, and the actual trajectory, black. The actual diameter, in the x − y plane is
about 1m, which is 50% of the reference diameter of 2m. Figure 2.3 shows the data of the 3D
trajectory subdivided into each separate direction. In the representation of the y-displacement
typical behavior is noticed in the sense that during descent the y-displacement remains more or
less constant. This might suggest that in descent the quadrotor is affected by the turbulent air
generated by the rotors. The behavior in the z-displacement looks to be damped compared to
the desired altitude. In [4] the thrust of each rotor under hover conditions is derived. It might
be the case that the varying airflow due to the three dimensional flight causes a reduction in
thrust.

Figure 2.2: Spatial representation of the 3D trajectory for both the experimental results
(black) and the reference trajectory (red) [5].

Figure 2.3: Representation of the 3D trajectory represented in each separate direction for
both the experimental results (black) and the reference trajectory (red) [5].
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Figure 2.4 shows the desired Rd (red) and actual RT
r R̂ (black) attitude split in terms of roll,

pitch and yaw angles. The actual roll and pitch angles seem to be damped compared to the
desired attitude. In the experiments the drone covers a smaller circle than the reference, which
requires less aggressive angles. The yaw angle oscillates significantly more than desired and the
peaks in the oscillation occur when the drone is almost at the top of the circle. At the top the
linear velocity u is maximum and v is zero, after the top the velocity u decreases whereas v
increases. This change in velocities might effect the desired attitude calculation which might
cause the yaw oscillations.

Examining the results of the experiment more closely, it is noticed that the applied motor
voltage does not exceed the maximum voltage limit, hence, the hardware is not the limita-
tion. Furthermore, the experiments indicate that the controller is not capable of solving the
permanent position error. Both observations suggest that unmodeled dynamics might be the
underlying cause. Furthermore, it is important to note that

Figure 2.4: Estimated attitude RT
r R̂ (black) and desired attitude Rd (red) subdivided into

roll, pitch, and yaw angles [5].

2.4 Additional experiments

The work of [5] is improved by [7] by redefining the desired attitude Rd. This improved controller
is implemented on the AR Drone and additional experiments are conducted to create more
insight in the tracking problem. Because in their experiments the y-direction has some strange
behavior, two experiments are performed with in one experiment the x and y direction reversed,
see figures 2.5 and 2.6. The trajectory in these figures is the same three dimensional trajectory
as used in the experiments of [4] and [5], see Figure 2.3. Two observations can be made. First,
no significant difference exists between the results of the two experiments. Secondly, compared
to the experiment of [4] and [5] the typical behavior in y direction has disappeared. Presumably
the improved controller is better capable of controlling the drone.
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Figure 2.5: Representation of a 3D trajectory, equal to the trajectory of Figure 2.3, in each
separate direction with the experimental results in black and the reference trajectory in red.
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Figure 2.6: Representation of a 3D trajectory in each separate direction with the experi-
mental results in black and the reference trajectory in red. The trajectory is equal to the
trajectory of Figure 2.3, however, x and y are swapped.
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Another problem observed in the test results of [4] and [5] is the reduced diameter in the x− y
plane. Two experiments are performed to investigate this behavior more closely, see figures 2.7
and 2.8. Figure 2.7 shows the same three dimensional trajectory as used in Figure 2.3, however,
the period of the trajectory is ten times slower, i.e. T = 20π. The period of a reference
trajectory can be determined by T = 2π/at, i.e. a = 0.1. As can be seen the drone is capable of
tracking the slow time-varying trajectory, which could imply that the phenomena causing the
diameter reduction are velocity dependent.
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Figure 2.7: Representation of a 3D trajectory in each separate direction with the experi-
mental results in black and the reference trajectory in red. The same trajectory is used as in
Figure 2.5, however, the period is ten times slower, T = 20π.

Figure 2.8 shows the results of an experiment with a circle in the horizontal plane, parametrized
as

ρr = [cos(a)tt) sin(att) 1.0]T . (2.5)

with at = 1. The diameter of the reference equals two meters, whereas the actual performed
circle only has a diameter of one meter. Compared to the three dimensional trajectory the
x and y behavior is not significantly different, which might imply that the z-direction has no
influence in the phenomena causing the reduced diameter.

A second set of experiments is conducted in which only z movement is allowed and the reference
can be described as.

ρr = [0 0 1.5 + sin(att)]
T . (2.6)

with at the time constant. Three different kinds of experiments are performed, in which the
speed is adjusted. In the first experiment the period is T = 10π, i.e. at = 0.2, in the second
experiment T = 2π, and in the third experiment T = π, see figures 2.9, 2.10, and 2.11. As in the
case of the three dimensional trajectory, it can be seen that the quadrotor is capable of tracking
a slow time-varying trajectory, however, when the speed increases the tracking performance
decreases, see figures 2.9 and 2.10. Furthermore, shown in Figure 2.11 are the results of the
experiment with T = π. The results show that the quadrotor is lacking behind in time and
the amplitude is not constant anymore. From this it can be concluded that the rotors can not
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Figure 2.8: Representation of a 2D trajectory, with reference parameters Dr = 2m and
Tr = 2π. The experimental result is shown in black and the reference trajectory is shown in
red.

deliver the thrust the fast varying trajectory demands, hence the limits of the quadrotor are
reached.
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Figure 2.10: Representation of a height varying trajectory with at = 1, i.e. T = 2π.
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Figure 2.9: Representation of a height varying trajectory in each separate direction with the
experimental results in black and the reference trajectory in red. The trajectory described in
(2.6), with at = 0.2, i.e. T = 10π.
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Figure 2.11: Representation of a height varying trajectory with at = 2, i.e. T = π.
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2.5 Concluding remarks

Jeurgens [4] experimentally determined the thrust of each individual rotor for a given rpm
or PWM value, however, these experiments were performed under hover conditions only. In
order to avoid performing complex experiments and be able to switch to other drone platforms,
without much effort, it would be of interest to determine the thrust analytically both in hover
and forward flight.

The previous work performed by [4] and [5] resulted in a quadrotor capable of autonomous
trajectory tracking, although the performance is not satisfactory. Based on the additional
performed experiments it is suspected that the underlying modeling assumptions are causing
this weak performance. In modeling the quadrotor’s behavior aerodynamic interactions are
neglected, see Assumption 2.1.1 (v). However, recent research, such as Bangura [9], and Omeri
et al. [10], discovered that aerodynamics, such as induced inflow and blade flapping, influence
the quadrotor’s behavior. Both phenomena induce forces in the b1 − b2 plane of the quadrotor,
the underactuated directions in the dynamics, and therefore cannot be easily counteracted by
high gain control [11].

Mathematical models for predicting the flight behavior of a quadrotor are essential for the
control design. The most basic quadrotor models, such as the model considered by [5], see
section 2.1, are inadequate in predicting the quadrotor’s behavior. An extended quadrotor
model, which includes the rotor aerodynamics into the rigid body dynamics, is provided in
Chapter 5. The next chapter establishes a basic knowledge about rotor aerodynamics to improve
the reader’s understanding and Chapter 4 elaborates on the different models for inflow, wake,
and blade flapping behavior.



Chapter 3

Aerodynamic modeling of a UAV
rotor system

In quadrotor literature not much information can be found on aerodynamics of rotor systems and
the information presented in the quadrotor literature is always based on helicopter literature.
Therefore, first a general elaboration on rotor systems, based on helicopter literature, is given
to establish some basic backgrounds and explain some difference between the rotor system of a
helicopter and that of the most quadrotors. Furthermore, the interaction of the blade vorticity
with the wake, and the wake influence regions are explained. Based on several common flight
conditions the tendency of the rotor to flap up and down is explained.

3.1 Blade characteristics

A rotor blade normally is twisted along its length. The twist of the rotor blade of the AR Drone
is approximated with a linear variation, such that the blade pitch can be described as

θ = θ0 +Δθ = θ0 +
r

R
θtw , (3.1)

where θ0 is the pitch angle at the rotor hub, r the radius to the section on the blade, and R the
radius of the total rotor, see Figure 3.1.
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 = 0
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V  
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R

Figure 3.1: Rotor disk with the azimuth angle of a rotor blade, [12]
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The linear twist rate θtw is equal to the tip pitch angle minus the root pitch angle and therefore
negative. This approximation follows helicopter literature [12–14] and makes the derivations
less complex, however, is not an optimal description of the rotor blade, since the blade near the
blade root is more curved than near the blade tip, see Figure 3.2.

Figure 3.2: The rotor blade of the AR Drone 2.0

In rotor aerodynamics there are some important quantities, which are used very often

• The blade chord, c(r)

• The number of blades, N

• The blade mass, m(r)

• The moment of inertia of the blade about the center of rotation, Ib

• The rotor disk area, A = πR2

• The rotor solidity, σ = Nc
πR

• The blade lock number, γ = ρacR4

Ib

• The blade section two dimensional lift curve slope, a0

• The blade section angle of attack, αbs

• The blade section inflow angle, φbs

The blade chord is the length of an imaginary straight line joining the leading and trailing
edges of an airfoil. In general the chord length is a function of the rotor radius r, however, it
is approximated by a constant equal to the average chord length. Furthermore, the blade mass
depends on the rotor radius as well, however, it is assumed that the blades of the AR Drone
have a uniform weight. The solidity, σ is the ratio of the total blade area, NcR, for constant
chord, to the total disk area, A. The lock number, γ is the ratio between the aerodynamic
forces and the inertial forces on a rotor blade.

θ

Chord
line

Chordα

φ

Figure 3.3: Blade section with the pitch angle θ and the chord of the blade section
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Each blade section or airfoil can produce an amount of lift, which is represented by the lift
coefficient Cl. This lift coefficient varies with the angle of attack of the blade section, αbs. The
slope of the curve of the lift coefficient against the angle of attack is called the lift curve slope a0,
see Figure 3.4. When the angle of attack increases beyond the stall point, the air flow separates
from the blade and stall occurs, resulting in less lift generation. Thin airfoil theory is a simple
theory relating the angle of attack with the generated lift for incompressible frictionless flows.
The theory neglects the stall region and assumes the flow around the blade section to be two
dimensional, the blade section to be thin, and the blade to extend to infinity, which neglects tip
vortices. Tip vortices affect the lift generation and therefore the lift curve slope. The lift curve
outside the stall area can be represented by

Cl = a0αbs + Cl0 , (3.2)

where a0 is the lift curve slope and Cl0 the lift generated with αbs = 0. The theoretical
value of the lift curve slope equals, a0 = 2π. In quadrotor literature a value around 5.7 is
proposed [15,16], to incorporate the effect of tip vortices.

Figure 3.4: The lift curve of an arbitrary airfoil, with the lift slope curve a0 [17]

The position of a rotor blade relative to the free stream velocity is represented by the azimuth
angle, ψb, which is defined zero at the downstream direction, see Figure 3.1. In most helicopters
the rotor angular velocity is constant and the pitch angle of the blades can be adjusted to
generate more or less thrust, known as collective and cyclic pitch control. Because of the
constant rotor angular velocity the azimuth angle of a helicopter rotor blade can be defined as
ψb = Ωt. The hingeless rotor of a quadrotor does not possess collective and cyclic pitch control
and therefore the amount of thrust generated is influenced by increasing or decreasing the rotor
angular velocity. Since the rotor velocity is not constant the azimuth can be defined as

ψb =

∫ t

0
Ωdt+ C , (3.3)

however, this is true for any constant C, which is difficult to determine.
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3.2 Rotor configuration

A helicopter rotor is hinged at the blade root to relieve the blade root of large bending stresses
and eliminate the rolling moment arising in forward flight, see Section 3.6. The blade has three
hinges to allow the blade to flap up and down (flapping), to move back and forth, (lead-lag)
and to pitch up and down (feathering).

β

ζ

θ

Figure 3.5: Rotor hinge system with flap, lag, and feathering hinges, [18]

Blade flapping hinges allow the blade to move up and down relative to the hub plane under
influence of the surrounding air. Due to the forward speed of the helicopter a lift difference
arises between the different rotor blades. Because of this difference each blade flaps up or down,
see Section 3.6 and the angle between the blade and the disk plane is described by the flap
angle, β. A consequence of blade flapping is lead-lag movement. As a blade moves up or down
the radius of the orbit described by the blade tips increases or decreases. Therefore, due to the
Coriolis effect the rotor blade wants to speed up or down and thereby lead or lag from their
initial position. The angle between the blade and its normal position is given by the lead-lag
angle, ζ. The feathering hinge allows the blades to rotate lengthwise and thereby increases or
decreases the pitch angle. The pitch angle, θ, influences the amount of lift generated and is
influenced in helicopters by the pilot controls.

In steady state the motion of the rotor is periodic and therefore the blade angles can be ap-
proximated by a Fourier series

β = β0 + β1s sin(ψ) + β1c cos(ψ) + ...+ βns sin(nψ) + βnc cos(nψ)

ζ = ζ0 + ζ1s sin(ψ) + ζ1c cos(ψ) + ...+ ζns sin(nψ) + ζnc cos(nψ)

θ = θ0 + θ1s sin(ψ) + θ1c cos(ψ) + ...+ θns sin(nψ) + θnc cos(nψ).

(3.4)

Most multirotor UAVs contain hingeless fixed rotors, which means that the blades are can-
tilevered restrained to the rotor hub. Due to the flexibility of the blades they possess the
flapping characteristics but lag the lead-lag and feathering motions. However, in practice the
hingeless rotor of the AR Drone experiences all three phenomena of which blade flapping is of
most influence and the most common topic in recent research.

Helicopter literature often rewrites a variable into its corresponding coefficient form. A few
important coefficients are
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• The lift coefficient, Cl(αbs)

• The drag coefficient, Cd(αbs)

• The thrust coefficient, CT = T
ρA(ΩR)2

• The rotor drag force coefficient, CH = H
ρA(ΩR)2

• The rotor side force coefficient, CY = Y
ρA(ΩR)2

• The pitch moment coefficient, CMy =
My

ρAR(ΩR)2

• The roll moment coefficient, CMx = Mx
ρAR(ΩR)2

,

where H is the rotor drag force and Y the rotor side force, which depend on the lift and drag
force generated by the blades, see Figure 3.6. The lift and drag coefficient depend on the angle
of attack of the blade section αbs. The thrust coefficient is equal to the thrust T divided by
the air density ρ, the area swept out by the rotor blades A, the angular velocity of the rotor
Ω and the rotor radius R. The pitch moment My and roll moment Mx are divided through
R3 to derive the pitch and roll moment coefficients instead of R2 as is the case with the force
coefficients.

To describe the behavior of the rotor blades and their interaction with the body, helicopter
literature defines four different planes, namely

• The hub plane, HP

• The control plane, CP

• The no feathering plane, NFP

• The tip path plane, TPP

The plane perpendicular to the rotor shaft, and therefore parallel with the plane spanned by
b1 and b2, see Chapter 2, is called the hub plane. With help of the swashplate the cyclic pitch
input is altered and this pitch input defines the control plane. The no feathering plane describes
the plane in which the pitch angle is constant. Since the rotor of the AR Drone does not contain
a swashplate, and collective and cyclic pitch control, and in this report only blade flapping is
considered, the hub plane, control plane, and no feathering plane align with each other. The
tip path plane is the plane described by the motion of the tips of the blade.

3.3 Reference frames

In the previous chapter an inertial frame, I, and body frame, B, have been introduced to
describe the quadrotor’s position, translational and angular velocities. For modeling purposes
an additional frame is introduced, a body fixed wind axis frame C with basis vectors {c1, c2, c3}.
The origin of the C frame is aligned with the origin of the body frame B and the c3 axis is
aligned with the b3 axis. The difference between the two body fixed frames is the orientation of
the c1 axis, where b1 is fixed the c1 axis is always aligned with the flight direction and positive
pointing forward. The c2 axis completes a right hand frame. The mapping from frame C to
frame B can be performed using the Rotation matrix Rcb and is defined by

Rcb =

⎡
⎣cos(ψw) − sin(ψw) 0
sin(ψw) cos(ψw) 0

0 0 1

⎤
⎦ , (3.5)

where ψw describes the angle between the c1 and b1 axis.
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3.4 Inflow

For a quadrotor to perform a level forward flight it must pitch or roll around its body axis
which results in an angle of attack of the rotor disk, αd. A rotor in forward flight experiences
an incoming velocity equal to the quadrotor’s forward velocity corrected for the angle of attack.
Furthermore, it is common to normalize the velocities by dividing through the blade tip speed.
The normalized forward velocity is called the advance ratio, μ and is defined as:

μ =
V cos(αd)

ΩR
. (3.6)

A rotor produces thrust by influencing the environmental air. The air above the rotor is sucked
in and accelerated as it passes through the rotor, this phenomenon is called induced velocity,
vi. Normalizing the induced velocity results in the induced inflow ratio λi. Adding the vertical
component of the forward flight velocity and normalizing with the tip speed results in the rotor
inflow ratio, λ:

λ =
V sin(αd) + vi

ΩR
= μ tan(αd) + λi . (3.7)

The induced velocity and therefore also the induced inflow is defined to be normal to the disk
plane, see Figure 3.6.

H
Y

Tμ

λ

Figure 3.6: Rotor disk with the induced velocity and advance ratio and the rotor hub forces
T ,H,Y , [12]

The rotor creates both an inflow and outflow, called the wake. In vertical climb and hover it can
be assumed that the inflow and outflow are along streamlines and therefore can be estimated
using blade element theory and momentum theory, see Chapter 5. In descent, however, the rotor
passes through its own wake, which in slower rates of descent is turbulent, see Figure 3.7.

Based on the work of Prouty [14] two descent regions can be distinguished: the vortex ring state,
and the Windmill brake state. In literature for comparison reasons it is common to normalize
the descent velocity Vc with the induced velocity during hover vh. In very low rate of descend,
meaning that the rate of descend is smaller than approximately a quarter of the hover induced
velocity, Vc/vh ≤ 1/4 [14], and high rate of descent, Vc/vh ≥ 2, the flow through the rotor can be
assumed to be along streamlines. Note that in high rates of descent the rotor wake is above the
rotor instead of below as in hover and climb.

A rotor operates in the vortex ring state when descending at low forward speed with a vertical
velocity larger than, Vc/vh ≥ 1/4 and below Vc/vh ≤ 2. In this condition the rotor tip vortices
are not convected away from the disk rapidly enough. The tip vortices collect in a vortex ring,
producing a circulating flow down through the rotor disk, then outward, upward outside the
disk and back through the rotor, as shown in Figure 3.7, and the main flow through the rotor
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Figure 3.7: Vertical flight flow state illustrated by wind tunnel conditions [14]

is downward. With each rotor revolution the ring vortex builds up in strength until it breaks
away from the disk plane in a sudden breakdown of the flow. The resulting flow is unsteady,
hence a source of considerable low frequency vibrations and possible control problems [12, 14].
For descent at forward speeds sufficiently high the wake is convected away from the rotor and
the vortex ring state does not arise.

Johnson and Leishman [12, 13] divide the vortex ring state into two regions, the vortex ring
state and the Turbulent wake state with the boundary at −Vc + vi = 0. In contrast to the
vortex ring state, in the turbulent wake state the main flow through the rotor is upward. As
in the vortex ring state the tip vortices produce a recirculating flow, however, in the turbulent
wake state the recirculating flow is just above the rotor disk instead of at the rotor disk. The
rotor, therefore, still experiences vibrations due to turbulence but not as significant as in the
vortex ring state [12]. No clear distinction exists between the vortex and turbulent wake state.
As the descent velocity approaches the boundary of the windmill brake state, Vc/vh ≥ 2, the flow
gradually turns from the vortex state into the turbulent state.

In the Windmill brake state the rate of descend is sufficiently high, i.e. Vc/vh ≥ 2, and the far
downstream wake is above the rotor disk. In this state the flow can be assumed to flow along
streamlines and the same conditions can be applied as in the climb and low rate of descent
case.

3.5 Rotor wake

In general a rotor wake is a very complex structure which can vary its behavior in time from
what could be observed as chaotic to a wake in which some patterns can be distinguished. The
first in-depth flow visualisation study of the wake of a rotor in forward flight and hover was
performed by Gray [19, 20]. In his flow visualization studies he used smoke to visualize the
wake behavior. Based on his data the vortex model for a single-bladed rotor in hover, as shown
in Figure 3.8, was developed. It was discovered by Leishman [21] that in hover and low-speed
maneuvers the rotor wake geometry is inherent unstable



22 Chapter 3. Aerodynamic modeling of a UAV rotor system

Figure 3.8: Geometry of the wake of a single-bladed hovering rotor determined using the
flow visualisation studies of Gray [20]

Observed from the data three main components influence the wake: the blade tip vortex, vortex
inboard sheet and root vortex. Furthermore, the influence of the wake on the rotor can be
divided into three regions near, mid and far wake. These three regions are not formally defined
but are defined from a practical point of view. The classification is based on the influence of
the region on the rotor and body.

3.5.1 Blade vorticity

For a rotor the largest velocity is achieved near the tip of the blades, consequently it is the most
aerodynamically loaded part of the rotor with the most influence on the rotor behavior. Tip
vortices are high strength vortex filaments, i.e. thin segments, arising from sudden changes in
circulation near the blade tip and follow a helical path down into the wake. Although the tips
are the most influencial part of the blade, the tip vortex geometry is shown to be independent
of tip speed [22]. Some models cope with the tip vortices by including a tip loss factor and was
first introduced by Glauert [23]. Mostly tip vortices are modeled as filaments on the outer line
of the wake following the rotational flow field along the near and mid wake. In the far wake the
tip vortices evolve into two counter-rotating vortices [24, 25].

Inboard vortex sheets can be described as continuous thin sheets shed from the inboard or
trailing edge of the blade. The assumption of the inboard vortex sheet being confined to
a thin sheet is only valid under the assumption of high Reynolds number [26]. The vortex
sheets contain several vortex filaments confined to very thin regions which are surrounded by
substantially irrotational fluid and the direction of circulation of the inboard sheet is opposite to
that of the tip vortices [27]. The vortex sheets are of high influence in the vicinity of the rotors,
i.e. in the near wake, and effect both inflow and blade loading. Although the axial velocity of
the outer end of the vortex sheet is greater than that of the tip vortex it is assumed that the
inboard sheet retains some connection with the tip vortex [22]. The simplest way of modeling
the inboard sheet is using a collection of straight line segments, as depicted in Figure 3.9. This
modeling uses the vortex box elements, introduced by Egolf [28], which consist of four, straight,
constant strength vortex segments combined to form a wake structure.

The root vortices are similar to the tip vortices, however, they are of lower strength and caused
by the rotor hub. The behavior of the root vortices are similar to the tip vortices. However, in
contrast to the tip vortices which evolve into two counter-rotating vortices, root vortices exist
in all the three main wake regions [25].
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Figure 3.9: The inboard sheet as a collection of vortex boxes modeled by straight line
segments [28]

3.5.2 Wake regions

The near wake is considered the closest region to the blade where the vortical elements are
released from the blade into the wake. This region is of high importance because of its influence
on the blade airloads and dynamics, and on the inflow behavior. The near wake covers a region
within approximately two rotor revolutions, within those two revolutions the rotor wake fully
develops and complete wake contraction takes place [24,25].

The mid wake is the region in which the wake interacts with the aircraft’s body, such as
the fuselage. In case of helicopters this region is of importance because of the rotor-fuselage
interaction. In quadrotors, however, the main part of the fuselage is located outside the rotor
wakes and therefore the mid wake is not as important as with helicopters.

In the region beyond the body of the craft, the far wake, the wake still influences the velocity
distribution over the rotor and consequently the rotor behavior and flight dynamics. The far
wake includes the regions where wake environment interaction, such as ground effect, sling
loads, and formation flying are important. Furthermore, in case of the quadrotor, rotor wake
interference is of importance.

3.6 Flapping behavior

Blade flapping hinges are incorporated in helicopter rotors to alleviate the stresses at the con-
nection of the hub and the blade. Furthermore, the capability of the blade to flap up and
down positively influences the stability of the rotor itself, and thereby influencing the helicopter
behavior. In helicopters blade flapping is included in the pilots control and can be compensated
for. In quadrotors, however, this control is not available due to their rigid attachment and
therefore the blade flapping forces act as drag forces in the b1 − b2 plane of the body frame.
To understand the behavior of blade flapping some most common blade flapping characteristics
are more thoroughly analyzed.

Change in forward speed is of most influence on the characteristics of blade flapping. In trans-
lational flight, the advancing blade of a rotor experiences a higher effective velocity relative
to the air, creating an increase in lift, while the retreating blade experiences a lower effective
velocity and therefore a reduction in lift, see Figure 3.10. While the advancing blade accelerates
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up it is rotated towards the nose, reaching its maximum upward angle and decreasing its angle
of attack. The retreating blade experiences the opposite and reaches its maximum downward
angle at the tail and increases its angle of attack. Equilibrium is reached when the flapping
velocities of the blades are just enough to change the angles of attack to compensate for the
change in lift. Implying that the flapping increases as the quadrotor’s speed increases.
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ΩR− ν
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Figure 3.10: Schematic representation of the velocities acting on a rotor [14]

The blade flapping angles cause the tip path plane (TPP) to tilt backwards. Since the thrust is
always perpendicular to the TPP the thrust vector is tilted rearwards, see Figure 3.11, inducing
a pitching up moment and drag force on the rotor hub. The change in longitudinal flapping
with increased speed is therefore stabilizing since the upward tilt of the TPP causes a rearward
tilt of the thrust vector which slows down the quadrotor [14].

V

V +ΔV

T

T

Figure 3.11: Schematic representation of nose up pitching moment due to increasing speed
[14]

Lateral flapping in forward flight is, just as longitudinal flapping, caused by asymmetric airloads.
In lateral flapping the difference in airloads is at ψ = 0° and ψ = 180° and is caused by coning.
Coning causes the blades to tend upwards and form a cone. In forward flight the blade over
the nose is affected by a more upward velocity component than the blade over the tail. This
asymmetry in vertical velocity results in an asymetrical angle of attack. The maximum response
is 90° later and thus lateral flapping that is upward on the retreating side [14].

When the shaft of a helicopter is pitched during hovering, aerodynamic forces force the tip path
plane to align itself perpendicular to the shaft [14]. The rotor disc acts as a gyroscope and
remains in its original plane, at first, while the shaft is already tilted away from vertical. The
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pitch angle is measured from the shaft, therefore, the angle of attack of the advancing blade is
increased and that of the retreating blade is decreased. These changes result in a flapping rotor
until equilibrium is reached, when the rotor is perpendicular to the shaft and the moments are
balanced. For a rotor in hover with constant mass distribution it can be derived [14]

ωn

Ω
=

√√√√1 +

3ef
2R

1− ef
R

, (3.8)

with ωn the natural frequency of the blade flapping, Ω the rotor speed, ef the effective hinge
offset, and R the rotor radius. Applying the parameters of the AR Drone rotor results in a
value of ωn/Ω = 1.17. This is within the bounds for cantilevered rotors found in literature and
shows that the blade flapping frequency is faster than the rotational frequency of the blades,
i.e. the flapping behavior is within one rotor revolution.

3.7 Concluding remarks

To establish a basic understanding of rotor configurations and dynamics, a general elaboration
on rotor systems has been given. Moreover, the difference between a helicopter rotor and most
quadrotor rotors has been explained. Several parameters necessary for modeling the blade
forces and inflow have been derived. The inflow and wake behavior influence the behavior of
the quadrotor through the rotors, especially in the vortex ring state where the surrounding air is
turbulent. This influence is of importance in estimating the quadrotor’s behavior. Furthermore,
blade flapping introduces drag forces and moments which counteract the forces and moments
necessary for following the trajectory. Both phenomena are thus important aspects which need
to be accounted for in the quadrotor model. With the acquired knowledge the reader can
distinguish the different phenomena in the inflow and wake and possesses insight in the subject
to understand which phenomena are important to account for in modeling the quadrotor. In the
next chapter the different methods and models to describe inflow and wake, and blade flapping
behavior are investigated.





Chapter 4

Literature study

In Chapter 2, the inaccurate tracking performance has been investigated using experiments.
Based on recent studies, rotor aerodynamics, such as inflow and blade flapping, are suspected
of causing this poor performance. In the previous chapter a basic understanding of rotor systems
and aerodynamics has been developed. In this chapter a literature study is performed to study
the various methods and models to describe the inflow, wake, and blade flapping behavior.

4.1 Rotor inflow and wake models

Various methods and models have been developed to describe inflow and rotor wake behavior
making use of a wide range of fundamental solutions. A general classification can be made based
on the modeling approaches. The inflow models, which only model the velocity distribution at
the rotor disk, and the wake models, which capture the dynamics of the entire wake. Figure 4.1
gives an overview of the inflow and wake models and their subdivisions.

The inflow models can be subdivided into two categories, the static and dynamic inflow models.
An extensive review of the static inflow models under different flight conditions can be found
in [29] and a detailed overview of the dynamic inflow models is given in [30]. The main difference
between static and dynamic inflow is that static inflow models assume the induced velocity
to build up instantaneously, in response to changes in disc-loading or aerodynamic moments,
whereas dynamic models incorporate the effect of such rotor behavior in a dynamical fashion
[29, 31].

The wake models can roughly be subdivided into two categories, the vortex methods and the
computational fluid dynamics (CFD) methods. The vortex methods use the Biot-Savart law to
evaluate the induced flow at a point located in the vortex tube. Several approximations have
been made to the vortex method to simplify the equations and reduce the computation time.
The vortex methods can be classified into three categories: rigid, prescribed, and free wake
models, from which the free wake models are the most advanced and best in capturing the wake
behavior. The most advanced wake models use CFD to solve the Navier-Stockes equations de-
scribing the wake behavior. However, the Navier-Stockes equations are difficult to solve and are
computationally expensive, which led to the developement of various approximations to derive
simpler solutions. Based on the work of [27] a subdivision can be made, see Figure 4.1.

27
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Figure 4.1: Overview of the inflow and wake models

4.1.1 Static inflow models

Momentum theory [32] is developed by Glauert and is the most common and widely used model
of the static inflow models and is the basic model on which most other models are based.
Momentum theory is based on Glauert’s hypothesis of uniform inflow through the rotor disk
and considers a rotor as an actuator disc, a circular surface with zero thickness which can
support a pressure difference, with the accelerating air forming a stream tube, see Figure 5.4.
The three energy conservation laws, conservation of mass, energy, and momentum, are used to
relate the induced velocity at the rotor disk to the thrust generated by the rotor disk. Note
that the conservation laws are derived with respect to an inertial reference frame and therefore
only hold in hover and steady axial or forward flight. The uniform inflow assumption may be
reasonably valid in hover and axial flight, however, it fails in forward flight where most of the
wake is located below the rear half of the rotor [31]. Glauert acknowledges this fact when he
observed discrepancies between the experimentally and theoretically calculated forces on the
rotor using uniform inflow. In trying to resolve this problem he proposed a first harmonic
non-uniform inflow distribution [32]

v = vi(1 +Kc
r

R
cos(ψ)) , (4.1)

where Kc is the longitudinal inflow coefficient. In [32] Kc is left unspecified, however, research
has been performed to establish a relation for Kc. The tip vortices, which describe a helical
profile, are approximated by a series of circular rings with constant vortex strength [33]. Biot-
Savart’s law and numerical integration are used to compute the induced velocity at the rotor
disk [31]. The numerical integrals are replaced with analytical integrals and the rings with a
skewed continuous sheet of vorticity by [31,34]. It is shown by [34] that the induced velocity at
the rotor disk strongly depends on the wake skew angle χ

χ =
μ

λ
. (4.2)
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An approximation of the results of [34] is suggested [29]

v = vi(1 +Kc
r

R
cos(ψ) +Ks

r

R
sin(ψ)) , (4.3)

with Ks the lateral inflow coefficient. Dependency of the induced velocity on the wake skew
angle is shown by [34]. Furthermore, the inflow coefficients depend on the advance ratio because
they must equal zero in hover, where uniform inflow can be assumed. Cheeseman and Haddow
obtained induced velocity data from a wind tunnel test and compared the different definitions
of the longitudinal Kc and lateral Ks inflow coefficients with their data and concluded that the
model of Pitt/Peters and Drees compared best. For a detailed survey on the static non-uniform
inflow models see [29].

The actuator disk model, which is a fundamental assumption in momentum theory, represents
a rotor with an infinite number of blades, therefore, the detailed flow is different from a real
rotor with a small number of blades. Furthermore, in lower rates of descent the tip vortices are
pushed up against the rotor blades by the air coming from below. Therefore, the tip vortices
interfere with the rotor blades, which results in very high and rapidly varying induced velocities,
also called the vortex ring state (VRS). As a consequence, the vibratory loads and associated
aerodynamic noise are severely underpredicted [31]. Because of the inability of momentum
theory of capturing other than laminar flow it is only valid in high rates of descend, where the
stream around the rotor is along streamlines and outside the vicinity of the ground or obstacles,
see sections 3.4 and 5.2.1.

In contrast to Momentum theory, which considers the rotor as a whole, Blade element theory
(BET) is based on the blade geometry and has first been used by Drzewiecki, who assumed each
blade section to behave independently. He discovered a significant error between his model and
experimental data because he only used the average velocity upstream of the rotor disk and
neglected the induced velocity caused by the rotation of the blades [23, 27]. Improvements to
BET were made when Prandtl’s Lifting line theory was included [23]. Drzewiecki never based his
model on theory, however, when it was shown that the velocity potential for the potential flow
relative to a rotating body at any cross section is equivalent to the two-dimensional nonrotating
velocity potential his model was funded by theory [35] and experimentally proven by [36].

Blade element theory is based on modeling blade sections as a two-dimensional airfoil on which
the induced and generated forces can be calculated. Integrating the forces over the entire
blade and multiplying with the number of blades results in the rotor performance. Opposed to
Momentum theory, which is only used to calculate the perpendicular velocity on the rotor disk,
Blade element theory incorporates the drag and side force acting on the rotor. Based on the fact
that BET is based on the geometry of the blades and MT on the rotor disk assumption, BET is
more accurate in case of rotors with a small number of blades. However, BET is not capable of
determining the rotor induced flow by itself and is therefore dependent on other theories, such
as MT or vortex theory.

4.1.2 Dynamic inflow models

Whereas static inflow models neglect the dynamic interaction of the rotor to changes in blade
pitch or flapping motion, dynamic inflow models try to incorporate these effects. The fundamen-
tal modeling principles of the dynamic inflow models rely on momentum theory. An extension
into the dynamic field was first made by [37], who derived a differential equation that relates
the perturbations in the inflow to the changes in rotor thrust [24] by including an apparent
mass term in the thrust equation and linearisation around a steady-state condition.
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The method was further developed by [38, 39] to make it valid for hover and forward flight
by defining three different inflow states, uniform, longitudinal, and lateral. The airloads of a
rotor, thrust(CT ), roll moment(CMx), pitch moment (CMy), are related to the induced flow
distributions using the potential functions of Mangler and Squire [40]. The induced flow is
assumed to be a linear distribution over the rotor disk and can be written as

λ = λ0 +
r

R

(
n∑

k=1

λks sin(kψ) +

n∑
k=1

λkc cos(ψ)

)
, (4.4)

where λ0, λks , λkc are the uniform, side-to-side, and fore-to-aft variation in induced flow. In
[38, 39] an inflow distribution with n = 1 is developed, which relate the aerodynamic loads to
the inflow in the following fashion

M

⎛
⎝λ̇0λ̇s
λ̇c

⎞
⎠+ V L−1

⎛
⎝λ0λs
λc

⎞
⎠ =

⎛
⎝ CT

CMx

CMy

⎞
⎠ , (4.5)

whereM is the apparent mass matrix, L the inflow gain matrix, and V the mass flow parameter
matrix. Over the years several definitions for M , L and V have been defined depending on
the flight conditions incorporated [24, 40–42]. The model is experimentally verified in [30].
A generalized theory with an arbitrary number of azimuthal and radial states is developed
by [43, 44] based on the acceleration potential. The downside of this model is the fact that
it only can calculate the vertical component of the induced velocity [45], while the in-plane
components are of importance as well.

A second set of wake states is needed to calculate the flow off and on the disk. In [46] a gen-
eralized velocity potential is developed and expanded in terms of Legendre functions. These
functions are converted to ordinary differential equations by using the Galerkin approach. A
closed-form set of equations for all three velocity components everywhere in the upper hemi-
sphere, including the rotor disk [45, 46] is obtained. However, the convergence of the model
given in [46] was slow due to ill-conditioned matrices [45]. These issues were solved by [47] and
their model is included into a dynamic inflow model. An extension is made by [45, 48] who
developed a method to calculate the inflow below the plane of the rotor using the finite state
method of [46].

The dynamic inflow models are fundamentally based on momentum theory, which implicates
that the same restrictions apply, i.e. the models are not valid in the vortex ring state, in the
vicinity of the ground and obstacles [24], and are only valid in hover and steady axial and forward
flight. Furthermore, [38, 44] treated the rotor wake as quasi-steady in which wake bending due
to pitch or roll is instantaneously. In practice the wake curvature, wake skew, and wake spacing
develops in time.

Several researchers have tried to correct this by extending the model with a wake behavior
model, such as [42] and [41]. Based on vortex tube analysis a four state reduced order wake
model is introduced that captures the dynamic wake effects in transitional, maneuvering, and
forward flight [24].

τD

⎛
⎜⎜⎝
Ẋ

Ṡ
κ̇c
κ̇s

⎞
⎟⎟⎠+

⎛
⎜⎜⎝
X
S
κc
κs

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
X
S
κc
κs

⎞
⎟⎟⎠

qs

, (4.6)

where X,S, κc, κs are the wake skew, wake spacing, longitudinal and lateral wake curvatures,
respectively. The time constants associated with these dynamic wake distortion effect are include
in the time constant matrix, τD. Generally the wake skew, wake spacing, longitudinal and lateral
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wake curvatures, are fully coupled, however, are neglected in [41]. The time constant matrix
can be defined as: ⎡

⎢⎢⎣
32

15πV̄ 0
32

15πVm
32

15πV̄

0
32

15πV̄

⎤
⎥⎥⎦ , (4.7)

with Vm and V̄ given by

Vm =
√
μ2 + (λ0 + Vc)2

V̄ =
μ2 + (λ0 + Vc)(2λ0 + Vc)

Vm
.

(4.8)

The quasi steady wake parameters are given by

Xqs = tan
(χ
2

)
Sqs = 2πVm

κcqs =
q̄ − β̇1c
λ0 + Vc

κsqs =
p̄− β̇1s
λ0 + Vc

,

(4.9)

with the non dimensional roll and pitch rates denoted by p̄ and q̄, and χ denotes the wake skew
angle as defined in (4.2).

Nevertheless, still the vortex ring state and ground/obstacle effect are not accounted for. Semi-
empirical modifications have been made to account for those flight conditions. A disadvantage
of these models is that the modifications are add-ons and try to correct misbehavior of the
original models. Furthermore, the wake models all contain tuning parameters to match the
model with experimental results, however, this parameter can vary for different flight conditions
[24, 41].

4.1.3 Vortex methods

Vortex methods model the rotor wake with help of vortex filaments. A vortex filament is a line
along which an infinite vorticity in fluid motion is concentrated and the surrounding fluid is free
of vorticity. These filaments are released from the blade and move downward into the wake.
The induced velocities on the rotor can be calculated from the influence of each vortex segment
in the wake using the Biot-Savart law. This law evaluates the induced velocity d�v at a point P
in the wake, a distance �r from a vortex segment with strength Γv and length d�l [24]

d�v =
Γv

4π

d�l × �r

r3
. (4.10)

A first attempt to include the effect of the wake on the rotor and its influence on the per-
formance is presented in [49], in which the wake is estimated with a helical surface for each
blade, which moves downward with the average momentum theory velocity. However, effects
of wake contraction and non-uniform downwash are not included. Later models try to remove
those singularities, an overview is given in [50]. Most of these models use Prescribed or rigid
wake models. Prescribed and rigid wake models are the simplest forms of vortex methods and
use undistorted helical vortex filaments to describe the geometry of the wake. Feasible flight
conditions in which these wake models can be used are steady state conditions, where changes
in velocity or attitude can be neglected. In rigid wake models the rigid helical patterns keep a
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fixed wake pitch without accounting for the effects of wake contraction, which is shown by mo-
mentum theory see section 5.2, viscosity and non-uniform downwash. In contrast to rigid wake
models, prescribed wake models account for some degree of wake distortion. However, the wake
is still assumed rigid and wake geometry parameters are extracted from experiments [25].

Contrary to prescribed and rigid wake models, free wake models allow the wake to deform freely
under its own influence and influences due to translational and rotational velocities of the rotor.
However, free wake models easily become computationally expensive. The velocity of a point on
a vortex filament is influenced by all other vorticity carrying elements, resulting in a quadratic
increase in computation time with the number of vortex elements [24]. Because of the inherent
instability of the wake in hover and low-speed maneuvers numerical instabilities are likely to
occur [24, 27, 51]. Different classifications of free wake models can be made. A classification
presented in literature is based on the solution strategy and divides the free wake methods into
two categories: relaxation and time marching approaches.

Relaxation methods use boundary conditions to relax the steady free wake solutions by en-
forcing periodicity [27]. Filaments released at the same point from subsequent blades deform
equivalently and have a time offset of 2π/(ΩN). Lagrangian markers track the position of the fila-
ments in the discretized wake, which is discretized with respect to the blade azimuth ψ and the
wake age ζ. To enforce periodicity, the new position of a vortex marker is the weighted average
of the previous and the current solution [24]. This tracking is an iterative procedure which is
repeated until the position of the markers have converged. As a consequence of the periodicity,
relaxation based free wake models can only be used in steady-state flight conditions. A first
attempt in modeling the wake of a rotor in hover is implemented in [52], in which the free wake
is modeled using a relaxation method with a boundary at two rotor revolutions, after which the
far wake is modeled using vortex rings. In [53] a predictor-corrector algorithm with a central
differencing scheme is used for the space discretisation and extended into a two-step, pseudoim-
plicit predictor-corrector relaxation algorithm with five-point central differencing in space. A
major drawback of this method is the necessity of computing the velocity field twice, however, it
is more robust and less susceptible to numerical instabilities than one-step algorithms. Later on
an adaptive grid sequencing and a velocity field interpolation scheme were developed to speed
up the computation [24, 54]. The algorithm for computing the induced velocities contains a
nonlinear implicit dissipation, which can make the numerical estimation unstable. By enforcing
periodicity the numerical problems due to instabilities are avoided.

Time marching methods, in contrast to relaxation methods, can capture transient dynamics.
As with relaxation based methods Lagrangian markers are used to track the position of the
filaments in the discretize wake, however, the new position of the markers are found by time
integration of the velocities [24]. The wake is allowed to deform under its own influence and
external influences, such as turbulence, and no assumptions are made regarding periodicity.
In [55, 56] the work of [53] is extended to be applicable to transitional manoevers as well. The
predictor-corrector in [55, 56] contains a second-order backward difference algorithm (PC2B),
with an additional dissipative term to cancel the nonlinear dissipation term of [53] and enforce
wake stability. In [51] the algorithm of [55,56] is enhanced by removing the predictor step and
controlling the additional dissipative term to match the dissipative term of [53].

In [57] a Fast Free Wake (FFW) model is developed, which allows real-time simulations on a
common desktop PC with margin for other simulations. The model is based on free wake models
and use vortex rings to describe the wake. These rings are released with a certain frequency
from the rotor disk. The vortex rings are free to move and to interact with each other on all
other wake distortions. Each time step the position and orientation of the rings is updated
until the ring is removed from the wake. The wake is modeled using a limited number of vortex
rings to avoid computational expense. Because of the basis in free wake modeling the model is
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applicable to all flight conditions, including in the vicinity of the ground and obstacles. This
method can not be compared to more sophisticated methods because those are able to capture
the wake dynamics in more detail, however, validation with respect to experiments shows the
accuracy of the wake to be sufficient to account for wake interference effects independent of the
flight conditions.

4.1.4 CFD methods

Computational Fluid Dynamics (CFD) is the numerical branch of fluid dynamics and has many
applications areas. Generally CFD refers to grid-based solutions of the NavierStokes equations.
Several simplifying assumptions can be made to the Navier-Stokes equations, such as Euler
equations for inviscid flow or the full potential equation for potential flow. Following the work
of [27] a subdivision can be made, shown in Figure 4.1, ranging from the full Navier-Stokes
equations to the most simplified Laplace equations. The Laplace equation use the Biot-Savart
law to solve the wake equations and show similarities with the vortex methods. A drawback of
the CFD method is the computational expense needed for solving the wake equations, further-
more, most CFD solvers have excessive numerical dissipation of vorticity limiting the tracking
of tip vortices to a couple of rotor revolutions. A possible solution is the use of a hybrid wake
in which grid-based Navier-Stokes equations are used in the vicinity of the blades, i.e. near
wake, and further down the wake simpler methods, such as Lagrangian methods, are used [24].
Combining this hybrid approach with the amount of possible wake equations and the various
methods to discretize the wake, a large amount of different CFD based methods can be found
in literature. Because of their complexity and computational expense the CFD methods are not
realizable on quadrotors. Therefore they are outside the scope of this project and not further
discussed.

4.2 Blade flapping models

In order to capture all the different blade dynamics during different flight regimes, several mod-
els on blade flapping have been developed using both first and second order approximations.
Considering the flight regime of the quadrotor and the limited capacity of the AR drone’s pro-
cessor the benefits of including second order models are probably small and do not compensate
for the added complexity.

Most blade flapping models are developed in helicopter theories [12–14, 18, 58]. All models are
based on hinged rotors, assume rigid blades, and use moment balancing at the hinge to define
the blade flapping angles. Furthermore, steady state is assumed in which the blade flapping
angle can be approximated with a Fourier Series and the azimuth angle with, ψ = Ωt. All
authors claim that a hingeless or cantilevered rotor can be modeled as a hinged rotor with rigid
blades and an effect hinge offset to account for the blade flexibility. In [14] the inertial force of
the blades is neglected, because the centrifugal force is assumed to be in the plane of rotation
and thereby eliminating the inertia force, and a weight force is included. All other models
include the inertia force and neglect the weight force. Both [14] and [18] include the effect of
pitching and rolling of the air-frame in the blade flapping characteristics.

In [12] it is discussed that the behavior of a two bladed rotor might be significantly different
from rotors with three or more blades. It is claimed that a two bladed rotor behaves comparable
to a teetering rotor, and the longitudinal and lateral flapping angles do not exist. This might
be true for a rotor in transient flight, however, for steady state the behavior of a two blade rotor
is the same as a three or more bladed rotor [59].
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4.3 Concluding remarks

The more recent studies, such as, [9], [10], and [11], are based on the work of [60], in which the
classical helicopter blade flapping model, based on [14], is adjusted to make it more suitable
for small scale rotary wing platforms. Furthermore, as shown in section 3.6 the blade flapping
dynamics are within one rotor revolution and have a much higher frequency than the rigid body
behavior of the quadrotor, therefore, the blade flapping dynamics can be assumed instanta-
neously and steady state, which supports their choice for a steady state model. Based on their
results and on the fact that the flapping behavior can be seen as steady state it is chosen to
base the blade flapping model used in this thesis on [14].

The wake and inflow behavior is best captured with the vortex methods, however, these methods
are mostly grid based and can become computational expensive. Based on experience with the
CPU of the AR Drone and considering its limitations, implementing blade flapping together
with Blade element theory and momentum theory might be maximum achievable. Blade element
theory is incorporated because of the simplicity to include the rotor drag and side force and
because it is a better representation of the two blade AR Drone rotors than the rotor disk
assumption of Momentum theory.



Chapter 5

Theoretical model

In the previous chapters a basic knowledge level about inflow, wake and blade flapping behavior
has been established. Several rotor parameters have been introduced and the inflow and wake
states have been explained. In the previous chapter this knowledge is build upon in the search
for suitable inflow, wake and blade flapping models. Based on the research and the limitations
of the CPU of the AR DRone 2.0, it has been chosen to use Blade element theory combined
with Momentum theory and the blade flapping model of [14] to model the inflow and blade
flapping behavior. In this chapter the theory behind Blade element theory, Momentum theory,
and blade flapping, is explained to create a deeper understanding of the fundamentals behind
theses theories. Furthermore, an extended model is proposed to incorporate these aerodynamics
in the rigid body dynamics of [5], see (2.2) and Section 5.4. The performance of this extended
model is tested in simulations.

5.1 Blade Forces

The forces and moments acting on the blade can be modeled using Blade element theory (BET),
which is based on lifting line theory and calculates the forces on the blade due to its motion
through the air. Each blade section is assumed to act as a two dimensional airfoil which produces
aerodynamic forces [12]. The influence of the wake on the rotor performance is accounted for by
using an induced angle of attack. Blade element theory thus requires an estimate of the wake
induced velocity at the rotor disk, which can be determined using, for example, momentum
theory or vortex theory, see Chapter 5.2.

5.1.1 Hover and axial flight

The pitch angle of the blade section, θ is measured from the plane of rotation to the zero lift
line, see Figure 5.1. As mentioned in Section 3.1 the pitch angle of a rotor with fixed pitch
blades can be described by

θ = θ0 +
r

R
θtw. (5.1)

The velocity relative to the blade consists of two components, the vertical or perpendicular
velocity VP and the tangential velocity VT , and are defined by [12]

VT = Ωr (5.2)

VP = Vc + vi . (5.3)

35
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The tangential velocity is due to the rotor speed and the perpendicular velocity is due to the
climb velocity, Vc and the induced velocity, vi. The resultant velocity acting on the blade, V ,
consists of VP and VT , and has an inflow angle, φ.

V =
√
V 2
P + V 2

T (5.4)

φ = arctan

(
VP
VT

)
. (5.5)

The local angle of attack, αbs, consists of two angles, the pitch angle and the inflow angle and
is defined as

αbs = θ − φ. (5.6)

VP

VT

Vs

φ

α

θ

Fz

D

L

Fx

Figure 5.1: The aerodynamics of a blade section. The angle of attack, αbs is the angle
between the velocity V and the zero lift line. The blade section has a pitch angle, θ, which
is measured from the plane of rotation to the zero lift line. The inflow angle is given by
φ = arctan (VP/VT )

The lift and drag force a blade section generates is defined by [12,13]

L =
1

2
ρV 2cCl (5.7a)

D =
1

2
ρV 2cCd , (5.7b)

where Cl and Cd are the lift and drag coefficient, and generally depend on the angle of attack
and the mach number. The normal and in-plane forces can be derived as [12,13]

Fz = L cos(φ)−D sin(φ) (5.8a)

Fx = L sin(φ) +D cos(φ) . (5.8b)

The first term in Fx is the induced drag and the second term the profile drag. Substituting the
definitions of the lift and drag force, given in (5.7a) and (5.7b), and dividing by the lift chord,
c, and the two dimensional lift slope curve, a0, the force equations become

Fz

a0c
= ρV 2

(
cl
2a0

cos(φ)− cd
2a0

sin(φ)

)
(5.9a)

Fx

a0c
= ρV 2

(
cl
2a0

sin(φ) +
cd
2a0

cos(φ)

)
. (5.9b)

Assuming small angles [12], i.e. φ, θ are small, it follows that VP/VT and α are small, therefore
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V 2 = V 2
T (5.10a)

φ =
VP
VT

(5.10b)

αbs = θ − VP
VT

. (5.10c)

If the lift slope curve is assumed constant then the lift coefficient can be defined as, cl ∼= aα [12],
neglecting the drag force only the normal force remains and is defined as

Fz

a0c
=

1

2
ρV 2

T α =
1

2
V 2
T (θ −

VP
VT

). (5.11)

The rotor forces are obtained by integrating the aerodynamic blade section forces along the
span and multiplying with the number of blades. The thrust, T , is due to the normal force Fz

and can be derived using

T = N

∫ R

0
Fzdr . (5.12)

Rewriting into its coefficient form by dividing through by ρA(ΩR)2 and using dimensionless
quantities for ρ, Ω, and R, the thrust coefficient becomes [12]

CT

σa0
=

∫ 1

0

Fz

a0c
dr (5.13a)

CT =
σa0
2

[
1

3
θ0 +

1

4
θtw − 1

2
λ

]
. (5.13b)

In [4] experiments are performed to measure the thrust of each separate AR DRone rotor under
hover conditions. The theoretical hover values therefore must comply with the experimental
values. Because of the linear approximation of the blade twist, see Section 3.1, and some param-
eter uncertainties, the theoretically predicted thrust is slightly lower than the experimentally
determined thrust, see Figure 5.2. An empirical correction factor, κT , is introduced to match
the theoretical with the experimental thrust

κT =
Texp
Tth

. (5.14)

The adjusted thrust coefficient can be written as

CT = κT
σa0
2

[
1

3
θ0 +

1

4
θtw − 1

2
λ

]
. (5.15)

5.1.2 Forward flight

In forward flight the rotor blades not only experience their own rotational speed, a component
of the quadrotor’s velocity acts on the blade as well, see section 3.6. On the advancing blade
the quadrotor’s velocity is added to the rotational velocity, where on the retreating blade the
quadrotor’s velocity is subtracted from the rotational velocity. In contrast to the axial case the
blade velocities now depend on the blade position defined with the azimuth angle, ψb.
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Figure 5.2: Experimental [4] and theoretical determined thrust in hover flight for one rotor.

The velocity relative to the blade consists of three components, the perpendicular velocity VP ,
the tangential velocity VT , and the radial velocity, Vr, which can be defined as [12]

VT = r + μ sin(ψ) (5.16a)

VR = μ cos(ψ) (5.16b)

VP = λ+ rβ̇ + βμ cos(ψ) , (5.16c)

where it has been assumed that the flap angle β is small. The tangential and radial velocity both
are due to the rotor speed and the advance ratio of the quadrotor. Three components contribute
to the perpendicular velocity. The induced velocity and a component of the free stream velocity
normal to the rotor disk, defined as λ, see sections 3.4 and 5.2, the blade flapping velocity
represented by rβ̇, and a component of the radial velocity when it is flapped up by an angle
β.

The contribution of the flapping motion to the perpendicular velocity can be derived as r′β̇,
with

β̇ =
dψ

dt
(β1s sin(ψ)− β1c cos(ψ)) (5.17)

and
dψ

dt
=

d

dt
(Ωt) = Ω. (5.18)

Note that this relation only holds when the rotor speed is constant, which is the case for
helicopters, however, for quadrotors this might be difficult to achieve.

The normal and in-plane forces can be derived as [12,13]

Fz = L cos(φ)−D sin(φ) (5.19a)

Fx = L sin(φ) +D cos(φ) (5.19b)

Fr = −βFz +Dradiaal . (5.19c)

The first term in Fr is due to blade flapping and the second term is due to the radial flow along
the blade. Substituting the definitions of the lift and drag force, given in (5.7a) and (5.7b), and
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dividing by the lift chord, c, and the two dimensional lift slope curve, a, the force equations
become

Fz

a0c
= V 2

(
cl
2a0

cos(φ)− cd
2a0

sin(φ)

)
(5.20a)

Fx

a0c
= V 2

(
cl
2a0

sin(φ) +
cd
2a0

cos(φ)

)
(5.20b)

Fr

a0c
= −β Fz

a0c
, (5.20c)

where Dradiaal has been neglected [12,13].

Assuming again, as in the axial case, small angles, a constant lift curve slope, and neglecting
stall, the aerodynamic force can be rewritten as

Fz

a0c
=

1

2
V 2
T α =

1

2
(V 2

T θ − VPVT ) (5.21a)

Fx

a0c
= V 2

T

(
α

2
φ+

cd
2a0

)
=

1

2
(VPVT θ − V 2

P ) +
cd
2a0

V 2
T (5.21b)

Fr

a0c
= −β Fz

a0c
. (5.21c)

The rotor forces are obtained by integrating the aerodynamic blade section forces along the
span and multiplying with the number of blades. The thrust, T , is due to the normal force Fz

and the drag and side force, respectively H and Y , are due to the in-plane forces Fx and Fr.

T = N

∫ R

0
Fzdr (5.22a)

H = N

∫ R

0
(Fx sin(ψ) + Fr cos(ψ))dr (5.22b)

Y = N

∫ R

0
(−Fx cos(ψ) + Fr sin(ψ))dr. (5.22c)

The velocities on the blades are dependent on the position with respect to the free stream
velocity. To obtain a steady rotor force the forces are averaged over the azimuth by the operator
(1/2π)

∫ 2π
0 (...)dψ [12]. Rewriting each equation into the coefficient form results in

CT

σa0
=

1

2π

∫ 1

0

∫ 2π

0

Fz

a0c
dψdr (5.23a)

CH

σa0
=

1

2π

∫ 1

0

∫ 2π

0
(
Fx

a0c
sin(ψ) +

Fr

a0c
cos(ψ))dψdr (5.23b)

CY

σa0
=

1

2π

∫ 1

0

∫ 2π

0
(− Fx

a0c
cos(ψ) +

Fr

a0c
sin(ψ))dψdr . (5.23c)
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For the thrust coefficient the following derivation is required

1

2π

∫ 2π

0
VPVTdψ =

1

2π

∫ 2π
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(λ+ rβ̇ + μβ cos(ψ)) + (r + μ sin(ψ))dψ

=
1

2π

∫ 2π

0
(λr + μλ sin(ψ) + r2β̇ + rμβ̇ sin(ψ) + rμβ cos(ψ) +

1

2
βμ2 sin(2ψ))ψ)dψ

=
1

2π

∫ 2π

0
(λr + μλ sin(ψ) +

d

dt
(r2β + rμβ sin(ψ)) +

1

2
βμ2 sin(2ψ))ψ)dψ

=
1

2π

∫ 2π

0
(λr ++

1

2
βμ2 sin(2ψ))ψ)dψ

= λr ,

where it has been used that ∫ 2π

0

(
d

dt

(
r2β + rμβ sin(ψ)

))
dψ = 0 , (5.24)

since the term inside the bracket is periodic because steady state conditions are assumed
[12].

Performing the same derivations for the drag and side force, performing the integral over the
span, and including the correction factor for the thrust the force coefficients become [12]

CTTPP
= κT

σa0
2

[
θ0

(
1

3
+

1

2
μ2
)
+ θtw

(
1

4
+

1

4
μ2
)
− 1

2
λ

]
(5.25a)

CHTPP
=

1

4
μcd0 +

σa0
2

[
1

2
μλ

(
θ0 +

1

2
θtw

)
+

1

4
μβ20

]
(5.25b)

CYTPP
= −σa0

2

[
3

4
μβ0

(
θ0 +

2

3
θtw

)
− 3

2
μβ0λ

]
, (5.25c)

where cd0 is the zero-lift drag coefficient, which is usually small for rotor blades and can be
neglected.

Forces acting on the quadrotor should be expressed in the body fixed frame, therefore the rotor
forces in the TPP are expressed within the HP, which is aligned with the wind axis frame, C,
and thereafter transformed to the body fixed frame using the Rotation matrix Rcb defined in
(3.5). The transformation from the TPP to the HP for the in-plane forces can be described by
the rotation matrix RHT , [

HHP

YHP

]
= RTH

[
HTPP

YTPP

]
, (5.26)

with

RTH =

[
cos(β1c) 0

0 sin(β1s)

]
, (5.27)

where β1c and β1s are the longitudinal and lateral blade flapping angles following from the
Fourier series. In the section about blade flapping the rotation matrix for the thrust vector
is discussed. Note that the rotor forces in forward flight reduce to the axial forces when the
forward flight equals zero, i.e. μ = 0, which shows that the definition for forward flight has the
proper lower bound.
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5.1.3 Combined flight

The two separated cases of axial and forward flight need to be combined in order to perform a
three dimensional flight. In deriving the forces for combined flight the velocities on the blade
need to be redefined. The tangential and radial velocity are the same as in the forward flight
case, however, the perpendicular velocity needs to be adjusted to account for the climb or
descent velocity, Vc. The climb velocity is integrated in the inflow ratio, see Section 5.2.3, and
is defined as

λ = μc + μ tan(αd) + λi , (5.28)

where

μc =
Vc
ΩR

. (5.29)

With the climb velocity accounted for in the inflow ratio, the expression and the derivation for
the rotor forces are the same as in the forward flight case. Note that when μc = 0 the expression
for the perpendicular velocity reduces to the forward flight case and when μ = 0 the expression
becomes equal to the axial flight case, which shows the proper bounds.

5.1.4 Comments on Blade element theory

Blade element theory is based on the lifting line theory and is valid for incompressible, friction-
less, steady flows, which are the same assumptions used in Momentum theory. The steady flow
assumption is made for modeling purposes, however, is in reality not applicable. Several other
assumptions are made during the derivations based on the rotor blade dynamics.

Assumption 5.1.1. In the derivation of BET the following assumptions are used:

(i) The flow is steady

(ii) The flow is incompressible

(iii) The flow is frictionless

(iv) The disk loading is low

(v) The angles are small

(vi) The lift slope curve is constant

The small angle assumption is made to simplify the calculations and to be able to perform the
derivations. Figure 5.3 shows the simulation result for both angles for a quadrotor perfectly
following the reference trajectory, described by

ρr = [cos(t) sin(t) 1.5 + sin(t)]T , (5.30)

which is the same as the 3D trajectory used in the experiments of Section 2.3 and the simulations
of Section 5.5. The parameters described in Table 5.1 are used in the simulation and the angles
are measured at the tip, i.e r = 1.

From the figure it can be seen that the small angle assumption is valid. It might seem that the
blade flap angle does not satisfies this assumption, however, the blade angle is always operated
on with a sine or cosine term, which makes the values close to zero and one and therefore the
assumption is valid. The figure shows the results for the maximum blade flap angle, which is
at ψβ = π, and the maximum inflow angle, which is at ψphi = −1/2π.
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Table 5.1: Simulation parameters for the simulation performed for Figure 5.3.

Parameter Value

a0 5.7
A 0.031
c 0.018
ef 0.2
Ib 5.29× 10−6

m 0.036
r 1
γ 2.409
θ0 0.646
θtw -0.436
σ 0.134
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Figure 5.3: The flap angle β and inflow angle φ at ψβ = π and ψphi = −1/2π

5.2 Inflow

An important aspect in rotor aerodynamics are the induced velocities at and near the rotor.
A turning rotor produces thrust by accelerating mass of air [14, 29, 61]. The air sucked in is
accelerated as it goes through the rotor and generates an induced airflow. The behavior of the
induced airflow in the wake of the rotor influences the behavior of the rotor and the air above
the rotor. The influence of induced velocities in the quadrotor’s dynamics is dual, determines
the amount of thrust a rotor can produce and generates drag and side forces acting on the
rotor hub, see Section 5.1. Furthermore, it influences the blade flapping characteristics, see
Section 5.3.

Momentum theory for rotary wing vehicles was developed by Glauert, in 1962, based on earlier
work by Froude for aircraft propellers [29, 61]. The theory considers a rotor as an actuator
disc, a circular surface with zero thickness which can support a pressure difference, with the
accelerating air forming a stream tube, see Figure 5.4. Momentum theory uses the three energy
conservation laws, conservation of mass, energy, and momentum, to relate induced velocity at
the rotor disk to the thrust. In momentum theory the disk loading is assumed to be uniform
and steady, however, in general the flow varies across the disk and vortices are likely to occur.
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Furthermore, the actuator disk model represents a rotor with an infinite number of blades,
therefore, the detailed flow is different from a real rotor with a small number of blades.

5.2.1 Hover and vertical flight

Combining a control volume with the conservation laws results in relations that can be ana-
lyzed for different cross sections. Figure 5.4 shows two streamtubes for hover and axial flight
analysis. The left streamtube is used in the analysis for hover and climbing flight, while the
right streamtube is used in descent flight analysis. For the analysis given below a NED inertial
reference frame is used where the positive z-direction is indicated by the red arrows. Note that
in climb the climb rate equals −Vc and in descent equals Vc.

−Vc + v0

−Vc + vi

−Vc + v1

T

−Vc + v1

−Vc + vi

−Vc + v0

T

1

i

0

0

i

1

Figure 5.4: Vertical streamtube for hover and axial flight analysis. The left streamtube
is for hover and climb analysis and the right streamtube is used for descent analysis. Both
streamtubes have three sections, namely: upstream (0), at the rotor disk (i), and down stream
(∞) with their corresponding variables.

The control volume definition of the conservation of mass is stated as [62]:

dM

dt
=

∂

∂t

∫
CV

ρd V– +

∫
CS

ρ�V · d �A = 0, (5.31)

where dM/dt is the mass flux, ρ is the density of air inside the control volume, �V is the velocity
of air, d �A is the area element the integral is acting on, V– is the volume of the control volume,
CV is the control volume and CS is the surface of the control volume, i.e. the control surface.
Under certain conditions, stated below in Assumption 5.2.1, this can be reduced to:

ρ

∫
CS

�V · d �A = 0 , (5.32)

which means that for a steady flow the mass flow rate into the control volume must equal
the mass flow rate out of the control volume. Note that outflows are positive and inflows are
negative. Using the definitions in Figure 5.4, (5.32) can be rewritten as

ρA0(−Vc + v0) = ρA∞(−Vc + v∞) = ρAi(−Vc + vi), (5.33)

where Vc is the climb velocity and v0, vi, and v∞ are the induced velocities at their respective
stages. The definition of (5.33) corresponds to the definition given in helicopter theory [12,
13].

Momentum conservation states that the sum of all forces acting on a non-accelerating control
volume equals the sum of the rate of change of momentum inside the control volume and the
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net rate of flux of momentum out through the control surface [62]

dP

dt
=
∑

F =
∂

∂t

∫
CV

�V ρd V– +

∫
CS

�V ρ�V · d �A, (5.34)

which can be reduced to ∑
F =

∫
CS

�V ρ�V · d �A. (5.35)

Since the force acting on the control volume is equal and opposite to the rotor thrust, and
steady and uniform flow is assumed, (5.35) becomes

T = −(ρA∞(−Vc + v∞)2 − ρA0(−Vc + v0)
2). (5.36)

Using mass conservation the reduced form can be rewritten into

T = −ρAi(−Vc + vi)(−Vc + v∞) + ρAi(−Vc + vi)(−Vc + v0)

= −ρAi(−Vc + vi)(v∞ − v0).
(5.37)

The law of conservation of energy applicable to a control volume can be stated as [62]

Q̇− Ẇ =
∂

∂t

∫
CV

eρd V– +

∫
CS

eρ�V · d �A, (5.38)

with

e = u+
V 2

2
+ gz. (5.39)

Applying the same assumptions as used in the case of mass and momentum conservation and
assuming no heat is added to or subtracted from the system, (5.38) becomes

− Ẇ =

∫
CS

eρ�V · d �A . (5.40)

The work done on the surroundings by the control volume is equal to the work done by the
rotor on the surroundings, which equals Ẇ = T �V . Neglecting the height difference within the
control volume, and assuming the air behaves as an ideal gas with no temperature difference
inside the streamtube

− T (−Vc + vi) =
1

2
ρA∞(−Vc + v∞)3 − 1

2
ρA0(−Vc + v0)

3 , (5.41)

which is the relationship as established in helicopter theory [12, 13]. Note that the thrust
from itself is negative, which makes the left hand side positive as power needs to be delivered to
maintain a hover or climbing flight. This reduced form can be rewritten, using mass conservation
(5.33), into

−T (−Vc + vi) =
1

2
ρAi(−Vc + vi)(−Vc + v∞)2 − 1

2
ρAi(−Vc + vi)(−Vc + v0)

2

T = −1

2
ρAi(−2Vc + v0 + v∞)(v∞ − v0) .

(5.42)

Because only the variables at the rotor are known, an expression for the thrust in rotor variables
is needed in order to calculate the amount of thrust the rotor can produce. A relationship
between vi and v∞ can be derived using equations (5.37) and (5.42)

2(−Vc + vi)(v∞ − v0) = (−2Vc + v0 + v∞)(v∞ − v0)

v∞ = 2vi − v0 .
(5.43)
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Assuming the velocity far upstream is approximately zero, v0 ≈ 0, and using (5.43), the rotor
induced velocity can be expressed as

vi =
Vc
2

+

√(
Vc
2

)2

− T

2ρA
, (5.44)

which can also be found in helicopter literature [12–14]. Note that for hovering conditions
this definition also holds and can be taken into account by setting the climb velocity equal to
zero

vi = vh =

√
− T

2ρA
. (5.45)

Normalizing with the tip speed, dividing by ΩR, results in

λi = λh =

√
− T

2ρA(ΩR)2
=

√
−CT

2
, (5.46)

where the definition of the thrust coefficient is used, given in Section 3.2.

Implementing the relationship of the induced wake and induced rotor velocity (5.43) into the
mass conservation law (5.33), and considering the hover case, i.e. Vc = 0, results in

ρA∞2vi = ρAivi . (5.47)

Under the assumption of ρ to be constant throughout the wake, this equation can only hold
if

A∞ =
1

2
Ai, (5.48)

which is called wake contraction. As mentioned in Section 4.1.3 prescribed and rigid wakes
models do not inherent wake contraction and thereby neglect an important part of the wake
behavior.

In the derivation of the reduced order forms of the conservation laws, assumptions are made to
be able to define an expression for the rotor inflow.

Assumption 5.2.1. Momentum theory for hover or axial flight uses the following assumptions
to derive a expression for the induced inflow

(i) flow is steady

(ii) flow is incompressible

(iii) flow is along a streamline

(iv) flow is frictionless

(v) flow is uniform at cross section

(vi) flow is derived with respect to an inertial control volume

The climb model is not valid for the descent case as the free stream velocity is directed upward
and therefore the far downstream wake is above the rotor disk, see Figure 5.4. Note that the
order of the stages is reversed because the downstream wake is above the rotor disk. Because of
this stage reversal the derivation for both climb and descent is the same. There exists, however,
a region in which neither of the two models is valid.
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Figure 5.5: Rotor induced velocity as a function of climb speed ratio, showing the different
branches in descent flight and experimental data from Castles and Gray obtained in the vortex
ring state [24].

In climb the flow must be downward and therefore the velocity at stage zero and in the far
wake must be positive, i.e. −Vc + v0 ≥ 0 and −Vc + v∞ = −Vc + 2vi ≥ 0, which imply −Vc ≥ 0
and −Vc ≥ −2vi, resulting in −Vc ≥ 0, defining the climb model to be only valid in climb. In
descent the flow is upwards and therefore the velocity in the far wake velocity and at stage zero
must be negative, i.e. −Vc + v0 ≤ 0 and −Vc + v∞ = −Vc + 2vi ≤ 0, implying that the descent
velocity must be larger then −Vc ≤ −2vi. The boundaries for the validity of Momentum theory
are found in literature and shown in Figure 5.5. The line Vc + vi is the boundary between the
vortex ring state and the turbulent wake state. From the data of [63] in the vortex ring state a
certain trend in the induced velocity can be discovered. It is worth investigating if such a trend
can also be discovered for quadrotors.

5.2.2 Forward flight

Rotors of a quadrotor are required to produce both a lifting L and forward P force to counteract
the weight and propel to quadrotor forward, see Figure 5.6. Therefore, the rotor disk must tilt
forward with an angle of attack, αd, with respect to the oncoming flow. Induced flow decreases
as the aircraft’s forward speed increases. A simplistic explanation, when the helicopter is in
hover all the induced flow comes vertically down through the disc. If a wind blows, part of the
down going induced flow would be blown away horizontally, resulting in less air flowing through
the disc vertically.

Figure 5.6 shows the streamtube which is used in forward flight analysis. In deriving the
conservation laws a NED inertial frame is used, with the vertical axis parallel to the thrust
vector and its positive direction indicated by the red arrow in Figure 5.6. Note that in forward
flight analysis only horizontal flight is taken into account.

Where in hover and axial flight the streamlines are perpendicular to the rotor disk, in forward
flight this may not be the case. However, it is assumed that at the rotor disk the angle of attack,
αd, is the angle of the disk with respect to the free stream velocity, V . Since only the velocity
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Figure 5.6: Streamtube for forward flight analysis. Three sections are shown, namely: up-
stream (0), at the rotor (i), and down stream (∞) with their corresponding variables. The red
arrow indicates the positive z-direction of a NED inertial frame. T is the thrust, L is the lift
force and P is the propulsive force

perpendicular to the rotor disk contributes to the thrust, it is only necessary to evaluate the
vertical direction.

In the analysis of induced velocity in forward flight again a uniform loaded actuator disk is
used to model the behavior of the rotor. In forward flight the actuator disk may be viewed as
a circular wing, of which it can be proven, using classical fixed-wing lifting-line theory, that for
high speed forward flight the thrust is equal to [12,13]

vi = − T

2ρAiV
. (5.49)

An expression for the rotor thrust in hover and high speed forward flight is developed, however,
a connection between those two regions is required to specify the thrust and inflow for all
operating conditions.

Using the definitions for the control volume conservation laws as given in (5.31), (5.34), (5.38)
and applying the same assumptions as for hover and axial flight, the control laws reduce to
their reduced forms as given in (5.32), (5.35), (5.41). Applying the reduced forms, the law for
conservation of mass in forward flight becomes

ρA0Vr0 = ρAiVri = ρA∞Vr∞ , (5.50)

where Vr is the resultant velocity, a combination of the free stream velocity V and the induced
velocity vi, and can be defined at the rotor disk as [12]

V 2
ri = (V cos(α)d))

2 + (V sin(αd) + vi)
2 = V 2 + 2V vi sin(αd) + v2i . (5.51)

The momentum equation, is slightly different from the case of hover and climb because the rotor
disk is tilted with an angle of attack with respect to the free stream velocity. Therefore the
sine component of the free stream velocity, which is along the vertical axis of the NED frame, is
taken into account. The momentum equation can be written into scalar component equations
of which only the vertical direction is evaluated.

∑
F3 =

∫
CS

V3ρ�V · dA . (5.52)
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The reduced momentum equation combined with the mass equation results in

T = − [ρAiVri(v∞ + V sin(α))− ρAiVr1(v0 + V sin(α))]

= −ρAiVri(v∞ − v0) .
(5.53)

The work done by the rotor on the surroundings equals Wr = TV3. Therefore, the reduced
energy law combined with mass conservation, becomes

− T (vi + V sin(α)) =
1

2
ρAiVri(v

2
∞ + 2V v∞ sin(α)− 2V v0 sin(α)− v20) . (5.54)

To establish a relation between v∞ and vi, (5.54) and (5.53) are combined.

2(v∞ − v0)(vi + V sin(α)) = v2∞ + 2V v∞ sin(α)− 2V v0 sin(α)− v20

2v∞vi = v2∞
v∞ = 2vi ,

(5.55)

where it is assumed that v0 ≈ 0 as in the climb case. Using this relation in (5.53) and making
use of (5.45), the expression for the induced velocity becomes [12,13]

vi =
v2h√

(V cos(α))2 + (V sin(α) + vi)2
. (5.56)

Note that for hovering flight, V = 0, so that the equation reduces to

vi = vh =

√
T

−2ρAi
, (5.57)

which confirms that the forward flight case reduces to the hover flight and has the proper lower
bound. In high speed forward flight V � vi and the equation reduces to

vi = − T

2ρAiV
. (5.58)

This is exactly the lift on an elliptically loaded fixed-wing, see (5.49), which shows that the
established relationship for the thrust has the proper upper bound.

If (5.56) is normalized with the tip speed and the normalized velocity components are used,
defined in (3.6) and (3.7), the induced inflow ratio becomes

λi =
CT

2
√
μ2 + λ2

. (5.59)

Substituting (5.59) into (3.7) results in a definition for the inflow ratio

λ = μ tan(αd) +
CT

2
√
μ2 + λ2

. (5.60)

The result is a quartic equation in λ which can be solved analytically, however, the thrust
coefficient CT depends on λ as well. Therefore, λ is solved iteratively in combination with
CT using a Newton-Raphson iterative procedure. The iteration scheme can be defined as [12,
13]

λn+1 = λn − f(λ

f ′(λ)
, (5.61)
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with

f(λ) = λ− μ tan(αd)− CT

2
√
μ2 + λ2

= 0 . (5.62)

This results in the iteration scheme [12,13]

λn+1 =

⎛
⎝μ tan(αd) +

CTn (μ
2+2λ2

n)

2(μ2+λ2
n)

3/2

1 +
CT+nλn

2(μ2+λ2
n)

3/2

⎞
⎠ , (5.63)

with

λ0 = μ tan(αd) +
CT

2
√
μ2 + CT

2

, (5.64)

and CT0 equal to the thrust coefficient in hover. Note that this procedure is not valid when
the rate of descent is sufficient to enter the vortex ring state. Generally λ converges, however,
nonphysical solutions may be obtained [13]

5.2.3 Combined flight

Including the climb velocity into the resultant velocity Vr leads to the same expression for the
mass conservation as in forward flight, given in (5.33). The resultant velocity Vr at the rotor
disk is redefined as:

V 2
ri = (V cos(α))2 + (V sin(α) + vi − Vc)

2 , (5.65)

It can be shown, using the same procedure as in forward flight, that in the combined case the
wake induced velocity is twice the rotor induced velocity, v∞ = 2vi, the same as in the axial
and forward flight cases. Substituting this into (5.53) and using the new definition for Vr results
in:

T = −2ρAivi
√

(V cos(α))2 + (V sin(α) + vi − Vc)2 , (5.66)

which can be rewritten into:

vi =
v2h√

(V cos(α))2 + (V sin(α) + vi − Vc)2
. (5.67)

Using the definition for the advance ratio (3.6), and defining the inflow ratio as:

λ = μc + μ tan(αd) + λi , (5.68)

where

μc =
Vc
ΩR

, (5.69)

the induced inflow ratio becomes

λi =
CT

2
√
μ2 + λ2

, (5.70)

which is again a quartic equation in λ and can be solved using the same procedure as in the
forward flight case.
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5.2.4 Comments on Momentum theory

Momentum theory is based on the actuator disk model. This model approximates the rotor
by a thin disk. In case of the AR Drone, however, the rotor consists of two blades. The
detailed behavior of the flow around the rotor is therefore probably different than estimated
with momentum theory. In order to derive the reduced conservation laws several assumptions
have been made. One of these assumptions is that the laws are derived with respect to an
inertial reference frame. Meaning the mass, momentum and energy relations do not account
for the acceleration of the frame. However, tracking a trajectory means constantly accelerating
and decelerating. Furthermore, the quadrotor is constantly updating its orientation and thereby
rotating with respect to an inertial frame. The conservation laws thus need to be extended to
be applicable to a rotating frame as well.

The flow is assumed to be steady and uniform at a random cross-section of the control volume
and the flow is along streamlines. In reality, however, the flow, especially in forward flight, is
not uniform. Furthermore, the rotor produces tip vortices, which influence the flow behavior
in the near and far wake. The near wake influences the blade’s airloads and the rotor’s inflow
behavior, consequently, the tip vortices play an important role in the rotor aerodynamics and
should not be neglected.

Figure 5.7 shows the thrust estimation for the height varying trajectory of (2.6) for BET/MT,
MT and experimentally determined by Jeurgens. In Section 5.5 it is shown that the combination
of BET and MT is capable of estimating the z-dynamics accurately enough. From the figure
it can be seen that MT overestimates the required thrust and the experimentally determined
thrust underestimates the required thrust. The combination of BET and MT is capable of
accurately estimating the required thrust, as will be shown in Section 5.5.
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Figure 5.7: Thrust calculations with BET and MT and the thrust experimentally determined
by Jeurgens for the 3D trajectory described in (2.4)
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5.2.5 Non-uniform inflow

As mentioned in the previous section, Assumption 5.2.1 (v) might hold in hover and axial
flight, however, in other flight cases, such as forward flight, the induced velocity has a non
uniform distribution over the rotor disk. Glauert, proposed a first harmonic non uniform inflow
distribution, which is extended by Payne [29]

λ = λ0

(
1 +Kc

r

R
cos(ψ) +Ks

r

R
sin(ψ)

)
= λ0 + λc

r

R
cos(ψ) + λs

r

R
sin(ψ).

(5.71)

The coefficients Kc and Ks are functions of the advance ratio, μ, since they must be zero
at hover. As mentioned in the literature review of Chen [29], Section 4.1.1, Cheeseman and
Haddow concluded that the longitudinal and lateral inflow coefficients of Pitt and Peters, and
Drees compared best to the experimental data. Based on their conclusion the model of Pitt
and Peters is followed, with

Kc =
15π

32
tan(

χ

2
)

Ks = 0 ,
(5.72)

with the wake skew angle defined as

χ =
μ

λ
. (5.73)

So far, a uniform inflow has been used. The thrust, drag and side force must be adapted to
account for the non-uniform inflow. The additional contribution of the non-uniform inflow for
the thrust coefficient is given by [12]

CT =
σa

4π

∫ 1

0

∫ 2π

0
(−ΔλVT ) dψdr

=
σa

2

(
−1

4
λsμ

) (5.74)

with VT defined in (5.16) and the inflow difference, Δλ given by

Δλ = λc
r

R
cos(ψ) + λs

r

R
sin(ψ) . (5.75)

Note that along the derivation the expression is averaged over the azimuth following the same
procedure as in Section 5.1.2. The new thrust coefficient is defined as

CT =
σa

2

[
θ0

(
1

3
+

1

2
μ2
)
+ θtw

(
1

4
+

1

4
μ2
)
− 1

2

(
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2
μλs

)]
. (5.76)

Using the same procedure the rotor drag and side force coefficients are [12]

CHTPP
=
σa

2

[
1

2
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θtw
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4
μβ20 +
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(5.77a)
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(
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8
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λ0
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6
λsβ0

]
. (5.77b)

5.3 Blade flapping

Besides induced drag, blade flapping is considered to play an important role in the behavior of
the quadrotor as well. Several flight maneuvers affect blade flapping, with the most important
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ones being forward flight and pitch or roll maneuvers. Furthermore, based on recent studies it
is chosen to follow the work of [14].

In modeling a cantilevered rotor for blade flapping, [12,14] both state that the behavior can be
estimated with a model of a hinged rotor, using an effect offset ef to account for the bending of
the blades. This offset can be derived from experiments, however, the design of the AR Drone
rotor blades incorporates a rib at the hub to provide stiffness, see Figure 5.8. The rib extends
into the blades and the ends might acts as a fictional hinge.

Figure 5.8: Detailed view of the rotor blade at the hub. In the middle of the blade the rib
which gives stiffness to the rotor hub. The rib extends into the blades and might act as a
fictional hinge.

5.3.1 Forward flight

The complete equations for blade flapping in forward flight can be derived by equating the
effective moments acting at the hinge. A hinge can not support a moment, therefore the sum
of all moments must be zero. In the derivation it is assumed the blade motion only consists
of coning and first harmonic blade flapping. This assumption ensures the centrifugal forces to
lie in the plane of rotation and thereby eliminate all inertia moments from the analysis. The
contribution of the centrifugal force to the moment about the hinge is given by

ΔMCF = −ΔCFh, (5.78)

with
ΔCF = m(r′ + ef )Ω

2Δr, (5.79)

and
h = r′b0 +

ef
r′ + ef

(r′β − r′β0). (5.80)

ΔCF

β

r0

ef

h r0β0

Figure 5.9: Schematic representation of the blade including the increment of the centrifugal
force and the distances h, ef , r

′, [14].

Assuming only first harmonic flapping and steady state conditions the blade flapping angle, β,
can be estimated with a Fourier series

β = β0 − β1c cos(ψ)− β1s sin(ψ). (5.81)

Substituting (5.81) into (5.78), results in

ΔMCF = −mr′(r′ + ef )Ω
2

[
β0 − e

r′ + ef
(β1c cos(ψ) + β1s sin(ψ)

]
Δr. (5.82)
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Integrating out from the hinge gives the total centrifugal moment

MCF = −Ω2

[
β0

(
Ib + ef

Mb

g

)
− (β1c cos(ψ) + β1s sin(ψ)ef

Mb

g

]
. (5.83)

The lift generated by the blade contributes to the hinge moment as well and can be defined
as

MA =

∫ R−e

0
r′
ρ

2
a0cαbsV

2
T dr

′, (5.84)

where the velocity components follow from blade element theory, however, the tangential velocity
is redefined to account for the effective offset

VT = ΩR

[
r′ + ef
R

+ μ sin(ψ)

]
. (5.85)

Since only first harmonic flapping is considered, the moment can be written in terms of the
constant, sine, and cosine terms, using trigonometric identities, after which the higher harmonics
are excluded

MA =MAconst +MAsine sin(ψ) +MAcosine cos(ψ). (5.86)

The blade flap angles β0, β1s and β1c can be solved using the three equations

MCFconst +MAconst +Mw = 0 (5.87a)

MCFsine +MAsine = 0 (5.87b)

MCFcosine +MAcosine = 0 , (5.87c)

where

Mw = −Mb = −
∫ R−e

0
mgr′dr′. (5.88)

.

The coning angle β0 can be derived from the constant equation and afterwards used in the sine
and cosine equations to solve for β1s and β1c . However, a simplified coning angle is used, which
expresses the coning angle in terms of the thrust constant CT [14]

β0 =
2

3
γ
CT /σ

a0

(
1− ef

R

)2
1 + 1

2
ef
R

. (5.89)

Note that in this case the definition for CT is different than defined in (5.25a). The tangential
velocity is different because of the incorporation of the effect hinge offset, furthermore, the
integration is performed from the hinge offset to the tip instead of the hub, i.e.

CT =
σa0
4π

∫ R−ef

0

∫ 2π

0
(V 2

T θ − VPVT )dψdr (5.90a)

= (1− ef )
σa0
4

[
θ0

(
2

3
+ μ2

)
+ θtw

(
1

2
+
μ2

2

)
+ μαd − λ

]
. (5.90b)

The blade flapping model is based on [14], therefore the thrust coefficient defined in his model is
used, which is different from the definition given by [12] from which BET and MT is used. The
reason why only the thrust coefficient depends on the hinge offset is because the hinge is not
capable of generating a lift force, however, it is of influence in the drag and side forces.
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In performing the derivation of the sine and cosine equations a discrepancy is noticed. The sine
equation becomes

Ω2β1sef
Mb

g
+
γIb
2

Ω2
(
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R

)2 [2
3
θ0μ+

1

2
θtwμ+

μ

2

(
μαd − vi

ΩR

)
− β1c

(
1

4
− μ2

8

)]
= 0,

(5.91)

and the cosine equation becomes

Ω2β1cef
Mb

g
+
γIb
2

Ω2
(
1− ef

R

)2 [−β0μ
3

− Kc

4

vi
ΩR

+ β1s

(
1

4
+
μ2

8

)]
= 0. (5.92)

Notice the difference in the λi term with respect to [14], which uses a factor of 1/3. However,
following the derivation the factor should be 1/4. Furthermore, notice the lateral inflow coefficient
Kc appearing in the cosine equation, where [14] conveniently left it out because it is assumed
that Kc = 1. The flapping angles β1s and β1c can be found by solving these two equations. In
the derivation [14] use the following approximations

e
Mb

Ibg
=

3
2
ef
R

1− ef
R

(5.93a)

ν1
ΩR

=
CT

σ

σ

2μ
. (5.93b)

Equation (5.93b) equates the induced velocity equivalent to the thrust constant divided by the
advance ration. This substitution, however, is only valid with higher advance ratios, [12, 13],
and leads to an over estimation of the flapping angles in the lower advance ratios.

The equation for the longitudinal and lateral flapping are:
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(5.94a)
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(5.94b)

Notice the difference, with respect to [14], in the last term of β1cf and the first term in β1sf
and the minus sign in front of the second term in β1sf . Furthermore, notice the appearance of
Kc in front of λ. Using the definitions of Kc and Ks of Pitt and Peters, Ks = 0 and therefore
can be left out the equation.

In [14] these relations are simplified by neglecting the second term in each denominator, as-
suming it is much smaller with respect to the first terms. This assumption may be accurate
in case of helicopters, for quadrotors this term can not be neglected. Compared to helicopters
the effective hinge offset of the rotor blade of the AR Drone is a larger part of the entire blade.
Furthermore, the Lock number for helicopters is in the range of 5-8 [12, 14], for the quadrotor
this is about 2.5.

The blade flapping model derived by [14] is based on a inertial frame. The angular velocities
are compensated for by [14], however, angular and rectilinear accelerations are not accounted
for.
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Assumption 5.3.1. The following assumptions are used in the deriving the flapping model

(i) The aerodynamic forces are considered to act from the hinge to the tip

(ii) The reverse flow region is ignored

(iii) The airfoil lift characteristics are linear and free of stall and compressibility effects

(iv) The blade motion consists of only coning and first harmonic flapping

(v) The inflow and blade flap angles are small

(vi) The blade geometry can be described by linear twist

(vii) The forward flight conditions are steady

(viii) The reference frame is a wind axis NED inertial frame

5.3.2 Angular velocity blade flapping

Beside the effect of forward flight on blade flapping, pitch and roll maneuvers influence the
flapping behavior as well. The moment equation at the hinge becomes

MCF +MA +Mw +Mgyro = 0 (5.95)

The extra term in the equation, with respect to forward flight, is due to the gyroscopic effects
of the rotor. The increment of the moment due to the gyroscopic effect can be defined as:

ΔMgyro = r(−αgyrom)dr′. (5.96)

The vertical velocity at a blade element exists of four components, two due to the pitch and
roll rates without rotation, and two due to rotation on a constantly pitching and rolling disc
[14]

Vgyro = −qr cos(ψ)− pr sin(ψ) + Ωr sin(ψ)qdt− Ωr cos(ψ)pdt (5.97)

from which the acceleration can be derived

αgyro = 2qrΩsin(ψ)− 2prΩcos(ψ). (5.98)

The resultant moment is

Mgyro =

∫ (R−e)

0
(r′ + e)m[2q(r′ + e]Ω sin(ψ)− 2p(r′ + e)Ω cos(ψ)]dr (5.99)

from which the sine and cosine components can be derived

Mgyrosine = −2qΩIb (5.100a)

Mgyrocosine = 2pΩIb. (5.100b)

The definitions for the centrifugal moment and the weight moment are the same as in forward
flight. The contribution of the aerodynamic moment to the hinge moment is given in (5.86).
Because the forward flight case is already taken into account only the change in angle of attack
caused by the angular rates needs to be considered. The results can be superimposed on the
flapping due to steady forward flight. The local angle of attack is defined as [14]

α =
VPar

VTar
(5.101)
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with
VPar = (r′ + e)(q cos(ψ) + p sin(ψ))− rΩ(b1c sin(ψ)− b1s cos(ψ))+

V (b1c cos(ψ) + b1s sin(ψ)) cos(ψ)

VTar = Ω(r′ + e) + V sin(ψ).

(5.102)

Substituting this in the equation for the aerodynamic moment (5.86) and neglecting the higher
harmonics results in [14]
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(5.103)

The total moment about the hinge becomes
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These two equations can be solved simultaneously to derive the longitudinal and lateral flapping
angle due to the angular velocities
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As in the case of forward flight [14] simplifies these expression by neglecting the second term
in the denominator, which might hold for helicopters, however, for quadrotors this term should
be included.

5.4 Extended model

The forces on the rotor hub are analyzed using Blade element theory. It is shown that the
rotor experiences a rotor drag and side forces because of the induced drag of the rotor blades.
Furthermore, blade flapping generates also drag forces in the rotor plane. The model derived
by [5] needs to be updated to include the behavior of blade flapping and induced drag. To
incorporate the rotor aerodynamics in the quadrotor dynamics, an extended model is defined
based on [15], extending the simplified dynamics of (2.2).
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ρ̇ = Rν (5.106a)

ν̇ = −S(ω)ν + gRT e3 − 1

m

(
n∑

i=1

Ti

)
(5.106b)

Ṙ = RS(ω) (5.106c)

Jω̇ = S(Jω)ω + τ3 +
n∑

i=1

Mi (5.106d)

Ti = CTiρA(ΩiR)
2

⎛
⎝ sβ1ci

cβ1ci
sβ1si

cβ1ci
cβ1si

⎞
⎠+RcbRTH

⎡
⎣CHi

CYi

0

⎤
⎦ ρA(ΩiR)

2 (5.106e)

Mi = Di × Ti, (5.106f)

where n is the number of rotors, s{·} and c{·} are the sine and cosine functions, S(ω) is a skew
symmetric matrix, defined as in (2.3). The torque about the b3 axis of the body fixed frame, τ3,
is defined as in (2.1), and Di the distance vector from the center of mass to each rotor

D1 =
[
l −l −h]T

D2 =
[
l l −h]T

D3 =
[−l l −h]T

D4 =
[−l −l −h]T .

(5.107)

The inertia matrix J is defined as

J =

⎡
⎣Jxx 0 0

0 Jyy 0
0 0 Jzz

⎤
⎦ .

The force coefficients are defined as

CT = κT
σa0
2

[
θ0

(
1

3
+

1

2
μ2
)
+ θtw

(
1

4
+

1

4
μ2
)
− 1

2
λ

]
(5.108a)
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CY = −σa0
2

[
3

4
μβ0
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θtw
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2
μβ0λ

]
, (5.108c)

with λ the inflow ratio
λ = μc + μ tan(αd) + λi , (5.109)

where μ is defined as in (5.111c) and

μc =
nur(3)i

ΩR
, (5.110)

with νri defined in (5.111b).

The quadrotor’s front is not necessarily aligned with the direction of motion, hence the flapping
axes are not aligned with the front of the quadrotor. Therefore, the body fixed reference frame,
C, is used, which is aligned with the quadrotor’s flight direction. The flapping of the rotor is
first calculated in this rotor frame and then transformed into body fixed, B, coordinates using
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β1sf
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Figure 5.10: Blade flapping angles in the rotor frame, β1cfi and β1sfi, and in the body fixed
frame, β1si and β1si [15]

the rotation matrix Rbc as defined in (3.5). Note that this also holds for the force coefficients
CH , CY , and the inflow ratio λ. They are all derived with respect to the body fixed reference
frame C.
In order to determine the flapping angles β1si and β1si, first the advance ratio μi and azimuthal
direction ψi of the rotors are calculated [15]

νri = ν +Ω×Di (5.111a)

μi =
||νr(1,2)i||

ΩiR
(5.111b)

ψwi = tan−1

(
νr(2)i

νr(1)i

)
, (5.111c)

with νr(n)i the nth element of the ith rotors velocity, which is based on both the linear and
angular velocity of the quadrotor. The local flapping angles are then transferred into body
coordinates, using the rotation matrix Rcb, see (3.5), to derive the flapping angles due to the
motion of the quadrotor [

β1ci
β1si

]
= Rcb

[
β1cfi
β1sfi

]
, (5.112)

Note that the rotation matrix, in this case, is a modified version because only the in plane
components are taken into account. The pitch and roll rates of the quadrotor itself also affect
the blade flapping behavior as shown in Section 5.3.2. Therefore, the components of the flapping
angles due to the pitch and roll rates of the quadrotor are added to those of the body fixed
frame [14,64].

β1ci = β1ci + β1cai (5.113a)

β1si = β1si + β1sai (5.113b)

The blade flapping angles due to forward flight β1cfi and β1sfi are defined in (5.94) and the
blade flapping angles due to angular velocities β1cai and β1sai are defined in (5.105).

5.5 Simulation results

From the experiments performed by [4] and [5] it can be concluded that the tracking performance
for fast time-varying trajectories is insufficient. The revised controller by [7] improved the
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tracking performance, however, still a significant mismatch between the reference and actual
trajectory existed, see Section 2.4. In this section the improvement of the extended model with
respect to the rigid body model of [5] (2.2) is investigated in simulation.

In [4] a simulation environment is provided, in which the rigid body dynamics of (2.2), the
quadrotor dynamics, the observers, and the controller designed by [5] are incorporated. The
simulation results of this model showed that the controller was perfectly able to track the
reference trajectory with the AR Drone. However, the experimental results showed otherwise,
see Section 2.4. To investigate the improvement of the new extended model, how close it can
estimate the actual behavior of the quadrotor, the new extended model is incorporated into
the simulation environment. This should lead to simulations results which are more closely to
the experimental results. Note that the improved controller of [7] is used in the simulation.
Therefore, the simulation results should be compared with the experiments from Section 2.4.
The ultimate goal is to improve the controller such that in reality the quadrotor is able to track
the reference. This improvement is not performed, yet, and is a recommendation for future
work.

Figure 5.11 shows the simulation results of the rigid body model (black) and the new extended
model (blue), together with the experimental measurements (red), for the three-dimensional
circular reference trajectory parametrized as

ρr = [cos(att) sin(att) 1.5 + sin(att)]
T , (5.114)

with at a time constant and at = 1. Note that in all figures below the reference is left out for
clarity reasons, the reference is almost the same as the rigid body simulation results.
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Figure 5.11: Position measurements of the new extended model in which the induced and
blade flapping drag forces are included. In black the old simulation result based on the model
of (2.2), in blue the simulation results of the new model and in red the measurements of the
experiment as described in Section 2.4
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The simulation results of Figure 5.11 show improvement in the position estimation of the ex-
tended model. Compared to the experimental results of Section 2.4, the new model is able to
estimate the z-dynamics closely. Furthermore, the position estimations in x and y-direction
are improved as well, however, they are not as accurate as the z-direction. The x − y plane
simulation results of the new model are almost 50% more close to the experimental results than
the simulation results of the old rigid body model.

Investigating the performance of the new model in two-dimensional trajectories leads to the
results of figures 5.12 and 5.13. Figure 5.12 shows the simulations results of tracking a two-
dimensional circular reference trajectory in the x− y plane, which is parametrized as

ρr = [cos(att) sin(att) 1.0]T . (5.115)

In Figure 5.13 the motion is only in the z direction and the reference trajectory is parametrized
as

ρr = [0 0 1.5 + sin(att)]
T . (5.116)

In Both experiments at = 1. Notice the similarities between the experimental results of the
three and two-dimensional circular trajectories. The x and y-dynamics of both cases are almost
the same, which might suggest that the in and out of plane dynamics are decoupled. From
Figure 5.12 it can be seen that simulation results of the new extended model are more close to
the experimental results than the rigid body model. As in the case of the three dimensional
trajectory, the new model is almost 50% more accurate than the old model when compared to the
experimental results. Because the z-dynamics seems to be decoupled from the in plane motion,
the difference between the simulation results of the new model and the experimental results may
be caused by the limitations of the blade flapping and inflow model. From both phenomena it
is know that they induce drag forces in the x − y plane, therefore, not being able to estimate
the behavior of blade flapping, inflow, and wake accurately may lead to underestimation of the
drag forces.
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Figure 5.12: Position measurements for a two dimensional circular trajectory. Black indicates
the old simulation result based on the model of (2.2), blue the simulation results of the extended
model, and red the experiment results
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In z-direction, shown in Figure 5.13, the simulation results show a much better performance
for the extended model than the rigid body model. The amplitude of the trajectory in the
new model is reduced compared to the old model and is almost similar to the experimental
results.
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Figure 5.13: Position measurements of the new extended model for a varying height trajec-
tory with T = 2π. In black the old simulation result, in blue the simulation results of the new
model, and in red the measurements of the experiment

In Figure 5.14 the experimental result of a height varying trajectories of Section 2.4 is shown
again, because some important observations need to be made. The trajectory is described by
(5.116) with at = 2. In the experimental results the quadrotor seems not to be affected by
any turbulence, which is expected according to helicopter theory, see Chapter 3. According to
Section 3.4 the boundaries of the vortex ring state are at 1/4vh ≤ −Vc ≤ 2vh, which for the AR
Drone are 1 ≤ −Vc ≤ 8. In the experiment of Figure 5.14 the lower boundary should be crossed,
however, disturbances due to heavy turbulence are not noticed. The maximum and minimum
heights are not constant, however, this is most probably due to the quadrotor lacking behind in
time. The rotors are not able to deliver the thrust required for such a fast varying trajectory,
hence the limits of the quadrotor are reached. Because of reaching the limits of the AR Drone
further experiments are not performed, however, it would be interesting to investigate when
and if the quadrotor enters the vortex ring state.

5.6 Concluding remarks

Blade element theory derives from the blade forces the thrust force acting on the entire rotor
and the drag and side forces acting on the rotor hub. Blade element theory is not capable
of calculating the induced velocity, therefore, momentum theory extended with a first order
non-uniform inflow distribution is used. The non-uniform inflow coefficients are based on the
work of Pitt and Peters [38,39]. The out of plane movement of the rotor blades causes drag and
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Figure 5.14: Representation of a height varying trajectory in each separate direction with
the experimental results in red, the new simulation results in blue, and the old results in black.
The old results are almost similar to the reference trajectory. The trajectory is described in
(5.116) with at = 2, i.e. T = π

side forces acting on the rotor hub and are modeled using the blade flapping model of Prouty.
These aerodynamic influences are incorporated into an extended model, which is based on the
rigid body model of van der Eijnden (2.2).

In the experimental results it is noticed that the quadrotor does not seem to be influenced
by any turbulence. According to helicopter literature the quadrotor should enter the VRS, in
which heavy turbulence affects the control of the helicopter. In none of the experiments this
behavior is noticed. It would be worth looking into this phenomena more closely, however, as
explained the AR Drone reached its limits in the last height varying experiment and therefore
is insufficient to perform the required tests.

The performance of the new quadrotor model has been investigated in simulations and is com-
pared with the old simulation results and the experimental results of Section 2.4. The new
model has been implemented into the simulation environment made by Jeurgens, while the
controller designed by van der Eijnden and Lefeber [7] has been used. The new model is tested
with three cases, a three dimensional circular trajectory, a two dimensional circular trajectory,
and a height varying trajectory. Compared to the experimental results, the simulation results
of the new extended model show a good performance in estimating the z-dynamics, and show
an improvement in estimating the x and y-positions. The in plane diameter difference between
the old rigid body model simulations and the experiments is about 1m. The difference between
simulations of the new model and the experiments is about 0.5m. Comparing the experimental
results of the three-dimensional with the two-dimensional trajectory shows that the z-dynamics
might not have any influence on the in plane x − y dynamics. This suggests that these two
dynamics are decoupled. Therefore, the difference in the x − y plane between the simulation
results and the experimental results most probably is due to limitations in the blade flapping
and inflow model, from which it is know they induce drag forces in the x− y plane.



Chapter 6

Conclusions and
Recommendations

6.1 Conclusions

This thesis is part of a larger research project on cooperation of drones capable of vertical
take of and landing. Previous work in this project resulted in a quadrotor capable of tracking
a trajectory. However, whereas the tracking performance for slow time-varying trajectories is
satisfactory the tracking performance for fast time-varying trajectories is insufficient. To deploy
multiple drones in cooperation accuracy in following the trajectory is of high importance. There-
fore, adjustments to the previous work is needed to improve the tracking performance.

After implementing an improved controller, designed by [7], part of the tracking accuracy had
been solved, however, the large position error between the reference and actual path still existed.
Additional experiments have been performed to determine the nature of the tracking problem.
Based on this data it is concluded that the rigid body model, which neglects aerodynamic
forces, is not capable of capturing the quadrotor’s behavior accurately. Combined with recent
studies [9,10] blade flapping and induced inflow are identified as the possible sources influencing
the tracking performance. Both inflow and blade flapping generate drag forces in the b1−b2 plane
of the quadrotor’s body fixed frame and can not be solved with high gain control [10].

Based on the capabilities of the processor of the AR Drone and the work of [9, 10], the most
simple inflow theories, Blade element and Momentum theory, and the blade flapping model
of [14] are implemented. The axial and forward flight cases of BET and MT are combined
to allow for three-dimensional trajectories. Furthermore, the blade flapping model of [14] is
adjusted to incorporate inflow coefficients and remove the assumptions of high speed forward
flight.

An extended model is developed to include those aerodynamics into the rigid body dynamics
of [5]. This extended model has been implemented into the simulation environment made
by [4], together with the controller designed by [7]. The simulation results show that the
extended model has a good performance in estimating the z-dynamics when compared to the
experiments. The performance in estimating the x and y-positions has increased significantly
compared to the simulation results of the rigid body model. The new model is capable of
estimating the actual positions almost 50% more accurate than the old model. The extended
model is thus capable of explaining roughly half the diameter difference between the simulation
results of the old model and the experiments.

63
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Comparing the experimental results of the three-dimensional with the two-dimensional trajec-
tory shows that the x and y-dynamics are almost the same, which suggests that the z-dynamics
and the in plane x − y dynamics might be decoupled. Therefore, the difference in the x − y
plane between the simulation results of the new extended model and the experimental results,
most probably is due to limitations in the blade flapping and inflow model. The inflow model
does not capture the wake behavior under the rotors. It is known that these dynamics play
an important part in the rotor dynamics, and consequently in the quadrotor dynamics. Fur-
thermore, the inflow is based on a first order inflow variation, and only capable of partially
capturing the inflow behavior. Higher order inflow variations are needed to fully describe the
inflow behavior. Additionally, the inflow coefficients based on the work of Pitt and Peters are
basic estimates and not able to capture the inflow completely. Momentum and blade element
theory are both static inflow models, which assume the flow variations to be instantaneously,
and only hold for steady forward or axial flight and thereby neglect the quadrotor’s constant
acceleration and deceleration necessary for following a trajectory.

The goal of this thesis was to improve the tracking performance by improving the quadrotor’s
dynamical model and redesign the controller to account for the new dynamics. For the dynamics
a new extended model is introduced, which is able to estimate the z-dynamics sufficiently in
simulations, and explains roughly half the in plane diameter reduction shown in experiments.
However, the new model is not valid for all descent velocities, i.e. the descent velocities in which
the quadrotor enters the vortex ring state. The second sub-objective of implementing the new
dynamics into the controller was not achieved due to time limitations.

6.2 Recommendations

The current model based on BET and MT is based on conservation laws derived with respect to
an inertial frame. Improvements can be made by removing the restrictions of an inertial frame.
Several BET implementations calculate the forces per blade section and sum these to obtain the
rotor forces. It would be worth investigating if this method is more accurate than the method
of integration used in this thesis. One of the limitations of BET and MT is that these theories
are not valid in the vortex ring state. In the experiments it is noticed that the quadrotor does
not enter the vortex ring state. It would be worth investigating if the quadrotor enters the
vortex ring state and at which descent rate. Furthermore, the data of Castles and Gray [63], see
Figure 5.5, suggests that a relationship may exists between the induced and descent velocity in
the vortex ring state. To make the extended model valid for all flight cases it would be worth
investigating if such a relation can be derived for a quadrotor.

Blade flapping is incorporated based on the model of [14], which uses a hinged rotor with an
effect hinge offset to account for the bending of the cantilevered rotor blades. Furthermore, [14]
assumes steady state conditions in which a Fourier series can estimate the blade flap angle.
Developing a rotor model based on aeroelastic deformation and removing the assumption of
steady state conditions might improve the blade flap angle estimation.

Blade element and Momentum theory are both static inflow models. Dynamic inflow models are
an improvement on the static inflow models in having a time dependent reaction on flow disrup-
tions. Furthermore, dynamic inflow models are based on inflow variations, where in momentum
theory inflow variation is predicted using additional inflow coefficients. Wake modeling can be
included via the methods of [41] or [45], however, these methods have their limitations as well.
Free vortex theory would be the most promising method because it describes both the inflow
and the wake in a detailed fashion, and is able to predict the influence of the wake on the rotor
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more accurately. Furthermore, vortex theory is also valid in the vortex ring state. However, a
disadvantage of this method is that it can become rapidly computationally expensive. It would
be worth investigating, in simulations, the improvements dynamic inflow models and or vortex
theory can make compared to the new extended model and how complex the models need to
be to match simulation with experiments. Because of the limitations of the AR Drone’s CPU,
simplified versions, can be developed to include the dynamics into the controller. Another ap-
proach can be to investigate the wake behavior with wind tunnel tests. From the test results
it may become clear which rotor aerodynamics are important and should be included in the
quadrotor model.

In [57] a Fast Free Wake method is developed which is capable of real time simulation on a
desktop pc with margin for other simulations. The accuracy of the method is adjustable by
including more or less vortex rings. It would be worth investigating how many vortex rings
need to be included to accurately capture the whole rotor dynamics and if implementing this
model on the CPU of the AR Drone is achievable.

A completely different solution for solving the difference between the reference trajectory and
the actual trajectory is in the area of learning controllers. An online learning algorithm can
be deployed to estimate the drag forces and let the actual trajectory converge to the reference
trajectory. The new extended model can provide a simulation environment in which the learning
algorithm can be tested.
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