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Abstract

In this paper we consider the control of a complex network of servers through which many types of jobs flow, where we

assume that servers require a setup time when changing between types. Such networks can be used to model complex

communication, traffic or manufacturing systems. Instead of starting with a given policy for controlling the network

and then study the resulting dynamics, we start from a desired steady-state behavior and derive a policy which achieves

this behavior. By means of an example we illustrate the way to derive a feedback controller from given desired steady-

state behavior. Insights from this example can be used to deal with general networks, as illustrated by a more complex

network example.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a network of servers through which different types of jobs flow. One could think of a
manufacturing system, i.e., a network of machines through which different types of products flow. An other
example would be an urban road network of crossings with traffic lights through which cars flow. A third
example would be a network of computers through which different streams of data flow.

In this paper we take a fluid model (ODE) approach, where we assume that each server can only serve one
type of job at a time, i.e., no processor sharing, and furthermore that when switching from one type of job to
the other, a non-zero setup time is needed. This setup time might depend on the switch, that is, switching from
Type 1 to Type 2 might take a different time than switching from Type 2 to Type 1 or from Type 3 to Type 2.
Furthermore, we assume that each job type arrives to the network at a constant rate and that for each job
type routes are specified a priori. It is allowed that a job visits the same server more than once (a so-called
re-entrant system).

The networks we consider might show some unexpected behavior. In Ref. [1] it was shown by simulation
that even when each server has enough capacity to serve all jobs, these networks can be unstable in the sense
that the total number of jobs in the network explodes as time evolves. Whether this happens depends on the
policy used to control the flows through the network. In Ref. [2] it was shown analytically that using a clearing
e front matter r 2006 Elsevier B.V. All rights reserved.
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policy (serve the queue you are currently working on until it is empty, then switch to another queue) certain
networks become unstable, even for deterministic systems with no setup times.

In Ref. [3] several clearing policies have been introduced, the so-called clear a fraction (CAF) policies. It was
shown that these policies are stable for a single server in isolation in a deterministic environment.
Furthermore, it was shown that a CAF policy stabilizes a multiserver system, provided the network is acyclic.
A network is called acyclic if the servers can be ordered in such a way that jobs can only move from one server
to a server higher in the ordering. A network is called non-acyclic if such an ordering is not possible. The
example in Ref. [2] shows that a CAF policy does not stabilize a non-acyclic network.

The main reason why CAF policies fail for a non-acyclic network is because they spend too long on serving
one type of job. This results in starvation of other servers and therefore a waste of their capacity. Due to this
waste the effective capacity of these other servers is not sufficient anymore, resulting in an unstable system.
This observation has led to the development of so-called buffer regulators [4,5] or gated policies. The main
idea is that each buffer contains a gate, so the buffer is split into two parts (before and after the gate). Instead
of switching depending on the total buffer contents, switching is now determined based on the buffer contents
after the gate. As a result, a server might now leave a buffer earlier, avoiding long periods of serving one type
of job. It has been shown in Ref. [5] that under certain conditions on these regulators the (possibly non-
acyclic) network is stabilized. Since non-acyclic networks are only unstable under certain conditions, applying
buffer regulators is not always necessary. Needlessly applying buffer regulators results in a larger mean
number of jobs in the network, which from a performance point of view is undesired. Furthermore, it is not
known whether these policies result in optimal network behavior.

In Ref. [6] a new approach has been developed. First, the minimal period is determined during which the
network is able to serve all jobs that arrive during that period. With this period corresponds a trajectory of the
system, a periodic orbit, which serves as a basis for the control policy. The proposed policy in essence is a
feedforward controller. From the periodic orbit it is known at which time instant a server should be serving a
certain job type. In Ref. [6] it has been proposed to have all servers serve the job type they should be serving
according to the periodic orbit at that time. In case no jobs of that type are available, the server should stay
idle. In Ref. [6] it was shown that this policy guarantees that all trajectories of the closed-loop system are
bounded and that for constant average arrival rates the behavior of the network eventually becomes periodic.
The focus of Ref. [6] is on achieving regular behavior. If initially the number of jobs in the system is large,
regular behavior is achieved rather quickly, but the number of jobs in the system remains large. Also, it is not
straightforward to extend the results of Ref. [6] to a setting with stochastic serving times.

In most of the literature, first a policy (or a class of policies) has been proposed, and then the resulting
behavior of the network under these policies has been considered (and sometimes optimized). As in Ref. [6],
the approach in this paper is the other way around. The desired closed-loop behavior of the system is used as a
starting point and then a policy is derived. Contrary to the results in Ref. [6] the resulting policy of this paper
is a feedback policy, which can straightforwardly be applied in case serving times are stochastic. Furthermore,
the feedback policy derived in this paper results in a smaller mean amount of work for the network in
steady state.

The remainder of this paper is organized as follows. First, the smallest possible network of servers with
setup times is considered, namely a single server which serves two different types of jobs. Starting from the
periodic orbit which minimizes the mean amount of jobs in that system, it is shown how a feedback can be
derived by means of a candidate Lyapunov function. The presented method can be applied to general
networks. To illustrate this, a second example is presented in Section 3. This example consists of the system
considered in Ref. [2] and illustrates the strengths and the weaknesses of the method presented in this paper.
Finally, Section 4 concludes the paper with some remarks and suggestions for further research.

2. An illustrative example

To make clear how to design a controller for a general network, we first illustrate the basic ideas behind the
controller design. Consider the smallest system possible: a single server which serves two different types of
jobs, cf. Fig. 1. Assume that jobs arrive to this server at constant rates l1 ¼ 3 and l2 ¼ 1 and can be served at
rates m1 ¼ 8 and m2 ¼ 9, respectively. All mentioned rates are measured in jobs per unit time. Additionally, the
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Fig. 1. Single server, two job types.
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setup time for switching from Type 1 jobs to Type 2 jobs is assumed to be s1;2 ¼ 3 time units, whereas the
setup time for switching from Type 2 jobs to Type 1 jobs is assumed to be s2;1 ¼ 1 time unit.

Note that this system has sufficient capacity for serving the arriving jobs, since l1=m1 þ l2=m2 ¼
3
8
þ 1

9
¼ 35

72
o1. Also, since doing a setup takes time, it is impossible to stay in a fixed point. We consider the

problem of controlling the system towards an arbitrary given periodic orbit. Before we can address
the problem of making the system converge to a desired periodic orbit, we need to be precise when addressing
the state, the input and the dynamics of this system. Next, we can specify the desired periodic orbit.

2.1. State, input and dynamics

The state consists of the buffer contents of Type 1 jobs, x1, the buffer contents of Type 2 jobs, x2, and of the
remaining setup time, x0, which is zero in case the setup has finished and the server is serving. The state is
completed by the type of job the server is currently either serving or being setup for, the mode of the server,
which is denoted by m 2 f1; 2g.

The server might decide to serve job types at any rate, so the rates u1pm1 and u2pm2 at which, respectively,
Type 1 and Type 2 jobs are being served are inputs. Another input is the required activity of the server, u0,
i.e., what the server should be doing at the moment. The following activities can be distinguished:
u0 ¼ :
 setup for Type 1 jobs;

u0 ¼ :
 serve Type 1 jobs;

u0 ¼ :
 setup for Type 2 jobs;

u0 ¼ :
 serve Type 2 jobs.
The input u0 is a special kind of input, since it can only take a finite number of values. A change in u0 generates
an event. This event might cause jumps in the state variables. First of all, if it has been decided that the server
should setup for Type 1 jobs (u0 ¼ ) but the server is currently serving of being setup for Type 2 jobs
(m ¼ 2), then x0 becomes s2;1 (the setup time for switching from Type 2 to Type 1). Similarly, for m ¼ 1 and
u0 ¼ , x0 becomes s1;2, i.e.,

x0 :¼ s2;1 if u0 ¼ and m ¼ 2,

x0 :¼ s1;2 if u0 ¼ and m ¼ 1.

Second, we have

m :¼
1 if u0 2 f ; g and m ¼ 2;

2 if u0 2 f ; g and m ¼ 1;

(
(1a)

that is, if the server should be serving or setting up for Type i jobs, the current mode becomes Mode i ði ¼ 1; 2Þ.
In addition to this discrete event dynamics, we also have the following dynamics:

_x0ðtÞ ¼
�1 if u0 2 f ; g;

0 if u0 2 f ; g;

(
(1b)

_x1ðtÞ ¼ l1 � u1ðtÞ, (1c)
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_x2ðtÞ ¼ l2 � u2ðtÞ. (1d)

Furthermore, at each time instant the input ðu0; u1; u2Þ is subject to the following constraints:

u0 2 f ; g; u1 ¼ 0; u2 ¼ 0 for x040, (2a)

u0 2 f ; g; 0pu1pm1; u2 ¼ 0 for x0 ¼ 0; x140; m ¼ 1, (2b)

u0 2 f ; g; 0pu1pl1; u2 ¼ 0 for x0 ¼ 0; x1 ¼ 0; m ¼ 1, (2c)

u0 2 f ; g; u1 ¼ 0; 0pu2pm2 for x0 ¼ 0; x240; m ¼ 2, (2d)

u0 2 f ; g; u1 ¼ 0; 0pu2pl2 for x0 ¼ 0; x2 ¼ 0; m ¼ 2. (2e)

In words, these constraints say that in case the server is setting up, no jobs can be served (2a). In case a setup
has been completed, only the job type can be processed for which the server has been setup. This processing
takes place at a rate which is at most mi if jobs of Type i are available in the buffer, (2b) and (2d), and at a rate
of at most li if no jobs of Type i are available in the buffer, (2c) and (2e), (i 2 f1; 2g). Also, it is possible to
either stay in the current mode, or to switch to the other mode. In particular, it is possible during setup to leave
that setup and start a setup to the other type again. The latter setup is assumed to take the entire setup time.

To summarize, the state of this single server system which serves two different types of jobs is given by
ðm; x0; x1; x2Þ ¼ ðm; x0; xÞ 2 f1; 2g � Rþ � R2

þ, the input is ðu0; u1; u2Þ ¼ ðu0; uÞ 2 f ; ; ; g � R2
þ and the

dynamics are given by (1a). Furthermore, the input needs to satisfy the constraints (2).

2.2. Desired periodic orbit

Having defined the state, input, and dynamics of the system under consideration, we can now consider the
problem of controlling this system. Setups take time, as mentioned before. Therefore, the system cannot be
controlled towards a fixed point. In this paper we consider the problem of controlling the system towards an
arbitrary given periodic orbit.

For the system depicted in Fig. 1, we are interested in controlling our system towards the periodic orbit
which minimizes the mean number of jobs in the system. That is, the orbit which minimizes

1

T

Z T

0

½x1ðtÞ þ x2ðtÞ�dt,

where T denotes the period of the orbit.
In Ref. [7] this periodic orbit has been determined (cf. Ref. [8]), and the resulting orbit is depicted in Fig. 2.

This desired periodic orbit switches between the two modes of the system. The first mode starts in
ðm; x0; x1; x2Þ ¼ ð1; 1; 12; 0Þ, i.e., the server is setup for serving Type 1 jobs, this setup will (still) take one time
unit and 12 jobs of Type 1 are in the buffer and no jobs of Type 2. Using the input ðu0; u1; u2Þ ¼ ð ; 0; 0Þ for 1
time unit makes that the setup to Type 1 jobs is completed and brings the system in
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Fig. 2. Desired periodic orbit.



ARTICLE IN PRESS
E. Lefeber, J.E. Rooda / Physica A 363 (2006) 48–6152
ðm; x0;x1;x2Þ ¼ ð1; 0; 15; 1Þ. Next, the system serves Type 1 jobs at full rate for a period of three time units.
That is, using the input ðu0; u1; u2Þ ¼ ð ;m1; 0Þ the system moves to ðm;x0;x1;x2Þ ¼ ð1; 0; 0; 4Þ. Then, the system
remains serving Type 1 jobs for one time unit, but now at the arrival rate (see also Remark 1). So the input
ð ; l1; 0Þ brings the system to ð1; 0; 0; 5Þ, which ends Mode 1. Next, for a period of three time units the input
ð ; 0; 0Þ is used. As a result the system first jumps from ð1; 0; 0; 5Þ to ð2; 3; 0; 5Þ. After three time units the
system is in ð2; 0; 9; 8Þ. Then the system starts serving Type 2 jobs at full rate. That is, the input ð ; 0; m2Þ brings
the system to ð2; 0; 12; 0Þ. This also ends Mode 2. Applying the input ð ; 0; 0Þ makes the system jump to
ð1; 1; 12; 0Þ and the cycle is completed.

During a cycle the amount of jobs of Type 1 increases from 0 to 15 and decreases to 0 again for a duration
of 8 time units. Furthermore, it stays zero for a duration of 1 time unit. Therefore, the mean amount of jobs of
Type 1 equals ð1

2
� 8 � 15þ 1 � 0Þ=9 ¼ 62

3
. As the mean amount of jobs of Type 2 equals 4, the mean amount of

jobs in the system for the optimal periodic orbit equals 102
3
.

Remark 1. As shown in Ref. [7] the described period orbit minimizes the mean amount of jobs in the system.
At first sight it might seem strange that serving for a certain period at a lower rate can be optimal. As shown
above, using the optimal periodic orbit, the mean number of jobs in the systems equals 102

3
. However, a

clearing policy which always serves at full rate yields a mean number of jobs in the system of 1028
37
. This

counterintuitive result can be understood from the fact that jobs of Type 2 arrive at a low rate and can be
cleared relatively quickly. Since jobs of Type 1 arrive at a rather high rate, it is better to keep on serving Type 1
for a while and make sure no jobs of Type 1 are in the buffer. The fact that the number of jobs of Type 2
increases a little bit more is compensated by enlarging the period of a cycle. As a result on the average the
system switches less and the mean number of jobs of Type 1 decreases more than the mean number of jobs of
Type 2 increases. For more details on determining the optimal periodic orbit for arbitrary input and serving
rates, as well as for using different weights for each job type, the interested reader is referred to Ref. [7].

2.3. Controller design: approach

Given both a correct system description and a desired periodic orbit, the next step is to design a controller
which brings our system to this desired periodic orbit. This controller design is based on Lyapunov’s direct
method, cf. Refs. [9–11]. The basic idea behind Lyapunov’s direct method is that if the total energy of a
mechanical or electrical system is continuously dissipated, then the system must eventually settle down to an
equilibrium point. So if we are able to come up with a kind of ‘‘energy-function’’ for the system under
consideration, and if we are able to design our controller such that this energy is decreasing all the time, the
system should settle down to a constant energy level and we may conclude stability of our system. This we can
do by examining the variation of a single scalar function. The value of this energy function should reflect the
magnitude of the state vector, so it can also be interpreted as a kind of measure of the distance between the
current state and desired states. Some required properties of this energy function are the following:
�
 zero energy corresponds to the desired steady-state;

�
 convergence of energy to zero implies asymptotic stability;

�
 instability implies growth of energy.
In the remainder of this section we first propose a candidate for this energy function, a so-called Lyapunov
function candidate. This candidate is defined for a large subset of the state space. Next, we consider the time
derivative of the Lyapunov function candidate along solutions of the system. Clearly, this time derivative
depends on the input we use for our system. The input is chosen such that in each point the time derivative of
the Lyapunov function candidate is minimized over the set of all allowed inputs, resulting in a non-negative
time derivative. Since the minimizing input depends on the current state, we obtain a state feedback. As a next
step, since the controller which has been derived by means of the Lyapunov function candidate is valid for a
subset of the state space, it needs to be extended to one which is defined for the entire state space. Finally, since
a non-negative time derivative of the Lyapunov function candidate in general only guarantees convergence of
the Lyapunov function candidate, but not necessarily to zero, it is shown that for the example of this section
the derived controller assures convergence to the desired periodic orbit.
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2.4. Lyapunov function candidate

Before we construct a Lyapunov function candidate we first associate a number with a periodic orbit,
namely the mean amount of work for that periodic orbit. The amount of work associated with a job that is
waiting to be served is given by its serving time. So work is measured in time units. The reason for considering
the amount of work, is because this always decreases at a constant rate if the server is serving at full rate. This
rate is independent of the type of job the server is currently working on. For the example introduced in this
section, the server reduces work at a rate of one hour per hour, whereas work arrives at a rate of 3

8
þ 1

9
¼ 35

72
.

For the desired periodic orbit, the curve in Fig. 2, we can determine the mean amount of work. The mean
amount of jobs of Type 1 is 4, whereas the mean amount of jobs of Type 2 is 623. A job of Type 1 needs 1

8 time
units of serving, whereas a job of Type 2 needs 1

9
time units of serving. Therefore, the mean amount of work

associated with the desired period orbit depicted in Fig. 2 equals 4 � 1
8
þ 62

3
� 1
9
¼ 113

54
time units. Similarly, the

mean amount of work associated with the solid curve in Fig. 3, which is a translation by ð0; 3Þ of the desired
periodic orbit, equals 113

54
þ 0 � 1

8
þ 3 � 1

9
¼ 131

54
, and the mean amount of work associated with the dotted curve

in Fig. 3 equals 113
54
þ 15 � 1

8
þ 0 � 1

9
¼ 3 25

216
.

Now we are able to associate a number with a periodic orbit, we can use this as a starting point for
proposing a Lyapunov function candidate which can be used in the final controller design. A first observation
is that, as illustrated in Fig. 3, by translating the desired periodic orbit into the positive x1 and/or x2 direction,
we obtain other feasible periodic orbits for the system. As a result, if the system is in a state which can be on a
translated periodic orbit, it is possible for the system to stay on that translated periodic orbit. In particular,
this means that if the state of the system is in the set of points through which at least one translated periodic
orbit goes, it is possible to stay in that set. Since the desired periodic orbit can be characterized as

for m ¼ 1:
x1 ¼ 15� 3x0 and x2 ¼ 1� x0 if x040;
1
5

x1 þ x2 ¼ 4 if x0 ¼ 0;

(

for m ¼ 2:
x1 ¼ 9� 3x0 and x2 ¼ 8� x0 if x040;

x1 þ
3
8

x2 ¼ 12 if x0 ¼ 0;

(

the set of states through which at least one translated desired periodic orbit is possible can be characterized as

D ¼ ðm;x0;x1;x2Þ

x1X15� 3x0 and x2X1� x0 if m ¼ 1; x040
1
5

x1 þ x2X4 if m ¼ 1; x0 ¼ 0

x1X9� 3x0 and x2X8� x0 if m ¼ 2; x040

x1 þ
3
8

x2X12 if m ¼ 2; x0 ¼ 0

����������

9>>>>=
>>>>;

8>>>><
>>>>:

.
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Fig. 3. Translated desired periodic orbits going through X ¼ ð1; 0; 15; 4Þ.
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For defining the Lyapunov function candidate V we use D as the domain, i.e., we restrict ourselves to the set
D. Note that the set D covers almost the entire state space. In words we define the Lyapunov function
candidate as follows:

Definition 2. For an arbitrary point X ¼ ðm;x0;x1; x2Þ 2 D, consider the set of all translated desired periodic
orbits going through this point. By definition of D this set is non-empty. With each of these translated desired
periodic orbits we can associate the mean amount of work. Next, we take the smallest of these numbers and
subtract 113

54
from it (the mean amount of work associated with the desired periodic orbit). This is the number

we associate with an arbitrary point X 2 D, i.e., this defines V ðX Þ.

Note that this definition makes sure that for all x 2 D we have V ðX ÞX0 and V ðX Þ ¼ 0 if and only if X is
at the desired periodic orbit. Furthermore, V ðX Þ increases for increasing x1 or x2. This relates to the
positive definiteness and the radially unboundedness that a Lyapunov function candidate should satisfy,
cf. Refs. [9–11].

Given the above-mentioned definition in words of a Lyapunov function candidate V for points X 2 D, how
does this V ðX Þ look like as an equation? Which of all possible translated desired periodic orbits going through
that point has the smallest mean amount of work?

In case the server is performing a setup, i.e., if x040, only one translated desired periodic orbit is going
through this point, so then V ðX Þ is given by the extra amount of work in the system compared to the desired
periodic orbit:

V ¼

1
8
ðx1 � 15þ 3x0Þ þ

1
9
ðx2 � 1þ x0Þ if m ¼ 1; x040;

1
8
ðx1 � 9þ 3x0Þ þ

1
9
ðx2 � 8þ x0Þ if m ¼ 2; x040:

(
(3)

In case the server is not performing a setup, in general more than one translated desired periodic orbit is going
through a point. Assume that the system is in the point X ¼ ð1; 0; 15; 4Þ, that is: the system is currently in
Mode 1, no setup time is remaining (so Type 1 can be served), and the buffer contents for Type 1 and Type 2
are, respectively, 15 and 4. In Fig. 3 this point is marked and two of the infinitely many translated desired
periodic orbits going through this point are shown. These curves are two extremes. For the solid curve, the
system just started serving Type 1 at full rate, while for the dashed curve the system just finished serving
Type 1 at full rate and is about to start serving Type 1 at the arrival rate. Not that any curve where Type 1 has
been served at full rate for some time is also a curve that goes through the given point. For the point
X ¼ ð1; 0; 15; 4Þ these are the only curves going through it. In case x2 would have been larger (X5) all curves
where Type 1 has been served at the arrival rate for a while, with as an extreme the case where the system is
about to switch to Type 2, would have been allowed too.

So which of all these curves is the one for which the associated mean amount of work is minimal? In order to
answer this question it provides insight to consider for each curve the amount of work as a function of time.
For the two extreme curves of Fig. 3 the amount of work as a function of time has been shown in Fig. 4, where
it is assumed that current time equals 0. From this graph it can be seen that, as mentioned before, the amount
of work in the system is decreasing at a constant rate in case the system serves buffers at full rate. The solid
curve corresponds to the case where this processing at full rate has just started, whereas the dotted curve
corresponds to the case where this processing at full rate is about to end, cf. Fig. 3.

Consider a curve with a certain mean amount of work. For this curve, the amount of work when processing
at full rate starts is larger than the amount of work when processing at full rate finishes. Therefore, if a certain
amount of work is given and a curve going through this point needs to be found, a curve where processing at
full rate starts has a smaller mean amount of work than a curve where processing at full rate is about to finish,
as shown in Fig. 4. In this figure it can be seen that a smaller amount of work corresponds to the solid curve
than to the dotted curve. This is because the given amount of work corresponding to the point X ¼ ð1; 0; 15; 4Þ,
which is 1

8
� 15þ 1

9
� 4 ¼ 223

72
, is a local maximum for the solid curve, whereas it is a local minimum for the

dashed curve. Therefore, the solid curve has a lower mean amount of work.
Using this insight the translated desired periodic orbit with the smallest mean amount of work can be

associated with a point X 2 D. Of all translated desired periodic orbits going through a point, the orbit for
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Fig. 4. Amount of work corresponding to translated desired periodic orbits.
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which in that point the amount of work is maximal is the orbit with the smallest mean amount of work. To
understand this somewhat strange statement consider again Fig. 3. For the solid curve the point 0; 223

72
is a local

maximum, whereas it is a local minimum for the dashed curve. As a result, the solid curve is the one with the
smallest mean amount of work. Since the graph in Fig. 4 describes the evolution of the amount of work at the
curves in Fig. 3, the orbit with the smallest mean amount of work in Fig. 3 is also the solid curve.

In most of the states (m ¼ 1, x0 ¼ 0, x1X15, or m ¼ 2, x0 ¼ 0, x2X8) the orbit with the smallest mean
amount of work would be the one where serving the current type at full rate is about to start. In case m ¼ 1,
x0 ¼ 0, x1p15 it is either the orbit which has started serving Type 1 latest, or the orbit that is about to switch
to serving Type 2. For x2p5 the latter needs to be after some period of serving Type 1 at the arrival rate. In
case m ¼ 2, x0 ¼ 0, x2p8 this is the orbit which has started serving Type 2 the latest.

As a result, we obtain for all X 2 D:

V ¼

1
8
ðx1 � 15þ 3x0Þ þ

1
9
ðx2 � 1þ x0Þ; m ¼ 1; x040;

1
8
ðx1 � 15Þ þ 1

9
ðx2 � 1Þ; m ¼ 1; x0 ¼ 0; x1X15;

min½1
9
ð1
5

x1 þ x2 � 4Þ; 1
8

x1 þ
1
9
ðx2 � 5Þ�; m ¼ 1; x0 ¼ 0; x1p15; x2X5;

min½1
9
ð1
5

x1 þ x2 � 4Þ; 1
8

x1�; m ¼ 1; x0 ¼ 0; x1p15; x2p5;
1
8ðx1 � 9þ 3x0Þ þ

1
9ðx2 � 8þ x0Þ; m ¼ 2; x040;

1
8
ðx1 � 9Þ þ 1

9
ðx2 � 8Þ; m ¼ 2; x0 ¼ 0; x2X8;

1
8
ðx1 þ

3
8

x2 � 12Þ; m ¼ 2; x0 ¼ 0; x2p8:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(4)

Given this Lyapunov function candidate, we can use it for deriving a feedback controller. This is the next step.

2.5. Derivation of controller

Once we have the Lyapunov function candidate as defined in Definition 2 and explicitly written down in (4),
we can use it for our controller design. For each point X 2 D we first consider the set of allowed inputs, cf. (2),
which assure that the system remains in D. By definition of D this set is non-empty. Next, we minimize _V ðX Þ
over this set of allowed inputs that assure that the systems remains in D. Note that by definition of D it is
always possible to stay on the translated desired periodic orbit that corresponds to V ðX Þ, i.e., the translated
desired periodic orbit going through X which minimizes the mean amount of work. The proposed method of
constructing our feedback guarantees that _Vp0. This also implies that buffer contents remain bounded, i.e.,
stability of the system.

Before deriving the feedback controller we first make two important observations. The first observation is
that the periodic orbit going through a point X with x0 ¼ 0 (i.e., setups have been completed) and minimizing
the mean amount of work is never switching in X when xm40 (i.e., when the buffer that is being served is non-
empty). In case xm ¼ 0 the periodic orbit which minimizes the mean amount of work is the one that is
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switching in X, except for m ¼ 1, x1 ¼ 0, 4px2p5, since then the desired periodic orbit determines V ðX Þ.
A second observation is that serving jobs at a lower than maximal rate never minimizes _V ðX Þ, since
making the amount of work decrease at a lower than maximal rate makes V ðX Þ decrease at a lower than
maximal rate.

These two observations imply that in case the buffer that is being served is non-empty, the system
should continue serving that type at maximal rate. In case the buffer that is being served is empty, we need
to switch to the other type, unless m ¼ 1, x1 ¼ 0, 4px2p5. In that case we need to serve Type 1 at the arrival
rate.

The only thing that remains to be determined is the control action in case the system is doing a setup.
Note that from (2) we have two options: either to continue the current setup, or to switch to the other type.
This means we have to compare ð1;x0;x1;x2Þ to ð2; 3;x1;x2Þ and ð2;x0;x1;x2Þ to ð1; 1; x1;x2Þ. From (3) it can be
seen that if we are setting up for Type 1, we should continue the setup. If we are setting up for Type 2 we
should continue the setup only when x0p37

35
, i.e., the remaining setup time is not more than 37

35
. However, it

seems better to switch to Type 1 in case x0437
35
. This is not precisely true, since switching to Type 1 is only

allowed if the systems stays inD. This imposes the additional constraint that x1412 before switching to Type 1
is allowed.

This completes the derivation of the feedback for X 2 D. The feedback can be expressed mathematically as
follows:

ðu0; u1; u2Þ ¼

ð ; 0; 0Þ if m ¼ 1; x040;

ð ;m1; 0Þ if m ¼ 1; x0 ¼ 0; x140;

ð ; l1; 0Þ if m ¼ 1; x0 ¼ 0; x1 ¼ 0; x2o5;

ð ; 0; 0Þ if m ¼ 1; x0 ¼ 0; x1 ¼ 0; x2X5;

ð ; 0; 0Þ if m ¼ 2; x0437
35
; x1412;

ð ; 0; 0Þ if m ¼ 2; x0437
35
; x1p12;

ð ; 0; 0Þ if m ¼ 2; x0p37
35;

ð ; 0; m2Þ if m ¼ 2; x0 ¼ 0; x240;

ð ; 0; 0Þ if m ¼ 2; x0 ¼ 0; x2 ¼ 0:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

In words the feedback can be expressed by means of the following rules:
�
 If initially the system is setting up for Type 2, but the remaining setup time is more than 37
35

and the buffer
contents of Type 1 is more than 12, switch to Type 1 instead.

�
 If in Mode 1, serve Type 1 at maximal rate until both x1 ¼ 0 and x2X5. Then switch to Type 2.

�
 If in Mode 2, serve Type 2 at maximal rate until x2 ¼ 0. Then switch to Type 1.
The above-mentioned controller has been derived for X 2 D. So the final step in our controller design is to
extend this controller to a controller which is defined for the entire state space. This can be done rather
straightforwardly. In fact, the feedback controller as mentioned in words does not contain any text that
cannot be used for XeD, so the above-mentioned controller in words is also defined for the entire state space.
However, for symmetry reasons (and to match the general case) a small modification is needed. In words, the
feedback which is defined for the entire state space becomes:
�
 If initially the system is setting up for Type 2, but the remaining setup time is more than 37
35

and the buffer
contents of Type 1 is more than 12, switch to Type 1 instead.

�
 If in Mode 1, serve Type 1 at maximal rate until both x1 ¼ 0 and x2X5. Then switch to Type 2.

�
 If in Mode 2, serve Type 2 at maximal rate until both x2 ¼ 0 and x1X12. Then switch to Type 1.
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In equations this looks like

ðu0; u1; u2Þ ¼

ð ; 0; 0Þ if m ¼ 1; x040;

ð ;m1; 0Þ if m ¼ 1; x0 ¼ 0; x140;

ð ; l1; 0Þ if m ¼ 1; x0 ¼ 0; x1 ¼ 0; x2o5;

ð ; 0; 0Þ if m ¼ 1; x0 ¼ 0; x1 ¼ 0; x2X5;

ð ; 0; 0Þ if m ¼ 2; x0437
35
; x1412;

ð ; 0; 0Þ if m ¼ 2; x0437
35
; x1p12;

ð ; 0; 0Þ if m ¼ 2; x0p37
35
;

ð ; 0; m2Þ if m ¼ 2; x0 ¼ 0; x240;

ð ; 0; l2Þ if m ¼ 2; x0 ¼ 0; x2 ¼ 0; x1o12;

ð ; 0; 0Þ if m ¼ 2; x0 ¼ 0; x2 ¼ 0; x1X12:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(5)

In Ref. [7] it has been shown that the controller (5) guarantees that the resulting closed-loop system is stable
and that solutions converge to the desired periodic orbit. For sake of completeness that proof is repeated here,
for details see Ref. [7].

Let xk
2 denote the value of x2 when Mode 1 is left for the kth time. Then we have

xkþ1
2 ¼ maxð5; 3

40
ðxk

2 � 332
37
Þ þ 332

37
Þ,

which yields

lim
k!1

xk
2 ¼ lim

k!1
maxð5; ð 3

40
Þ
k
� ðx0

2 � 332
37
Þ þ 332

37
Þ ¼ 5,

from which it can be concluded that the controller (5) results in a stable closed-loop system and that solutions
converge to the desired orbit. For details of the general case (arbitrary constant li and mi) the reader is referred
to Ref. [7].
2.6. Summary

With this example of the smallest network possible, one server and two job types, we illustrated the basic
ideas behind the controller design. The initial feedback controller design is restricted to the set of points
through which at least one translated desired period orbit goes, the set D. On this set a Lyapunov function
candidate is proposed being the smallest possible mean amount of work that can be associated with a point
(relative to that of the desired periodic orbit). Next it turns out that this Lyapunov function candidate is a
non-increasing function of time if one tries to keep on serving at the highest possible rate until the decreasing
buffer contents hit their level corresponding to that in the desired periodic orbit (namely zero). Finally, the
feedback is extended to the entire state space.
3. A second example: the Kumar–Seidman case

The insights from the controller design in the previous section can also be used for the feedback controller
design for a general network. Even though the explicit derivation of a Lyapunov function candidate, i.e.,
deriving (4) might at first sight seem involving, deriving a feedback controller for a general network, given a
desired periodic orbit, is relatively easy. To illustrate both the simplicity of the feedback controller design for a
general network and the limitations of the derived feedback controller we consider the case as presented by
Kumar and Seidman in Ref. [2]

The network consists of 2 servers serving 1 type of job. This type of job arrives at a rate l ¼ 1 and needs
service at consecutively servers 1, 2, 2, and 1. Server 1 serves steps 1 and 4 at rates m1 ¼

1
0:3 and m4 ¼

1
0:6,

respectively, whereas Server 2 serves steps 2 and 3 at rates m2 ¼
1
0:6 and m3 ¼

1
0:3, respectively. All setups take 50

time units (Fig. 5).
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We consider the problem of designing a feedback based on the desired periodic orbit as depicted in Fig. 6.
The desired periodic orbit has a period of 1000 time units. For this periodic orbit Server 1 is in the Mode
m1 ¼ 1 from t ¼ 0 till t ¼ 350 and in the Mode m1 ¼ 4 from t ¼ 350 till t ¼ 1000. Server 2 is in the Mode
m2 ¼ 2 from t ¼ 0 till t ¼ 650 and in the Mode m2 ¼ 3 from t ¼ 650 till t ¼ 1000. Similarly, we say that for
this periodic orbit the system is in Mode m ¼ ð1; 2Þ from t ¼ 0 till t ¼ 350, in Mode m ¼ ð4; 2Þ from t ¼ 350 till
t ¼ 650, and in Mode m ¼ ð4; 3Þ from t ¼ 650 till t ¼ 1000.

From looking at the desired periodic orbit as depicted in Fig. 6 we obtain the following mode descriptions:
Mode ð1; 2Þ: Only x1 and x2 can decrease, and their values at the end of the mode, are, respectively, 0 and

500. Furthermore, x2 and x3 can increase and their values at the end of the mode are both 500.
Mode ð4; 2Þ: Only x2 and x4 can decrease, and their values at the end of the mode are, respectively, 0 and 831

3
.

Furthermore, x1 and x3 can increase and their values at the end of the mode are, respectively, 300 and 1000.
Mode ð4; 3Þ: Only x3 and x4 can decrease, and their values at the end of the mode are, respectively, 0 and

500. Furthermore, x1 and x4 can increase and their values at the end of the mode are, respectively, 650
and 500.

Using the same approach as explained in detail in the previous section, the following feedback results, which
closely relates to the above-mentioned descriptions:
�
 If initially in Mode ð1; 3Þ, switch to Mode ð1; 2Þ.

�
 If in Mode ð1; 2Þ, serve Type 1 and Type 2 at maximal rate until x1 ¼ 0. Then switch to Mode ð4; 2Þ,
provided that both x2X500 and x3X500. In case x2o500 and x3X500, set Server 2 idle.

�
 If in Mode ð4; 2Þ, serve Type 2 and Type 4 at maximal rate until either x2 ¼ 0 or x4p831

3
. Then switch to

Mode ð4; 3Þ provided that both x1X300 and x3X1000 (if possible).

�
 If in Mode ð4; 3Þ, serve Type 3 and Type 4 at maximal rate until x3 ¼ 0. Then switch to Mode ð1; 2Þ,
provided that both x1X650 and x4X500 (if possible).

Note the ‘‘if possible’’. For XeD we can have in Mode ð4; 2Þ that x3o1000 and x2 ¼ 0. In that case we cannot
wait for x3 to reach the value of 1000, so then a switch to Mode ð4; 3Þ is allowed. Similarly for XeD we can
have in Mode ð4; 3Þ that x1X650, x4o500 and x3 ¼ 0. In that case, a switch to Mode ð1; 2Þ is allowed.

By design we have for this feedback that _Vp0. Unfortunately, this does not guarantee that V tends to zero
(as was the case in the example of Section 2). To make this clear, consider the desired periodic orbit of Fig. 6,
where some positive amount, say 1000, is added to the x4-signal. If we happen to be on that curve, using the
above-mentioned feedback makes that we stay on that curve. Assume we start in Mode ð4; 3Þ. Since the initial
value of x3 is the same as for the desired periodic orbit, the duration of Mode ð4; 3Þ is the same. Next, since the
initial value of x1 is the same as for the desired periodic orbit, the duration of Mode ð1; 2Þ is the same. Finally,
since the initial value of x2 is the same but the initial value of x4 is higher, the departure from Mode ð4; 2Þ is
determined by the event that x2 hits zero. Therefore, the duration of Mode ð4; 2Þ is also the same. This shows
that using the above-mentioned feedback we might in general converge to a translated desired periodic orbit.
So the feedback does result in a stable network and in regular behavior according to the given periodic
orbit, but we might converge to a translated periodic orbit. Still, this result is an improvement of the results in
Ref. [6], since first of all the derived controller is a feedback, and second it results in a smaller mean amount of
work, since for the policy derived in Ref. [6] we actually have _VX0.
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The derived controller can be improved by using for Mode ð4; 2Þ:
�
 If in Mode ð4; 2Þ, serve Type 2 and Type 4 at maximal rate until both x2 ¼ 0 and x4p831
3
. Then switch to

Mode ð4; 3Þ provided that both x1X300 and x3X1000 (if possible). The maximal serving rate for serving
Type 2 equals m2 as long as x240 and 0 in case x2 ¼ 0. The maximal serving rate for serving Type 4 equals
m4 as long as x44831

3
and 0 in case x4p831

3
.

So the only change is that if only one of the two conditions x2 ¼ 0 and x4p831
3
is met, the other server idles

until both conditions are met. As a result, during that period V ðX Þ is actually increasing. Nevertheless, this
temporary increase of V ðX Þ makes that later on, V ðX Þ can decrease more.

The statement that this modification leads to a feedback which makes the system converge to the desired
periodic orbit can actually be shown to be correct: let ðxk

1 ;x
k
2 ; x

k
3 ; x

k
4Þ denote the buffer contents when

Mode ð4; 3Þ is left for the kth time, while using the modified feedback. Then we have

xkþ1
1 ¼ 100þ 3

7
xk
1 þ

3
10

xk
2 þ

3
10

xk
3 þmaxð3

7
xk
1 ;

3
5
xk
2 þ

3
5
xk
4Þ,

xkþ1
2 ¼ 0,

xkþ1
3 ¼ 0,

xkþ1
4 ¼ 5

7
xk
1 þ

1
2
xk
2 þ

1
2
xk
3.

So assume that k41, then we have xk
2 ¼ xk

3 ¼ 0. Furthermore, let xk
1 ¼ 700þ 7yk

1 and xk
4 ¼ 500þ 5yk

4. This
results in

ykþ1
1 ¼ 3

7
yk
1 þ

3
7
maxðyk

1 ; y
k
4Þ,

ykþ1
4 ¼ yk

1

or

maxðjykþ2
1 j; jy

kþ2
4 jÞp

6
7maxðjyk

1 j; jy
k
4 jÞ.

This shows convergence of ðy1; y4Þ to zero, from which we can conclude convergence of ðx1;x2;x3; x4Þ to
ð700; 0; 0; 500Þ. The latter implies convergence to the desired periodic orbit.
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4. Concluding remarks

This paper deals with the problem of controlling a network consisting of a finite number of servers serving a
finite number of job types where each job type requires a finite number of processing steps. We assume finite
constant arrival rates and sufficient capacity at the servers. Furthermore, we assume finite strictly positive
setup times when servers switch from one job type to the other.

Most literature on this control problem starts from a policy and then analyzes the resulting closed-loop
system. In this paper we start from a desired closed-loop behavior and then design a policy which achieves this
behavior. The resulting policy is a feedback policy. The benefit of a feedback policy is that the closed-loop
system is also robust against disturbances. Even though the policy has been derived for a deterministic system,
the resulting policy can also be applied in case processing times and setup times are stochastic.

The way to derive such a feedback policy has been illustrated extensively by means of an example. Based on
the given desired periodic orbit, an ‘‘energy’’ of the system can be defined by considering the amount of work
in the system. By controlling the network in such a way that this ‘‘energy’’ in the system is never increasing, the
system stabilizes at a fixed energy level.

Often the resulting policy can be readily obtained from the desired periodic orbit, as illustrated in Section 3.
The policy guarantees a stable closed-loop dynamics, as well as behavior according to the desired periodic
orbit. However, it might be that we end up on a translated desired periodic orbit. Nevertheless, the resulting
steady-state behavior has less work than when we apply the policy proposed in Ref. [6].

We conjecture that a modification of the derived policy similar to the modification as presented in Section 3
also results in convergence to the desired periodic orbit for the general case. Future research consists of
proving this conjecture. Most likely a different Lyapunov function candidate is needed, since the candidate
proposed in this paper might be increasing when servers serve at a lower rate. We conjecture that the mapping
between successive Mode departures (from the same mode) is a contraction, as was shown for the two
examples in this paper. Unfortunately, a proof for the general case still needs to be developed.

Though the way to derive a feedback policy has only been presented by means of two examples, the method
works for general networks consisting of a finite number of servers and a finite number of processing steps for
each job type. Furthermore, constraints on buffer capacities can be easily incorporated, cf. Ref. [7]: the set of
translated desired periodic orbits going through an X 2 D becomes smaller. Transportation delays between
servers can be included similarly (though the definition of the state deserves more attention in that case).

As a final remark, we note that most literature considers exhaustive policies, gated policies or k-limited
policies. Since we did not start from a policy, but derived a policy from a given desired periodic orbit, we
obtained a different policy. The policy derived in this paper can be summarized as ‘‘serve not exhaustively, but
until the buffer contents reaches a certain threshold (not necessarily zero). Then either serve at a lower rate, or
switch to an other buffer. This decision depends on the contents of other buffers’’. For manufacturing systems
this so-called ‘‘global policy’’ is feasible, maybe also for some urban traffic networks. However, for other
networks, e.g. communication networks or computer networks, this global information might not be
available. It seems that using the control concept of observers might be helpful to overcome some of these
disadvantages, resulting in ‘‘local policies’’, but this is also subject of future research.

Furthermore, it remains an open issue if policies similar to the ones derived in this paper might improve on
policies so far considered in literature.
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