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Abstract

Traffic lights are used to regulate traffic flows within towns and cities and improve traffic safety across
intersections. Controlling these lights is done by using sensors, which provide the position of traffic.
Each direction of an intersection receives green until the queue has dissolved or the maximum green
duration for the lane is reached, after which the next direction is served. However, due to increased
detecting methods and connectivity much more information is available about the traffic situation.
At Sweco a project is underway which, by detecting the current traffic situation, is also predicting the
future traffic situation. A microscopic simulation which tracks every car is able to measure the effect
traffic lights have on the throughput and performance of the traffic. By choosing the traffic light
settings providing the least amount of disturbance, traffic flows faster across an intersection or even
throughout an entire city. Directing the traffic flows to such detail requires a better control strategy
for the traffic lights. This better, or smarter, control and the predicting microscopic simulation leads
to the development of Smart Traffic. In this thesis the Smart Traffic approach is explained and
tested. The goal of this thesis is to determine the performance of Smart Traffic opposed to current
traffic light controllers. The performance is tested on a single intersection as well as on a network of
intersections. In a network, traffic flows to and from intersections causing direct feedback between
them. This feedback may cause undesirable behaviour causing too much or too little traffic to arrive
at an intersection. To test Smart Traffic a model is created which simulates traffic dynamics around
traffic lights. By applying Smart Traffic onto a local intersection and testing it under different traffic
intensities its performance is tested. The Smart Traffic control strategy can cause the waiting time
to decrease by 30% as opposed to current traffic light controllers. Additionally, cars that arrive close
to one another in so called platoons, receive a green light more often eliminating their waiting time
altogether. A network is controlled by multiple Smart Traffic instances, sending and receiving traffic
from each other. A single intersection does not know what its neighbours are doing. It is shown that
this may lead to one intersection having no traffic to process while the other intersection has too
much traffic. This in turn leads to the amount of cars to start increasing as well as the waiting time.
A supervisor is proposed which detects the amount of work being processed by the network. This
is a measure for the efficiency of the entire network; the higher the amount of work being processed
the faster cars can leave. When the supervisor detects a decrease in efficiency it overwrites the local
traffic light controllers. It redistributes the cars across the network to ensure all intersections are
efficient. Therefore, the supervisor prevents undesired behaviour while Smart Traffic minimizes the
waiting time of the person on the road.



List of Symbols

μi Maximal departure rate for lane i, also called saturation flow.

λi Mean arrival rate for lane i.

ρ Utilization, fraction of time a lane minimally needs to be served by a green light.

xi(t) Number of cars waiting in queue, buffer size.

σij Clearance time from lane i to j. During this time both lanes experience a red light.

τij Switching time losses between lane i and j. Consisting of σij , driver reaction speed
and acceleration loss

V Maximum driving speed.

s length of lane.

Qi
j(t) Stochastic flow of individual cars over time. Each lane j has an arriving and departing

flow which consist of individual cars.

wti(t) Total waiting time over all cars in lane i, integral of xi(t).

gi(t) Duration of green phase for lane i until queue is cleared.

ĝi(t) Total duration of a green phase of lane i.

ui(t) Process rate of lane i.

w(t) Amount of work of the system. The total remaining processing time of all jobs (cars)
in the system.

List of Abbreviations

MPC Model Predictive Control

FTS Fixed Time Schedule

VAC Vehicle Actuated Control

VISSIM Visual Simulation

FIFO First in First out
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Chapter 1

Introduction

According to a recent study [1] within five years the Dutch cities suffer from complete grid lock. The
maximum capacity of the road network is reached while the amount of traffic keeps increasing [2].
The Dutch government launched several projects to keep the cities accessible; from better public
transport to flexible working hours as to avoid rush-hours. Amongst the possible solutions is the
option to make better, or smarter, use of the current road network. A common sight in cities are the
long queues for traffic lights. Cars are often waiting to cross one intersection just to join in the queue
for the next intersection. In general all traffic lights are controlled in a similar way; forcing the traffic
to adapt, going when the lights are green and waiting when red. At Sweco a project is underway
that does just the opposite: Traffic lights adapt to the current traffic situation. This new traffic light
control is called Smart Traffic and by using realtime data it aims to decrease waiting time for drivers
and increase the throughput of the road network.

Traffic lights have existed since the end of the 19th century and regulate the upcoming traffic, be it
cars, pedestrians, boats or trains, to ensure safe crossing. As traffic intensities continued to grow,
the need for traffic light control manifested himself. An explanation of traffic light controllers cur-
rently employed is given in Chapter 2. Due to the increased connectivity of the traffic (road-sensors,
camera’s, GPS, Smart phones) more input is available for a traffic light controller. This increased
connectivity combined with increased computing power means a traffic light controller can handle
more complex algorithms to decide which direction to serve. These algorithms work as an optimiza-
tion strategy to minimize an objective function. The objective function of the traffic light controller
Smart Traffic aims to decrease delays. By detecting and responding to changing arrivals during the
day, see Figure 1.1, Smart Traffic aims to find the best available light control scheme for each situation
allowing road users to travel as quickly as possible.
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Figure 1.1: Average arrivals during a workday for the Insulindelaan in Eindhoven over the period 13-07-2006 till 31-12-2006.

This research is done in cooperation with Sweco, an international engineering consultancy agency
which originates from Sweden. In 2016 it entered a partnership with the Dutch engineering consul-
tancy bureau Grontmij B.V. Focusing on mobility, area development and energy it is a multidisci-
plinair company that works closely with local and national governments. The division hosting this
project is Transportation and Mobility, boosting plenty of in-house knowledge and experience when

1



CHAPTER 1. INTRODUCTION

it comes to traffic light control as it has been one of their expertises over the past decade. Historically
a consultancy agency, the development of Smart Traffic is a new and unknown step for the company.
To support this new step they turn to universities to provide innovative knowledge and tools which
assist their development.

We are interested in the performance of Smart Traffic in comparison with current available traffic light
controllers, as the control strategy applied by Smart Traffic is a new approach for traffic management.
To test the performance of Smart Traffic we need a model which: handles traffic behaviour around
intersections, measures the performance of individual cars and is able to execute Smart Traffic as well
as current traffic light controllers. The simulated driving behaviour is identical over all traffic light
controllers allowing for a good comparison between the different traffic light controllers.

Another part of traffic management is controlling networks of intersections to ensure throughput
across the network. For example traffic lights leading to and from a highway should never lead
to a queue that spreads across the highway (backlash). Different traffic light scenarios are activated
across the network to ensure backlash does not happen, with different scenarios for morning or evening
rush-hours, events or other situations. These scenarios often prioritize a direction to ensure a certain
level of throughput. In contrast, Smart Traffic explores high flexibility per intersection with each
intersection being able to perform its optimal traffic light sequence. Applying a scenario would limit
this flexibility and thus decrease performance. However, to prevent backlash or other undesirable
behaviour some network control is needed.

We research the Kumar-Seidman Network [3], which is known to exhibit undesirable behaviour, and
apply Smart Traffic to it as traffic light controller. The resulting instable behaviour is explained. By
defining what causes the instability, additional constraints are created. These constraints serve to
detect upcoming undesirable behaviour. Additionally, a solution is presented to prevent the instability
from occurring.

The goal of the research is twofold:

• Determine and compare the performance of the proposed Smart Traffic control to current avail-
able traffic light controllers.

• Design and apply a controller that stabilizes the performance of networks of intersections con-
trolled by Smart Traffic.

The first research question can be answered by creating a traffic model that simulates traffic behaviour
around traffic lights and is able to execute multiple traffic light controllers. This model is expanded to
simulate multiple, interlinked intersections to recreate a network providing information about what
causes instable or undesired behaviour. Based on this information a network controller is designed
and integrated into the model to create stability.

The structure of the report is as follows: in the Chapter 2 background information is provided about
current traffic light control and the outline of Smart Traffic is shown. An overview is given about the
basic terminology used throughout this report by using simple intersection as an example. Chapter 3
focusses on the model that is created to validate the working of Smart Traffic. The assumptions
made in the model are explained as well as the influence of these assumptions between model and
the real world. The model is thereafter validated to determine its performance by comparing it to
VISSIM and theoretical approaches. When the model is a good representation of the real world it is
used to test Smart Traffic. This testing is done in Chapter 4, providing in-depth information about
Smart Traffic. It gives a step-by-step approach of the optimization that Smart Traffic performs and
its use under different conditions is explained. It is tested and its performance is measured on single
intersections and networks of intersections. This provides the first results of Smart Traffic for different
traffic intensities. In Chapter 5 it is shown that the performance in a network is not always optimal,
a method is defined to predict these shortcomings. By knowing in which cases a local controlled
network fails we can act in advance to prevent these cases altogether. In Chapter 6 this method
is implemented and executed to prove its viability and results are shown. Finally, conclusions and
recommendations are presented.
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Chapter 2

Background

This chapter describes and explains the basic methodology used throughout this report. It explains
the basic notations and shows the currently traffic light controllers that are in use. Additionally it
explains the general working of Smart Traffic and shows the key differences between the currently
available traffic light controllers. Finally the challenges are shown of traffic light control in a network.

2.1 System description

Consider a simple three-way intersection as given in Figure 2.1

Figure 2.1: T-junction with traffic flow and numbering.

During the day traffic arrives with a certain intensity at flow f with arrival rate λf (t). Arrival rates
are expressed in car/hours and strongly fluctuate during the day as could be seen in Figure 1.1,
individual arrivals typically occur through a Poisson distribution.

Arrivals form a queue xf which gathers at the stopline. Departures from the intersection occur with
the saturation rate μf as long as a queue xf is available. The saturation rate is the maximum rate
at which cars can leave a lane, approximately around 1900 cars/hour. Depending on the state of
the traffic light and the queue size there are generic expressions which describe the evolution of the
queue, ẋf

Table 2.1: Generic expression of the queue-evolution under different traffic light settings

Traffic light Queue Queue-evolution Departure rate

Green x > 0 ẋ = λ(t)− μ μ
Green x = 0 ẋ = 0 λ(t)
Red ẋ = λ 0

Amber times are not displayed in Table 2.1 as individual drivers can decide to drive through amber
(so it acts as a green light) or stop (red light). For any lane to be able to handle the arriving traffic
it needs to hold that λf < μf , expressed in the utilization ρf

3



System description

ρf =
λf

μf
< 1 (2.1)

Considering Table 2.1 and (2.1) the higher the utilization the more time is being spent in a green
phase to ensure the queue completely dissolve.

As the arrival rate λ(t) is a distribution it can temporarily occur that λf (t) ≥ μf . As this would mean
the lane is overflowing traffic is limited to arriving at the saturation flow. These cars create platoons
until the arrival rate drops. Platoons are multiple cars which drive so close to one another they can
be seen as a moving queue. This also implies that multiple departures from a queue always create a
platoons for downstream intersections. We use this fact when considering networks of intersections.

An intersection always has one or more lanes which cross each other, These are called conflicts, if a
lane is in conflict with another they can not receive green light at the same time. Looking at Figure
2.1 we can easily determine which lanes are in conflict and create the conflict graph of Figure 2.2.
Each line indicates the lanes are in conflict with one another.

Figure 2.2: Conflict graph of T-junction of Figure 2.1

.

Just like a single lane needs to be able to handle the arriving traffic (ρf < 1) the same holds for a
intersection. With conflicting traffic flows using the same spot (conflict area) the total utilization of
this spot can never exceed 1. Considering the conflict graph of Figure 2.2 we can group the conflicts
leading to the following constraints:

ρ3 + ρ6 + ρ8 < 1

ρ3 + ρ7 < 1

ρ4 + ρ8 < 1

ρ2 + ρ6 < 1

.

(2.2)

Additional constraints which cannot be directly derived from the conflict graph may exist depending
on the lay-out of the intersection [4], for the used T-junction this is not the case.

A conflict between traffic flow i and j has a clearance time σij associated with it. A clearance time
is a period of time in which the traffic lights of both lanes are red. After flow i has been served and
the amber time has elapsed it takes σij before flow j can get served. This time is needed to allow the
last remaining traffic which is still driving on the intersection to leave. Note that situations occur
were σij �= σji, depending on the layout of the intersection. Clearance times can also be zero or even
negative (for example when the traffic lights are not placed directly at the intersection).

Any traffic light controller needs to assign green phases to each direction which in turn should be long
enough to ensure the queue can dissolve. On the other hand the green phase should not be too large
as due to conflicts as other directions can not be served in the meantime. Clearance times further
decrease the effective time that can be spent serving traffic. To cope with these demands several
traffic light controllers are in use and these are briefly explained in the upcoming sections.

TU/e 4



Vehicle Actuated Control

2.2 Fixed Time Schedule

A Fixed Time Schedule (FTS) is designed to make the average waiting time for all traffic as low as
possible. It assumes a constant λf and by respecting the conflicts between each lane the green time
for each lane can be calculated. The order of switching is fixed as well as the duration of each green
period. Green periods are long enough to clear the queue (with rate λf − μf ) that has been building
up (with rate λf ) during the red period. Additionally they also depend on the utilization of the
total intersection. During a clearance period σij the intersection is effectively idle, therefore green
periods become larger to decrease the number of switches over time. By having large green periods
the relative losses of the clearance time decreases.

A FTS is highly predictable and performs very well during peak hours. During peak hours the arrival
rate is very high; there is always a car waiting at the traffic light and during the green period cars are
served at saturation rate μf . However as seen in Figure 1.1 arrivals fluctuate from hour to hour (and
also from minute to minute), the performance of FTS drops when the assumed arrival rate changes.
As a FTS does not have any information about the actual traffic situation it does not change its
behaviour.

The order and duration of green periods can be set by the user but can also be optimized. For this
optimization a tool developed by S.T.G. Fleuren (promovendi TU/e) [5] [6] is used throughout this
report. The resulting schedule of an FTS is displayed in a phase-diagram which shows the green
duration of each lane. An arbitrary phase diagram of Figure 2.1 and with respect to the conflict
graph of Figure 2.2 is shown below.

Time
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Figure 2.3: Fixed Time Schedule of T-junction of Figure 2.1.

The phase diagram shows the duration of each green phase per lane. At the end of the entire phase
diagram it starts at zero again. The diagram clearly shows that lanes 2, 4 and 7 have long green
phases. This is not because they have a lot of traffic that needs to be processed but because they
have few conflicts (one each). They receive green as long as no conflicting lane is being processed.
Using the same reasoning lanes 3, 6 and 8 receive much shorter green phases.

2.3 Vehicle Actuated Control

The Vehicle Actuated Control (VAC) is widely used in the Netherlands [7] [8] [9]. While the order of
switching is (semi-)fixed the duration of each green period can fluctuate depending on traffic demand.
An extensive explanation can be found in [9].

Contrary to a FTS the VAC does monitor and use the actual traffic situation, λf (t). Sensors are
located in the road that detect traffic driving overhead, at the very least a sensor is located at the
stop line to detect if a car is waiting for the traffic light. Additional sensors are placed to detect if
the queue has dissolved and/or to detect upcoming traffic at the intersection.

The green phase may end as soon as no more upcoming traffic is detected, or not start at all in case
no traffic is available. Other conflicting directions can thus start their green phases earlier decreasing
the waiting time of cars in that lane. Suppose the T-junction of Figure 2.1 and lanes 2, 7 and 8 are
currently green. Lane 8 has served all available cars, by ending this green phase lane number 4 (see
the conflict graph of Figure 2.2) start its green phase earlier. On the other hand if lane 7 or lane
2 have finished serving there is no benefit to end the green phase as all other directions are still in
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Network Control

conflict with lane 8. Additionally, each direction has a maximum green time to ensure green phases
do end and other lanes can get served in a timely manner.

As the VAC utilizes the actual traffic situation and is much more flexible than a FTS its performance
is a lot better when demand is low. Under high demand the VAC starts to act as a FTS since queues
can not get cleared on time.

2.4 Smart Traffic

A complete explanation of the new traffic light controller Smart Traffic is given in Chapter 4, only
the main differences between the current available traffic light controllers and Smart Traffic are given
here.

Like the VAC, Smart Traffic takes the current traffic situation into account. Unlike the VAC, it does
not only look if a queue has formed (to start a green phase) or if a queue has dissolved (to end the
green phase) it also takes into account the size of the queue and the time each car has spent waiting.
Which lane gets a green phase depends on the total waiting time of the traffic waiting. This way it
ensures that every car gets processed (a car with long waiting time receives priority) and the incurred
waiting time is more evenly distributed across the lanes.

Additionally, Smart Traffic also takes into account the upcoming traffic at the intersection. Depar-
tures from a upstream intersection (as seen by the sensors of that intersection) are sent towards the
intersection controlled by Smart Traffic. As the travel time between the intersection can be approxi-
mated, Smart Traffic not only knows the current traffic situation of its intersection but also the traffic
that is due to arrive in the future. As we know the current and future traffic situation, the effect of
each green phase can also be predicted. Meaning that we know how long a green phase will take,
how many cars pass the intersection during this phase and the time spent waiting for each of those
cars. This also means that for every direction that does not receive a green phase, the increase in
waiting time and number of cars is known. Thus, before any light is turned green its effect on the
total intersection is already known. Comparing all green phases we pick the phase that leads to the
biggest decrease in overall waiting time.

This approach is particularly useful in cities were a lot of sensor-data is available to create an accurate
traffic situation. Additionally, traffic often flows between intersections controlled by traffic lights,
when an upstream intersection sets a direction on green, the downstream intersection receives a
packed amount of cars, so called platoons, after the travel time between intersections. These platoons
can be seen as arrivals that occur close to the saturation rate, λf (t) ≈ μf . Outside of the platoons
there are few arriving cars. Stopping a platoon leads to a quick increase in waiting time as multiple
cars are involved. By adjusting the green phase in such a way that the currently waiting queue (if
any) dissolves right before the platoons arrives, no car in the platoon has any waiting time. As Smart
Traffic tries to minimize the overall waiting time it often chooses this option.

In contrast, the VAC does not make these decisions as it does not see the arriving cars in time to
take them in account. Even if it does see platoons (by a sensor placed far from the intersection) it
does not adapt its schedule to make the platoon pass without stopping. The Smart Traffic approach
does not guarantee a fixed order of green phases and durations are exactly matched with the queue
size. In practice this means that the last car passing in a green phase is driving underneath an orange
light. For an extensive explanation see Chapter 4.

2.5 Network Control

Controlling a network of traffic lights is currently only done in a green-wave manner. An upstream
intersection gives a green phase for a direction, after a delay (travel time between intersections) the
downstream intersection switches the same direction to green to let the cars pass without stopping.
The green wave is efficient for the direction it is aimed at, but interrupts the processing of other
directions, which can lead to an increase in overall waiting time.

TU/e 6



Network Control

Alternatively if intersections are close to one another they are often controlled by one traffic light
controller as both intersections directly influence one another. However even intersections that are
far from one another directly influence the arrival rate of each downstream intersection. Assume the
example of Figure 2.4 with three intersections with just two traffic flows per intersection.

Figure 2.4: A small network of three intersection on which due to trafficlight settings intersection 2 is starving (situation 1) or
oversaturated (situation 2)

This example shows that intersection 2 is starved of input or over-saturated based on the settings of
intersections 1 and 3. For this example with only unidirectional streets, a global traffic light control
could be build to ensure these situations do not occur and waiting time is minimized. However,
real network of intersections are much more complex, consisting of multiple intersections were each
intersection can have a dozen or more directions to serve. This combined with the stochastic behaviour
of arriving traffic flows and individual, selfish, driver behaviour leads to complex dynamics which are
hard to predict [3], [10], [11]. A globally controlled network would therefore require a lot of computing
power whereas the resulting traffic light control could potentially still result in unpredicted behaviour
due to additional arrivals and small perturbations, the ‘butterfly effect’ [12]. Therefore, we are less
interested in a global optimized traffic light controller and more considered to acquire stable, but not
necessarily optimal, behaviour. This example shows the challenges when trying to effectively control
a network of traffic lights. How this stability is acquired is shown in Chapter 5.

This chapter has introduced basic terminology used in traffic management, as well as a short descrip-
tion of currently employed traffic light controllers and the main difference between these controllers
and Smart Traffic. A traffic light controller needs to assign green phases to multiple lanes which are
in conflict with one another. The green phases of each lane need to be long enough to allow the
waiting traffic to depart but not too long as other lanes cannot get served due to conflicts. Currently
the FTS handles this problem by taking average arrival rates in account and assigned green phases
of fixed order and length. The VAC changes the length of each green phase according to the actual
traffic situation. Smart Traffic chooses the next lane to serve based on the waiting time of actual and
upcoming traffic and adapts the duration of the green phase accordingly. To compare these three
different traffic light controllers a model is created which simulates traffic behaviour around intersec-
tions controlled by traffic lights. By controlling the intersection with each controller the performance
is measured and compared. The next chapter focusses on the construction of the model and how
traffic behaviour is simulated.

TU/e 7



Chapter 3

Model assumptions

The previous chapter has shown basic notation used in traffic management and different traffic light
controllers including Smart Traffic. To determine the performance of Smart Traffic the performance
of these controllers need to be compared. A traffic model is created which simulates traffic dynamics
and queueing behaviour around traffic lights. In this chapter we present the different traffic dynamics
occurring around an intersection and the assumptions made to create the model. The assumptions
made in this chapter are used throughout the rest of the report unless stated otherwise. These
assumptions are made with respect to:

• Car behaviour

• Acceleration

• Saturation flow rate

• Effective green and red time

• Stacking Queue

• Reaction time

• Arrivals

As Smart Traffic aims to minimize the waiting time (or delay) per car, the assumptions should have
minimal influence on the waiting time. The waiting time is calculated in the following way: Car i
travels a distance s over time period t. Driving at its desired speed V the total travel distance would
be V · t = smax. Any delay the car experiences leads to a different travelled distance s thus a waiting
time Tl of:

Tl =
s− smax

V
. (3.1)

Only when the incurred waiting time by the model, with assumptions, is close to the waiting time
occurred in a real traffic situation can the model be used as a good representation to test Smart
Traffic.

After the assumptions are explained a short description of the most important settings of the model
are given. For a complete overview of how the model is constructed see Appendix E. The traffic
dynamics of this model are subsequently validated. To achieve this an intersection with a FTS (see
Chapter 2) is modelled. The results of the model are compared to results generated by simulation
(VISSIM) as well as a theoretic approach. The simulation with VISSIM is assumed to recreate the
‘real world’. The theoretic approach is used to calculate the mean waiting time. In this report the
approach of van den Broek is used [13] as well as an adaptation to calculate the mean waiting time in
continuous time [14]. Comparing the model to the ‘real world’ and the theory provides an indication
of how accurate the model is. The traffic dynamics of the model need to be correct to ensure that
Smart Traffic uses a correct input. In the upcoming chapter the model is expanded with the Smart
Traffic traffic light controller and tested.
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Acceleration

3.1 Car behaviour

On the road a lot of different cars exist with as many different drivers and behaviour. As we are
not interested in all the possible behaviour and to improve clarity only one type of car, and driving
behaviour is modelled.

Assumption 3.1) Single type of identical traffic. The arriving traffic is composed of only one type
of traffic, e.g., only passenger cars.

This assumptions does not only assume that only passenger cars arrive in the system it also states
that every car has the same behaviour. This means the desired speed (V ) for each car is the same.
As V is constant no overtaking occurs in the system. Furthermore, the size of each car as well as the
desired safety distance in between cars when queuing is constant as well.

Driving consist of constantly evaluating the surroundings and changing the driving speed accordingly.
VISSIM is doing this in according to the Weidemann-model [15]. In VISSIM every time step of 0.1
s the behaviour of each car in the system is recalculated. On the other hand due to Assumption 1,
the model can work with discrete events; only when the car needs to take action (for example a light
has turned red) a calculation takes place. As the behaviour of each car is identical the results are
predictable and consistent. This means the model needs to perform less calculations which are also
less complex. Thus, less computing power is needed and the model takes less time to produce results.

3.2 Acceleration

As stated before, an important aspect of a continuous simulation is the constant changing of driving
speed according to the current situation. However to create a —fast— discrete model a constant
driving speed V is assumed. Alternatively, cars can be at a standstill; V = 0. Any acceleration
behaviour is not taken into account. Instead it is compensated for with a delay. See Figure 3.1.

Assumption 3.2) Traffic follows a GO/NOGO rule. Traffic is either driving at the desired speed or
at a standstill in a queue. There is a fixed delay before a car starts moving
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Figure 3.1: At t=0 the first car starts accelerating (a = 2), when half the desired speed (V = 15) is reached at t = 3.75 the
second cars starts driving with speed V . Both cars cover the same distance thus their delay is the same

Figure 3.1 shows that a GO/NOGO driving model gives the same results for a model with constant
acceleration as long as the GO/NOGO model starts at a later time. This period of time is exactly the
time it takes for a car with constant acceleration to reach half of its desired speed. The acceleration
delay is exactly: V/2a. The acceleration itself, for speeds under 100 km/h, is relatively constant at
around 2.8 m/s2.

Assumption 3.3) The acceleration delay is only dependent on speed V . The total delay consist of:
V/2a, this delay occurs every time the car stops regardless of the situation or waiting time.
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In case of deceleration the figure can be interpreted exactly the same but should instead by read from
right to left. The results remain the same as well as the overall delay (3.1) suffered by each car.

3.3 Saturation flow rate

The saturation flow rate is the maximum rate at which cars can leave the system. Consider a queue
with an infinite amount of cars; The first couple of drivers will cross the light while still accelerating
taking up a relative long time before the car has completely crossed the line. At higher speeds the
crossing occurs faster. While the safety distance between cars grows (each car becomes ‘larger’) the
overall flow rate will increase until cars cross with the desired speed V . This behaviour is shown in
Figure 3.2.
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Figure 3.2: Inter departure times between cars when they cross the traffic light. First and second car of the Queue are an
exception (1.06 s and 2.55s) others follow an exponential distribution, after 8 cars have left the queue the remaining
cars cross with the desired speed (here 50km/h) and with the saturation flow rate μ.

The results of Figure 3.2 are gathered by looking at 360 cycles of a traffic light with an infinity
queue. The first car of the queue is an exception; it leaves the simulation around 1s with a very small
deviation as this delay is almost completely the driver reaction time. The remaining cars follow,
roughly, a exponential distribution and quickly approach the maximum departure rate.

As stated by Assumption 3.1), each car acts the same thus there is no variance possible. Furthermore
by Assumption 3.2) cars only drive at the maximum speed. This means that there is no distribution
of inter-departure times of cars as this would imply a different speed. For the sake of consistency and
clarity only the maximum flow rate is used in the model.

Assumption 3.4) The outflow occurs at the maximum flow rate μ. The outflow occurs at the
maximum rate but only starts after the light has turned green, the acceleration delay has passed and
the first driver reacted.

3.4 Reaction time

The reaction time of each driver is around one second, it determines how fast the cars can start
accelerating and thus leave the queue. A slow reaction time does not only influence the car’s own
delay but also the cars behind as they cannot start driving.

The departure rate is already known (Section 3.3). A factor in this departure rate is each driver’s
reaction time. Looking at VISSIM this reaction time is only a factor for the first couple of cars. In
general, drivers look ahead thus they see that the light has turned green even if they are further back
in the queue and cannot do anything. When it is their turn to act they do so immediately. So only
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the reaction time of the very first driver determines how quickly he can leave. The second car in
the queue might still need some reaction time but this is, in most cases, very small (under 0.3 s).
Exceptional cases were a driver does not notice the light is green for several seconds or the car stalls
are not taken into account.

In the model it is assumed that the reaction time is a fixed delay. This delay is simply added to the
acceleration delay as each car in the queue receievs the same penalty. The sum of acceleration delay
and reaction time is called the set-up delay and occurs each time a light turns to green while a queue
is present. There is no need to model additional reaction time per driver.

Assumption 3.5) Reaction time is zero. Reaction times are a fixed factor in the acceleration delay
and already imbedded in the model

3.5 Effective green and red time

A traffic light has 3 possible states: Green, Red and Yellow. Mathematically it suffices to only have
two states: Effective green and effective red [16]. The effect of this is explained in this section.

First looking at when a light switches from red to green; in Figure 3.1 and Section 3.4 it was shown
that cars can follow a GO/NOGO rule as long as a set-up delay is taken into account. The set-up
delay lasts for exactly: ts = tacc + treaction with tacc = V/2a and treaction = 0.5s. This means
that when a light turns green AND a queue is present for the first ts seconds no cars will cross the
intersection. In case there is no queue ts = 0.

Secondly when the light is green cars leave according to the saturation flow rate μ. Cars will keep
leaving at this rate until the light switches or the queue is empty. When the queue is empty cars
leave with the arrival rate λ(t).

Finally the light can turn yellow. During the yellow period some cars will chose to stop while others
will keep driving. This means the outflow rate μ will continuously drop during the yellow period. It
can safely be assumed that no cars drive through the red light. The probability of stopping is directly
related to the passed duration of the yellow light. As each driver behaviour is identical it is known
when cars will keep driving (effective green) or stop (effective red). In VISSIM driving behaviour
during yellow is tested. Departures occur at saturation rate μ with a speed of 50 km/h. It is found
that 50% of the cars stop after 2 seconds of yellow light. This rate is not dependent on the total
yellow duration since this time is unknown to the drivers. It is dependent on the driver’s speed but as
we focus on traffic within a city and low speeds this gives only small fluctuations. For this report it is
assumed that each green duration is extended by 2 seconds unless stated otherwise. The remaining
part tl of the yellow duration is assumed to be effective red.

The total effective green and red times can now be calculated. Assume a cycle of length C seconds
with a red duration or R seconds, green duration of G seconds and yellow duration of Y seconds.
According to the definition the effective red time of r seconds becomes: r = R + ts + tl. Effective
green time takes a total of g seconds with g = C − r. However, we are interested in minimizing the
delay per car (3.1) thus it is expedient to try and have a set-up delay ts of 0 s. In other words make
sure the light turns green just before a queue starts forming. To visualize this aspect ts is considered
part of the effective green period. The definition for effective red becomes; r = R + tl and effective
green; g = C − r.

3.6 Stacking Queue

Normally when a queue is formed it will propagate backwards. According to Assumption 3.1) each
car has the same size and the same safety distance so the matter of propagation is exactly know.
However, Figure 3.2 already shows when each car of the queue crosses the stop-line. Furthermore
through Assumption 3.2) the movement speed is known. This means that there is no need to model
the backwards propogation of the queue.
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Thus, when a car enters the system it will drive all the way to the stop-line upon which it stacks on
top of the already waiting cars present. In this case First-In-First-Out (FIFO) is maintained

Assumption 3.6) The time it takes for a car to reach the stop line under queued condition is the
same as reaching the position in free flow conditions. Arriving cars stack on top of the already present
queue at the very front of the stop-line.

Assuming this simplifies the travelling time; each car drives the same distance at the same speed.
The number of cars in the queue only influence when the car can leave. Any queue behaviour which
would normally occur (moving forward but remaining in the queue) does not need to be modelled.

3.7 Arrivals

An arriving car has no influence on the other arriving or departing cars in the system and occurs at a
random point in time. While there are times of high intensity (rush-hour) and low-intensity (night)
each individual arrival still independent from each other. As such arrivals are modelled as a poisson
process.

Assumption 3.7) Arrivals in a lane occur through a poisson process. Each car drives independent
from one another and as such does not influence the arrivals of other cars.

However, traffic lights are often part of a network. An upstream traffic light determines when the
cars are able to enters a downstream intersection. In these cases the arrivals into the downstream
intersection are not Poisson. Only when the distance in between traffic lights is very big and overtaking
can take place or a lot of (non-regulated) sideroads also enter the system the arrivals are Poisson.
Especially in cities this is seldom the case, instead a moving group of densely packed cars is sent
between intersection. These platoons differ in frequency and size due to the different settings of the
upstream traffic light. To create this behaviour a dummy traffic light is positioned at the edge of
an arriving traffic flow. While not part of the system is takes Poisson generated arrivals and only
lets them pass when the light is green. The settings of this dummy light, and thus the way cars
and platoon enter the system can be manually set. This adaptation creates a more realistic arrival
process.

With the manner of arrivals known the most important assumptions for the traffic dynamics are
presented. A short description of the most important settings of the model are presented to show
which the different situations the model can recreate.

3.8 Model settings

Under the assumptions presented in the previous sections the traffic dynamics are modelled. In this
model several settings are available for a user to create arbitrary intersections. Each intersection
consist of several lanes, with specific features for each lane, and a controller that ensures the traffic
light is behaving in a proper way. First the lane specific settings are given

• Arrival rate, Number of cars arriving per lane (given in car/h), these arrivals occur as a Poisson
process unless specified otherwise (see below).

• Platoons, Cars are put into platoons by using a dummy traffic light that is not part of the rest of
the model. The intensity (number of cars in each platoon) and frequency (how often a platoon
arrives) can be set. This remains a stochastic function dependent on the arrival rate.

• Speed, The maximum allowed speed on this lane. A higher speed leads to a different set-up
delay, see Section 3.5.

• Detector distance, Distance in m of the detector furthest away from the stop line. As soon as
a car crosses the detector it has entered the system. There is another detector at the stop line
which ensures cars leave the system.
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Apart from the individual lane settings the intersection has one controller which requires specific
settings of its own.

• Conflictmatrix, Matrix that shows which lanes are in conflict with one another. Additionally it
shows clearance times; the time it takes for the remaining traffic to leave the intersection before
the light turns green. During this time both traffic lights are red.

• Minimal green time, The minimal time a traffic light remains green before it is allowed to switch
states.

• Maximal green time, The maximal time a traffic light is allowed to stay green, the green period
is forced to end after this time regardless of traffic.

All these settings given above can be set by the users and are enough to create the model. The
user can thereafter create any local intersection and by applying different traffic light controller see
the resulting throughput. In the following section the validation is done by using a FTS as we are
interested to check the difference in traffic dynamics between the model, VISSIM and theory.

3.9 Validation

Consider a simple intersection of 3 lanes as given in Figure 3.3.

Figure 3.3: Intersection with 3 lanes. The left turning lane (L9) has conflicts with the lane that goes straight (L1) and the right
turning lane (L2)

.

The optimal FTS for this system is displayed in Figure 3.4.

Figure 3.4: Snapshot of the Fixed Time Schedule for a 3 lane intersection. Clearance times are taken into consideration.

.

The inflow rate λi for each lane are; λL1 = λL2 = 100 car/h and λL9 = 150 car/h. The allowed
speed for each lane is set at 50 km/h. Car arrivals occur through a Poisson process, there are no
generated platoons. The exact derivation of the mathematical approach can be found in the respective
papers [13], [14].

The mean waiting time for the four approaches are given in Table 3.1.

The resulting waiting time across the different approaches are close to one another. Assuming VISSIM
is the real situation all answers show a deviation close to or within 10% of the mean waiting time.
Deviations naturally occur as VISSIM is much more advanced than the model or the mathematical
approach.
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Table 3.1: Different results for the mean waiting time for a 3 lane intersection controlled by a FTS. Results are obtained through
simulation (Model, VISSIM) or through a mathematical approximation (vandenBroek, Continous).

Model VISSIM vandenBroek Continuous
L1 7.36 7.64 7.33 7.60
L2 13.6 12.16 12.95 13.27
L9 12.25 11.28 11.67 11.98
Average 10.39 9.97 10.18 10.47

The most important difference is that VISSIM runs continuously; meaning that every 0.1s every
car in the system will determine which action it needs to take. This is similar to an actual driver:
Depending on the input driving behaviour will change (Does the light turn red? Did the vehicle in
front brake or accelerate, how much traffic is on the road? etc.). The model however is much more
discrete: Each car that enters the system knows exactly when it reaches the stopline. When a queue
departs each individual car knows when it can leave. This difference in calculation methods is most
obvious in the passage of cars from a queue at the stop line. In VISSIM these occur as shown in
Figure 3.2 while in the model there will be no passages during set-up delay ts and afterwards with
saturation flow μ. So while the processing of traffic dynamics is completely different between the
model and VISSIM the mean waiting time remains within acceptable margins.

In this chapter the assumptions used in the model are explained. These assumptions serve to simplify
traffic dynamics around intersections which improve computing speed during simulation. By applying
the assumptions the model is created, the different settings that serve to manually create an intersec-
tion for the model are shown. Simulations are performed to test the performance of the model. This
performance is compared between similar simulations in another traffic simulation program (VISSIM)
and by utilizing theoretical approach of the mean waiting time. As the traffic dynamics of the model
are now validated the Smart Traffic controller can now be build and implemented into the model.
In the next chapter the optimization strategy of Smart Traffic is described after which the model is
used to gather results for different cases to determine the performance of Smart Traffic.
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Chapter 4

Smart Traffic control

With the underlying traffic model known and validated Smart Traffic is implemented to control the
traffic lights and increase throughput of an intersection. This chapter describes how the Smart Traffic
optimization works and it is tested on a simple, local, intersection. A local intersection, in contrast to
a network, is an intersection in which the arriving and departing flows are never blocked or otherwise
regulated. Cars may arrive in a platoon fashion but otherwise occur randomly. The results and
advantages of Smart Traffic on a local intersection are also given in this chapter. With Smart Traffic
executed and tested on a local intersection, the next step is to control a network of intersections
with Smart Traffic. A network of 4 intersections with multiple traffic flows is considered, with each
intersection individually controlled by Smart Traffic. Adaptations for Smart Traffic to control a
network as well as results are given. In the next chapter a network is tested which is known to cause
instability when intersections are locally controlled.

4.1 Smart Traffic Optimization

Assume an intersection with two conflicting traffic flows as shown in Figure 4.1. Clearance time
between the two lanes is 5 seconds and the underlying traffic model works according to assumptions
made in the previous chapter. Cars are spotted well in advance to provide enough time to perform
the optimization.

Figure 4.1: Intersection with two conflicting directions. Clearance time between traffic lights is 5 seconds

.

4.1.1 Assumptions

The Smart Traffic optimization used in this rapport aims to minimize the waiting time per car. Other
possible optimization strategies might be to minimize the average stops per car or CO2 output but
these cases are not considered in this report. The two most important aspects of Smart Traffic are
described below:

• The schedule (order and times in which traffic light turn green) is calculated and fixed for at
least 30 seconds in the future.

An upcoming development of driving is the interaction between driver and road. An aspect in this is
that traffic lights are able to communicate with the car to tell the driver when his traffic light turns
green. This implies that once a green light has been scheduled it cannot be rescheduled to prevent
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mixed signals to be sent to the driver which in turn may lead to dangerous situations. Additional
the schedule is send to surrounding intersections in the network to serve as input as to when traffic
is arriving at these intersections

• A green period may end after the maximum green time has elapsed or when a gap occurs
between cars.

A gap is defined as three seconds without departures. For safety reasons it is desirable to not change
the traffic light from green to red while cars are leaving at the maximum saturation rate. For this
reason the traffic light can only change when a gap occurs between departures. Another possible
time in which light can switch to yellow is when the maximum green time is reached. This maximum
green time is a setting for Smart Traffic and can be manually set. It is not the maximum green time
as defined for FTS and VAC. For Smart Traffic the maximum green time is the time after which
another optimization instance is triggered. It is possible that the optimization shows that keeping
the current light on green is best; extending the green phase with another maximum green time (or
when a gap occurs).

4.1.2 Traffic dynamics

To describe the traffic dynamics we use much of the same notation as given by Lämmer [17]. In
Appendix A a step-by-step example of the calculations given below is shown. Assume road section i
with length Li and speed limit Vi. Traffic dynamics are represented by stochastic arrival flow Qarr

i (t)

and departure flow Qdep
i (t) with saturation flow Qmax

i . As the travel time (Li/Vi) is known it can be
predicted when a car reaches the stopline.

Qexp
i (t) = Qarr

i (t− Li/Vi). (4.1)

The total number of vehicles to reach the stop-line Narr
i (t) at time t is given by.

Narr
i (t) =

∫ t

−∞
Qexp

i (t′)dt′. (4.2)

In the same manner the total number of vehicles that have left Ndep
i (t) road section i is given by

Ndep
i (t) =

∫ t

−∞
Qdep

i (t′)dt′. (4.3)

The difference between Ndep
i (t) and Narr

i (t) gives the number of cars in the queue ni(t). As such it
also gives the increase of the waiting time wi(t) over time.

dwi/dt = ni(t) = Narr
i (t)−Ndep

i (t). (4.4)

The arrival process and corresponding waiting time described by equations (4.1), (4.2),(4.3), (4.4), is
visualized in Figure 4.2.

Now assume the factor γi which is either 0 (red) or 1 (green). The evolution of the queue length can
now be expressed as a nonlinear hybrid dynamical system [18] [19]

dni

dt
=

⎧⎨
⎩

Qexp
i (t) if γi(t) = 0

Qexp
i (t)−Qmax

i if γi(t) = 1 and ni(t) > 0
0 if γi(t) = 1 and ni(t) = 0

(4.5)

Equation 4.5 shows that there are 3 possible evolutions for the queue length; it grows during the red
period, it shortens when green and is at minimum zero when the queue has dissolved but the light
remains green. In the last state traffic passes the intersection without stopping. These equations
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describe how the waiting time evolves over time t for a road section i with a traffic light. To complete
the description of the hybrid dynamical system, losses such as acceleration and reaction time also
need to be taken into account (see Chapter 3). With a complete description of the system, the needed
green time to clear a queue can be anticipated

Figure 4.2: Arrival process (top figure) of cars driving towards an arbitrary intersection. The line starts when cars arrive in
the lane Qarr

i . As Vi is known so are the expected arrivals at the stopline Qexp
i . Vehicle departures are shown as

negative distance distance from stop-line. The supplementary queue length (bottom figure) for these arrivals and
departures is also shown. Arrivals leads to a growing queue Narr

i followed by a growing number of departed vehicles

Ndep
i . The cumulative waiting time incurred as given by the blue area.

4.1.3 Required green time

The traffic light has two possible phases: red and green (Section: 3.5). In turn each of these states
consist of smaller sub-phases which are shown in Figure 4.3.

Figure 4.3: Arbitrary queue length evolution with different sub-phases of the traffic light. During a clearance phase traffic
is cleared from the intersection. During set-up the acceleration and reaction delay, see assumption 3.3 and 3.5,
no departures occur. During the clearing phase departures occur at maximum saturation flow μ while during the
extension phase no queue is available and departures occur at arrival rate λ(t).

Figure 4.3 shows how the queue length evolves according to (4.4) and (4.5). The switching losses τ
consist of the clearance time between road sections. The set-up time during the green period consist
of the acceleration delay and reaction time. If there is no queue and a car arrives immediately after
the light turns green it occurs no set-up delay. The clearing phase g(t) is dependent on the number
of cars waiting at t + τ as well as any arriving cars Qexp

i (t) during the clearing period. During the
clearing period cars are served with saturation flow Qmax

i . It is possible to extend the green period
in which case cars leave the intersection without stopping (4.5).

Note that t + τ + g(t) provides the time at which the queue has been cleared. This is not the same
as the time in which the green period ends ĝ(t), a green period may only end when a gap h occurs.
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ĝ(t) =

{
g(t) if ni(t+ τ + g(t) + h) = 0
t+ τ + g(t) = t′ otherwise

(4.6)

with t′ the first arrival after (t+ τ + g(t)) given by the smallest solution of the following expression:

Nexp
i (t′) > Nexp

i (t+ τ + g(t)) (4.7)

Since a new car can reach the stopline before (t′ + h) (4.6) is iterative until a gap is found.

The maximum green time (section 4.1.1) does not influence the required green time ĝ(t). It merely
ensures that when the greentime becomes large Smart Traffic recalculates the required green time
with the newest data (additional Qarr

i (t)) and if necessary switches the active traffic light. When to
switch the traffic lights is described in the next section.

4.1.4 Waiting time optimalization

Smart Traffic aims to minimalisme the waiting time. It is known when a queue (if any) is cleared and
a gap occurs; ĝ(t). In case this time is far into the future it is limited to the maximum green time
tmaxG. It is assumed that tmaxG > τ to prevent a new optimization to take place before a light turns
green. Taking the two lane intersection of Figure 4.1 into account there are two possible options:

a. Extend the green phase until a gap occurs.

b. End the green phase and switch to the other traffic light and serve this until a gap.

In both cases we are interested in how the queue length (4.5) and thus waiting time (4.4) evolves over
both lanes and how long the next instance lasts. Assume Lane 1 is green at time t0: For option (a.)
it is known that at the end of this phase the queue is empty and the remaining waiting time for this
lane is 0. This happens after ĝ1 . Meanwhile for lane 2 the total waiting time grows. This growth
is linear dependent on number of waiting cars n2(t). Find the first car that is waiting in the current
queue, i.e. the highest value of t for which

Nexp
i (t)−Ndep

i (t) = 1 (4.8)

This time t∗a is the time at which the queue has formed and the total waiting time for a lane starts
growing. The remaining waiting time at the end of option (a) for lane 2 is

WTa =

∫ t0+ĝ1

t∗a

n2(t)dt (4.9)

With option (b) a clearance and set-up phase is first initialized (see Figure 4.3) for lane 2 before
the queue is being served. The duration for lane 2 is given by τ + ĝ2, at which point the remaining
waiting time for lane 2 is zero. However before lane 1 can get served (again) another period τ has
elapsed. The waiting time for lane 1 is again determined by first finding the arrival time of the first
car in the queue t∗b (4.8). The remaining waiting time for option (b) is:

WTa =

∫ t0+ĝ2+2τ

t∗b

n1(t)dt (4.10)

The two formulas presented above (4.9) (4.10) give the total waiting time at the end of the green
phase for option (a) and (b). We are interested in the rate at which this waiting time is reached.

WT 2
a /ĝ1 ≤ WT 2

b /(ĝ2 + τ) (4.11)

The above criteria can be generalized to any traffic flow i. As we are only interested in a two lane
intersection the generalization is not performed in this chapter, see Lämmer [17] for this approach.
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The main difference between the criteria as described above and conventional traffic light control is
that queue length ni(t) takes future arrivals into account. Meaning that green phase duration ĝi
takes the current and future queue length into account as well as arrivals that occur immediately
after a queue has been cleared. Similarly not only the losses of switching are taken into account but
also the additional losses of switching back, both represented by τ .

As the aim is to minimize waiting times platoons are served automatically, since when a platoon
arrives in the system the value of ni jumps to a higher value and with it the value ĝi. If a platoon is
actually served in time (without stopping) depends on other traffic dynamics. A gap or the maximum
green time needs to be reached before a switch can actual occur.

4.2 Local Intersection and results

Assume the intersection of figure 4.1 with identical lanes with the following settings:

Table 4.1: Lane Settings of simple intersection

λ 600 cars/h
L 1000 m
V 50 km/h
τ 5 s

With L and V known the travel time for each car is L/V = 72s. Three different traffic light controllers
are used for this intersection: FTS, VAC and ST. Arrivals occur at random but cars do sometimes
arrive in a platoon fashion. This can be visualized as one traffic light downstream which creates
platoons and multiple side-lanes from which cars join the main lane at random. A sample of the
queue evolution for a single lane for each of these controllers is shown in Figure 4.4

As stated in the previous section Smart Traffic aims to minimize the waiting time, this is achieved
in two ways: The queue length is smaller when the light turns green and the average waiting time of
cars is lower. Practically this is achieved by trying to clear the queue (in a platoon fashion) so that
upcoming cars can join this platoon without occurring any set-up delay (see Figure 4.3). If the queue
cannot be cleared in time, because there is no gap on the other lane, cars often join the queue while
the light is green, having received only a minor delay.

The results of this intersection for each traffic light control is shown in Table 4.2

Table 4.2: Mean waiting time and percentage of cars which do not incur stops. Averaged over 10 runs of 10 hours of simulation

Waiting time [s] Non-stopping [%]
μ σ % μ σ

FTS 9.63 0.059 100 22.47 0.571
VAC 9.32 0.084 96.8 11.17 0.529
ST 5.38 0.023 55.87 22.04 0.700

Results for the same intersection but with different arrival rates and platoon sizes are found in
Appendix B. The general results are: How bigger the platoons are that arrive in the system how
better ST performs, this can lead up to a 50% decrease in waiting time in comparison with a FTS.
Over half of the cars cross the intersection in a green wave manner and thus do not have to stop. If
arrivals are purely random but the intersection is not yet saturated ST the mean waiting time is still
less than FTS but more cars need to stop. Due to the nature of ST it naturally creates platoons; these
are the most efficient way to clear an intersection. When the intersection is saturated and arrivals
occur at random FTS performs slightly better (-1% waiting time) than ST.
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Figure 4.4: The queue length evolution over a single lane for a two-lane intersection with identical lanes and different traffic
light controllers. (a) shows a FTS, (b) shows a VAC and (c) shows ST.

4.3 Evaluation and network control

Smart Traffic is implemented on a local, two-lane intersection. It shows an overall decrease in average
waiting time. An important aspect in this is the predictability of arrivals as well as the required green
time. By calculating the needed green phase to clear the queue (and other arrivals if so desired) the
waiting time over all cars in the intersection can be predicted. As such the green phase which leads
to the least amount of waiting time of the system can be chosen. The true strength of Smart Traffic
lies in arrivals which occur in platoons, by being able to predict when a platoon is forced to stop
Smart Traffic can take preliminary action to ensure the platoon receive a green light and pass without
incurring any waiting time.

On departure from a traffic light cars travel in a platoons fashion. A downstream traffic light that is
controlled by Smart Traffic sees these platoons coming and by clearing the current queue just in time
the platoon joins up with the back end of the queue without stopping. This action creates bigger
platoons which can be handled by Smart Traffic and further decrease waiting time.

The next section focusses on small networks of intersections controlled by local Smart Traffic instances.
Each instance (intersection) controls similar to the used example of Figure 4.1 and does not take into
account which directions are being served by other intersections. Forecasted departures are shared
with downstream intersections to ensure the downstream intersection has as much information as
possible about upcoming arriving traffic. This is especially useful with intersections that are closely
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placed to one another as the forecast horizon (30 s) may be bigger than the travel time between the
intersections. The section focusses on a network were instability (growing queues over time) may
occur, for the results of a basic network see Appendix C. The local control is tested on a network in
which the traffic flows influence on another, so called dynamic feedback. The adaptation needed to
execute Smart Traffic on the network and results are presented in the next section.

4.4 Berenkuil Roundabout

The Berenkuil is a roundabout located in Eindhoven. It is part of the main road around Eindhoven
and the main road (N270) between Eindhoven and Helmond also enters the Berenkuil from the eastern
direction, as such a lot of traffic is process by the roundabout. To better control the traffic flows
on the Berenkuil traffic lights are placed on the entry ways towards the Berenkuil as well as on the
Berenkuil itself. The traffic lights effectively split the roundabout into 4 parts, each part can be seen
as an individual intersection. The traffic flows between these parts highly depends on one another
which leads to additional constraints for stability that are further explained in Appendix F. The
schematic lay-out of the roundabout with lane numbering is shown in Figure 4.5.

Figure 4.5: The four intersections of the Berenkuil with all traffic flows and lane numbering, lanes 62,65,68,71 combine all
feeding traffic flows. Traffic flows 1,2 and 3 consist of traffic driving on the N270 and arrives from Helmond. Flows
7,8,9 consist of traffic departing from the centre of Eindhoven

.

Not all directions of the Berenkuil have the same number of lanes assigned to them. Moreover the
arriving traffic flows for traffic turn left or going straight position themselves on the same lane thus
they share the available capacity. On the other hand, traffic flow 1 does not enter the roundabout
at all instead turning away just before reaching it, as such it has no traffic lights and is not taken
into further consideration. The available capacity for each lane as well as arrival rates for morning
and evening rush hours are presented in Appendix G. Similar to the intersection of Figure 4.1 Smart
Traffic controls a single intersection. The berenkuil consist of four intersections so each intersection
is independently controlled by Smart Traffic. We are interested in the queue sizes over time for each
intersection, as seen in Appendix G intersections have a high utilization. Smart Traffic needs to
correctly schedule each green phase to ensure departures occur at or around the maximum saturation
flow. If the scheduling is not done correctly this leads to a decrease in throughput and a growing
number of cars waiting. This problem is further complicated by having only limited information
about upcoming arrivals for each intersection.
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Each Smart Traffic instance only controls its own branch of the roundabout. For traffic that is
approaching the roundabout the arrivals are known from upstream sensors. The position of traffic
driving on the roundabout is known by the Smart Traffic instances. An upstream instances schedules
the departures of each car, the time of departure from this schedule is send through the downstream
instance. This way downstream instances know about upcoming arrivals and start scheduling them.
Additionally, there is no individual traffic light control for arriving directions (for example 4,5,6). As
they use the same lanes all lights either turn simultaneously green or red. The same holds for the
lights that are positioned on the intersection, serving lanes 62, 65, 68 or 71. As such each Smart
Traffic instance has two possible directions it can serve; traffic positioned on the roundabout or traffic
entering the roundabout.

To simulate this network the following assumptions are made:

• The distance between each of the four branches is 20 m.

• Historic arrival rates and lane capacity are used.

• Growing queues on the roundabout do not lead to queues blocking directions, an arbitrary
number of cars can wait on the roundabout

• Buffer capacity is shared between lanes that receive simultaneously green, cars are evenly dis-
tributed across all lanes regardless of direction they are headed.

• Smart Traffic knows the destination of each car. For example; if six cars are waiting for a, shared,
lane it knows that two cars turn left. These two are scheduled and presented to the downstream
instance. This way downstream instances receive accurate information about upcoming traffic.

• Traffic never makes an U-turn over the roundabout.

Given the intensities of the morning rush-hour as presented in Appendix G lane 65 receives the most
traffic that is making a left turn (arriving from lane 12). In addition, the lane needs to handle
simultaneously arriving traffic from lane 8 and 9. The resulting queue-evolution with two different
traffic flows (lane 12 and the combination of lane 8 and 9) entering this lane is presented in Figure
4.6.

Figure 4.6: Queue size over time for lane 65 with morning rush-hour traffic intensities. Traffic flow nr. 12 enters this lane after
being placed in the queue of lane 68. Traffic flow 8 and 9 enter simultaneously with each other. Traffic is processed
in the order of arrival (FIFO). Both individual traffic flows as the combined flow of lane 65 is given.
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As can be seen in Figure 4.6 each car is processed in order of arrival, multiple flows arrive in lane 68
but these are all processed as one single traffic flow. During a green phase additional arrivals may
occur which arrival rate is higher than the process rate of the lane, this leads to a growing queue
during a green period. Due to the close proximity of the individual intersections Smart Traffic may
experience arrivals that occur during a green phase and can be processed in that same green phase.
Smart Traffic correctly extends the green phase to ensure these extra arrivals are also processed.
The overall resulting behaviour is stable for each of the four Smart Traffic instances. As seen in the
Figure the queue length does become large, larger than the available room for cars to be on. So
while the overall performance is stable and all cars are eventually processed by the network the queue
length in between intersections become too large. This can be prevented by increasing the cost for
cars that are waiting on the intersection with an arbitrary penalty. By introducing a penalty Smart
Traffic automatically prioritize these queues but this does lead to a decrease in overall performance.
This example shows that Smart Traffic can correctly process the traffic with intersections in close
proximity and with multiple traffic flows.

We have seen the increased performance of Smart Traffic in comparison to other traffic light con-
trollers as well as the performance of Smart Traffic on a network of intersections. The increased
adaptability of Smart Traffic leads to shorter waiting time for involved traffic. Furthermore, a net-
work of intersections is controlled with each intersection of the network controlled by a Smart Traffic
instance. By scheduling the departures from a network and sending this information to downstream
intersection a stable network is established, queue lengths and waiting time remain bounded over
time. However, networks exist were the local adaptability of Smart Traffic does not increase perfor-
mance instead it causes undesirable behaviour which lead to increase of waiting time and, in worse
case, to unstable behaviour as queues can grow arbitrarily. A network were this is the case is shown
in the next chapter. The cause of this undesired behaviour is also explained in the next chapter.

TU/e 23



Chapter 5

Network instability

In the previous chapter we have seen the Smart Traffic controlling an isolated intersection as well
as network of intersections controlled by local Smart Traffic instances. It is shown that overall
waiting time decreases for an isolated intersection under most circumstances. Controlling a network
of intersections generally shows in stable results, by sharing arrivals and departures time between
intersection enough information is available for Smart Traffic to establish stable control. However,
this does not guarantee stable behaviour in all possible network settings. In this chapter we show
an example of network that becomes unstable (queues growing arbitrary large) when executed by
local Smart Traffic instances, even though a stable FTS has been shown to exist. To explain what
causes the instability we define the amount of work in a system and introduce an extra constraint
for stability; the amount of work should decrease over time. We show that local controlled Smart
Traffic instances violate this constraint which causes the instability. In the next chapter we propose
a supervisor which aims to stabilize the network by utilizing the theory explained in this chapter.

5.1 Kumar-Seidman Network

Consider the Kumar-Seidman network [3] as depicted in Figure 5.1, this small network consist of
only two intersections and two arriving traffic flows. The two traffic flows are in conflict at both
intersections.

Figure 5.1: The Kumar-Seidman network. Traffic enters through L1 or L1′ crosses the first intersection and merges into one
lane in the distance between the intersection. All cars turn left on the second intersection they encounter (L2 or
L2′.) This causes a conflict with the other lane of the intersection.

For this example a stable FTS exist [3] allowing the network to be controlled in such a way that the
queues remain bounded. Unlike a normal FTS this is not done by clearing all queues during each green
phase, instead green phases switch even when clearing a queue to increase overall performance [20].
The FTS is thus designed for both intersections and not for each individual intersection. The linking
of intersections is needed to ensure stability in this case. Without linking we test this network by
applying local Smart Traffic for each intersection. The decentralized approach of Smart Traffic tries
to control each individual intersection as best as possible. This approach is opposed to a centralized
Fixed-Time Schedule which takes both intersections, and green phases, into account. The arrival rate
for each lane is λi = 1100 car/h, platoon arrivals are omitted from this example and the clearance
time is σ = 3s. Saturation flow is set on μi = 0.5 car/s, in case two lanes can serve a direction the
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maximum saturation flow doubles. The distance between intersections is 100 m at 50 km/h this gives
a travel time of 7.2 seconds. The maximum allowed green time is set on 30 seconds. The resulting
queue evolution of intersection N1 is shown in Figure 5.2.
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Figure 5.2: Queue evolution of the left intersection (N1) in the Kumar-Seidman Network when controlled by local Smart Traffic
instances. Both queues keep growing larger over time. The green and red duration are also presented.

The figure clearly shows a growing queue for both lanes, the results of the other intersection (not
showed) shows a similar result. Queues are eventually emptied but the queue sizes and waiting time
keep growing over time. Looking at the figure from minute 17 till 24 only lane N1L1 is served as no
cars are arriving at N1L2. Smart Traffic, seeing only this situation decided to keep serving lane L1.
However, taking the lay-out of the network of Figure 5.1 into account these arrivals do occur but are
held up by intersection N2. When these cars finally are processed by N2 they form a platoon of over
300 (!) cars arriving in succession. This clearly shows that purely local controlled intersection may
results in unexpected behaviour leading to queues growing arbitrarily large. We aim to explain this
instability by introducing the amount of work in a system.

5.2 Work evolution in the Kumar-Seidman Network

First we reintroduce the Kumar-Seidman network of Figure 5.1 as a manufacturing system, this makes
it easier to describe the dynamics in the system which are explained in the next section.

Figure 5.3 is the same network as described in the previous chapter. Input arrives with flow λ into
buffer 1 and buffer 3 and flows towards buffer 2 and 4 respectively. The machines A and B can only
serve one job at a time which correspond to a traffic light in which the lanes are in conflict with
one another. The maximum process rate (saturation flow) is given as μi. The actual process rate
is presented by ui with ui ≤ μi for i = 1, 2, 3, 4. This rate changes depending on the availability of
jobs in the buffer. For ease of calculation it is assumed that there are no set-up or clearance times
(σij = 0). Additionally there are is no travel time between the two machines, as soon as a job is
processed by A it is immediately available at machine B and vice versa.
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Figure 5.3: The Kumar-Seidman network as introduced in [21]

.

An easy first check for stability is considering if each machine (or intersection) has enough capacity
to handle the arriving jobs (or traffic). Similar to (2.1) the machine has sufficient capacity if its
utilization is smaller of equal to 1, for each machine this gives

λ1
1

μ1
+ λ3

1

μ4
< 1

λ1
1

μ2
+ λ3

1

μ3
< 1.

(5.1)

Using this expression for the network used in the previous sectopm we state that:

λ1 = λ3 = 1100/3600

μ1 = μ3 = 1

μ2 = μ4 = 0, 5

(5.2)

Thus both machines have an utilization of 11
12 . Still in the previous section it was shown that the

resulting behaviour is unstable.

5.3 System Dynamics

Using continuous dynamics we define how the buffer sizes are evolving over time.

ẋ1 = λ1 − u1(t)

ẋ2 = u1(t)− u2(t)

ẋ3 = λ3 − u3(t)

ẋ4 = u3(t)− u4(t).

(5.3)

Note that λ1 is the arrival rate into the system for jobs that enter via buffer x1. Arrivals at x3 arrive
with rate λ3. Depending on the buffer sizes the machine can perform on its maximum process rate
or, when the buffer is empty, with the arrival rate. Using this there are 16 possible combinations of
buffer sizes and active processes. These 16 modi describe all possible behaviour of the entire system
in contrast to per individual machine. All 16 modi are shown in Table 5.1 as well as the conditions
that apply for each mode. It only shows the buffers that are actively served, the remaining buffers
are served with ui = 0 and not displayed.

Note that Table 5.1 shows modi [u1 = μ1, u2 = u1] and [u4 = u3, u3 = μ3] which have multiple
solutions. In case μ1 > μ2 machine B produces at most with rate μ2 meaning the buffer size always
grows (ẋ2 > 0) thus the state itself can never be reached. In case μ1 ≤ μ2 machine B produces at
rate μ1 and the buffer remains empty. The same reasoning holds for the state: [u4 = u3, u3 = μ3].
As per Figure 5.1 μ1 > μ2 and μ3 > μ4 thus these two modi cannot be reached and are not used
throughout the remaining part of this chapter.
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Table 5.1: Process flows over different machine and buffer states

machine A machine B
u1 = μ1 u2 = μ2 for x1 > 0 x2 > 0
u1 = μ1 u2 = u1 for x1 > 0 x2 = 0
u1 = λ1 u2 = μ2 for x1 = 0 x2 > 0
u1 = λ1 u2 = λ1 for x1 = 0 x2 = 0

u1 = μ1 u3 = μ3 for x1 > 0 x3 > 0
u1 = μ1 u3 = λ3 for x1 > 0 x3 = 0
u1 = λ1 u3 = μ3 for x1 = 0 x3 > 0
u1 = λ1 u3 = λ3 for x1 = 0 x3 = 0

u4 = μ4 u3 = μ3 for x4 > 0 x3 > 0
u4 = μ4 u3 = λ3 for x4 > 0 x3 = 0
u4 = u3 u3 = μ3 for x4 = 0 x3 > 0
u4 = λ3 u3 = λ3 for x4 = 0 x3 = 0

u4 = μ4 u2 = μ2 for x4 > 0 x2 > 0
u4 = μ4 u2 = 0 for x4 > 0 x2 = 0
u4 = 0 u2 = μ2 for x4 = 0 x2 > 0
u4 = 0 u2 = 0 for x4 = 0 x2 = 0

5.4 Work in process

The Kumar-Seidman network is now described as a manufacturing network and all (reachable) modes
are defined. By defining the amount of work in a system we determine which mode processes the
highest amount of work. The more work is done in a mode the better the complete system is utilized.
For a single job the amount of work is its total remaining process time. When a job enters the system
at machine A its total work is 1

μ1
+ 1

μ2
, after the first process step (μ1) the remaining work is 1

μ2
.

For jobs that enter the system at machine B the same logic applies. With the buffer sizes known the
total amount of work in the system is given by:

w(t) = (
1

μ1
+

1

μ2
) · x1(t) +

1

μ2
· x2(t) + (

1

μ3
+

1

μ4
) · x3(t) +

1

μ4
· x4(t). (5.4)

We are interested in the evolution of the amount of work:

ẇ(t) = (
1

μ1
+

1

μ2
) · ẋ1(t) +

1

μ2
· ẋ2(t) + (

1

μ3
+

1

μ4
) · ẋ3(t) +

1

μ4
· ẋ4(t). (5.5)

Combining this equation with the system dynamics of (F.1) we determine how the work increases, or
decreases, depending on the mode of the system. The expression for any mode is:

ẇ(t) = λ1(
1

μ1
+

1

μ2
) + λ3(

1

μ3
+

1

μ4
) + u1

1

μ1
+ u2

1

μ2
+ u3

1

μ3
+ u4

1

μ4
. (5.6)

Arrivals occur with rate λi with each arrival containing an amount of work leading to a constant
increase of amount of work. Meanwhile, the system decreases this amount of work depending on the
combined process rates of ui

1
μi
. To ensure the amount of work in the system does not increase the

amount of work done should be equal to or bigger than the increase in work. We therefor split up
equation (5.6) into work entering and leaving the system:

λ1(
1

μ1
+

1

μ2
) + λ3(

1

μ3
+

1

μ4
) ≤ u1

1

μ1
+ u2

1

μ2
+ u3

1

μ3
+ u4

1

μ4
. (5.7)

Note that the left hand side is identical to the sum of stability criteria for the individual machines
(5.1) and this value can never exceed 2. We can now define the decrease of work in the system
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for every mode. As long as the mode satisfies (5.7) the total amount of work in the entire system
decreases. In other words the system should always be in one of the states that guarantees a decrease
in work to ensure stability.

Executing the right hand side of equation (5.7) for the 14 remaining modes of Table 5.1 gives a new
table:

Table 5.2: Process flows over different machine and buffer states and work decrease per unit of time

machine A machine B ẇ
u1 = μ1 u2 = μ2 2

u1 = λ1 u2 = μ2
λ1

μ1
+ 1

u1 = λ1 u2 = λ1 λ1(
1
μ1

+ 1
μ2
)

u1 = μ1 u3 = μ3 2

u1 = μ1 u3 = λ3
λ3

μ3
+ 1

u1 = λ1 u3 = μ3
λ1

μ1
+ 1

u1 = λ1 u3 = λ3 λ1
1
μ1

+ λ3
1
μ3

u4 = μ4 u3 = μ3 2

u4 = μ4 u3 = λ3
λ3

μ3
+ 1

u4 = λ3 u3 = λ3 λ3(
1
μ3

+ 1
μ4
)

u4 = μ4 u2 = μ2 2
u4 = μ4 u2 = 0 1
u4 = 0 u2 = μ2 1
u4 = 0 u2 = 0 0

The table shows that if both machines (intersections) operate at maximum rate μi the work decreases
with 2 regardless of the job type processed. As stated by equation (5.1) the maximum allowed amount
of work that enters the system is also 2. As long as the system stays in a state were the work decreases
by at least 2 it always remains stable. If the amount of work entering the system is lower other modes
can also guarantee stability as long as equation (5.6) holds for that mode.

5.4.1 Mode graph of the Kumar-Seidman network

Table 5.2 showed the amount of work processed in each mode. This can be visualized in a mode
graph. The modes with the highest decrease of amount of work are placed on top and in decreasing
order the rest of the modi are placed. Additionally, the increase in work is also know (see equation
5.7) and displayed as the dotted red line.

Figure 5.4 is created for the values of the Kumar-Seidman network given in (5.2). Any changes
in arrival rate lead to a changes in amount of work entering the system. The position of the red
line changes accordingly. When platoons arrive (λi = μi) the amount of work entering reaches the
maximum value of 2. Additionally, the Kumar-Seidman network consist of two identical intersections.
Changing the departure rates of one intersection (5.2) leads to a different lay-out of the figure. This
can also be seen by the expressions of Table 5.2.

Figure 5.4 shows that, for these conditions, only 4 modes are available to ensure the total amount
of work in the network decreases and thus the system is stable. These 4 modes are called efficient
modes, all other modes are inefficient. It shows that this system is only efficient when both machines
operate at the process rate. Taking this conclusion into account we reconsider the Kumar-Seidman
network as introduced in the start of this chapter. We are interested in the different modes the system
enters when controlled by local Smart Traffic instances. If the system reaches an inefficient mode the
amount of work in the system starts increasing which leads to instability.
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Figure 5.4: Work decrease per unit of time per mode of Kumar-Seidman. The higher the position of the mode the higher the
decrease. The red-line indicates the increase in work per unit of time.

5.5 Mode-evolution of local controlled Kumar-Seidman Net-
work

Again we consider the Kumar-Seidman network of Figure 5.1 controlled by local Smart-Traffic in-
stances. Assume that for the initial conditions all buffers are empty save for x1 which has an arbitrary
number of jobs available. Seeing the jobs at x1 the left intersection starts serving this queue with rate
μ1. These jobs arrive at the right-hand intersection which immediately starts serving them with rate
μ2. The first mode the total network is in becomes [μ1, μ2] (see Table 5.2). The remaining evolution
of modi is described in Appendix D as well as further extensive explanation. The resulting queue
behaviour for the Kumar-Seidman network with these initial conditions are given in Figure 5.5.
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Figure 5.5: Work and queue evolution for a local controlled Kumar-Seidman network. Travel-time and the clearance time are
omitted. Work is denoted per incoming flow λi and the total amount of work, queue sizes are displayed per queue
and the total queue size

.
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The situation presented by Figure 5.5 shows the system in two modi while the traffic lights do not
change. The first mode [μ1, μ2] is an efficient mode (Figure 5.4), from t1 onwards the system is in
inefficient mode [λ1, μ2], this leads to an increase in work in the system.

Considering the left intersection it sees the following situation between t1 and t2: Buffer x1 and x4 are
empty and the only arrivals arrive in x1 with rate λ1, these arrivals are immediately being processed.
There is no way that the left intersection can process jobs with saturation flow μi as all queues are
empty, it therefor defaults to a inefficient mode.

In this chapter we have discussed the Kumar-Seidman network. For this network the total utilization
of each intersection is smaller than 1 and a stable FTS exist for this network. However, when
this network is controlled by local Smart Traffic instances instability occurs with queues growing
arbitrary large. This implies that the instability is caused by the Smart Traffic instances. To explain
the instability we define the amount of work in a system, an expression for the remaining amount
of processing time over all cars in the system. Due to arrivals with rate λi the amount of work in
the system continuously increases, this increase is balanced by the intersections processing the cars
and leading them out of the system. As long as the processing happens at the saturation flow μi the
amount of work in the system decreases and stable behaviour is achieved. We redefine the different
rates and traffic flows the system can serve into modes. A mode is efficient when it decreases the
amount of work in the system. However a mode may be inefficient leading to an increase in amount
of work, causing queues to grow. As long as the total system (so not local intersections) remain in an
efficient mode the system remains stable. However, due to the lay-out of the Kumar-Seidman network
situations occur where one of the two intersection cannot process at the saturation flow due to a lack
of arriving cars. This causes the total system to reach an inefficient mode. In turn this leads to a
growing amount of work in the network, causing queues to grow and unstable behaviour. We want to
expand the Smart Traffic control strategy so it prevent the system from reaching an inefficient mode.
In the next chapter we propose a supervisor which, by detecting upcoming inefficient system modes,
sets the traffic light settings on a network level to ensure the system stays in efficient modes and can
thus exhibit stable behaviour.
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Chapter 6

Network Supervisor

In the previous chapter the definition of work is explained and how the amount of work is used as an
indication to determine the efficiency of an entire network. It is shown that applying Smart Traffic
on individual intersections can lead to an increase in work of the total network. Due to this increase
in work the entire network becomes unstable leading to the behaviour as seen in Chapter 5. In this
chapter a supervisor is introduced which acts on a network-wide level. By ensuring the network is
always in an efficient mode (total amount of work in the network is decreasing) the complete network
executes stable behaviour.

6.1 Supervisor in Modes

In Figure 5.4 it was shown that 4 modes of the Kumar-Seidman Network are processing jobs at such
a rate that the overall amount of work in the system decreases. All other modes cause the amount of
work in the system to increase and are deemed inefficient. Additionally it was shown that a Smart
Traffic instance that only controls one intersection can reach these inefficient modes and thus cause
unstable behaviour. To prevent this behaviour a supervisor has been designed which identifies the
upcoming modes of Smart Traffic and, when the mode is inefficient, it can change the trafficlight
settings of the entire network to ensure the network remains in an efficient mode. Which changes
can occur depend on the (inefficient) mode of the system and the buffer sizes. All possible supervisor
actions are displayed in Figure 6.1 as arrows.

Figure 6.1: Mode graph with the modes assigned by decreasing order of efficiency. The red line indicates the amount of work
that enters the system. A mode is efficient if it is positioned above the line and inefficient otherwise. A decrease in
arrivals into the system leads to more modes becoming efficient. Arrows indicate which actions the supervisor can
execute to ensure the system remains in an efficient mode. Table 5.1 shows what conditions (queue sizes) exist in
each mode.
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Most of the supervisor actions only influence one trafficlight and are automatically performed by
Smart Traffic. For example in case the system is in mode [λ3, λ3] it is serving empty queues x4 and
x3. Meanwhile a queue starts forming at x1, the Smart Traffic instance working at the left intersection
shall automatically switch to serve this queue. This leads the system to reach mode [μ1, λ3] which
is more efficient. All arrows that point upwards are executed in such a manner and do not require
additional supervisor actions. However there are two arrows that point sideways and these actions
are never performed by Smart Traffic. First lets consider these mode: [λ1, μ2] and the mirrored state
[μ4, λ3]. If any jobs are available in buffer x4 or x3 respectively the local Smart Traffic instance
switches to mode [μ4, μ2] which is an efficient mode. However if these buffers are empty Smart Traffic
does not switch to a more efficient mode leading to the inefficient situation shown in Figure 5.5. The
required action that the supervisor performs is to stop serving the job that is being processed at
maximum saturation flow, this action causes jobs to arrive at x2 or x4 which, in turn, leads to an
increased efficiency of the total network. The results of this action is further explained in the next
section.

6.1.1 Mode-evolution with Supervisor in Kumar-Seidman network

Consider the same system and initial conditions (All buffers empty except for x1) as used in Chapter
5 which showed a growing amount of work in the system with only local control. We now use the
supervisor to switch the traffic lights whenever the system reaches an inefficient mode. This leads to
the work and queue evolution as shown in Figure 6.2.
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Figure 6.2: Work and queue evolution for the Kumar-Seidman network with a supervisor for stability. Travel and clearance
times are omitted.

Figure 6.2 shows that the amount of work continuously decreases over time. In certain modes the
total queue size still grows over time but after one cycle (t0, t3) the overall queue size has decreased.
The modes the system is in are:

(μ1, μ2) for [t0, t1]
(λ1, μ2) for [t1, t1]
(λ1, μ3) for [t1, t1]

(μ4, μ3) for [t1, t2]
(μ4, μ2) for [t2, t3]
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Simulation results

Note that this t2 is not the same as in the local controlled system. Also after t3 the system is again
in mode (μ1, μ2). There are 2 actions the supervisor performs, both on t1, this action causes both
machines to switch and ensures they both perform at the optimal rate. After the supervisor has acted
the control is handed back to the local clearing policy. By applying the supervisor the system shows
stable behaviour.

6.2 Simulation results

The described supervisor of the previous section is added to the model. It checks the efficiency of the
total network every time Smart Traffic has scheduled a new green phase. In case this green phase
causes the network to be in an inefficient mode the supervisor acts and by changing the green phases
it ensures the system remains in a stable mode. We execute the supervisor for the same model as
used in Chapter 5, leading to the following queue-evolutions:
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Figure 6.3: Queue evolution for lane N1L1 of the Kumar-Seidman network under local Smart Traffic instances (blue line) and
with the applied supervisor (black line). Supervisor causes the queues to remain bounded over time. The queue
initially grow due to the very high utilization of the network but become stable over time.

The queues in this simulation remain bounded unlike the results of the same network without super-
visor of Figure 5.2. Due to the very high utilization of the total network the queue length remains
very long. Queue lengths grow this large as green phases last relatively long. This is done to decrease
the amount of switching between lanes as during switching no traffic can cross the intersection. As
queues remain bounded over time stability is reached proving the working of the supervisor in a
network that is locally controlled by Smart Traffic instances. This example is small with only two
incoming traffic flows and two intersections but the approach of defining the work and identifying
modes can be extrapolated to bigger networks.
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6.3 Evaluation

The supervisor as described in this chapter is implemented in the model with a resulting stable
behaviour of the Kumar-Seidman model. Modes are assigned by measuring the increase or decrease
of amount of work for each upcoming green phase. When a mode is inefficient (amount of work
increases) the supervisor has predefined paths to take to make the system reach an efficient mode.
This causes the system to always be in an efficient mode, the amount of work remains as low as
possible and stability is achieved.

As the arrival rate, and thus the amount of work entering the Kumar-Seidman network is high there
are only few efficient modes available. The high utilization of the network is also displayed by the
large queues (up to 50 cars) and large green times. As arrival rates fluctuate over time the red
line shown in Figure 6.1 also changes position over time, more modes become efficient when the
arrival rates are lower. So under lower arrival rates the supervisor becomes less strict while still
guaranteeing stability. Additionally, when platoons arrive (λi = μi) the amount of work entering the
system reaches the maximum value. When these platoons are detected by Smart Traffic traffic lights
adjust to serve this platoons, and the system automatically reaches an efficient mode. The supervisor
as such only monitors the behaviour of traffic across the entire network by calculating the efficiency
of every intersection. It only has to act when the combined settings reaches an inefficient mode. By
predefining the path needed to reach an efficient mode to actions of the supervisor are limited and can
quickly be taken. Under most circumstances local controlled Smart Traffic instances are sufficient to
cause stable behaviour across a network while optimizing the amount of waiting time incurred by the
traffic. The supervisor is a slim method to monitor stability and quickly respond when an inefficient
mode is about to be reached.
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Chapter 7

Conclusion and Recommendations

The aim of this research project was to test the viability of Smart Traffic by comparing it to current
traffic light controllers (FTS and VAC). Additionally, Smart Traffic was tested on a network of inter-
sections to determine its performance. A supervisor is created which, with only minimal disturbances,
guarantees stability on a traffic network and is a useful addition to local Smart Traffic instances to
improve the overall performance of the newly designed traffic light controller that is Smart Traffic.
This chapter recapitulates the conclusions drawn throughout this rapport. This is followed by rec-
ommendations of the research that is yet to be executed, or is currently underway, to make Smart
Traffic into a complete product that can be used on the streets.

7.1 Conclusion

To test the performance of Smart Traffic, a simulation model is created which approximates traffic
dynamics. By only focussing on traffic dynamics that occur around a traffic light, the model remains
relatively slim and provides a good overview of possible reactions of individual drivers. As it only
focusses on a small part of all possible traffic behaviour its calculation speed is very high leading to fast
results. This is further increased by using discrete event simulation instead of continuous simulation.
As traffic dynamics are generalized, it is unnecessary to review each car its possible actions over each
time step. It is shown that while the resulting waiting time for the traffic in a FTS-setting slightly
differs from other traffic simulation models (VISSIM) and theoretical approaches, these difference are
within acceptable bounds (10%). As traffic dynamics do not change when the traffic light is controlled
by a different policy, the model is taken as a solid basis on which Smart Traffic can be tested and
compared to other traffic light controllers.

Smart Traffic, by predicting the resulting delay of each car waiting for and arriving at an intersection,
knows what each upcoming green phase can do to keep the waiting time as short as possible. As
it knows the consequences of its own actions, it can pick the green phase which provides the best
result. Aiming to keep the incurring waiting time for cars as low as possible and by detecting traffic in
advance it automatically aims to prevent upcoming platoons from stopping. Stopping a platoon would
inquire a steep increase of total waiting time for the intersection. This manner of anticipation and
pro-active control is unseen in the other tested traffic light controllers, the FTS and VAC. Overall the
performance of Smart Traffic is better than both other controllers. Especially when upcoming traffic
arrives almost exclusively as platoons (caused by upstream traffic lights) the decrease in waiting time
can be up to 60% compared to a FTS and 40% for a VAC. As platoons are scheduled in advance they
can cross the intersection without stopping, 80% less cars have to stop for the intersection in contrast
to FTS. When arrivals occur randomly these gains decrease; when all arrivals occur randomly the
decrease in waiting time for Smart Traffic is around 20% lower in comparison to a FTS and only 5%
better than VAC. An intersection with saturated traffic flows and purely random arrivals does not
profit by applying Smart Traffic and in these cases an FTS is a better solution. However, as traffic
demands drops and rises throughout the day, intersections are not continuously (over-)saturated.
The Smart Traffic approach is much more adaptable and provides better overall results for a local
intersection.

In the second part of this research, networks of intersections are considered. By applying the Kumar-
Seidman network on Smart Traffic instances that only control one intersection it was quickly shown
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that this leads to unstable (queues becoming arbitrarily large) behaviour. This behaviour is caused by
the traffic being sent in between the intersections. As the Smart Traffic chooses to serve the direction
which causes the highest decrease in waiting time it does not consider that this action might block
traffic being send towards a intersection that is starved of input. These actions lead to the entire
network to become instable. To solve this problem the first step was to detect these situations. This
is done by defining the amount of work in a system. The speed at which a direction can get served is
an indication of how fast it executes its work (cars crossing the intersection). As all cars entering the
network are also detected it is also known how fast the work in a network increases. For a network to
be stable the amount of work done by each intersection should be equal to or bigger than the amount
of work entering the system. Secondly, the network can be further divided into modes, with each
mode describing the actions of individual intersections and the total amount of work executed by it.
For a system to be stable it should always remain in a mode which decreases the amount of work
in a system. Thus, a distinction can be made between stable modes and unstable modes. Thirdly
and lastly, a supervisor was created for the Kumar-Seidman case. This supervisor detects the modes
the network is going to be in. If the network is about to reach an unstable mode it intervenes in the
local Smart Traffic instances. By blocking this possible realisation it forces Smart Traffic to execute
a different, local sub-optimal, realisation. This approach was executed and tested on the Kumar-
Seidman network and resulted in stable network behaviour. This approach is particularly useful as
it prevents unstable behaviour before it occurs. It does limit the local Smart Traffic instances in its
available realisations but losing local optimization is a small price compared to global stability.

7.2 Recommendations

The recommendations for this project are split up in two parts. First recommendations which relate
to the traffic dynamics of the model are given. Secondly there are several recommendations that
focus on Smart Traffic and which aspects need additional research before it can be unrolled on the
street.

In the model, arrivals occur according to a Poisson distribution and/or platoons but the average
arrival rate remains constant. This rate is manually set to test the performance of Smart Traffic with
different intensities but one single simulation does not handle changing arrival rates over time. As
seen in the introduction, arrival rates fluctuate throughout the day. A good additional test for Smart
Traffic is to simulate the arrivals over 24 hours with changing rates to determine its performance
throughout the day. Additionally, the considered intersections are limited in size. Increasing the
number of arriving traffic flows and conflicts in the lane increases the complexity of the calculations
performed by Smart Traffic. Additional road-users can also be implemented in these traffic flows.
By increasing the complexity, additional insights can be formed about Smart Traffic. For example,
in situations were a lane with low intensity has many conflicts with other lanes. Due to the conflicts
the lane is only seldom scheduled and due to the low intensity it takes a long time before the total
waiting time of the lane is high enough for it to become a priority in being scheduled. While this is
exactly how Smart Traffic is supposed to perform, it leads to long waiting times. By increasing the
complexity of the simulation these situations can be found and adaptations in Smart Traffic can be
made.

An important aspect of the current Smart Traffic model is that it registers all cars in advance and
knows their destinations (does a car turn left or crosses the next intersection). In reality only the
historical destinations are known which does not define the destination and route of individual cars.
Additionally cars may enter the network through sideroads were no sensors are presented. These
changes in the traffic situation cause the forecasting step of Smart Traffic to be inconsistent with
the actual traffic situation, meaning the scheduled green phases might not be optimal anymore. The
inconsistency can be partly tackled in a last second optimization; green phases are scheduled in
a regular way but can be extended, or cut off, when a queue has dissolved faster or slower than
predicted. This adaptation means that the green phases scheduled afterwards are also shifted. The
influence of this shift on the overall performance is not yet known. Additionally, Smart Traffic still
needs to update the detected traffic situation to ensure correct behaviour. As the traffic situation
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is different than what Smart Traffic is predicting, the resulting performance most likely drops. The
exact influence on performance and how to adapt Smart Traffic to be more robust is a topic of future
research.

As seen in this report, by determining the amount of work in a network and by using efficient modes,
stable behaviour can be obtained. Stability in the Kumar-Seidman network was obtained by never
allowing the network to be in an inefficient mode. However, it is possible that a network can be in
an inefficient mode for a short amount of time, as long as the growing amount of work during this
mode is evened out by efficient modes. Therefore, by applying a less strict supervisor which allows
inefficient modes, the network behaviour can remain stable. The constraints necessary for such a
supervisor are not known and require more research.
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Appendix A

Smart Traffic road-map

A step-by-step approach of Smart Traffic for a local intersection is given below. It consist of forecasting
the arrivals and determining how these are best handled by the system. The general parameters of
the model are given in Chapter 3, the general working of Smart Traffic is expressed in Chapter 4.

Consider the intersection as given in Figure 4.1 with the following settings:

• Fixed clearance time, τ
• All arrivals at stopline for all lanes are known, Qarr

i (t)
• No maximum allowed green time, tmaxG = ∞
• Green phase can end when a hiaat occurs (3 seconds without arrival), h
• The queue length evolution ni(t) of the lanes at t is:

Figure A.1: Queue evolution over Lane 1 (green) and Lane 2 (red) until time t. At t Smart Traffic executes a new forecast to
determine the optimal schedule

.

At time t the green period is scheduled to end. There are two possible actions for Smart Traffic to
chose from:

• Switch the lights so Lane 2 can get served
• Extend the green phase for Lane 1, no trafficlight changes

Each action has its required green time g and waiting time per lane wi(t). This gives the total costs
for each action. How the queue n evolves under both actions is shown in the upcoming sections.
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Switch green phase

In case the trafficlight switch ni(t) evolves as shown in figure A.2.

Figure A.2: Queue evolution n(t) over two lanes with internal conflict when light switches at t. Including clearance time τ ,
green period g and hiaat time h. The time before lane 1 can become green again is an additional τ to take switching
back into account

.

The total waiting time at the end of the green period are zero for lane 2. For lane 1 the waiting time
is determined up until tend + τ . The total incurred waiting time for each car becomes larger (due to
set-up and saturation flow losses). These extra costs are not taken into account as they lie too far
into the future.
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Extend green phase

In case the green phase extends, until at least one extra departure has occurred, the queue evolution
over the system is shown in figure A.3.

Figure A.3: Queue evolution n(t) over two lanes with internal conflict with extended green phase at t. Extension takes up green
period g until an hiaat h. The time before lane 2 can become green is an additional τ to take switching time into
account

.

When extending the green phase of lane 1 it is possible that multiple cars leave the intersection
before an hiaat is found. Especially when platoons are arriving extending is profitable as platoons
pass without stopping. The total waiting time of lane 2 is the area under n(t) from the first arrival
in the queue till tend + τ .

Optimization step

The last step Smart Traffic executes is comparing Figure A.2 with Figure A.3 and determine which
action will incur the least waiting time using (4.9) and (4.10) (presented in Chapter 4). From this
example it is clear that switching the trafficlight is the best option.

Another possible situation would be that 5 cars arrive in platoon fashion at Lane 1 just after t.
With only one, recently arrived, car waiting at Lane 2. Smart Traffic, unlike any other trafficlight
control strategy, guarantees that the platoon passes without stopping. Additionally for situations
were the difference between switching or extending green phases is much less obvious Smart Traffic
optimization strategy ensures that the waiting time is as low as possible.
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Appendix B

Smart Traffic Test Results

Below follow the results of Smart Traffic on a local intersection in comparison to a FTS and a VAC.
The intersection is shown in figure 4.1 and fixed values are taken from Table4.1. The test variable are
arrival intensity λi(t) and platoons. We are interested in the mean waiting time and how many cars
cross the intersection without stopping. Simulation duration is 10 hours and every tests is executed
10 times.

• λ1 = 500 cars/h, no platoons
• λ2 = 500 cars/h no platoons

Mean
Non-Stopping

Relative Relative
Waiting time Mean Waiting time Non-Stopping

[s] [%] [%] [%]

FTS
L1 9.4 25.90

100 100L2 9.4 25.83
Mean 9.4 25.88

VAC
L1 7.94 11.76

87.2 45.2L2 7.96 11.68
Mean 7.95 11.72

ST
L1 7.38 9.50

81.1 36.4L2 7.41 9.42
Mean 7.40 9.48

• λ1 = 500 cars/h, with 80% platoon arrivals
• λ2 = 500 cars/h no platoons

Mean
Non-Stopping

Relative Relative
Waiting time Mean Waiting time Non-Stopping

[s] [%] [%] [%]

FTS
L1 10.31 29.07

100 100L2 8.73 27.73
Mean 9.52 28.4

VAC
L1 7.83 24.41

82.9 63.7L2 7.96 11.76
Mean 7.89 18.09

ST
L1 3.73 47.59

51.6 131.5L2 6.08 27.09
Mean 4.91 37.34
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• λ1 = 500 cars/h, with 80% platoon arrivals
• λ2 = 500 cars/h, with 80% platoon arrivals

Mean
Non-Stopping

Relative Relative
Waiting time Mean Waiting time Non-Stopping

[s] [%] [%] [%]

FTS
L1 10.27 29.14

100 100L2 9.14 33.89
Mean 9.71 31.5

VAC
L1 7.28 17.57

82.4 43.9L2 8.71 10.09
Mean 8.0 13.83

ST
L1 4.60 55.92

41.9 181L2 3.54 58.05
Mean 4.07 57.0

• λ1 = 800 cars/h (saturated), no platoons
• λ2 = 800 cars/h (saturated), no platoons

Mean
Non-Stopping

Relative Relative
Waiting time Mean Waiting time Non-Stopping

[s] [%] [%] [%]

FTS
L1 10.58 14.64

100 100L2 10.53 14.38
Mean 10.56 14.52

VAC
L1 11.87 8.94

110 61.6L2 11.84 8.97
Mean 11.86 8.95

ST
L1 10.79 7.66

101.9 52.1L2 10.72 7.46
Mean 10.76 7.56

• λ1 = 800 cars/h (saturated), with 80% platoon arrivals
• λ2 = 800 cars/h (saturated), with 80% platoon arrivals

Mean
Non-Stopping

Relative Relative
Waiting time Mean Waiting time Non-Stopping

[s] [%] [%] [%]

FTS
L1 10.78 22.77

100 100L2 10.41 28.27
Mean 10.60 25.52

VAC
L1 13.89 3.64

131 12.4L2 15.49 3.15
Mean 14.69 3.39

ST
L1 7.09 34.86

61.9 129.7L2 6.62 31.33
Mean 6.88 33.11
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Appendix C

Feeding Network

Consider the small network of two intersections given in Figure C.1.

Figure C.1: Two intersection which are linked through Lane 1. Each intersection is controlled by its own Smart Traffic instance.
Distance between intersections may vary

.

The arrivals, at the edge of the network, are known in the same manner as a local intersection. The
traffic that arrives at N2 from L1 has already been processed by N1. This leads to several changes in
comparison to a purely local intersection, these changes are briefly explained below.

• The travel distance between networks is from stopline to stopline. So the travel distance is
width of the intersection and the downstream road section.

• Forecasted departures from N1 (upstream) are presented as arrivals to N2 (downstream). This
means N2 knows its arrivals before cars have even left intersection N1.

• A forecasted departure is matched with the actual departure as soon as it occurs. This is done
to prevent mismatching in case the predicted (forecasted) departures occur at a different time
or not at all.

• The travel time between intersections can be larger than the forecast horizon (30 s). Upstream
forecasted departures are not taken into account as they fall beyond the horizon. Only actual
departures (upstream) are shown in the downstream intersection.

• The optimization strategy of Smart Traffic is equal to the strategy as presented in Chapter 4.
The network uses a decentralized strategy.

This network control strategy uses a decentralized strategy, this as opposed to a centralized strategy.
A centralized strategy would mean one Smart Traffic instance for the complete network. As a typical
network consist of many more intersections and lanes a centralized optimization strategy becomes
more complex and that much harder to find the optimum. Performing this task on-time (every 0.1s)
requires more computing power than currently available.

Simulating Figure C.1 with arrival rate λi = 600 car/h, average speed of 50 km/h and distance
between intersections of 500 m (36 s travel time) the queue length evolution ni(t) is shown in Figure
C.2.
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Figure C.2: Queue evolution of the first intersection with random arrivals and the second intersection which receives cars from
the first intersection

The arrivals into the system occur at random without any platoons. At the first intersection around
85% of cars are forced to stop before they leave. When they leave from a queue they continu driving
as a platoon and arrive as such at the next intersection. Stopping a platoon is much more costly
than individual cars so platoons can often keep driving in a green-wave. This happens for over half
of the cars. If platoons are halted it is often caused because there is no hiaat for the light to start
the switching procedure. Having one lane of an intersection serving mostly platoons also decreases
waiting time for the other lane. Lane L1 only needs a short green time, giving more green time to
Lane L2. Overall results are shown in table.

Table C.1: Mean waiting time and percentage of cars which do not incur stops in a simple network. The individual lanes of
Intersection 1 have the same results as they are identical

Waiting time [s] Non-stopping [%]
N1L1/2 7.65 15
N2L1 5.36 43
N2L2 6.98 20

These results are to be expected as serving platoons is being done at the saturation flow and often
without incurring any set-up delay. This example also shows that Smart Traffic is best used in a
network of trafficlights (typically in a city) as this will lead to most platoons which then are served
by local green-waves.
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Kumar-Seidman Supervisor
example

In this chapter we compare the proposed supervisor against a local clearing policy. First the local
clearing policy is used on the Kumar-Seidman network which causes the system to be unstable.
Afterwards the same clearing policy with the supervisor shows stable results.

Local Clearing policy

Assume the system given in Figure 5.3 with the following settings:

• λ1 = λ3 = 1

• μ1 = μ3 = 1/0.3

• μ2 = μ4 = 1/0.6

• ρi = λi/μi

With these settings and with equation 5.1 it shows that the system has enough capacity to exhibit
stable behaviour. The system follows a local clearing policy; Jobs are served from a queue until it is
empty. Once the queue is empty the machine switches to serve a non-empty queue or serve at λi if
no such queue exist.

Suppose the initial system at t0 is empty save for x1 which is filled with n1(t0) jobs. Clearing this
buffer will take t1 = n1(t0)/(μ1 − λ1) after which t1 · μ1 jobs have arrived in x2. As μ2 < μ1

machine B starts serving buffer x2 with rate μ2 from t0 until it is empty at t2. The expression for
t2 = n1(t0)/(μ2 − λ), this can be rewritten into:

n1(t0) · 1/μ2

1− ρ2
(D.1)

Between t1 and t2 machine A is serving products with λ1 with buffers x1 and x4 empty. At t2 Machine
B has finished clearing buffer x2 and a queue has been building at x3, this queue size is:

n3(t2) = t2 · λ (D.2)

Combining D.1 and D.3 gives the following expression for the queue size:

n3(t2) = n1(t0) · ρ2
1− ρ2

(D.3)

At t2 the system is symmetrical to its initial position; All buffers are empty except for x3. In case
ρ2

1−ρ2
> 1 the total queue size in the system has grown and, with equation 5.4, it is shown that the

amount of work has also grown. This means the system is unstable for any rho2 > 0.5. Per the
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assumed settings (ρ2 = 0.6) this implies that the amount of work in the system grows, thus the
system is unstable. This behaviour is shown in figure D.1.

t t1 t2
time [s]

w
or

k 
[jo

bs
]

Work over time for local controlled Kumar−Seidman

Work λ1

Work λ3
Total λ1 + λ3

t t1 t2
time [s]

bu
ffe

r s
iz

e 
[jo

bs
]

Buffer sizes for local controlled Kumar−Seidman

x1
x2
x3
x4
Sum xi

Figure D.1: Work and queue evolution for a local controlled Kumar-Seidman network. The work is denoted per flow λi and the
total amount of work while all queue sizes are displayed per queue and the total queue size

.

The system switches between the following modes:

(μ1, μ2) for [t0, t1]
(λ1, μ2) for [t1, t2]

The figure shows that at the initial position there are an arbitrary number of jobs at x1. At t2 the
amount of work as well as the amount of jobs have increased with the system being in a mirrored
position. As both flows are identical this proves instability in case a local clearing policy is used.

Supervisor control

To prevent the system to become unstable we want to prevent the system to reach any mode were
the work does not decrease. We use the same system and initial position as in the previous section
but with the proposed supervisor. For this system and by using Table 5.2 four modes are identified
which ensure that the work decreases. By using the supervisor of Figure 6.1 the system should always
be in one of these four modes.

Applying the supervisor leads to following work and queue evolution:
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Figure D.2: Work and queue evolution for the Kumar-Seidman network with a global stabilization policy.

Figure D.2 shows that the amount of work continuously decreases over time. In certain modes the
total queue size still grows over time but after one cycle (t0, t3) the overall queue size has decreased.
The modes the system is in are:

(μ1, μ2) for [t0, t1]
(λ1, μ2) for [t1, t1]
(λ1, μ3) for [t1, t1]

(μ4, μ3) for [t1, t2]
(μ4, μ2) for [t2, t3]

Note that this t2 is not the same as in the local controlled system. Also after t3 the system is again
in mode (μ1, μ2). There are 2 actions the supervisor performs, both on t1, this action causes both
machines to switch and ensures they both perform at the optimal rate. After the supervisor has acted
the control is handed back to the local clearing policy. With the supervisor the system shows stable
behaviour. This proves the working of the supervisor.
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Model build

The working of the algorithm is explained in Chapter referienties!!!, the exact lay-out of the model
used throughout this report is explained in this Appendix. Specifically the methods used and how
these are linked to one another. We first discuss the general lay-out of the model, secondly individual
lanes with the appropriate driver behaviour is explained as well as how they respond to different
traffic lights. The build-up of each lane is identical and multiple, conflicting, lanes make up an
intersection. We show how the model is expanded under different traffic light controllers; FTS, VAC
and Smart Traffic. Lastly we apply the network supervisor of chapter referienties!!! across multiple
intersections.

General build

Smart Traffic makes use of model predictive control (MPC) [25] [26] to determine which direction to
serve next. The MPC approach is used throughout many different field of expertise as a control and
optimization strategy but for traffic management this approach is new. A schematic representation
of MPC applied for traffic management is given in Figure E.1.

Traffic model

Cost function

Optimization

predicted
traffic development

performance

candidate
traffic light signal

current traffic
situation

upcoming traffic

optimized traffic
light signal

Figure E.1: Schematic overview of MPC applied for traffic management

Looking at Figure E.1 both outside inputs are known from sensors in the road or possible other
data sources.A traffic model uses these inputs to predict how the traffic situation develops in the
future under different traffic light settings. The performance of each prediction is measured by a
cost function. Performance is often defined as the incurred waiting time for the traffic but may also
be defined as CO2-output, number of stops or other. Once the resulting performance of all possible
candidates are know the candidate with the best performance (in these cases lowest overall waiting
time) is executed by the traffic lights. The accuracy of this approach is dependent on the availability
of incoming data as well as a traffic model that closely represents the traffic behaviour. As cars
enter and leave a road network the available data is constantly updated as such the traffic model
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has a limited horizon for its predictions. It can be predicted how long a car need to drive from one
intersection to the next but it becomes much harder to predict the position of a single vehicle when
it crosses multiple intersections and might take a turn at any of them. As such the optimized traffic
light signal is only one or two green phases long. After this time the current traffic situation has
changed and the steps of MPC are retaken to create a new optimized signal.

First the model needs several input variables to run, these input variables can be loaded into the model
through Excel or using manual input. Before any simulation starts, frames open that let the user
set all variables or use the default values. This way many different intersections can be created and
quickly tested. The user can chose to test, and compare, the created intersection under multiple traffic
light controllers. At this point these screens only work for local controlled intersections. Networks
of intersections can not be manually set and require extra coding. The required input variables are
given in Section 3.8

Lane build

Input variables

Simulation

Results
Figure E.2: Black-box simulation

Looking at the black-box of Figure E.2 we first consider a single lane with a traffic light, we expand
this overview to create the complete model. In this example the traffic light is controlled by a FTS,
this means only information (light settings) is sent towards the lane. No information from sensors
are send towards the traffic light controller.

G A Q D

P
Lane

T P

Figure E.3: Single lane actions
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In Figure E.3 each car is generated by process G, it arrives in the lane at process A. At this point
the car drives over a sensor and is seen by the system, it receives an unique ID. In this example this
information is not used by the traffic light controller and the car keeps driving until it joins the queue
Q. As soon as it reaches the front end of the queue and the traffic light T is green it can depart
D. At this point it leaves the lane, and in the case of single intersection, it leaves the system. As
it leaves its information (time of entry, time in queue, time of departure) is logged P and used by
post-processing after the simulation has completed. The same holds for light settings generated by
the traffic light process T , each time the light changes color these times are also logged in process P .

Note that the entire model uses discrete events meaning processes only become active when an event
occurs, this also means only one process can be active at the same time. This improves simulation
speed as not every process needs to perform a calculation each time-step. It is known from every car
that is processed by the arrival process when it reaches the stop line (and joins the queue), no process
become active or car-position is tracked in between these processes. So while each car goes through
the same three processes in a lane, these process do not necessarily occur in sequence as additional
arrivals or departures may occur.

1 // Al l p o s s i b l e events CARS can do
2 double actionLane ( i n t ID ) {
3 i f ( event . isEmpty ( ) ){ re turn −1;} // throw nu l l po in t e r , no events in lane
4
5 double x = event . remove ( ) ; // see time o f f i r s t event
6
7 // Car a r r i v e s in system
8 i f ( arrivals . contains ( x ) ){
9 // car s t a r t s t r a v e l i n g down system at time x

10 //add t r a v e l time to l i s t s o f a l l c a r s t r a v e l i n g in lane
11 traveling_cars . add ( x+travel_time ) ;
12 event . add ( x+travel_time ) ;
13 data . collectData ( ” Ar r i va l ” , x ) ; // log event ( a r r i v a l in lane )
14 arrivals . remove (0 ) ; // remove from a r r i v a l s
15
16 // Car l e av e s i n t e r s e c t i o n , no stopping
17 } e l s e i f ( traveling_cars . contains ( x ) && queue == 0){
18 data . collectData ( ” Join Queue” , x ) ; // log event ( s t a r t wai t ing time )
19 data . collectData ( ”Leave system” , x ) ;
20 traveling_cars . contains . remove ( x ) ; // car i s done t r a v e l l i n g
21
22 // Car j o i n s in queue
23 } e l s e i f ( travelling_cars . contains ( x ) ) {
24 queue++; //queue grows
25 traveling_cars . contains . remove ( x ) ; // car i s done t r a v e l l i n g
26 data . collectData ( ” Join Queue” , x ) ; // log event ( s t a r t wai t ing time )
27
28 // Car l e av e s i n t e r s e c t i o n from queue
29 } e l s e i f ( leave_lane . contains ( x ) ){
30 i f ( queue>0){
31 queue−−; // shorten queue
32 data . collectData ( ”Leave system” , x ) ; // log event ( end wait ing time )
33 }
34 }
35 // time o f next event in queue
36 // at t h i s time lane becomes a c t i v e again un l e s s l i g h t s e t t i n g s changes
37 return event . peek ( ) ;
38 }

Departures can only occur when the light turns green. As soon as the lane receives a signal that the
light turns green a list of possible departures time is generated. As each car behaviour is identical the
exact departure times from a queue are also known. Any car that is in the queue departs according
to this list until the queue has dissolved. As soon as it has and the light remains green cars do not
have to stop anymore and leave the lane without stopping.

1 double actionLane ( i n t ID , Trafficlight . Light state , double t0 ){
2 // Al l p o s s i b l e events TRAFFICLIGHT can cause
3 // Green l i g h t
4 i f ( state . equals ( GREEN ) ){
5 leave_lane = queue . leaving_instances ( t0 , mu ) ; // time i n s t an c e s ca r s can l eave
6 event . addAll ( leave_lane ) ; // add in s t an c e s to l i s t o f events
7 data . collectData ( state , t0 ) ; // log event ( s t a r t green time )
8
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9 // Red l i g h t
10 } e l s e i f ( state . equals ( RED ) ){
11 event . removeAll ( leave_lane ) ; // remove time i n s t an c e s s i n c e no ca r s can l eave
12 data . collectData ( state , t0 ) ; // log event ( end green time )
13 }
14 return event . peek ( ) ; // time o f next event in queue
15 }

Intersection build

Save for the input variables each lane consist of the same processes, as such an arbitrary number of
lanes can be generated. The traffic light controller assigns green phases across all lanes

Intersection

Lane 1

Lane 2

Lane i

Traffic light controller

Figure E.4: Multiple lane instances are created to model each direction of an intersection

For a FTS the traffic light control only sends information towards the traffic lights positioned on each
lane. For a VAC sensor information is used about upcoming arrivals (Arrival process of each lane)
and the availability of a queue (Queue process of each lane). This sensor information enables the
VAC to change the green phases accordingly. The appearance or dissolvement of a queue is pushed
towards the controller, meaning a signal is send from the lane to the controller if changes in the queue
occur.

1
2 void queue_availabilityk ( i n t id , boolean CarsinLane , double t ){
3 i f ( TS_list [ id ] == Light . RED ){
4 i f ( CarsinLane == true ){
5 // ca r s are wai t ing the lane wants to turn green
6 TS_list [ id ] = Light . WAITRED ;
7 String s = getKeyFromValueInt ( M , id ) ;
8 L . put ( s , t ) ;
9 t_action = Collections . min ( L . values ( ) ) ;

10 //update next event ( t a c t i o n ) to t ry and put t h i s lane on green
11 }
12 } e l s e i f ( TS_list [ id ] ==Light . GREEN ){
13 i f ( CarsinLane == f a l s e ){
14 // there i s no queue l e f t , the lane may turn red
15 TS_list [ id ] = Light . WAITGREEN ;
16 String s = getKeyFromValueInt ( M , id ) ;
17 L . put ( s , t ) ;
18 t_action = Collections . min ( L . values ( ) ) ;
19 //update next event ( t a c t i o n ) to check i f putt ing t h i s lane on red i s :
20 // a ) needed as ending t h i s green phase cause c o n f l i c t s to d i s s o l v e and
21 // b) f r e e s up other l ane s ( with a queue ) can get served
22 }
23 }
24 }
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Smart Traffic build

Unlike the VAC Smart Traffic receives information about every process that occur in each lane.
Each time a car enters a lane by riding over a sensor this information is send towards Smart Traffic.
Similarly for each car that leaves the intersection. By knowing the arrivals and departures it knows
how many cars are currently on the lane and how long they have been there. Smart Traffic can
forecast the effect of each green phase on the traffic simulation and chose the option that leads to the
minimal amount of waiting time.

Smart Traffic

Traffic situation Forecasting Cost function

Lane 1

Lane 2

Lane i

Traffic light

Figure E.5: Connection between Smart Traffic and traffic that is driving over the lane, providing information through sensor to
Smart Traffic. Smart Traffic changes the traffic light to minimize the costs (waiting time)

Each forecast is done over all possible stages. These stages are all combinations of directions that can
be served simultaneously. In this report we only consider small intersections of two different traffic
flows (with 1 conflict) and there are only two stages to chose from. An intersection with multiple
traffic flows has more stages to chose from but the overall calculation approach is the same.

When a schedule (of green phases) is about to be complete a new schedule is going to be needed.
The forecasting process start and each stage requires the following information:

• When can the stage receive green, this is know out of the current schedule with respect to
clearance times.

• What are the current and upcoming arrivals of the stage.

1 p r i va t e void setarrivalList ( i n t id , double time ){
2 // update l i s t o f a r r i v i n g car
3 List<Double> A_update = A . get ( id ) ; // cur rent a r r i v i n g time in s tance o f ca r s
4 A_update . add ( time+travel_time ) ; //add extra a r r i v a l at stop−l i n e !
5 A . set ( id , A_update ) ;
6 }
7
8 p r i va t e void setDepartureList ( i n t id , double time ){
9 // update l i s t o f cars , f i r s t car has l e f t the lane

10 List<Double> D_update = A . get ( id ) ; // cur rent a r r i v i n g time in s tance o f ca r s
11 D_update . remove ( ) ; // remove f i r s t a r r i v a l at stop−l i n e !
12 A . set ( id , D_update ) ;
13
14 List<Double> F_update = F . get ( id ) ; // l i s t o f f o r e c a s t e d departures scheduled to ←↩

take p lace
15 double F_departure = F_update . peek ( ) ;
16 i f ( F_departure != time ){
17 log [ id ] . write ( ”Unscheduled departure ” + F_departure ) ;
18 }
19 F_update . remove ( ) ;
20 F . set ( id , F_update ) ;
21 }
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By knowing its arrivals it knows how long a green phase needs to be scheduled to ensure all arriving
cars can cross the intersection in the green phase. This green phase is shortened to stop when a
gap occurs. All arrivals that occur after this point are excluded as they are not yet scheduled for
departure. For this stage we know the total waiting time occurred by each car as the arriving time
and departure time are known. While serving this stage all other directions do not receive a red light.
Cars arriving, or already waiting at, these directions experience an increase in waiting time for the
entire duration of this stage.

1 p r i va t e void green_Stage ( i n t id , double time ){
2 double C = 0 ; // c o s t s f o r t h i s s tage
3 // f i nd f i r s t time that lane can turn green
4 // e i t h e r ending other l ane s or i t a l r eady i s green
5 double t_green = getGreentime ( id ) ;
6 List<Double> P = getArrivals ( id ) ; // Ar r i v a l s in queue over time
7 List<Double> D = getEndtime ( id , P , t_green ) ; // Schedulde departures o f queue
8 D = getGap ( D ) ; // Departures that occur a f t e r a gap are excluded
9

10 i f ( D . size ( )>0){ // i f any car has l e f t the system
11 t_end = D . get ( D . size ( )−1) ; // time at which t h i s s tage can end
12 Dt_count [ id ] =D . size ( ) ; //number o f ca r s depart ing t h i s s tage
13 P = cleanArrivals ( P , t_end ) ; // a r r i v a l s a f t e r l a s t l e ave are excluded
14 C = getGreenCost ( D , P ) ; // co s t i f you switch (sum of wai t ing time per car )
15 } e l s e { // nothing l e av e s
16 t_end += clear_t ;
17 C = Double . POSITIVE_INFINITY ; // complete i d l e time
18 }
19
20 C += red_Stage ( id , time , t_end ) ; // co s t o f ca r s o f other l ane s that need to wait
21 //add cos t and time to tab l e ;
22 Cost_table . get ( Cost_table . size ( )−1) . add ( C ) ;
23 Cost_table . get ( Cost_table . size ( )−1) . add ( G ) ;
24 }

We can now determine which stage has the least amount of total cost involved with it as we know
the total incurred waiting time over the entire intersection and the duration of the upcoming stage.
The stage with the least cost assigned to it made part of the schedule and received by the traffic light
which executes it.

1 Trafficlight . Light [ ] controlLights ( double t0 , List<ArrayList<Double>> T_table ,
2 List<ArrayList<Integer>> A_table ){
3 // get next schedu le from f o r e c a s t i n g
4
5 t = t_action ;
6 O = getKeyFromValue ( L , t_action ) ;
7 i n t ix = M . get ( O ) ;
8 // index o f lane that i s going to undertake an ac t i on
9

10 i f ( TS_list [ ix ] == Light . GREEN ){ // Light i s cu r r en t l y Green
11 i n t K = findForecast ( t , ix , T_table ) ; //Find next ac t i on
12 i f ( A_table . get ( K ) . get ( ix ) == 1){ // I f l i g h t remain green
13 L . put ( O , T_table . get ( K ) . get ( ix ) ) ; // Put new end green time
14 } e l s e { // i f l i g h t s switch
15 TS_list [ ix ] = Light . RED ; //put cur rent lane on red
16 L . put ( O , infinity ) ; //Current lane no ac t i on s needed
17
18 Light [ ] Schedule = getNextAction ( O , ix , K ) // f i nd what other l i g h t s ←↩

need to do
19 f o r ( i n t i= 0 ; i<Schedule . size ( ) ; i++)
20 {
21 i f ( Schedule [ i ] = Light . CLEARRED ){ // s t a r t c l e a r anc e time
22 TS_list [ i ] = Light . CLEARRED ;
23 O = getKeyFromValueInt ( M , il ) ;
24 L . put ( O , t+tau ) ; //wait remaining ye l lowt ime + c l ea r anc e time ←↩

be f o r e green
25 }
26 }
27 }
28 } e l s e i f ( TS_list [ ix ] == Light . CLEARRED ){ // Clear ing time end
29 TS_list [ ix ] = Light . GREEN ; // s t a r t green
30 i n t K = findGreentime ( t , ix , T_table ) ; // f i nd green durat ion
31 L . put ( O , T_table . get ( K ) . get ( ix ) ) ; //put green durat ion in p lace
32 }
33
34 // f i nd new time at which t r a f f i c l i g h t becomes a c t i v e
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35 t_action = Collections . min ( L . values ( ) ) ;
36 re turn T_list ;
37 }

Supervisor build

The upcoming green phase scheduled by the forecasting instance of Smart Traffic has a certain
efficiency assigned to it. This is calculated by the supervisor. It is specificied for the Kumar-Seidman
network and therefor very strict. Even small decreases in efficiency are not permitted. The point
during the green phase in which the efficiency drops below the threshold (0.95) is found. Efficiency
drops as soon as cars are processed at a rate below the saturation flow. At this point the supervisor
needs to make sure that additional arrivals have occurred at the intersection so it can switch to a
lane and serve it at saturation flow. Which switching is needed can also be found in Chapter 6.

1 import java . util . ArrayList ;
2 import java . util . List ;
3
4
5 // executed at the end o f every Smart T r a f f i c i n s t ance
6 pub l i c Object [ ] efficiency ( List<Double> Active_ID , List<ArrayList<Double>> T_table ,
7 List<List<Double>> Dt , List<List<Double>> A , String Intersection_Name ){
8 Cost = C ; //
9 light_state = T_table . get ( T_table . size ( )−1) ;

10 Dt_table = Dt ;
11 Dt_count = Dtc ;
12 Death_count = Death_c ;
13 Arrivals = A ;
14 Lane_sizes = L ;
15 force_switch = f a l s e ;
16 double eff = 1 ;
17 i n t index ;
18
19 i f ( light_state . get (0 ) ){ //Next ac t i on would be to keep the l i g h t green
20 // extra departures during extens i on
21 i f ( ! Dt_table . get (0 ) . isEmpty ( ) ){
22 // time o f the scheduled departures
23 List<Double> D = new ArrayList<Double>(Dt_table . get (0 ) ) ;
24 double cars = ( double ) ( D . size ( )−1) ;
25 double timespend = D . get ( D . size ( )−1)−D . get (0 ) ;
26 double mu = Lane_sizes [ id ] / 2 . 0 ;
27 eff = ( cars / timespend ) / mu ; // keeping l i g h t green g i v e s t h i s e f f
28 index = 0 ;
29 } //no departure s so exten ing ( always +3s ) greenphase i n e f f i c i e n t ! ! ! !
30 } e l s e {//Next ac t i on i s to switch l i g h t s
31 // time o f the scheduled departures
32 i f ( ! Dt_table . get (1 ) . isEmpty ( ) ){
33 List<Double> D = new ArrayList<Double>(Dt_table . get (1 ) ) ;
34 double cars = ( double ) ( D . size ( )−1) ;
35 double timespend = 0 ;
36 double mu = ( double ) Lane_sizes [ r ] / 2 . 0 ;
37 eff = ( cars / timespend ) / mu ; // sw i tch ing l i g h t s g i v e s t h i s e f f
38 index = 1 ;
39 }
40 }
41
42 i f ( eff <0.95){ // in case e f f i s below 1
43 // f i nd time at which e f f i c i e n c y drops
44 end_time_lane = efficiencybreak ( index , Dt_table . get ( index ) ) ;
45 // prov ides time at which the index needs a r r i v a l s from other i n t e r s e c t i o n←↩

! ! ! !
46 Supervisor . determineMode ( Intersection_Name , lane_change_id , end_time_lane ) ;
47 }
48 return new Object [ ] { force_switch , Dt_table , Dt_count , Cost } ;
49 }
50
51 // f i nd p o s s i b l e break time
52 p r i va t e void efficiencybreak ( i n t id , List<Double> D )
53 {
54 i n t d_pos = −1; //which death i s the l a s t one be f o r e e f f i c e n c y drops
55 double t_pos = 0 ; // time o f l a s t e f f i c i e n t death
56 i n t id = −1; // id f o r l i g h t that i s on low e f f i c i e n c y
57
58 f o r ( i n t i =1; i<D . size ( ) ; i++){
59 // e f f i c i e n c y f o r every step
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60 double eff = (( double ) i /( D . get ( i )−D . get (0 ) ) ) /( Lane_sizes [ id ] / 2 . 0 ) ;
61 i f ( eff <0.95){ // at t h i s departure e f f i c i e n c y drops . Breakpoint
62 d_pos = i−index ;
63 t_pos = D . get ( d_pos−1+index ) ;
64 break ;
65 }
66 }
67 return t_pos ;
68 }

This give a point in time for the supervisor to ensure additional arrivals. This point in time is given
to the supervisor at which it acts to switch the traffic lights of the other intersection. This action
includes the travel time between the intersections.

1 import java . util . ArrayList ;
2 import java . util . List ;
3
4
5
6 // perform switch ac t i on ( always from L2 to L1 as per mode graph )
7 // the lane i s be ing e f f i c i e n t by s e rv ing L2 ,
8 // s t i l l to ensure the other i n t e r s e c t i o n i s e f f i c i e n t t h i s lane sw i t che s .
9

10 // supe rv i s o r s ende r
11 s t a t i c void determineMode ( String Lane_name , i n t id , double t_end_time ){
12 // f i nd id o f i n t e r s e c t i o n that i s going to switch
13 Intersection_ID= getIntersectionID ( Lane_name ) ;
14 Lane_ID= getLaneID ( Intersection_ID , id ) ;
15 // at t h i s s t a r t i n g time
16 force_start_time = t_start_green ( t_end_time , id ) ;
17
18 // send sup e r v i s o r a c t i on
19 I [ Intersection_ID ] ( Lane_ID , force_start_time )
20 }
21
22 // Smart T r a f f i c r e c e i v e r
23 pub l i c void linkforecast ( i n t lane , double time ){ // switch l ane s due to supe rv i s o r a c t i on s
24 List<ArrayList<Double>> T_table_new = F . forceLaneAction ( lane , time , indicate . getV ( ) ) ;
25 Object K [ ] = ST . forcelaneAction ( lane , time , T_table_new ) ;
26 // l i g h t a c t i o n = ( double ) K[ 1 ] ;
27 // i nd i c a t e . addtimestamp ( ( St r ing ) K[ 0 ] , l i g h t a c t i o n ) ;
28 }
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Roundabout settings

Large roundabouts with high traffic intensities are sometimes outfitted with traffic lights to better
direct traffic. These lights are place right in front but also on the roundabout. Assuming a roundabout
with 4 branches each branch can be seen as an intersections. Traffic flows either across the branch onto
the intersection or is driving on the intersection and crosses the intersection to leave the roundabout.
Each branch has its own set of constraints and conflict graphs as explained in Chapter 2. Below the
constraints for a single branch as well as the roundabout are shown.

Roundabout, branch control

Assume a roundabout that has traffic lights directing the flow onto and on the roundabout. Each
branch of the roundabout has a set of traffic lights which can be seen as an individual intersection.
The traffic flows and conflict graph are shown in F.1

Figure F.1: Single branch of a roundabout with traffic flows and corresponding conflict graph. Direction 2 combines traffic that
goes straight and turns left.

Looking at the conflict graph we define 3 sets (or modes) of lanes that can be green without conflicts.
The fraction of time spend in these lanes should be equal to or smaller than one.

α1,2 + α5,6 + α1,6 ≤ 1 (F.1)

Using the conflict graph we can identify 3 constraints

ρ1 + ρ5 < 1

ρ2 + ρ5 < 1

ρ2 + ρ6 < 1

(F.2)

As long as these constraints hold the branch can show stable performance. The above constraints
can be constructed for every single branch and combined into 1 roundabout giving a total of 12
constraints
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Figure F.2: Roundabout with all traffic flows

The internal traffic flows are a combination of external traffic flows. For the top right branch the
traffic staying on the roundabout is equal to α5 · ρ5 with α5 being the fraction of traffic that wants
to turn left and enters through lane 5. In a similar fashion the traffic leaving the intersection is
(1− α5) · ρ5 + α8 · ρ8. With α8 · ρ8 the traffic that wants to turn left that entered from direction 8.
Combining these expressions with equation F.2 lead to the following set of constraints

ρ1 + (1− α5) · ρ5 + α8 · ρ8 < 1

ρ2 + (1− α5) · ρ5 + α8 · ρ8 < 1

ρ2 + α5 · ρ5 < 1

(F.3)

These constraints are identical for each branch. No additional constraints for the system are needed.
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Roundabout, System control

In addition to 4 branches the roundabout can also be expressed as 1 intersection. In this case traffic
never stops on the roundabout but completely clears it before a conflicting lane receives green. This
is shown in the figure below and leads to different constraints.

Figure F.3: Roundabout as a single intersection with traffic flows and corresponding conflict graph. Traffic going straight or
turning left have the same conflicts.

Out of the conflict graph several constraints can immediately be found;

ρ1 + ρ5 + ρ8 < 1

ρ4 + ρ8 + ρ11 < 1

ρ2 + ρ7 + ρ11 < 1

ρ2 + ρ5 + ρ10 < 1

ρ2 + ρ5 + ρ8 + ρ11 < 1

(F.4)

These constraints are more strict than the constraints given in F.3 as no traffic is allowed to stand
still on the roundabout limiting the flexibility of the system. Furthermore there are only 5 modes for
the system to be in, these can also be found out of the conflict graph, these modes are:

α4,5,7 + α1,2,4 + α7,8,10 + α1,10,11 + α1,4,7,10 ≤ 1 (F.5)

Optimizing over these modes show that the constraints of F.4 are all necessary constraints. This
shows that depending on how a network of trafficlights is directed different stability constraints are
found. Good trafficlight control is necessary to allow the system to handle as much traffic as possible
while remaining stable.
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Appendix G

Berenkuil data

For the Berenkuil in Eindhoven the arrival intensities λi and saturation flow μi are known. These are
known from case studies performed in 2006 by Sweco commissioned by the city council of Eindhoven.
We assume the current traffic intensities of this roundabout remain similar to this day. Using the
constraints determined in Appendix F we determine if the traffic flows of the Berenkuil can be handled
by a trafficlight controller that controls each branch individually or the system as a whole. The arrival
intensities are known for morning and evening rush-hour and given below.

Figure G.1: The berenkuil with lane numbering, lanes 62,65,68,71 combine all feeding traffic flows.

61



APPENDIX G. BERENKUIL DATA

Table G.1: Evening Rush-hour Berenkuil, traffic flows

Lane Nr Intensity [Car/h] Lane Nr Intensity [Car/h]
1 805 7 289
2 212 8 846
3 179 9 60
4 530 10 14
5 1356 11 1436
6 180 12 784
62 1596 68 2399
65 1690 71 571

Table G.2: Morning Rush-hour Berenkuil, traffic flows

Lane Nr Intensity [Car/h] Lane Nr Intensity [Car/h]
1 200 7 136
2 970 8 202
3 347 9 28
4 340 10 25
5 1508 11 1147
6 229 12 444
62 1765 68 1983
65 674 71 1547

Table G.3: Berenkuil Lane Capacity

Lane Nr Intensity [Car/h] Lane Nr Intensity [Car/h]
1 2000 7 1700
2 4000 8 4000
3 1900 9 2000
4 3400 10 1700
5 4000 11 4000
6 1700 12 2000
62 5700 68 7400
65 3900 71 5600

Lane 1 does not have a traffic light and is not taken into account when calculating the constraints
with the given traffic flows,

Branch control

We are interested in stability for a controller that controls per branch, see figure G.1 and constraints
F.3. The constraints are calculated by arrivals to the berenkuil not by trafficflows on the berenkuil
(62 to 71).
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APPENDIX G. BERENKUIL DATA

Constraint Morning rush-hour Evening rush-hour
ρ2 + ρ3 + ρ6 < 1 0.56 0.25
ρ2 + ρ6 + ρ10 < 1 0.39 0.17
ρ3 + ρ11 + ρ12 < 1 0.69 0.85
ρ3 + ρ7 + ρ11 < 1 0.55 0.62
ρ8 + ρ9 + ρ12 < 1 0.29 0.63
ρ4 + ρ8 + ρ12 < 1 0.37 0.75
ρ5 + ρ6 + ρ12 < 1 0.73 0.84
ρ2 + ρ5 + ρ9 < 1 0.63 0.42
ρ2 + ρ6 < 1 0.38 0.16
ρ3 + ρ5 + ρ9 < 1 0.57 0.46
ρ3 + ρ6 < 1 0.32 0.2
ρ2 + ρ6 + ρ12 < 1 0.60 0.55
ρ3 + ρ12 < 1 0.40 0.49
ρ2 + ρ6 + ρ11 < 1 0.66 0.52
ρ3 + ρ11 < 1 0.47 0.45
ρ3 + ρ8 + ρ11 < 1 0.52 0.66
ρ8 + ρ12 < 1 0.27 0.60
ρ3 + ρ9 + ρ11 < 1 0.48 0.48
ρ9 + ρ12 < 1 0.24 0.42
ρ5 + ρ8 + ρ12 < 1 0.65 0.94
ρ5 + ρ9 < 1 0.39 0.37
ρ6 + ρ8 + ρ12 < 1 0.40 0.71
ρ6 + ρ9 < 1 0.15 0.14

System control

Similar to the previous section the constraints of the berenkuil are used to calculate stability but this
time for a system that only allows one direction to be served at a time, see equation F.4. As there
are now separate lanes for turning left (for example lane nr 3) the constraints do change. For traffic
flows that enter via the same branch (2 and 3) only the traffic flow with the highest utilization is
needed. The time it takes to clear the busiest direction is enough to also clear the less busy direction.
Again lane 1 does not have a traffic light.

Constraint Morning rush-hour Evening rush-hour
ρ5,6 + ρ8,9 < 1 0.42 0.55
ρ2,3 + ρ5,6 + ρ10 < 1 0.63 0.44
ρ2,3 + ρ7 + ρ11,12 < 1 0.6 0.65
ρ4 + ρ8,9 + ρ11,12 < 1 0.44 0.75
ρ2,3 + ρ5,6 + ρ8,9 + ρ11,12 < 1 0.96 1.04
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