EINDHOVEN UNIVERSITY of TECHNOLOGY

Department of Mechanical Engineering

Manufacturing Networks

MASTER’S THESIS
Optimizing Traffic Light Control

A control theory approach

420689

by Stijn Fleuren

Eindhoven, August 14th, 2012

Supervisor: Prof. dr. ir. I.J.B.F Adan

Coaches: Dr. ir. A.A.J. Lefeber
Dr. ir. M.A.A. Boon

Summary

With an increasing number of road users the efficiency of traffic lights gets more and more important.
Traffic light schedules could have a great effect on the circulation of traffic at intersections and on the
circulation of traffic. To derive efficient traffic light control more research is needed.

Most of the research on this topic is devoted to fixed cycle traffic light control. For fixed cycle
traffic light control the durations of the green periods as well as the durations of the red periods are
not affected by traffic. This type of traffic light control can be efficient when a lot of traffic arrives at
the traffic lights. However, when little traffic arrives, road users might have to wait in front of a traffic
light for no apparent reason. For example, at night a road user might have to wait while there is no
other traffic near this intersection.

Another type of traffic light control is vehicle-actuated traffic light control. In contrast to fixed cycle
traffic light control, for vehicle-actuated traffic light control the durations of the green periods as well as
the duration of the red periods are affected by arriving traffic. For vehicle-actuated traffic light control,
via detectors information is gathered about the queue lengths at the intersection. This information is
used to regulate the duration of the green and red periods.

In practice, for safety reasons restrictions on the duration of a green period are given: minimum
green times and maximum green times. Most research devoted to vehicle-actuated traffic light control
either does not regard these restrictions on green times or is restricted to one traffic light being green
at a time. Furthermore, one of the most studied vehicle actuated traffic light controls is the exhaustive
policy which switches a traffic light to red when its queue is emptied.

In this thesis we derive a vehicle-actuated traffic light control that does regard restrictions on green
time duration, that is not restricted to one traffic light being green at a time and that is not restricted
to switching a traffic light to red whenever its queue is cleared.

We discuss three problems in this thesis. The first problem is trajectory optimization, which is
finding the desired behavior of the intersection. This desired behavior is derived by modeling the
intersection with a hybrid fluid model. This hybrid fluid model traffic assumes deterministic arrivals and
deterministic departures. We derive the desired behavior of the intersection, minimizing the average
weighted queue length at the intersection. Since we assume deterministic arrivals and deterministic
departures to derive the desired behavior of the intersection, in practice the intersection deviates from
it due to for example stochastic arrivals.

The second problem is regulation. The problem of regulation is to find a policy (a feedback control),
which is a set of rules (as function of the queue lengths at the traffic lights) that defines when to take
what control actions (for example when to change the color of a traffic light). This policy should make
sure that the intersection returns to the desired behavior whenever the intersection deviates from this
desired behavior.

The third problem is to address the quality of the proposed policy in a stochastic environment. To
this end, we use a stochastic model for the intersection. This stochastic model assumes Poisson arrivals.

In this thesis we consider relatively small intersections. However, in the future we will try to extend
to larger intersections.

Summary (Dutch)

Door het toenemen van het aantal weggebruikers wordt de efficiéntie van verskeerslichten steeds
belangrijker. Het aanpassen van verskeerslichtregelingen kan een groot effect hebben op de doorstroming
van verkeer. Om efficiénte verskeerslichtregelingen te verkrijgen is onderzoek nodig.

Het grootste deel van het onderzoek is gedaan naar verskeerslichten met vaste groen- en roodtijden.
Verkeerslichten met deze vaste afstellingen zijn niet afhankelijk van het aankomend verkeer. Dit type
verskeerslichtregeling kan goed werken wanneer er veel verkeer aankomt bij de verskeerslichten. Wanneer
weinig verkeer aankomt bij een kruispunt kan het zo zijn dat je moet wachten zonder duidelijke reden.
Bijvoorbeeld wanneer ’s nachts een auto aankomt bij een leeg kruispunt kan het zijn dat deze auto toch
moet wachten voor een rood verskeerslicht.

Een ander type verskeerslichtregeling is de voertuigafhankelijke regeling. In tegenstelling tot een
verskeerslicht met vaste groen- en roodtijden is de voertuigafhankelijke regeling wel afthankelijk van
aankomend verkeer. Via meetlussen in de weg wordt informatie verkregen over het wachtend verkeer
op een kruispunt. Deze informatie wordt gebruikt om groen- en roodtijden te bepalen.

In de praktijk worden er boven- en ondergrenzen gesteld op groentijden. Het merendeel van het
onderzoek naar de voertuigathankelijke regeling houdt geen rekening met deze grenzen op groentijden.
Verder wordt er vaak aangenomen dat er hoogstens één verskeerslicht tegelijkertijd groen is. Een veel
onderzochte voertuigathankelijke regeling is de regeling waarbij een verskeerslicht rood wordt zodra er
geen verkeer meer staat te wachten voor dit verskeerslicht.

In dit verslag beschouwen we een voertuigathankelijke verskeerslichtregeling die wel rekening houdt
met de boven- en ondergrenzen op groentijden, waarbij meerdere (niet conflicterende) verskeerslichten
tegelijkertijd groen kunnen zijn en waarbij een verskeerslicht niet per sé rood wordt als er geen verkeer
staat te wachten voor dit verskeerslicht.

Er worden drie problemen behandeld. Het eerste probleem wordt het trajectory optimization pro-
bleem genoemd. Voor het trajectory optimization probleem wordt het gewenste gedrag van een kruispunt
afgeleid door het kruispunt te modeleren met een hybride vloeistof model. Dit hybride vloeistof model
gaat uit van deterministische aankomsten en deterministische vertrekken. Tijdens het trajectory opti-
mization probleem wordt gezocht naar het gedrag van het kruispunt dat de gewogen wachrijlengte aan
het kruispunt minimaliseert. Om het gewenste gedrag van het kruispunt af te leiden wordt aangenomen
dat de aankomsten en vertrekken deterministisch zijn. In de praktijk zijn de aankomsten en vertrekken
stochastisch en zal het kruispunt van dit gewenste gedrag afwijken.

Het tweede probleem is regulation. Voor dit probleem wordt naar een feedback policy (als functie
van de wachtrijlengtes bij de verskeerslichten) gezocht. De feedback policy bestaat uit regels die bepalen
wanneer welke acties ondernomen moeten worden (bijvoorbeeld wanneer de kleur van een verskeerslicht
moet veranderen). Deze regels moeten ervoor zorgen dat wanneer het kruispunt afwijkt van het gewenste
gedrag (verkregen via het trajectory optimization probleem), het kruispunt weer terug gaat naar dit
gewenste gedrag.

Verder worden deze regels getest in een stochastische omgeving. Via simulatie worden resultaten
verkregen. Voor deze simulatie wordt het kruispunt gemodelleerd met een stochastisch model. Dit
stochastische model neemt aan dat de aankomsten bij het kruispunt Poisson verdeeld zijn.

In dit verslag beschouwen we relatief kleine kruispunten. In de toekomst wordt geprobeerd om dit
werk uit te breiden naar grotere kruispunten.

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

Example: Intersection With 32 Traffic Lights
Terminology L e
Notations e
Problem Description e e e e e
Outline of this thesis o e

2 Literature

3.1

3.2

4.1

4.2

4.3
4.4
4.5

4.6

4.7
4.8

Models

Stochastic Model L
3.1.1 Arrival Processes and Departure Processes
3.1.2 Queue e e e e
3.1.3 Modeling Startup Effect in the Maximum Departure Rate
Hybrid Fluid Model e
3.2.1 Modeling Queues e
3.2.2 Modeling Arrivalso e
3.2.3 Modeling Departures L e
3.24 Modeling Mixed Arrival Flows oo
3.2.5 Modeling Two-Way Pedestrian Crossings
3.2.6 Modeling Startup Effect in the Maximum Departure Rate

Trajectory Optimization: A Simple Intersection of Two Signals

Problem Description
4.1.1 Average Delay of A Road User At the Intersection
Behavioral Equations of the Hybrid Fluid Model
4.2.1 Manifest Variables and Latent Variables
4.2.2 Behavioral Equations e e
4.2.3 Assumptions Lo
Properties of Optimal Trajectories
Shape of the Periodic Optimal Trajectory
An Optimal Trajectory Discarding Restrictions on Maximum Queue Lengths, Minimum
Green Times and Maximum Green Times
An Optimal Trajectory Discarding Restrictions on Minimum Green Times and Maximum
Green Times L
An Optimal Trajectory Discarding Restrictions on Minimum Green times
Periodic Optimal Trajectory 0 o i e

11
12
17
18
18
19

21

25
25
26
26
27
28
28
29
29
29
31
31

4.8.1 Solution of the Optimization Problem 51

Regulation: A Simple Intersection of Two Signals 53
5.1 Problem Description 53
5.2 Proposing a Policy e 54
Quality of the Policy in a Stochastic Setting: A Simple Intersection of Two Signals 57
6.1 Theoretical Comparison to Exhaustive Policy 58
6.2 Test Case 1: Effect of the Arrival Rates, 59
6.3 Test Case 2: Effect of The Maximum Green Time 60
6.3.1 Test Case 2a: Effect of The Maximum Green Time of the High Traffic Signal . . 60
6.3.2 Test Case 2b: Effect of the Maximum Green Time of the Low Traffic Signal . . . 62
6.4 Test Case 3: Effect of Maximum Queue lengths 63
6.4.1 Test Case 3a: Maximum Queue Length of the High Traffic Signal 63
6.4.2 Test Case 3b: Maximum Queue Length of the Low Traffic Traffic Signal 64
Trajectory Optimization: An Intersection with Two Signal Groups 67
7.1 Problem Description L e 67
7.1.1 Average Delay of A Road User At the Intersection 68
7.2 Behavioral Equations of the Hybrid Fluid Model 68
7.2.1 Manifest Variables and Latent Variables 69
7.2.2 Behavioral Equationso 69
7.2.3 Assumptions 70
7.3 Properties of Optimal Trajectories 72
7.4 Shape of the Periodic Optimal Trajectory, 7
7.5 Periodic Optimal Trajectory L 79
7.5.1 Optimization Problem 00 o 79
7.5.2 Existence of a Solution Lo Lo 80
7.5.3 Solution e 81
7.5.4 Fixed Order and Optimality o 86
Regulation: An Intersection with Two Signal Groups 89
8.1 Assumptions L. e e e 89
8.2 CONnVEIZENCE . . .« v v v i i e e e e e e e e 90
8.3 Proposing aPolicy e 91
8.3.1 Overview of the Policy 93
8.3.2 Switching the Signals 1 and Ny +1toRed 93
Quality of the Policy in a Stochastic Setting: An Intersection With Two Signal
Groups 97
9.1 Test Case 1: Effect of the Arrival Rates 98
9.1.1 Test Case la: Effect of Increasing Arrival Rates 98
9.1.2 Test Case 1b: Effect of Asymmetrical Arrival Rates Between Signal Group . . . 99
9.1.3 Test Case 1c: Effect of Asymmetrical Arrival Rates in a Signal Group 100
9.2 Test Case 2: Effect of The Maximum Green Time 101

9.2.1 Test Case 2a: Effect of The Maximum Green Time of the High Traffic Signals . . 101
9.2.2 Test Case 2b: Effect of the Maximum Green Time of the Low Traffic Signals . . 102
9.3 Test Case 3: Effect of Maximum Queue lengths 102
9.3.1 Test Case 3a: Maximum Queue Length of the High Traffic Signals 102

9.3.2 Test Case 3b: Maximum Queue Length of the High Traffic Signals 103

10 Conclusions and Recommendations for Further Research 105
10.1 Conclusions L 105
10.1.1 Trajectory optimizationo Lo 105

10.1.2 Regulation 106

10.1.3 Addressing the Quality of the proposed policy 106

10.2 Recommendations for Further Research 106
10.2.1 Comparison of proposed policy to existing policies 107

10.2.2 Improving our Policy 107

10.2.3 Setup Times e e e 107

10.2.4 Multiple Signal Groups L e 108

10.2.5 Networks of Intersections o 108

A Table of Symbols (Used in x3.0 Simulation Code 109
AL Types . . o 109
A2 Symbols e 111

B x 3.0 Simulation Code 113
C Proofs (Trajectory Optimization) 129
C.1 Analytical Solution Optimization Problem 1. 129
C.2 Analytical Solution Optimization Problem 2 138
C.3 Proof of Lemma 7.2 L e 155

D Proof of Proposition 8.1 (Regulation) 161
D.1 Different reasons to switcho 161
D.2 Notation and definitions 163
D.2.1 Referring to Signals and Sets oo L. 163

D.2.2 Green times and Red times oo o0 163

D.2.3 Definition of Cycle 1 and Cycle 2 165

D.2.4 Mappings o o i e e e e e 166

D.3 Proofof the Policy e 167
D4 Lemmas o e e e e 184
D.4.1 Lemmas Excluding Sequences of Switch Reasons 185

D.4.2 Lemmas Excluding Infinite Sequences of Switch Reasons 194

D.4.3 Other Lemmas e e 201

Chapter 1

Introduction

Traffic lights are signalling devices that control the access of competing traffic flows to an intersection.
The main purpose of traffic lights is to improve safety and decrease discomfort of road users. The
traffic lights origin, can be traced back to semaphores and lights used in regulating train traffic. The
first traffic light was already in use before automobiles dominated the roads and traffic consisted of
pedestrians, buggies and wagons. This traffic light was a rotating gas lantern with red and green lights
and it was installed in 1868 outside the British Houses of Parliament in Londen. The gas lantern was
very similar to the railway signals of the time and it was invented by railway engineer J.P. Knight.
With the rise of the automobiles, the roads got more occupied. Hence, the traffic light got more useful
and more practical. In 1920 the first four-way three color traffic light was installed in Detroid.

In the 1920s traffic lights were also introduced in the urban streets of almost every sizable Dutch
city. Each of these cities developed its own traffic light system. In the 1930s this variety of systems
gave way for the three-color system that would become the international standard.

With an increasing number of road users the efficiency of traffic lights gets more and more important.
Traffic light schedules could have a great effect on the circulation of traffic at intersections and on the
circulation of traffic. Another way to increase the circulation of traffic is by changing the road structure.
Obviously, changing traffic light schedules is relatively cheap and easy to implement in comparison to
changing road structure. Besides, changing road structure is not always possible. For example, because
of limited space in cities, adding an extra lane to decrease traffic congestion is often out of the question.

The main goal of this thesis is to make a first step in developing vehicle-automated traffic light
controls that improve the efficiency of traffic lights at intersections, i.e. improve the circulation of
traffic. More specifically, our goal is to minimize the average weighted queue length for relatively small
intersections. Minimizing the average queue length is equivalent to minimizing the average delay of
road users at an intersection. In this thesis we define the delay as the additional travel time experienced
by a driver, cyclist or pedestrian, which is the same definition as can be found in [14]. To minimize the
average weighted queue length at an intersection, we distinguish two main roots of control theory cf.
[24]: trajectory optimization and regulation.

In Section 1.1 we introduce some of the definitions and introduce some of the notation used in this
thesis. We give a summary of the introduced definitions and the introduced notation in Section 1.2 and
Section 1.3. In Section 1.4 we give the problem definition and in Section 1.5 we give an overview of this
thesis.

11

1.1 Example: Intersection With 32 Traffic Lights

In this section we introduce some of the definitions and some of the notation used in this thesis. The
definitions and notation introduced in this section are summarized in Section 1.2 and Section 1.3.

LTI TS

@l s

Figure 1.1: An example of an intersection controlled with traffic lights.

Vehicle lanes, bicycle lanes and pedestrian crossings In Figure 1.2 we can see an example of
an intersection. This intersection consists of 8 vehicle lanes, 8 bicycle lanes and 8 (two-way) pedestrian
crossings. A vehicle lane is defined as the part of the road leading to the intersection that is designed for
a single line of vehicles. A bicycle lane is a portion of the roadway that has been designated by striping,
signing, and pavement markings for the exclusive use of bicyclists. In this example each vehicle lane
and each bicycle lane is equipped with one traffic light. We define a pedestrian crossing as a designated
place where pedestrians can cross a street and where vehicles must stop to let them cross. Generally,
at a pedestrian crossing pedestrians can walk in two directions (two-way pedestrian crossing). Each
direction is equipped with a traffic light. Hence, this intersection has a total of 32 traffic lights.

The intersection depicted in Figure 1.2 is not very realistic due to its lack of vehicle lanes for turning
traffic. However, we have chosen this example because it is one of the more complex intersections that
we could control using the results from this thesis.

Signals and approaches We can partition each of the traffic lights in exactly one set, each set
corresponding to one signal. A signal is a set of one or more traffic lights, which switch to green
simultaneously and switch to red simultaneously. A Signals is designated to either vehicles, cyclists

12

Signal Type of traffic number of traffic lights in each signal

1,...4 Vehicles going straight ahead 2

5,12 Cyclists (in this example cyclists are not allowed to 1
not go clockwise)

13,...,20 Pedestrians. 2

Table 1.1: partitioning the 32 traffic lights in Figure 1.2 into 20 signals

or pedestrians. Two traffic lights may only be partitioned in the same signal designated to vehicles or
cyclists whenever the traffic arriving at these traffic lights originates from the same direction. Signals
are numbered 1,..., N and we use N’ = {1,2,..., N} to refer to the set of all signals at an intersection.
With approach i € N we refer to the roads that lead to the traffic lights in signal i. In Figure 1.2
and Table 1.1 we can see how we have numbered the approaches (and thus how we have numbered the
signals) respectively how we have partitioned the 32 traffic lights in 20 signals. Thus, in this example
N = 20. Another division of traffic lights in signals is also possible. The division of traffic lights in
signals is up to the engineers that derive traffic light schedules for an intersection. The traffic lights that
are partitioned into the same signal switch simultaneously. Therefore, these traffic lights have exactly
the same traffic light schedule. For this example, by partitioning traffic lights into signals there are 20
different traffic light schedules (one for every signal) instead of 32 different traffic light schedules.

In each direction there are two lanes for vehicles. Because the traffic from these two adjacent lanes
originates from the same direction and goes in the same direction it is logical to switch the corresponding
two traffic lights to green simultaneously and to red simultaneously. Hence, we partition these traffic
lights in the same signal. Moreover, for this example we partition the two traffic lights of a pedestrian
crossing in the same signal.

Signal state In most countries, the state of each of these signals can be either green, amber or red.
We define the signal state as the visual state of the traffic lights that are element of the same signal.

However, in this thesis we do not consider the amber (orange) signal state because depending on
the assumptions this amber signal state could be modeled as a red signal state, a green signal state or a
combination of those two. When assuming that traffic still departs when its signal is amber, the amber
signal state can be modeled as a green signal state. When assuming that traffic does not depart when
its signal is amber, the amber signal state can be modeled as a red signal state. When assuming that
during the first part of the amber signal state traffic departs and during the second part traffic does not
depart, we can model the first part as a green signal state and the second part as a red signal state.

We use m;(t) for the signal state of signal i € N at time ¢t € RT. The signal state m;(t) is equal to
® or @ whenever the signal state is green or red respectively. When the signal state of signal i € N is
red, we often use the short version: signal 4 is red. When the signal state of signal i € A is green we
often use one of the short versions: signal ¢ is served or signal i is green.

Green and red period We define a green (red) period as the interval during which the signal state
is green (red), i.e. the interval between the moment that the signal is switched to green (red) and the
moment that the signal is switched to red (green). During the green period of signal ¢, traffic waiting at
the corresponding approach is allowed to cross the common crossing area. On the other hand, during
the red period of signal i, traffic from the corresponding approach is not allowed to cross the common
crossing area. The duration of a green (red) period is called a green (red) time. We use g, k =1,2,...
for the kth green time of signal i (starting from ¢ = 0) and we use 7% for the red time of signal i that
comes between gF and gf“. A traffic light schedule is a specified sequence of red and green periods for
a traffic light.

13

In practice, signals generally have constraints on the length of the green period, i.e. a green time
may not exceed the maximum green time and a green time must exceed the minimum green time. We

denote the maximum green time and the minimum green time of signal i € N with g/"** respectively
g™, where g*** > 0 and g;™" > 0. Whenever a green period is extremely short or extremely long

(and as a result a red period of another signal is extremely long), road users could get irritated which
results in more red negation, i.e. in more people ignoring a red light. Further, whenever a green period
is extremely short or extremely long, road users might think the traffic lights are malfunctioning. These
lower and upper boundaries on green times should guarantee that the intersection is believable and
should limit the irritation of road users.

Arrival rate We assume that at all of the traffic lights, traffic arrives. How much traffic arrives is
denoted with the arrival rate. The arrival rate is the mean number of vehicles, cyclists or pedestrians
arriving at a signal or traffic light per second. In practice this arrival rate varies. For example more
traffic arrives during rush hour. However we assume that the arrival rate at signal ¢ € A is constant.
The arrival rate at signal i € N is denoted with)\; and it is often obtained by counting the number of
vehicles, cyclists or pedestrians arriving at a traffic light. We assume A; > 0.

Maximum departure rate The maximum departure rate is the highest possible rate at which traffic
from a traffic light or signal could cross the intersection in vehicles per second, cyclists per second or
pedestrians per second. We use p; for the maximum departure rate of signal i € A/. In practice this
maximum departure rate is not constant because at the beginning of a green time there is a startup
effect; people do not respond instantaneously and the traffic needs some time to accelerate. Hence, in
the beginning the maximum departure rate increases. After a certain amount of time the maximum
departure rate does not change anymore. The transient part, where the maximum departure rate
increases, is called the startup effect in the departure rate. The maximum departure rate p; can be
easily computed, based on the design of the intersection. The maximum departure rate satisfies p; > 0.
We assume p; > ;. Further, we use p; for the ratio between the arrival rate and the maximum
departure rate of signal 7, i.e. p; = 2— 1 € N which is equal to 2—

Queues The traffic waiting at a traffic light forms a queue. A queue is defined as the vehicles, cyclists
and pedestrians at an approach that are waiting to cross the intersection. With queue i € N we refer
to the vehicles, cyclists and pedestrians that are waiting at approach i. We use z;(t) to refer to the
queue length of queue ¢ € A. Since there is limited space for traffic to wait at a traffic light, there
are maximum queue lengths. The maximum queue length is the maximum amount of vehicles, cyclists
or pedestrian that could be waiting in front of a traffic light or signal. These maximum queue lengths
follow from the design of the intersection. The maximum queue length of queue i € N is denoted with
T ().

Slow mode During a slow mode a signal is green and the corresponding queue is empty. During a
slow mode arriving traffic experiences no delay. We use gi)‘ * for the length of the slow mode at signal i
during the kth green period of signal i. We use g’ * for the length of the interval during the kth green

period of signal 7 during which the queue of signal ¢ is not empty, i.e. gf’k =gk - gf‘k

Conflicting signals For safety reasons, not all signals at an intersection that is controlled with traffic
lights may be green simultaneously (if this was the case we would not need traffic lights). Two signals
are conflicting when the traffic from these approaches cannot safely cross the common crossing area
simultaneously. In Table 1.2 we present the conflict matrix for the intersection in Figure 1.2. In a conflict
matrix we can see which signals are conflicting (denoted with an ’x’) and which are not conflicting.

14

112(3|4|5|6|7|8|9]|10|11 |12 13|14 |15 | 16 |17 | 18 | 19 | 20
1 X X X X
2 X X b d X X b d
3 X X | X X b d b d
4 X X X X X X
5 X
6 X
7 X
8 X
9 X
10 X
11 X
12 b d
13 X
14 | x
15 X
16 X
17 | x
18 X
19 X
20 X

Table 1.2: Conflict matrix of the intersection in Figure 1.2.

Some of the vehicles, cyclists and pedestrians already start to accelerate when they expect their
signal to switch to green. When the order in which these signals are served changes, these expectations
may be wrong and could result in unsafe situations. Hence, in practice, often signals are served in a
fixed order. To define the order in which we serve these signals, we use signal groups. A signal group is
a group of signals that do not conflict with each other. The order in which we serve these signal groups
is always the same.

When we have more than 2 signal groups, we have to determine the order in which to serve the
signals. For example in the case of 3 signal groups (group 1, group 2 and group 3) we can choose to
serve the signals in the following orders:

order 1 serve the signals in group 1 — serve the signals in group 2 — serve the signals in group 3 —
serve the signals in group 1 — serve the signals in group 2 — serve the signals in group 3 — ...

order 2 serve the signals in group 1 — serve the signals in group 3 — serve the signals in group 2 —
serve the signals in group 1 — serve the signals in group 3 — serve the signals in group 2 — ...

One way to find signal groups from a conflict matrix is by solving a graph coloring problem. The
vertices of the graph coloring problem represent the signals. Two vertices are connected (with an edge)
whenever the corresponding signals are conflicting. We can find the minimum number of signal groups
needed, by coloring the vertices with a minimum number of colors such that two connected vertices do
not have the same color.

For the intersection in Figure 1.2 this graph coloring problem results in two signal groups. One of
the groups contains the signals 1,3,7,8,11,12,15,16,19 and 20. The other group contains the signals
2,4,5,6,9,10,13,14,17 and 18.

Determining the signal groups and determining in which order to serve these signal groups is not
in the scope of this thesis. In this thesis we assume that the signal groups are given. Furthermore, we
only consider intersections with 2 signal groups.

15

Figure 1.2: Graph coloring for the intersection in Figure 1.2.

Setup times A setup time is a fixed minimum time between the end of the green period of a signal
and the beginning of the green period of a conflicting signal. A setup time is a safety measure that
limits the hinder for traffic crossing the intersection. The setup time between serving signal i € A and
serving signal j € N is denoted with o; ;. During this setup time, signal ¢ and signal j are both red.
In practice, setup times can be negative. Whenever o; ; < 0 this means that signal j may switch to
green (a maximum of) |o; ;| seconds before signal ¢ has switched to red. For the intersection in Figure
1.2, possibly signal 3 may switch to green before signal 5 has switched to red because it takes some
time for the vehicles from signal 3 to reach the part of the road that cyclists from signal 5 also use.
Furthermore, we should also note that in general o; ; and o;; are not equal. for the intersection in
Figure 1.2 it probably holds that o1 4 < 04,1 because it takes longer for vehicles from signal 4 (than for
vehicles from signal 1) to arrive at the part of the intersection that both the vehicles from signal 1 and
the vehicles from signal 4 use. Further, we use 0 j,; = 0; ; + 0j,.
In this thesis we restrict ourselves to non-negative setup times.

16

1.2 Terminology

Below we list some of the terminology used in this thesis.

Approach =
Bicycle lane =
Conflicting signals =

Delay =

Green period =

Green time

Intersection =
Pedestrian crossing =

Queue =

Red period =

Red time
Setup time

Signal =

Signal group =
Signal state =

Switch =
Slow mode =

Vehicle lane =

Approach i refers to the roads that lead to the traffic lights in signal i, i =
1,...,N.

Portion of the roadway that has been designated by striping, signing, and
pavement markings for the exclusive use of bicyclists.

Two signals are conflicting when the traffic from the corresponding approaches
cannot safely cross the common crossing area simultaneously.

Additional travel time experienced by a driver, cyclist or pedestrian with re-
spect to the travel time of a driver, cyclist or pedestrian that arrives at the
same traffic light during a green period while the queue is empty.

Interval during which the signal state is green, i.e. the interval between the
moment that the signal is switched to green and the moment that the signal is
switched to red. During the green period of signal i, traffic from the queue of
the corresponding approach can cross the common crossing area.

Duration of a green period.

Set of approaches and a common crossing area.

A designated place where pedestrians can cross a street and where vehicles
must stop to let them cross.

The vehicles, cyclists and pedestrians at an approach that are waiting to cross
the intersection. With queue 7 we refer to the vehicles, cyclists and pedestrians
that are waiting at approach 1.

Interval during which the signal state is red, i.e. the interval between the
moment that the signal is switched to red and the moment that the signal is
switched to green.

Duration of a red period.

Fixed minimum time between the end of the green period of a signal and the
beginning of the green period of a conflicting signal.

Set of one or more traffic lights which switch simultaneously to green and
simultaneously to red. A Signals is designated to either vehicles, cyclists or
pedestrians. Two traffic lights may only be partitioned in the same signal
designated to vehicles or cyclists whenever the traffic arriving at these traffic
lights originates from the same direction. Signals are numbered 1,..., N.

A group of signals that do not conflict with each other.

The visual state, i.e. green or red, of the traffic lights that are element of
the same signal. We do not consider the amber state. Vehicles, cyclists and
pedestrians are assumed to depart only when the signal state of their signal is
green.

Change in the state of a signal.

Interval during which the signal state is green and the corresponding queue is
empty. The traffic that arrives during a slow mode experiences no delay.

Part of the road leading to the intersection that is designed for a single line of
vehicles.

17

1.3 Notations

In this section we list some of the notation used in this thesis.

A Arrival rate at signal 4, i.e. the mean number of vehicles, cyclists or pedestrians arriving at
approach i per second.

i Maximum departure rate of signal ¢, i.e. the maximum rate at which traffic from signal ¢
could cross the intersection in vehicles per second, cyclists per second or pedestrians per
second.

N The set of all signals at an intersection, i.e. N'={1,2,..., N}

pi Ratio between the arrival rate and the maximum departure rate of signal i, i.e. p; = ,)\Ti

Oij Setup time between serving signal ¢ and serving signal j. During this setup time signal 4
and signal j are both red, i.e. during this setup, traffic from signals ¢ and j may not cross
the intersection.

Tij,i 045+ 05

m;(t) Signal state of signal 7 at time ¢t € RT. The signal state m;(t) is equal to @ or @ whenever
the signal state is green or red respectively.

gr Length of the kth green period period of signal i.

91')\ ok Length of the slow mode at signal ¢ during the kth green period of signal 1.

H ok Length of the interval durin];g the kth green period of signal ¢ during which the queue of
signal i is not empty, i.e. gi"" = gf — gf‘k

Ty Length of the red period of signal 7 that comes between the kth green period of signal ¢ and
the k + 1th green period of signal 1.

g Upper boundary on the length of the green period of signal 4, i.e. the maximum green time.

gmin Lower boundary on the length of the green period of signal 4, i.e. the minimum green time.

2;(t) Amount of traffic in queue i at time ¢t € R, i.e. the queue length of queue i at time ¢.

e Maximum queue length of queue i. The maximum queue length of queue 7 is the maximum

amount of traffic that could be waiting at approach 1.

1.4 Problem Description

In this thesis we discuss three problems.

Problem 1: trajectory optimization The first problem is trajectory optimization. The problem
of trajectory optimization is the process of designing a trajectory that minimizes or maximizes some
measure of performance within prescribed constraint boundaries. For small intersections we want to find
optimal trajectories, minimizing the average weighted queue length at the intersection. These optimal
trajectories can be seen as the desired behavior of the intersection. We assume that we can control the
signal state and the departure rate of traffic at each of the signals of an intersection.

An example of a trajectory optimization problem is the problem of finding an optimal flight trajec-
tory of an airplane from Vancouver to Cape town. Before the pilot even starts flying he could already
derive some trajectory he wants to follow. For example the fastest trajectory. Finding this trajectory
is the trajectory optimization problem.

For an intersection a trajectory consists out of the evolution (as function of time) of the following
variables for each of the signals i € N/:

18

- x;(t): the queue lengths of signal i as a function of time.
- m;(t): the signal state, also called the mode, of signal i as a function of time.
- d;(t): the departure rate of both signal 7 as a function of time.

To solve the trajectory optimization problem for an intersection, we model the intersection with
a hybrid fluid model (see Section 3.2). This model assumes deterministic arrivals and deterministic
departures. In practice there are stochastic effects. However, this deterministic model is more suitable
for optimization purposes.

Problem 2: regulation To obtain the desired trajectory we assume deterministic arrivals and de-
terministic departures. However, due to stochastic effects we may deviate from the desired trajectory.
The second problem is regulation, which is finding a policy (a feedback control). A policy is the set of
rules that defines when to take what control actions (for example when to change the color of a traffic
light). When we deviate from the desired trajectory, the policy should make sure that we again return
to this desired trajectory.

An example of a regulation problem is when an airplane wants to follow some trajectory (for exam-
ple the fastest trajectory). This desired trajectory follows from the trajectory optimization problem.
However, due to factors like chaotic airflow, the airplane cannot follow this desired trajectory exactly.
Whenever the airplane deviates from this desired trajectory, the pilot can observe this and he could
correct the airplane in the right direction by steering, accelerating or decelerating. In this way the
airplane returns to the desired trajectory whenever it deviates from it. What actions the pilot should
take (and when it should take these actions) is the problem of regulation.

Problem 3: Performance in a stochastic setting The third problem is accessing the performance
of the policy in a stochastic setting via simulation.

1.5 Outline of this thesis

First we give an overview of the literature about traffic light control in Chapter 2. Subsequently, we
introduce two models, i.e. the stochastic model (SM) and the hybrid fluid model (HFM), in Chapter 3.
The hybrid fluid model is used in the largest part of this thesis.

In chapters 4, 5 and 6 we consider a simple intersection of two signals. Subsequently, we consider a
more general intersection (with two signal groups) in chapters 7, 8 and 9.

In Chapter 4 and Chapter 7 we address the first problem: trajectory optimization. First we prove
that we can always find an optimal trajectories satisfying some properties. Using these properties we
can pose an optimization problem. This optimization problem can be solved analytically for some
intersections.

In chapters 5 and 8 we consider the second problem; regulation. In these chapters we propose a
policy (a feedback control) and we prove that this policy works as desired; the policy makes sure that
we return to the desired periodic optimal trajectory whenever we deviate from it. This policy does not
need to control the departure rates. We only need to control the signal states.

In chapters 6 and 9 we address the quality of the proposed policy in a stochastic environment.

Finally, in Chapter 10 we summarize the most important conclusions of this thesis and we give some
recommendations for future research.

19

Chapter 2

Literature

There are two primary types of traffic light control: fixed cycle traffic light control and vehicle-actuated
traffic light control. For fixed cycle traffic light control the duration of the green period as well as the
duration of the red period are not affected by traffic, i.e. the green time of a traffic light is always the
same and the red time of a traffic light is always the same. For a vehicle-actuated traffic light control,
via detectors information is gathered about the queue lengths at the intersection. This information is
used to regulate the red and green times. We give an overview of the literature about both types of
traffic light control.

Fixed Cycle Traffic Light Control There has been a broad effort to obtain exact expressions and
good approximations for the queue length and the delay of vehicles at intersections with traffic lights.
The delay is often used as an optimization and evaluation criterion for traffic light control. However, it
is not easy to determine the delay.

In the effort to obtain good approximations for the delay, the fixed-cycle traffic light (FCTL) queue
is one of the best-studied models in traffic engineering. For this model, the traffic light alternates
between green and red periods of effective duration g and r and the vehicles that arrive at a traffic light
form a queue. It is assumed that during the green periods traffic can depart at equal time intervals.

For the FCTL queue the duration of the green period as well as the duration of the red period are
not affected by traffic, i.e. the green time of a traffic light is always the same and the red time of a
traffic light is always the same. The majority of the research devoted to the FCTL queue is based on
the simplifying assumption that traffic arrives according to a Poisson process. The most famous result
is that from Webster [28]. It gives the mean delay of a vehicle in closed form, which is partly based on
theoretical grounds and partly based on simulation.

Other expressions for the mean delay, assuming that traffic arrives according to a (Compound)
Poisson process, can be found in Darroch [8], McNeill [18] and Webster and Cobe [29]. In McNeill
[18] an exact expression for the mean delay was given up to one unknown: the mean queue length at
the end of a green period. We denote this unknown with EX . Later, in [8], Darroch found an exact
expression for EX,. In [23], Ohno gives a detailed description of a computational algorithm for several
characteristics such as the average delay, the average queue length and the probability of clearing the
queue. This computational algorithm calculates the (rather complicated) expression for EX, given in
Darroch [8] in an exact manner. Further, Ohno gives an overview of new approximate expressions
and existing approximate expressions in comparison with the exact values of the average delay. In
Heidemann [13] analytical results on statistical distributions of queue lengths and delays at traffic lights
are derived. To obtain these probability distributions Poisson arrivals are assumed.

21

There is also some research devoted to more general types of arrival processes. In van Leeuwaarden
[16], a probability generating function is given for the queue length distribution at the end of a green
period and a Laplace-Stieltjes transform is given for the delay distribution. To obtain this probability
generating function and Laplace-Stieltjes transform, the queue is modeled in discrete-time and it is
assumed that the number of vehicles that arrive per time slot follows some discrete distribution (the
Poisson distribution and Compound Poisson distribution are also discrete distributions). Also in Van
den Broek et al. [6], a more general discrete distribution is considered and several bounds and approxi-
mations are presented for the average delay. Further, in [6] a new approximation is given, based on the
heavy traffic limit and a scaling argument. In Miller [19] and Newell [20] approximations for EX, are
derived using fairly general arguments.

More recently, a probabilistic queuing model is used in Viti and Van Zuylen [26], assuming any
temporal distribution of the arrivals. It can explain the dynamic and stochastic behavior of queues at
fixed-time controlled intersections and allows one to capture the temporal behavior of queues, as well
as the uncertainty of a prediction.

We have shown that there are several exact expressions and approximations available for the delay.
These expressions can be used to find the optimal fixed cycle traffic light control. In Webster [28], a
technique is proposed, that uses Webster’s famous delay formula, to find fixed cycle control schemes for
an isolated intersection. In Van den Broek [5], a mixed integer program is given for finding the optimal
control and an algorithm is proposed to solve this mixed integer program. In Fouladvand and M.
Nematollahi [11] the analytical solutions were found for a fixed-time controlled intersection of two one-
way streets and a fixed-time controlled intersection of a two-way street with a one-way street. To find
this analytical solution, constant arrival rates and constant departure rates are assumed. Further, no
setup times, no constraints on green times and no maximum queue lengths are considered. An algorithm
for designing traffic light schedules is proposed in Riedel et. al [25]. The model of an intersection is
derived by considering a small intersection. Using a combination of dynamic programming and branch
and bound, a control algorithm is developed.

Further, there is also some research devoted to networks of intersections. In Brockfeld et al. [4]
the goal is to minimize travel times for a city network: a square lattice of intersections. To this
end, the network is modeled with a cellar automata model. For synchronized traffic lights, one finds
strong oscillations in the global flow as function of the cycle time. Further, green wave and random
switching strategies are tested. In Alfa and Neuts [1], the arrival process is modeled using a discrete-
time Markovian Process. This model takes into account the bunching of traffic, i.e. forming of platoons,
and the correlations between inter arrival times. They conclude that ignoring the correlation in the
arrival process results in the underestimation of performance measures such as the mean queue length,
especially at high traffic intensities.

Vehicle-actuated Traffic Light Control For a vehicle-actuated traffic light control, via detectors
information is gathered about the queue lengths at the intersection. This information is used to regulate
the red and green times.

One of the most studied vehicle-actuated traffic light controls is the exhaustive policy that switches
a traffic light to red when the queue is cleared. One of the first efforts in analyzing vehicle-actuated
traffic light control is done in Darroch [9]. In Darroch [9] Poisson arrivals are assumed to analyze the
exhaustive policy for an intersection of two one-way streets. In Newell [21] this exhaustive policy is
analyzed using fluid and diffusion queueing approximations for an intersection of two one-way streets.
In [21] arriving traffic is assumed to be a stationary stochastic process with an arrival rate just slightly
below that which saturates the intersection. Newell concludes that the vehicle-actuated traffic light
control has a high efficiency compared to the fixed cycle traffic light control.

In Daganzo [7] and Boon [2] polling models with more general arrivals and departure processes are

22

used to model and analyze intersections. These polling models are either restricted to serving one flow
of traffic at a time or restricted to the exhaustive policy.

More recently an intersection of two intersecting traffic flows is considered in Wang and Yin [27].
Wan and Yin analyze green extensions; after a queue is cleared, arriving vehicles activate a green period
extension during a period called the critical gap. When no vehicles arrive during the critical gap, the
signal is switched to red. Wang finds that the optimal critical gap is generally not zero, which indicates
that the exhaustive policy even in heavy traffic is not optimal.

Some research is devoted to intersection where multiple signals are served simultaneously. Haijema
and Van der Wal [12] consider an intersection with a number of signals. The set of all signals is
partitioned into signal groups. The problem concerning when to switch (and which signal group to
serve next) is modeled as a Markovian decision process in discrete time. In [22] the analysis of a vehicle-
actuated intersection from Newell [21] is extended to an intersection of two two-way streets (four-way
intersection). They conclude that the high efficiency of a vehicle-actuated traffic light control, as found
in Newell [21], does not necessarily hold for the case of two-way streets. Further, in Limmer and Helbing
[15] a self-organization approach to traffic light control is proposed. This self-organization approach
is inspired by self-organized oscillations of pedestrian flows at bottlenecks. The control strategy is a
combination of two complementary control regimes, an optimizing regime and a stabilizing regime.

23

Chapter 3

Models

In this chapter we introduce two models for an intersection. Both models are used in this thesis.
The first model is a stochastic model (SM) and the second model is a hybrid fluid model (HFM).
We model an intersection with a hybrid fluid model for the trajectory optimization problem and for
the regulation problem. The stochastic model (SM) be used to obtain simulation results. For the
trajectory optimization problem we assume that we can control the departure rate of traffic at each
signal. However, it turns out that the policy that we propose does not need to control the departure
rate. Thus, for the stochastic model we do not assume that we can control the departure rate, we always
let traffic depart at the highest possible rate.

We show that we could model mixed arrival flows with a hybrid fluid model. Further, we show how
to model two-way pedestrian crossings for the hybrid fluid model. We do not model mixed arrival flows
and two-way pedestrian crossings in our stochastic model.

3.1 Stochastic Model

We describe the behavior of an intersection with a stochastic queueing model. For this stochastic
queueing model we assume a Poisson arrival process and a deterministic departure process. We model
each traffic light (also those in the same signal) separately. Each of these traffic lights has one queue,
an arrival process, and a departure process. We assume that the arrival processes and the departure
processes of the different traffic lights are independent. However, in practice this might not be the case.
When for example a vehicle arrives at signal 1,2,3 or 4 in Figure 1.2, the driver decides at which lane
to wait and the arrival and departure processes of these traffic lights are not independent.

In this section we use slightly different notation than in the rest of this thesis. In this section we
use:

- \; for the arrival rate at traffic light ¢ = 1,..., Ny, where Ny is the number of traffic lights at the
intersection. In the rest of this thesis A; refers to the arrival rate at a signal and not at a traffic
light.

- p; for the maximum departure rate at traffic light ¢ = 1,..., Ny. In the rest of this thesis p; refers to
the maximum departure rate of a signal and not at a traffic light.

- 0, for the setup time from traffic light i = 1, ..., Ny to (conflicting) traffic light j = 1,..., Ny. This
setup time is the fixed minimum time between the end the green period of traffic light i and the
beginning of the green period of conflicting traffic light j. Normally o; ; refers to the setup time
between two signals and not the setup time between two traffic lights. o0 ; is equal to the setup
time from the signal that traffic light i = 1,..., Ny is element of to the signal that traffic light

25

7 =1,..., Ny is element of. Two traffic lights are conflicting when the corresponding signals of
these two traffic lights are conflicting.

3.1.1 Arrival Processes and Departure Processes

We assume that the inter-arrival times at traffic light i = 1,..., Ny are exponentially distributed with
mean)\ which means that we consider an isolated 1ntersect10n We define the arrival time as the time
at which a vehicle, cyclist or pedestrian would have crossed the stop line if its traffic light was green
and no traffic was waiting at that traffic light. Note that this assumption of exponential inter-arrival
times is not valid for a sequence of intersections because vehicles arrive in so called platoons. Platoons
occur especially when the distance between two connected intersections is small. A platoon is a group
of vehicles, cyclists or pedestrians traveling together. When platoons arise the arrival rate fluctuates
and the inter-arrival times are not independent.

Each traffic light has a separate departure process. The departure process is assumed to be deter-
ministic. Whenever there is traffic waiting in front of traffic light ¢ = 1,..., Ny at the beginning of a
green period then a departure process is started. We register a departure at the moment that a vehicle,
cyclist or pedestrian has entirely crossed the stop line which occurs i seconds after the start of this
departure process. When a departure is registered the next vehicle, cyclist or pedestrian (if present)
can start its departure process. This inter departure time /% is assumed to be constant. In Figure
3.1 we show the departures during a green period whenever the queue is not empty during the whole
green period. Since at each traffic light at most one departure process is active at a time, this may not
be the best way to model the departures of cyclists and pedestrians because in practice cyclists and
pedestrians can depart with more than one at a time.

time (seconds) ™ >

Figure 3.1: Departures during a green period of traffic light ¢ = 1, ..., Ny. The color of the time line is
light gray and dark gray whenever the traffic light is green respectively red. A departure is visualized
with a bold black vertical line.

The departure time is defined as the time at which a vehicle, cyclist or pedestrian actually crosses
the stop line. Hence, the delay of a vehicle, cyclist or pedestrian is equal to the difference between its
departure time and its arrival time. Whenever a vehicle, cyclist or pedestrian arrives when the queue
is empty and the corresponding traffic light is green, this vehicle, cyclist or pedestrian could depart
immediately. In this case its departure time is equal to its arrival time and it experiences a delay of
zero seconds. Whenever the queue is emptied during a green period it stays empty during this green
period.

3.1.2 Queue

Vehicles that have to wait in front of a traffic light form a queue. We model the queue with a FIFO
(First-In-First-Out) buffer. The queue length is a non-negative integer. We assume that traffic arrives
at the queue at the arrival time; the queue length increases with one at the moment of an arrival time.
Furthermore, the queue length decreases with one at the moment of a departure.

26

There is no difference between a vehicle, cyclist or pedestrian that arrives when the maximum queue
length is reached (or exceeded) and a vehicle, cyclist or pedestrian that arrives when the maximum
queue length is not reached.

3.1.3 Modeling Startup Effect in the Maximum Departure Rate

We assume in our stochastic model that the inter departure time i at traffic light ¢ = 1,..., Ny is
constant. However, at the beginning of a green time there is a startup effect; people do not respond
instantaneously and traffic needs some time to accelerate. Hence, the inter departure time is not
constant; it decreases and after a certain amount of time the inter departure time does not change
anymore. The transient part, where the inter departure time decreases, is called the startup effect. We
assume that inter departure times are deterministic (also during the startup effect) and we assume the
the startup effect always has the same duration at a traffic light.

We can model this startup effect by adapting the duration of the setups. Assume for example that
the startup effect at traffic light ¢ = 1, .., Vy takes 5.0 seconds. In these 5.0 seconds, 2 vehicles could
depart. Hereafter, every 2 seconds a vehicle could depart (hence, /% = 2)(see Figure 3.2). Assuming that
the startup effect takes less than the minimum green time we can get the same number of departures
during a green period by taking the departure rate equal to zero vehicles per second in the first second
and hereafter equal to 0.5 vehicles per second. Traffic cannot depart during the red period and therefore
this maximum departure rate equal to zero vehicles per second can be realized by increasing the red
period of this traffic light with one second. Increasing the red period of traffic light ¢ with one second
can be realized by increasing the setup time o;; with 1 second, for all traffic lights j = 1,..., Ny that
are conflicting with traffic light .

time (seconds) ——»

Figure 3.2: Departures during a green period of a traffic light. The color of the time line is light gray
and dark gray whenever the traffic light is green respectively red. A departure is visualized with a bold
black vertical line. The upper time line shows the departures with startup effect. The lower time line
shows the departures without startup effect, but with larger setup times.

More general, when tstqrtup is the duration (in seconds) of the startup effect at signal ¢ = 1, .., Ny
and D is the number of vehicles, cyclists or pedestrians that could depart during this startup effect at
signal 7 then we model this startup effect by increasing the setups o;; with teartup — HQ seconds for all
traffic lights j that are conflicting with traffic light ¢. During the green period, every i seconds one
vehicle, cyclist or pedestrian departs.

27

3.2 Hybrid Fluid Model

With the hybrid fluid model we can approximate the behavior of the stochastic model. We use the
hybrid fluid model for the trajectory optimization problem because it is more suitable for optimization
purposes. This makes it relatively easy (in comparison to using the stochastic model) to solve the
trajectory optimization problem.

For the hybrid fluid model, traffic is modeled as a fluid. First we consider only one type of traffic
arriving at a signal (for example only cars or only pedestrians) and we show how we model queues,
arrivals and departures for the hybrid fluid model. Subsequently, we illustrate how to deal with mixed
flows, i.e. signals and traffic lights where different types of traffic arrive. We also show how to model a
two-way pedestrian crossing and how to incorporate a startup effect in the maximum departure rate.
For the hybrid fluid model we model each signal with one queue, one arrival process and one departure
process. The arrival process at signal ¢ € N is defined by a constant arrival rate \; and the departure
process is defined by a constant maximum departure rate p;.

3.2.1 Modeling Queues

Because we model traffic as a fluid, the queue length is a non-negative real value. For example, the
queue length at a signal could be equal to 0.75 cars.

Because there is limited waiting space at traffic lights (approaches are finite) we are given maximum
queue lengths. The maximum queue length of queue i € A is the maximum amount of traffic that could
be waiting at approach i. These maximum queue lengths follow from the design of the intersection.
The maximum queue length of queue i € N is denoted with z***(¢). Whenever a signal consists of
M traffic lights and the maximum queue lengths of these traffic lights are x j=1,...,M, we can
determine the maximum queue length of signal 7 using;:

max
(2%])

M
aper =y e, (3.1)
j=1
Recall that in the stochastic model each traffic light has a separate buffer. Thus, the maximum
queue length of traffic light j (in signal ¢) that is used in the stochastic model is equal to z; ;.
For each signal we model its queue with one buffer. Thus, all the traffic arriving at signal i is stored
in one buffer.
The total time that a vehicle, cyclist or pedestrian spends at the intersection, consists of:

1 A travel time to the back of the queue (whenever the queue is not empty) or to the traffic light
(whenever the queue is empty). For the hybrid fluid model we assume that traffic arrives in-
stantaneously, i.e. the travel time to the back of the queue or to the traffic light (depending on
whether the queue is empty) is assumed to be equal to zero.

2 The time between the moment of arrival (at the back of the queue or at the traffic light, depending
on whether the queue is empty) and the moment of departure (the moment at which this vehicle,
cyclist of pedestrian crosses the stop line). During a slow mode the time between the moment of
arrival and the moment of departure is equal to zero seconds.

3 A travel time (starting at the moment of departure) to leave the intersection. For a hybrid fluid
model, we assume traffic departs instantaneously, i.e. the travel time to leave the intersection is
assumed to be equal to zero seconds.

Hence, during a slow mode arriving traffic spends zero seconds at the intersection. The delay at the
intersection is defined as the additional travel time experienced by a driver, cyclist or pedestrian at the
intersection. For the hybrid fluid model the average delay at the intersection is equal to the average

28

duration of part 2, i.e. the average time between the moment of arrival (at the back of the queue or at
the traffic light depending on whether the queue is empty) and the moment of departure.

3.2.2 Modeling Arrivals

At each of the approaches, traffic (vehicles, cyclists or pedestrians) arrives with a certain intensity. We
use \; to denote the arrival rate at signal ¢ € N, i.e. the mean number of vehicles, cyclists or pedestrians
arriving at approach ¢ per second. For the hybrid fluid model we assume that the amount of traffic that
arrives at signal ¢ during an interval of size T is equal to exactly A;T. Thus, we assume that the arrival
rate is constant over time (think of it as a constant flow of water into the buffer).

The arrival rate is often obtained by counting the number of vehicles, cyclists or pedestrians arriving
at a traffic light. When signal i € N consists out of more than one traffic light, the arrival rate of signal
7 is equal to the sum of the arrival rates of all traffic lights in this signal. When signal ¢ consists out of
M traffic lights and A; j, j = 1,..., M are the arrival rates at these traffic lights then the arrival rate at
signal ¢ is given by:

M
A= Aij (3.2)
j=1
Recall that in the stochastic model each traffic light has a separate arrival process. Thus, the arrival
rate of traffic light j (in signal i € N) that is used in the stochastic model is equal to \; ;.

3.2.3 Modeling Departures

During the green period of a signal, traffic can depart. For the hybrid fluid model, departures can be
seen as a flow of water pouring out of a buffer.

Consider the case where signal i € N consists out of M traffic lights and A ;, j = 1,..., M and
i, are the arrival rates respectively the maximum departure rates at these traffic lights. The traffic

waiting at these M traffic lights is stored in one buffer. For the hybrid fluid model, a fraction A}i”’ of

1

the arrivals at signal i, actually arrive at traffic light j and a fraction /\;;;-" of the traffic waiting at signal

1 is traffic that is actually waiting at traffic light j. For the hybrid fluid model, a fraction)‘)\7 of the

traffic that departs at this signal is traffic that departs at traffic light j. Hence, we can calculate the
maximum departure rate at signal ¢ using:

M

Miy
pi=y /\j i, (3:3)

2

j=1

Recall that in the stochastic model each traffic light has a separate departure process. Thus, the

maximum departure rate of traffic light j (in signal i € N) that is used in the stochastic model is equal
to i,

3.2.4 Modeling Mixed Arrival Flows

In this section we show how to calculate the arrival rate, maximum departure rate and maximum queue
length of a traffic light with mixed traffic flows. From the arrival rates, maximum departure rates and
maximum queue lengths of the traffic lights in a signal we can again calculate the arrival rate, departure
rate and maximum queue length of a signal using (3.1), (3.2) and (3.3).

At a traffic light M different types of traffic arrive. We use:

29

- Xy t=1,..., M is the arrival rate of type ¢ traffic, i.e. how many type 7 units arrive per second.
- iy i =1,..., M is the maximum departure rate of type ¢ traffic, i.e. the maximum amount of type i
units that can depart per second.

max

-z is the maximum queue length in type 7 units, when the queue only consists out of type i traffic.

Note that in this section the index i refers to a type of traffic. In the rest of this thesis this index
refers to a signal.

In this section we give the equations for the arrival rate, the maximum departure rate and the
maximum queue length of a traffic light when we are given \;; i =1,..., M, u;, i = 1,..., M and z]***,
i=1,..., M. These equations are explained using an example.

For traffic of type i, i = 1, ..., M, we can calculate the dimensionless arrival rate \;, the dimensionless
maximum departure rate (i;, ¢ = 1,..., M and the maximum queue length Z]"** in seconds via:

5, =

;= =
2%
/]i = & = 17
Hi
FMAT x;naw

i i

)

When considering the hybrid fluid model, the dimensionless arrival rate \ at the traffic light, the
dimensionless maximum departure rate i at the traffic light and the maximum queue length % at
the traffic light can be calculated via:

M
A=Y A
=1
i=1,
M o~
Fmar _ Z %jma@'

K3

@
I
-

Both ™% and Z/"** are real valued numbers (see also example below).

Example 3.2.1 Consider the case where trucks, tractors and cars arrive at the same traffic light.

The arrival rate of trucks, tractors and cars are respectively Mgy = 0.05 trucks per second,
Atractor = 0.01 tractors per second and Meor = 0.3 cars per second. The mazximum departure rates
of trucks, tractors and cars are respectively pirycr = 0.2 truck per second, piractor = 0.3 tractors per
second and pieqr = 0.5 cars per second. Whenever the queue only consists out of trucks, the maximum
queue length is x20% = 4.4 trucks. Whenever the queue only consists out of tractors, the mazimum
queue length is x'o%, =~ = 7.5 tractors and whenever the queue only consists out of cars, the mazimum
queue length is 7% = 12 trucks.
~ The dimensionlegs arrival rates of trucks, tractors and cars are equal to respectively S\tmck = 0.25,
Atractor = 1/30 and Aeqr = 0.6. We can interpret these arrival rates as the seconds of work that arrive
every second. For example, every second Agrycks trucks arrive. When using the maximum departure rate
(ttruck) this amount of trucks departs in Xtmck = 0.25 seconds. Thus, every second, 0.25 seconds of
work of the type ’trucks’ arrives. The total arrival rate at the traffic light is \ = 1/441/3044/5 ~ 0.8833
(seconds of work that arrive every second).

30

It is trivial to say that when we let traffic of type i depart at the maximum departure rate, every
second one second of work departs. Thus, (i; = 1. As a result, independent of the type of traffic that
departs, one second of work depart every second when working at the mazimum departure rate. Hence,
it holds that i = 1.

Hmax

The mazimum queue lengths of trucks, tractors and cars are equal to respectively T'0% = 22 seconds

(of work), T6¢,0, = 25 seconds (of work) and T7,5" = 24 seconds (of work).

A fraction 2t of the arriving work is of the type i = truck,tractor,car. Thus when the mazimum

A
~max

queue length of the traffic light is reached, this queue contains :\Ta:l seconds (of work) of type i.
Hence, the mazimum queue length of the traffic light in seconds is equal to:

>

i=truck,tractor,car

>

i~
%% ~ 23.5 seconds.

>

Whenever we have calculated all the arrival rates, departure rates and maximum queue lengths of
the traffic lights in a signal, we can calculate the arrival rate, maximum departure rate and maximum
queue length of this signal via (3.1), (3.2) and (3.3). In these equations all arrival rates, maximum
departure rates and maximum queue lengths of the different traffic lights must be expressed in the
same unit. For example, all arrival rates and maximum departure rates in their dimensionless form and
all maximum queue lengths in seconds (of work).

3.2.5 Modeling Two-Way Pedestrian Crossings

At pedestrian crossings pedestrians generally walk in two directions (two-way pedestrian crossing). In
this case at each side of the pedestrian crossing, a traffic light is positioned. In practice these two traffic
lights switch to green at the same time and switch to red at the same time. Hence, these traffic lights
can be partitioned in the same signal. The arrival rate at this signal is simply equal to the sum of
the arrival rates at both sides of the pedestrian crossing. Further, because the pedestrian crossing has
to be ’shared’ by the pedestrians that walk the pedestrian crossing in both direction, it is logical to
assume that the maximum departure rate p; at this signal (the number of pedestrians that can cross
the pedestrian crossing per second) is constant.

For example, at a pedestrian crossing the maximum departure rate is equal to p;. This means that
when at a moment the departure rate at one side is equal to d(t) < u; pedestrians per second, at that
moment maximally u; — d(t) pedestrians can cross the pedestrian crossing from the other side.

Usually a large number of pedestrians can cross the pedestrian crossing simultaneously. Hence,
pedestrian crossings usually have a large maximum departure rate. However, because pedestrians move
relatively slow (in comparison to vehicles and cyclists) it takes a while before a pedestrian has crossed
the pedestrian crossing. Therefore, a conflicting signal may only switch to green whenever the signal of
a pedestrian crossing has been red for a relatively long time (large setup times).

Furthermore, it is fair to assume that the maximum queue lengths are infinite at a pedestrian
crossing because pedestrians always find a spot to wait in front of the traffic light.

3.2.6 Modeling Startup Effect in the Maximum Departure Rate

We assume in our hybrid fluid model that the maximum departure rate is constant during a green
period. However, at the beginning of a green time there is a startup effect; people do not respond
instantaneously and traffic needs some time to accelerate. Hence, the maximum departure rate is not
constant; it increases and after a certain amount of time the maximum departure rate does not change
anymore. The transient part, where the maximum departure rate increases, is called the startup effect.

31

Just like for the stochastic model, we can adjust the duration of the setups to model this startup
effect. When tstqrtup is the duration (in seconds) of the startup effect at signal ¢ and D is the number
of vehicles, cyclists or pedestrians that depart at signal ¢ during this startup effect then we model this
startup effect by increasing the setup times o;; with tsariup — % seconds for all signals j that are
conflicting with signal ¢. During the green period, the maximum departure rate is constant and equal
to ;. We assume that the startup effect always (every green period) has the same duration at a signal
1 and we assume that the startup effect takes less than the minimum green time.

In this section we introduced two models; a stochastic model and a hybrid fluid model. For both
models we have shown how to model queues, arrivals and departures. Furthermore, we showed how to
model a startup effect in the maximum departure rate. For the hybrid fluid model we showed that we
could also model mixed arrival flows and two-way pedestrian crossings. In the next chapter we solve the
trajectory optimization problem for a simple intersection with two (conflicting) signals. In that chapter
we model the intersection with the hybrid fluid model. The stochastic model is used for simulation.

32

Chapter 4

Trajectory Optimization: A Simple
Intersection of Two Signals

In this chapter we consider the trajectory optimization problem for a simple intersection of two con-
flicting signals. First we explain the trajectory optimization problem more explicitly in Section 4.1
and Section 4.2. Subsequently, in Section 4.3 we prove that we can always find an optimal trajectory
satisfying some properties. Using these properties an optimization problem (that we solve analytically)
is proposed in Section 4.8. In Figure 4.1 we present two example of an intersection with two conflicting
signals: the intersection of two one-way streets a two-way street with a roadblock.

(a) An intersection of two one-way (b) Two-way street with a roadblock. Traffic lights controls which traffic flow
streets. may pass the roadblock.

Figure 4.1: Examples of two conflicting signals.

4.1 Problem Description

The problem of trajectory optimization is the process of designing a trajectory that minimizes or
maximizes some measure of performance within prescribed constraint boundaries. A trajectory is a
solution of a mathematical model. Just like in [24] we consider a mathematical model as an exclusion
law. A mathematical model expresses the opinion that some things can happen, are possible, while other
cannot, are declared impossible. These exclusion laws of a mathematical model can be expressed in the

33

form of equations. These equations are called behavioral equations. The outcomes that a mathematical
model allows, and are declared possible, are called the behavior of the mathematical model, i.e. the
behavior is the solution set of the behavioral equations. A solution of the behavioral equations is called
a trajectory. To solve the trajectory optimization problem we model the simple intersection with the
hybrid fluid model proposed in Section 3.2. The behavioral equations of the hybrid fluid model for this
simple intersection are presented in Section 4.2. A solution of these behavioral equations is called a
trajectory and consists out of the evolution (as function of time) of the following variables:

- x;(t), 1 = 1,2: the queue lengths of both signals as a function of time.
- m;(t), i = 1,2: the signal state, also called the mode, of both signals as a function of time.
- di(t), i = 1,2: the departure rate of both signals as a function of time.

For the simple intersection of only two conflicting signals, we want to find a trajectory minimizing
the average weighted queue length:

t
7 =timsup ;[[a(ea(s) + faloals)lds, (11)
t—o0 t 0

where f; : Ry — Ry is a weight function. Weight function f; relates the queue lengths at signal
i to costs. We assume that the functions f; are strictly increasing, i.e. larger queue lengths result
in higher costs. In Section 4.8 we use more specific weight functions f;: the linear weight functions
fi(z1(t)) = wiz1(t) and fa(xa(t)) = wexa(t). In Section 4.1.1 we show that minimizing the linear
weight function, where wy = ws is equivalent to minimizing the average delay of an arbitrary road user
at this intersection.

4.1.1 Average Delay of A Road User At the Intersection

In this section we show that minimizing the linear weight function where w = w; = wo, is equivalent to
minimizing the average delay of an arbitrary road user at this intersection. In this section we assume
that each arrival rate \;, ¢ = 1,2, is given in number of vehicles per second, number of cyclists per
second or number of pedestrians per second and that each queue length x;, ¢ = 1,2, is given in number
of cars, number of cyclists or number of pedestrians. When different types of traffic arrive at a signal
it does not hold that minimizing the linear weight function where w = wy = ws, is equal to minimizing
the average delay of an arbitrary road user at this intersection.

When f;(x;) = wx;, i = 1,2 we can write (4.1) as follows:

J = w(Ty + T2), (4.2)

where

1 t
T = limsup E/ x1(s)ds,
0

t—o0

t—o0

1 t
Ty = lim sup ;/ xa(s)ds.
0

Note that T; is the average queue length at queue ¢ = 1, 2 including the road user that is departing.
From Little’s Law we know that:

34

6i:;ai:1527

where, ¢; is the average delay of a road user at signal ¢ = 1,2. Hence, we can rewrite (4.2) to:

J = w4, (4.3)
where
A1 A2
0= |01— +dr— 4.4
(1)\-1- 2/\>, (4.4)
A=A+ Ao

A fraction A—Al of the road users arrives at signal 1 and a fraction % of the road users arrive at signal 2.

Hence, 6 = ((‘51)‘71 + 52%) is the average delay of an arbitrary road user at the intersection. Note, that
the optimal trajectory does not change when multiplying the objective function (cost function) with
ﬁ > 0. Hence, minimizing the linear weight function, where w = w; = wy results in the same optimal
trajectory as minimizing the average delay of an arbitrary road user.

4.2 Behavioral Equations of the Hybrid Fluid Model

In this section we give the behavioral equations of the hybrid fluid model. First, we introduce the
variables that we use in these behavioral equations in Section 4.2.1. In Section 4.2.2 we give the
behavioral equations of the hybrid fluid model.

4.2.1 Manifest Variables and Latent Variables

In this section we give the manifest variables and the latent variables that we use in the behavioral
equations. The manifest variables are the variables that we are interested in. A trajectory consists out
of the evolution (as function of time) of these manifest variables. The latent variables are used so that
we can give the behavioral equations in a compact and readable form.

We use the following manifest variables:

- z;(t) € RT, i =1,2: the queue length of queue i as a function of time. The function z;(t), i = 1,2 is
right-continuous.
m;(t) € {©, @}, i = 1,2: the signal state of signal 4 as a function of time. The function m;(t), 7 = 1,2
is right-continuous.
- di(t) € Rt, i =1,2: the departure rate at signal 7 as a function of time. The function d;(¢), i = 1,2
is measurable.

Further, we use the following latent variables:

Li(t) e RT, i = 1,2: the time that has elapsed since the last change in the signal state of signal i.
The function L% (t), i = 1,2 is right-continuous.

35

4.2.2 Behavioral Equations
In this section we give the behavioral equations of a simple intersection with two signals.
The change in the queue length is equal to the net inflow (arrival rate minus departure rate):
{ti(t) =)\i — di(t), 1=]., 2. (45&)

The latent variable L (t), i = 1,2 denotes a time. Hence, its derivative with respect to time is equal
to one:

Lity=1, i=1,2 (4.5b)

The time that has elapsed since the last change in the signal state is set to zero when the signal
state changes:

Lit) =0 if my(t™) #my(t), i=1,2, (4.5¢)
where
i(t7) = limm,
mi(t™) ylggm(y)

When the signal state of signal ¢ = 1,2 changes, it holds that m;(¢™) (the left limit) is not equal to
m;(t) (the right limit) (see Figure 4.2).

mi(t) @

time ——

Figure 4.2: At time ¢ signal 1 switches from red to green.

Whenever a signal is red, traffic from the corresponding queue cannot cross the intersection:

di(t)=0 ifm;t)=@, i=1,2 VteR". (4.5d)

When there is no traffic waiting at queue ¢ = 1,2, traffic can depart at a rate that is smaller than or
equal to the arrival rate \; (otherwise it would result in a negative queue length x;(¢)):

dl(t) <\ if {Ei(t) =0, =12, Vte RT. (458)

Traffic cannot depart at a rate that exceeds the maximum departure rate:

36

dl(t) <uwu, t1=12 Vte RT. (45f)

Since signal 1 and signal 2 are conflicting, both signals cannot be green at the same time:

my(t) =@ if ma(t) =@, (4.5g)
mo(t) =@ if my(t) =@. (4.5h)

Signal 1 cannot switch to green whenever signal 2 switched to red less than o2 ; seconds ago. In the
same way, signal 2 cannot switch to green whenever signal 1 switched to red less than o, » seconds ago:

ml(t) = 0 if mg(t) = 9 A L.,Q_(t) < 021, (451)
my(t) =@ if mi(t) = @A LL(t) < 0. (4.5))

The maximum queue length cannot be exceeded.

xi(t) <z, i=1,2. (4.5k)

The duration of a green period must be at least the minimum green time and cannot exceed the
maximum green time:

mi(t) =@ fTHt) < g™ Ami(t7) =@, i=1,2, (4.51)
mi(t) =@ fT(t)>gm " Am(t7) =D, i=1,2. (4.5m)

A solution of these behavioral equations (the manifest variables as function of time) is called a
trajectory. Note that we allow every initial condition as long as it satisfies (4.5).

4.2.3 Assumptions

In this section we give the assumptions used in this chapter. We assume that the arrival rate and the
maximum departure rate of a signal is positive:

A1, Ag, i, e > 0. (4.6&)
We assume that the setup times are both non-negative and that one of the setup times is strictly

positive:

01,2,02,1 > 0, (4.6b)
o1,2 + 02,1 > 0. (4.6¢)

We assume that the minimum green times are non-negative:

g, g > 0. (4.64)

We assume that the average green times converge. Thus, we assume that the following limits exist:

37

B

=2 (4.6¢)
M gk

T 92

92 = szl M (4.66)

(4.6g)

Further, we assume that the maximum green times and the maximum queue lengths satisfy the
following inequalities:

. x P101,2,1
min{g"**, 22— — 019} > ———— 4.6h
{gl)\2 4, } 1— p1 — P2 ()
: e P201,2,1 .
min{ girer, ZL — 0191} > —— 4.61
{92, N 121} [— (4.61)
: max x?Qna:r _ min :
mln{gl) Ao 01,271} > g1 (46J)
mln{ max x;n(n" _ > P2 min 4 6k
95" N T et 2 P (01,21 + 97", (4.6k)
xm(ll’ X
min{g5"**, 1)\ —o121}) > 93", (4.61)
1
mln{ max xgn(n" _ > P1 min 4.6
™ o121} 2 T (01,20 +95""). (4.6m)

In Section 4.8 we show that we can always (and only) find a trajectory resulting in a finite average
weighted queue length calculated with (4.1) whenever the inequalities in (4.6h)—(4.6m) hold.

4.3 Properties of Optimal Trajectories

In Chapter 5 of van Eekelen [10] we can find some lemmas on optimal trajectories, which van Eekelen
proves by a proof of contradiction. In that chapter no restrictions on green times where considered,
i.e. (4.5]) and (4.5m) are not in the behavior. When including these restrictions on green times the
lemmas from [10] are not valid anymore. Therefore, we have developed new lemmas to include these
restrictions on green times (minimum green times and maximum green times). Furthermore, with these
new lemmas we avoided a circular argument found in [10]. The results are lemma 4.1- 4.3. Both
Lemma 4.1 and Lemma 4.2 hold in general (for any intersection).

Lemma 4.1 Without loss of generality it can be assumed that for an optimal trajectory in the behavior,
during a green period a signal always uses the highest possible departure rate, after which it might idle,
i-e. use a departure rate equal to zero. This highest possible departure rate equals p; when the queue is
not empty (z;(t) > 0), and equals the arrival rate \; otherwise.

Proof. Suppose that we are given a green time of g¥ = ty —to, k > 1 that satisfies g™ < gk < gmae
and a trajectory is given, for which at the beginning of ¥, the queue length of queue i equals 2 and at
the end of gf the queue length equals x{ . Then one can consider the alternative trajectory which only
differs from the original trajectory during g¥. This alternative trajectory serves signal i equally long and

38

first lets traffic depart at the highest possible rate, i.e. at the maximum departure rate when the queue
is not empty(x;(t) > 0) and the arrival rate otherwise. In the end, this alternative signal idles, i.e. we
use a departure rate equal to zero, to make sure that at the end of g¥ the queue length equals x{ (see
Figure 4.3). Clearly, the alternative trajectory satisfies (4.5d)—(4.5m) whenever the original trajectory
does. Further, during the green period the queue length cannot decrease faster in the beginning and
cannot increase faster in the end. Therefore, for the alternative signal the queue length of type i is
smaller or equal at every time instants. Further, the evolution of the queue lengths of the other queues
remain the same for both trajectories and f; is strictly increasing. Hence, the alternative trajectory
works at least as good, i.e. the costs (calculated with (4.1)) of the alternative trajectory are not bigger
than the costs of the original trajectory.

xz(t)

time —»

Figure 4.3: Graphical representation of Lemma 4.1.

Thus, whenever we are given a trajectory that does not satisfy the property given in this lemma,
we can always find an alternative trajectory that does satisfy this property and that works at least as
good. Hence, there must be an optimal trajectory that satisfies the property given in this lemma. m

Lemma 4.2 Without loss of generality it can be assumed that for an optimal trajectory in the behavior,
a signal never idles during its green period.

Proof. Suppose that an optimal trajectory would idle during a green period of signal i. Given the
result in Lemma 4.1 this is at the end of this green period. Lets consider a trajectory that starts idling
at tj and finishes idling at ti} (at ti} the signal switches to red). We can find an alternative trajectory
that does not idle and that works at least as good as the original trajectory, i.e. it results in costs J
(calculated with (4.1)) that are not bigger than the costs of the original signal. Consider the following
alternative trajectory which only differs only from the original trajectory after time tj. During the
interval [tf),tj}], we use d;(t) = A; instead of d;(t) = 0. (see Figure 4.4). Hereafter, during each green
period we let traffic depart at arrival rate \; until the time t..oss. At tcross both trajectories result in
the same queue length (see Figure 4.4). After the time ¢..,ss both trajectories are exactly the same.

Thus, at signal i the original trajectory only differs from the original trajectory in the interval [}, teross)-

39

Further, the evolution of the queue lengths of the other queues remain the same for both trajectories
and f; is strictly increasing. Hence, the alternative trajectory works at least as good, i.e. the costs
(calculated with (4.1)) of the alternative trajectory are not bigger.

€Z; (t)

Figure 4.4: Graphical representation of Lemma 4.2.

Thus, whenever we are given a trajectory that does not satisfy the property given in this lemma,
we can always find an alternative trajectory that does satisfy this property and that works at least as
good. Hence, there must be an optimal trajectory that satisfies the property given in this lemma. m

When we combine the results of Lemma 4.1 and Lemma 4.2 we see that (as expected) we always
use the highest possible departure rate during a green period of signal ¢ = 1, 2:

‘ . g if xl(t) > 0,
di(t) _{ N if ait) = 0.

It would have been a surprising yet interesting result, if using a lower departure rate can have a
positive effect on the costs. If this turned out to be true, we could think about ways to control the
departure rate of traffic at a traffic light.

Lemma 4.3 Without loss of generality it can be assumed that for an optimal trajectory in the behavior,
a queue is always emptied during its green period and green periods always take equally long, i.e. gf =
k+1

g; ", Yk > 1.

Proof. Lets consider a trajectory defined on the time interval [0, c0) where a queue is not emptied at

least once or where the duration of the green periods is not always the same for a signal. Lets call this
trajectory the ’original trajectory’. In Figure 4.5a we can see an example of the original trajectory.

40

We introduce the following notation for the average duration of g¥, %, g™* and g/*:

Mk

gi = N}gnoo Ml, 1=1,2, (4.7a)
M

R Jim ST i=1,2, (4.7b)
Y Ak

g = Jim 3 g]iw i=1,2, (4.7¢)
Aj[k

gl = lim 3 g]f'w i=1,2. (4.7d)

We can propose an alternative trajectory where a queue is always emptied during a green period and
where the green times of a signal are always the same (see Figure 4.5b). For this alternative trajectory
we take the green times and red times of signal ¢ equal to respectively g; and 7;. We serve signal 1
during the red period of signal 2 and we serve signal 2 during the red period of signal 1.

We can prove that the costs J related to this alternative trajectory are not greater than the costs

related to the original trajectory.
Mg
First we prove that the limits in (4.7) exist. We assume that the limits Iv}im g-, i =1,2 exist
T k=1
(see Section 4.2.3). Note that whenever g; and g» both exist then 71 and 75 also exist because the

average red period of a signal is related to the average green period of the other signal according to:

L =02+ 0121,

ro=g1+01,21-

Whenever signal ¢ = 1,2 satisfies \;7; # (u; — A\;)g." for the original trajectory, this means that the
queue length of queue ¢ would go to co or —oo because:

M
1 . = 1 . k — s — A H’k = 1 s — gt
Jim ;(t) = lim kZ_I(Am (i = Ai)gf™") = Jim M(Niri — (= Ai)gy).

Note that we have used that each green time of signal i is finite. A queue length must be a non-
negative number and therefore a trajectory where a queue length goes to —oo is not feasible. Further,
whenever a queue length goes to oo, the costs calculated with (4.1) are infinite. Hence, it must hold
that:

NiT; = (ui — Az)gf,l =1,2. (48)

Thus, the amount of traffic that arrives during a red period of signal ¢ = 1, 2 is equal to \;7; and we
can let this amount of traffic depart during a period equal to exactly gi'. As a result, from g; = g/’ + g}
we can obtain that for the alternative policy the length of the slow mode is equal to gf‘ during each
green period. From (4.8) we can see that g exists (because 7; exists) and from g; = g} + g3 we know
that g} exists. Hence, g;, 7, g7 and g all exist.

Also note that the alternative trajectory is always feasible. First of all, the green periods of the
alternative trajectory (with duration g;) always take longer than the shortest green period of the original

41

trajectory. Second of all, the green periods of the alternative trajectory (with duration g;) always take
shorter than the longest green period of the original trajectory. Furthermore, the maximum queue
length are less for the alternative trajectory than for original trajectory. As a result, whenever the
original trajectory satisfies (4.5d)—(4.5m), the alternative trajectory does as well.

Now we are going to prove that the costs related to the alternative trajectory are not bigger than
the costs related to the original trajectory. We use bg;f,k, k >1and b.x, k > 1 for the time at which the
green period gf starts respectively the time at which the red period rf starts. Further, we use €k

k > 1 for the time at which queue 4 is emptied during gf and we use e,x, kK > 1 for the time at which
r¥ ends. We distinguish three different areas (see Figure 4.5): A¥ k> 1, A5 k> 1 and A%, k > 1.

A¥ :/ T @) — (b)), k> 1,
b ok K
elrl.c

AL = / “(mi(t) — wi(e,n))dt, k>1,
bk '

A§ = xi(bg‘."k)(eg‘."k - bg‘.“k) + xi(er’?)(er’? - b'r’.“)7k > L.

In Figure 4.5, A¥ is visualized in dark gray, A% is visualized in medium gray and A% is visualized in
light gray.

$1(t)

1 2

2 3 A3 i i 1 r;

! TS g ! w3 | Lol AT
T 9 o T g T 9 Yi 1 LT 9 i)
time —> time —»

(a) Queue length of signal ¢ for an example of the original (b) Queue length of signal ¢ for the alternative trajectory.
trajectory.

L2 gt 3 g3
L9 9 ory 4 g

Figure 4.5: Visualization of the original trajectory and the alternative trajectory.

Because the queues are always emptied for the alternative trajectory, it holds that A% =0, k > 1
for this trajectory.

Now we are going to prove that the costs related to signal ¢ and made during only the red periods
are not bigger for the alternative trajectory than for original trajectory. Thus, we only consider the
signal during the red periods of signal ¢ = 1,2, i.e. we cut out the parts where signal i is green (see
Figure 4.6a).

Now we can shift each and every red period towards the x;(t) = 0-axis for the original trajectory, i.e.
removing the areas A%. Since f; is strictly increasing, shifting the red periods of the original trajectory
towards the time axis cannot increase the costs related to the red periods of signal 7.

42

On the left side of Figure 4.6b we can see AY and A’f“ plotted for the shifted original trajectory.
Without loss of generality we can assume that the first red period r¥ is longer than the second red

k1 rkprktl
i 2

period r for two adjacent red periods. When we take both green times equal to we get the
areas A¥ and A’f“ as can be seen on the right side of Figure 4.6b. We can see that the dark gray areas
are the same and that the medium gray areas differ (the difference is the light gray area). Since f; is
strictly increasing, taking the red time of two adjacent red periods equal to each other cannot increase
the costs related to the red periods of signal i. Hence, taking all red periods equal to each other cannot
increase the costs related to the red periods of signal i. Note, that the costs, of this shifted trajectory
where all red periods are equal to each other, are exactly the costs made during the red periods of the
alternative trajectory. Thus, the costs related to the red periods of the alternative trajectory cannot be
bigger than the costs related to the red periods of the original trajectory.

L qk4l
i 43 |

k+1
9; T

time —

(a) Visualization of only the red periods of the
original trajectory.

a;(t) i(t)

<> <
k+1

) r;

time —» time —»

(b) Left: visualization of the shifted red periods of the original trajectory, right: 2 equal red periods instead
of 2 unequal red periods.

Figure 4.6: Comparing the costs made during the red periods for both trajectories.

In exactly the same way we can prove that the costs related to the green periods of signal ¢ = 1,2
cannot be bigger for the alternative trajectory than for the original trajectory. Hence, the costs of the

43

alternative trajectory are not bigger than the costs of the original trajectory.

Thus, whenever we are given a trajectory that does not satisfy the property given in this lemma,
we can always find an alternative trajectory that does satisfy this property and that works at least as
good. Hence, there must be an optimal trajectory that satisfies the property given in this lemma. m

4.4 Shape of the Periodic Optimal Trajectory

Using lemmas 4.1-4.3 we can find the following corollary for the simple intersection of two signals.

Corollary 4.4 For the simple intersection of two signals there is always an optimal trajectory (mini-
mizing (4.1)) that has the periodic shape shown in Figure 4.7, which consists out of the following phases
(these phases repeat periodically):

phase 1 Signal 1 is green and di(t) = p1 until queue 1 is empty.
phase 2 Signal 1 is green and di(t) = \;.

phase 3 perform a setup to signal 2, i.e. switch signal 1 to red and keep both signals red for a period equal
to 01,2

phase 4 Signal 2 is green and da(t) = po until queue 2 is empty.
phase 5 Signal 2 is green and da(t) = \s.

phase 6 perform a setup to signal 1, i.e. switch signal 2 to red and keep both signals red for a period equal
to 021

Because all green periods of a signal have the same duration and all red periods of a signal have the
same duration, we use:

gl:gvkv 7’:172ak2]-a
ri=rF, i=1,2k>1,
A Nk
gz:gz 712172;]621;
g =gti=12k>1
Phase 2 and phase 4 are the so called slow modes and may have a duration equal to zero. We call
this periodically repeated sequence of 6 phases a cycle. On the left hand side of Figure 4.7, this cycle

is plotted in the (x1,x2)-plane. The right hand side graphs shows the queue lengths over time, with the
slopes annotated to them. The duration of a cycle is denoted with c and is equal to g1 + g2 + 01,2,1-

A slow mode can reduce the cost function because it increases the cycle duration ¢ and as a conse-
quence the system switches less, i.e. there are less setups.

The traffic that arrives during a red period of signal 1 can (precisely) depart during ¢}. In the same
way, the traffic that arrives during a red period of signal 2 can (precisely) depart during g5. Hence we

can find:
Ho_ P1
9 =7 (92 +01,2,1), (4.9a)
—P1
no_ P2
92 =7 (91 +01,2,1). (4.9b)
— P2

44

X2

Figure 4.7: Shape of the periodic optimal trajectory. Left: periodic orbit. Right: queue lengths time.

We use x'i for the queue length of queue 1 when the green period of signal 2 is ended and we use xg
for the queue length of queue 2 when the green period of signal 1 ended:

>

27 = (9201,2) A1 (4.10a)
x5 = (9102,1)A2 (4.10b)

>

We call the shape (consisting of phases 1 until 6) shown on the left hand side of Figure 4.7 the
truncated bow tie curve. Whenever g3 = g5 = 0 we call this shape the pure bow tie curve (consisting
of only phases 1, 3, 5 and 6). The pure bow tie curve is the curve with the shape shown in Figure
4.7 that has the smallest possible cycle duration c. When g7 = g2 = 0 the green times g; and g, are

precisely large enough to let the amount of traffic depart that arrives during a red period. Thus for the
pure bow tie curve it holds that:

g1(u1 — A1) =r1d= (92 + 01,2,1) A1, (4.11a)
g2(p2 — A2) = rade= (g1 + 01,2,1) A2 (4.11b)

From (4.11) we can obtain that for the pure bow tie curve it holds that:

45

01,2,1
c=—=22
1—p1—p2

g1 = gi = pr—2!
=g, =p1——"—,
! 1—p1—p2
g0 :g“:m%
2 1—p1—po

The pure bow tie curve is shown in Figure 4.8.

Ty —>

Figure 4.8: Pure bow tie curve.

The following expressions can be found for the coordinates of the pure bow tie curve:

g
T =N\ <01,2 4202) :
1—p1—p2

. 1—-p1
* =)\ _— R
A <1 —p1— 02)

o
x§ =X <02,1 + _Pro121) ,
1—p1—p2

B = Ago o1 1=
2 345 1_p1_p2 .

(4.12a)
(4.12b)
(4.12¢)

(4.12d)

4.5 An Optimal Trajectory Discarding Restrictions on Maxi-
mum Queue Lengths, Minimum Green Times and Maximum

Green Times

In the rest of this chapter we consider a more specific form of the cost function J: the linear cost

function presented in (4.13).

J = E/o [wi21(8) + waza(s)]ds,

46

(4.13)

where, wy,ws > 0.

In this section, we discard the restrictions on maximum queue lengths, the restrictions on minimum
and the restrictions maximum green times. Thus, we discard (4.5k)—(4.5m) of the behavioral equations
given in Section 4.2.2, i.e. the maximum queue lengths are infinite, the minimum green times are equal
to zero and the maximum green times are infinite.

In [10], van Eekelen has proven that for this situation Theorem 4.1 holds. Without loss of generality
he assumes that wiA\; > waAs.

Theorem 4.1 For a simple intersection of two signals the periodic optimal trajectory with respect to
linear costs on queue lengths (4.13), has a slow mode for at most one signal (signal 1). The slow mode
occurs if and only if w1 A1 (p1 + p2) — (Wi A1 — waAa)(1 — p2) <0

Proof. See appendix A.2 of [10] m

Hence, when discarding behavioral equations (4.5k)—(4.5m) and we assume w.l.o.g. that w;A; >
wa A2, the optimal steady state cycle has the shape shown in Figure 4.9.

T1—>

Figure 4.9: Optimal periodic trajectory when discarding behavioral equations (4.5k)—(4.5m). We assume
WlOg that wl)\l Z ’LUQ/\Q.

The coordinates of this optimal shape are presented below. Here it is used that the duration of the
slow mode g7 is equal to a107,2,1.

1 1-—
xq -\ <0_172 4 o1,21p2(1 + o (/)1))) : (4.14a)
1—p1—p2
1 1-—
.f?l =)\10’17271 ((+ 041,02)(pl))) 5 (414b)
1—p1—p2
8= ey (LI NOZ 00 (4140
1—p1—po
xg =X\ <02,1 + o121(ca(l = p1) = po) + P1)>) (4.14d)
1—p1—po
1-— 1 1-—
.f?g =)\20’17271 ((pQ)(+ 061(pl))> . (4148)
1—p1—p2

47

In [10] we can find that a; equals:

=40 if wiAi(p1 + p2) — (W1 A1 — waA2)(1 — p2) > 0,
7\ positive root of (4.15) otherwise.

[wiA1p5+wada(1—p1)? (1—pa)]af+2[wi A1 ps+wa s (1—p1) (1= p2)]or +[wi Ar (p14p2) — (w1 Adr—wad2) (1—p2)] = 0.
(4.15)

4.6 An Optimal Trajectory Discarding Restrictions on Mini-
mum Green Times and Maximum Green Times

In this section we (only) discard behavioral equation (4.51) and (4.5m) given in Section 4.2.2, i.e. the
minimum green times are equal to zero and the maximum green times are infinite. In section 5.4 of [10],
van Eekelen presents the effects of finite maximum queue lengths on the periodic optimal trajectory. In
this section he again assumes w.l.o.g. that wiA; > wsA2. We recapitulate his results quickly.

A trajectory can only be found whenever z*** > &% ¢ = 1,2. With 2}, i = 1,2 as in (4.12). In
the left hand side of Figure 4.10 the periodic optimal trajectory is shown for a finite maximum queue
length of signal 1. In the right hand side of Figure 4.10 the periodic optimal trajectory is shown for a
finite maximum queue length of signal 2.

The coordinates of the periodic optimal trajectory with queue length constraints are denoted with
bars (7). The original (unconstrained) periodic optimal trajectory is shown in light gray.

1 —)>

Kb f__oC

E% 1
Figure 4.10: New periodic optimal trajectory, due to queue length constraints. the original uncon-
strained periodic optimal trajectory is visualized in light gray and the constrained optimal trajectory

in dark gray.

Van Eekelen derived the following coordinates of the periodic optimal trajectory with finite queue
lengths.

48

maz
7 =min{z}, 2P — \oo, Aoz + ﬁ)h
T = min{il, v, A (o121 + ,122—;\12 }’
) = min{xz}, 2T, At (o121 + /Z;n%); 12
5= min{ah, 22270 — N\o10) = Aeorz, 5T — Aso10},

Fp = min{dy, TR — Mogz,), zg T}

With the expressions for x%, xnz, 2t 5 and 27 as in (4.14).

4.7 An Optimal Trajectory Discarding Restrictions on Mini-
mum Green times

In this section we (only) discard behavioral equation (4.51) given in Section 4.2.2, i.e. the minimum
green times are equal to zero.

Since we consider a hybrid fluid model and because of the shape of the periodic optimal trajectory
shown in Figure 4.7, imposing a maximum green time on signal 1 is essentially the same as imposing a
constraint on the maximum queue length of signal 2 and vice versa. This because when signal 1 has a
maximum green time ¢g{"** it means that signal 2 has a maximum red time of g7"** + 01 2,1. Therefore,
the queue length of signal 2 can be equal to maximally Ao (g7"** + 01,2,1). When signal 2 is also subject
to a queue length constraint, i.e. its queue can have a maximum length equal to z5'*, it has to be
determined which constraint is more restrictive: the maximum green time of signal 1 or the maximum
queue length z5***. For this purpose we introduce the virtual maximum queue lengths z™2* and x}™®*

which can be calculated via:

Zy™ = min{a (97" + 01.2,0), 75},
FY = min{ s (g5 + 01,2,0), 277},

When the first term realizes this minimum, the maximum green time of the other signal is more
restrictive than the maximum queue length. When the second term realizes this minimum, the maximum
queue length is more restrictive than the maximum green time of the other signal.

However the reverse also holds: the maximum queue length of signal 1 can be seen as a maximum
green time of signal 2 and vice versa. With the same reasoning we can find the virtual maximum green
times ¢g{™** and ¢g3™**, which can be calculated using:

vmax __ 3 max ’énaw _ 4 1
g™ = min{g ", 5 — — 010,). (4.162)
vmax __ 3 max x’inaw _ 4 1 b
g™ = min{gy"*", N o1,2,1}- (4.16b)
Note that the virtual maximum green time gy™® and gy™** and the virtual maximum queue lengths

vimax

T 1 vimax

and zy are related according to:

ma. ma.
Ty = A (g3 + o12,1),

vimax vmax
oy = Ao (g7 + 01,2,1).

49

When only discarding constraints on minimum green times we can still use the knowledge from

section 5.4 of [10]. Instead of using maximum queue lengths z7%* and zJ'** we virtual maximum queue

lengths zY™** and zy™2*.

4.8 Periodic Optimal Trajectory

In this section we consider all behavioral equations that are given in Section 4.2.2. From Corollary 4.4
we know that w.l.o.g. we can assume that optimal trajectories are periodic. For these periodic optimal
trajectories a queue is emptied during each green period. For these periodic trajectories we can rewrite
the behavioral equations in Section 4.2.2.

We want to minimize the linear cost function (4.13). From the right side of Figure 4.7 we can obtain
the following expression for the linear cost function of the simple intersection with two signals.

J = %/Oc[wlxl(s) + waxa(s)]ds,

_w (01,21 + 91 +92) (01,21 + g2) M1 (4.17)
2(o1,21 + g1 + g2) ’ '
wa(o1,21 + gg +g1)(01,21 + g1)A2

2(01,2,1 + 91 + 92)

Using (4.9) we can rewrite (4.17) to:

J Q(Af,“;jl) (g2 +0121)* + %(91 +01,21)>
g1+9g2+012:1

Multiplying this objective function with 2U=p2) pegylts in (4.18). Note that multiplying an objective

Aowa
with a positive constant value does not change the position of the minimum, i.e. the values for g; and

g2 that minimize the objective function.

AlU)l(l—pg) 2 2
i () (92 +0121)° + (91 +0121) . (4.18)
91,92 g1+92+0121

This objective function is subject to the following constraints. The green time of signal ¢ = 1,2
must be large enough for traffic, that arrives during a red period, to depart:

01,21+ gg), (4.19&)

plp (01,21 +9g1)- (4.19b)

The maximum queue length of a signal must be larger than the amount of traffic that arrives during
a red period:

g1 < N 01,21, (4.19¢)
x'{nam
g2 < N 01,21 (4.19d)

The duration of a green period must be at least the minimum green time and may not exceed the
maximum green time:

g1 > g7, (4.19¢)
g2 > g5"", (4.19¢)
g1 < g1, (4.19g)
92 < g3 " (4.19h)

4.8.1 Solution of the Optimization Problem

Using (4.16) we can see that we can only find values for g; and g satisfying constraints (4.19) whenever:

P101.2.1

vmax > , 4203,
91 = 1= p1— ()
P201,2,1

vmax > 14 , 420b

92 =1, — 01— po ()

gy > gpin, (4.200)

P> (01,21 +97"""), (4.20d)
1-—- P2

gy > gy, (4.20¢)

g 2 5 P (o100 + g5 m). (4.20f)
—P1

These inequalities make sure that the smallest possible periodic trajectory is possible without vio-
lating any constraints. Inequalities (4.20a) and (4.20b) make sure that the pure bow tie curve does not
exceed the maximum queue lengths or exceed the maximum green times.

When the pure bow tie curve violates the minimum green times, inequalities (4.20c),(4.20d), (4.20e),(4.20f)

min

make sure that either the smallest periodic trajectory where g; = g™ or the smallest periodic trajec-

min

tory where go = g5*" is possible without violating any constraints.
This optimization problem can be solved analytically (see Appendix C.1). The periodic optimal

trajectory can have 0, 1 or 2 slow modes. For more information see Appendix C.1. In this appendix we
use the notation shown below. We assume w.l.o.g. that 0 < k£ < 1.

51

Y1

Y2

min

h

min __

Yo

max

Y

max

Y2

waAz(1 — p1)
wi (1 —p2)’

g1
01,2,17

92
01,2,1

min

91
01,2,1
min
92
)
01,2,1

min{g

max
maxr Lo

1 LDV

- 01,2,1}

min{g

01,2,1

ma
max T3
2 (DN

PR 01,2,1

01,2,1

52

3

Chapter 5

Regulation: A Simple Intersection of
Two Signals

In the previous chapter we considered the trajectory optimization problem. We showed how to derive
periodic optimal trajectories for a simple intersection of two signals. To obtain these desired trajectories
we assumed deterministic arrivals and deterministic departures. However, due to for example stochastic
arrivals we may deviate from the desired trajectory. The second problem discussed in this thesis is
regulation. In this chapter we consider the regulation problem for the simple intersection of two signals.
First we explain the regulation problem more explicitly in Section 5.1. Subsequently, we propose a
policy in Section 5.2.

5.1 Problem Description

In Polderman and Willems [24], the problem of regulation is described as the problem to design mecha-
nisms that keep certain to be controlled variables at constant values against external disturbances that
act on the plant that is being regulated or against changes in its properties. The system that is being
controlled is usually referred to as the plant.

One of the central concepts of regulation is feedback; some of the variables in the plant are measured
and used to determine what control actions to take. A feedback loop is depicted in Figure 5.1. Some
variables are measured by sensors and send to the feedback controller. From these measured variables
the controller determines what control inputs to send to the actuators.

In our case the components depicted in this figure are as follows.

Plant: The intersection.

Actuators: The color of a traffic light can change.
Sensors: Sensors that could measure queue lengths.
Exogenous-inputs Traffic arriving at the intersection.
To-be-controlled-output: The queue lengths.
Measured-outputs: The queue lengths.
Control-inputs: The signal state of each of the signals.

We want to find a policy to implement in the feedback controller. A policy is a set of rules that
convert the measured outputs to the control inputs. This policy should make sure that when we deviate
from the optimal trajectory (that follows from the trajectory optimization problem) we again return

93

exogenous to-be-controlled

inputs > outputs >

Plant
Actuators > —>> Sensors

control-inputs easured-outputp
L Feedback controller < P

Figure 5.1: Visualization of a feedback loop.

to this optimal trajectory. In this chapter we model the intersection using the hybrid fluid model (see
section 3.2) and we use the same assumptions as presented in Section 4.2.3.

5.2 Proposing a Policy

In this section we propose a policy for the simple intersection with two signals. We prove that for a
hybrid fluid model a trajectory converge to the periodic optimal trajectory whenever this is possible.

Convergence to the periodic optimal trajectory is not always possible. The (z1,z2)-plane can be
divided into regions from which it is impossible to converge to the periodic optimal trajectory when in
a certain mode. When entering the area annotated with @ (see Figure 5.2a) while serving signal 1,
eventually one of the constraints is violated. When performing a setup to signal 2, a maximum queue
length is exceeded. Moreover, if we do not perform this setup, a maximum queue length is exceeded as
well. Similarly, whenever entering the area annotated with @ while serving signal 2, eventually one of
the constraints is violated. If the trajectory is on the pure bow tie curve in the upper right corner the
trajectory stays here (if the minimum green times allow so).

Further, because of the restrictions on the minimum green period duration, we may not start serving

signal 1 respectively signal 2 in the areas annotated with respectively (see Figure 5.2b). Hence,
when the initial queue lengths are in the area annotated with we have to start serving signal 2 and
when the initial queue lengths are in the area annotated with we have to with serving signal 1.

When the initial queue lengths are in the area with both and , eventually a constraint is violated.

Assuming a hybrid fluid model, the policy must satisfy the restrictions on green times and the
restrictions on maximum queue lengths. Note that in a stochastic setting it is theoretically impossible
to make sure that a maximum queue length is not exceeded when assuming Poisson arrivals. To satisfy
these restrictions on green times and maximum queue lengths, signal ¢ = 1,2 may only switch to red
whenever:

Li(t) > g™,

Further, a signal must be switched to red whenever the maximum green time is reached:

54

T3

T2

]2t

m

@ — oo,

periodic optimal

traject
f{at]ec ory

i |
1 max
m 1

\

‘ 0 o —— o apes
azx max min

1" — Moz, 7 — M (g3"" + 02,1)

(a) When entering the area annotated with an encircled (b) When starting to serve signal 1 or signal 2 in the
1t or an encircled 21 while serving signal 1 respectively areas annotated with a boxed 171 respectively a boxed
signal 2, no convergence to the periodic optimal trajec- 2f, a constraint will be violated.

tory is possible anymore.

Figure 5.2: Convergence to the periodic optimal process is not always possible.

Li(t) > gree.
Signal 1 must switch to red whenever otherwise the maximum queue length of signal 2 is exceeded
(assuming a hybrid fluid model). Thus signal 1 must switch to red when:
Z‘Q(t) Z xgnam — /\20’172.
Signal 2 must switch to red whenever otherwise the maximum queue length of signal 1 is exceeded
(assuming a hybrid fluid model). Thus signal 2 must switch to red when:
Z‘l(t) Z xgnam — /\10’271.

The policy proposed in Proposition 5.1 satisfies these restrictions.

Proposition 5.1 A feedback policy which stabilizes an intersection with two signals to the desired
periodic optimal trajectory if started from a feasible starting point (see Figure 5.2) is given by:

e Mode 1: Serve signal 1 at the highest possible departure rate. When (z1(t) = OALL(t) > g™ Axo(t) >
xg) V LL(t) > g zo(t) > 25 — Nyoq 2 switch signal 1 to red and go to Mode 2.

o Mode 2: After 01,2 seconds go to Mode 3.

e Mode 3: Serve signal 2 at the highest possible departure rate. When (z2(t) = OAL2(t) > gy Axq(t) >
x%) V L2(t) > g5\ 21 (t) > 2% — \yoa1 switch signal 2 to red and go to Mode /.

o Mode 4: After o1 seconds go to Mode 1.

Where 2 and ©% are calculated via (4.10).
Proof. See Appendix 8.1. In this appendix, we actually prove Proposition 8.1 which is proposed in

Section 8. In Proposition 8.1 we propose a policy for an intersection with two signal groups. For an
intersection with two signals this policy reduces to the policy proposed in Proposition 5.1. =

95

Chapter 6

Quality of the Policy in a Stochastic
Setting: A Simple Intersection of Two
Signals

In Chapter 4 we derived periodic optimal trajectories for a simple intersection of two (conflicting) signals
by modeling the intersection with a hybrid fluid model. In Chapter 5 we proposed a (feed-back) policy.
In this chapter we consider the third problem discussed in this thesis: We address the quality of the
proposed policy for an intersection with two signals in a stochastic setting. To this end, we model
the intersection with the stochastic model described in Section 3.1. Recall that this stochastic model
assumes Poisson arrivals and deterministic departures. To obtain results for the policy in a stochastic
setting, a simulation program is made in the programming language x3.0. The code of this simulation
program is given in Appendix B.

For each test case we obtain the average delay J (in seconds) of a road user at the intersection and
we obtain the fraction of the time that the maximum queue length is exceeded at each of the queues.
A road user could either be a vehicle, a cyclist or a pedestrian.

Before simulating a test case we calculate the following information about the periodic optimal
trajectory (see Chapter 4.8).

- The coordinates ¢ and 2 calculated with (4.10).

The cycle duration ¢ = g1 + g2 + 01,21

- The queue length at signal 1 at the beginning of a green period, which is equal to A1(g2 + 01,2.1)-

The average delay of a road user. This average delay is obtained using (4.18), where w = w; = wg =1
and (4.3).

For each test case we perform at least 100 runs. We perform enough runs such that the 95%
confidence interval for the average delay of a road user is at most 1% of the average delay of a road user.
For each run we start serving signal 1. At the start of a run the queue length of queue 1 is taken equal
to [A1(g2 + 01,2,1)] (obtained from the periodic optimal trajectory) and the queue length of queue 2 is
zero. Each run simulates 100c seconds, were c is the cycle duration of the periodic optimal trajectory
(see Section 4.4). We consider the following test cases.

o7

test case 1

test case 2a test case 2b

p1 =0.5 p1 = 0.5 p1 = 0.5

M2 = 0.5 M2 = 0.5 H2 = 0.5

AL = Ao =0.0125,0.0250,...,0.2375 A\ = = A =L
¥ ¥

15 15

o12=2 o12 =2 o122 =

021 = 2 021 = 2 021 = 2

gy =4 gy =4 gy =4

gy =4 gy =4 gy =4

gina:r = 00 giﬂam = 0 ginax = 4,4.5, ey 9

gyr** = 0o g5 =16,16.5,...,26 ¢3""" = 00

' =00 ' =00 T =00

5% = 00 5% = 00 5 =00

test case 3a test case 3b

M1 = 0.5 M1 = 0.5

Mo = 0.5 Mo = 0.5

A =& M =&

nol nol

O1,2 = o12 =2

0'271 = 0'271 =2

gy =4 gy =4

gy =4 gyin =4

gy = o 97" = 00

g5 = oo g5 = oo

' =00 ' =2,3,...,7

5% =3,4,...,30 25" =00

For test cases 2a, 2b, 3a and 3b it holds that p; + p2 = 0.8. In this chapter we use p = 1 = pa. In
sections 6.2-6.4 we show the results for these test cases

6.1 Theoretical Comparison to Exhaustive Policy

For the small intersection with 2 signals we want to compare the average delay of a road user obtained
for our proposed policy to the average delay for an exhaustive policy. This exhaustive policy works
as follows. A signal i = 1,2 is always served until it is emptied (disregarding minimum green times,
maximum green times and maximum queue lengths). When queue i is emptied, signal ¢ switches to red
and as soon as the setup time has elapsed the other signal switches to green. Thus, for the exhaustive
policy there are no slow modes. Whenever both queues are empty, the exhaustive policy results in the
following switch behavior. Whenever a queue is empty at the moment that it may switch to green (the
setup time towards this signal is finished), this signal does not switch to green and we immediately
start performing a setup towards the other signal. Thus, whenever both queues are empty, constantly
setups are performed.

This exhaustive policy is analyzed in [3]. From [3] we can obtain an expression for the average delay
of a vehicle for this exhaustive policy. This expression is given in (6.1). This equation assumes equal
maximum departure rates, i.e. u = p; = po.

1
01,2,1P1P2 Lz (6.1)

5= P 01,2,1
p(L—p)

2u(1 = p) 2

o8

where

p=p1+p2

We compare the average delay of a road user obtained via simulation for our proposed policy to the
average delay of the exhaustive policy obtained with (6.1).

6.2 Test Case 1: Effect of the Arrival Rates

In this test case we address the effect of the arrival rates on the delay; we want to determine §(\) for
the proposed policy, where the arrival rates are varied as follows:

A=A = Ay = 0.0125,0.025, ..., 0.2375.

As a result p = p; + po varies as follows:

p=0.05,0.1,...,0.95.
In Figure 6.1 the results are shown.

50 T T T T

45 | = Proposed policy (stochastic model) =
40 « Proposed policy (hybrid fluid model) _
350 | Exhaustive policy |
I 30+ |
5 251 |
201 -
151 -
101 E
o T il Sty it hintiniv- x -
° - T ! ! ! ! !
0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.250

A—

Figure 6.1: The average delay of a road user ¢ versus A for test case 1.

For this test case the average delay 6(\) goes to 2 for the proposed policy when A — 0 (assuming
the stochastic model). We can explain this. For the proposed policy the signal that is green stays green
when both queues are empty. For A\ — 0 the probability that both queues are empty at the time of an
arrival is equal to 1. Since the maximum green times are infinite for this test case, the probability that
the minimum green time has elapsed at the moment of an arrival goes to 1 for A — 0 (the inter-arrival
time goes to infinity for A — 0) and the probability that no setup is being performed at the moment of
an arrival goes to 1 for A — 0. Whenever a road user arrives at the signal that is red, the other signal
switches to red immediately. This road user experiences a delay of 4 seconds: a setup time equal to 2
seconds plus a departure time equal to + = 2 seconds. Whenever a road user arrives at the signal that is
green, this road user can cross the intersection without any delay. Since the arrival rates of both signals
are the same (for this test case), the probability that an arbitrary road user arrives at signal ¢ = 1,2

59

is equal to 0.5. Hence, the average delay of a road user goes to 2 seconds for A — 0. Note that the
average delay d(\) only goes to 2 for A — 0 if a maximum green time is infinite. When both maximum
green times are finite the probability that at the moment of an arrival no setup is being performed and
the minimum green time has elapsed does not go to 1 for A — 0.

Recall that the exhaustive policy serves signal ¢ = 1,2 until it is emptied disregarding minimum
green times. For the exhaustive policy the average delay d(\) goes to 4 for A — 0 because for the
exhaustive policy constantly a setup is performed (either o; 5 or o3,1) whenever both queues are empty.
The probability that both queues are empty at the time of an arrival is equal to 1 for A — 0. Whenever
a road user arrives, on average it takes Ul% = 2 seconds before this signal is switched to green for the
exhaustive policy (see Section 6.1). After this residual setup of 2 seconds and a departure time of % =2
seconds, this road user has crossed the intersection with a delay of 4 seconds.

Hence, the proposed policy works better than the exhaustive policy for A — 0. Note that there are
policies that result in even lower values for the average delay 6(\) for A — 0. For example when both
signals are red if both queues are empty. At the moment of an arrival at signal i = 1,2 we immediately
switch this signal to green (if the other signal has been red for 2 seconds). Assuming infinite maximum
green times, this policy results in an average delay 6(\) of 0 seconds for A — 0.

Further, the proposed policy might result in smaller delays than the exhaustive policy because the
proposed policy allows slow modes. A slow mode could reduce the average delay because the system
switches less, i.e. there are less setups.

For low values of §(\) the average delay of the proposed policy is smaller for the stochastic model
than the average delay obtained via trajectory optimization (Section 4).

For larger values of A the average delay obtained via trajectory optimization is an underestimation
of the average delay in the stochastic setting. For these larger values of A the exhaustive policy results in
lower values for () than the proposed policy. For large values of §(\) the periodic optimal trajectories
obtained via trajectory optimization do not have a slow mode. However, for large values of 6(\) we
still observe slow modes for the proposed policy in a stochastic setting. These slow modes cause the
difference in §(\) for the proposed policy and the exhaustive policy at large values for A. Thus, these
slow modes have a positive effect for smaller values of A and they have a negative effect for larger values
of A.

6.3 Test Case 2: Effect of The Maximum Green Time

In this section we address the effect of the maximum green times on the delay of a road user. For test
case 2a and test case 2b the arrival rate at signal 2 is 5 times as large as the arrival rate at signal 1.
We use ’low traffic signal’ to refer to signal 1 and we use ’high traffic signal’ to refer to signal 2.

6.3.1 Test Case 2a: Effect of The Maximum Green Time of the High Traffic
Signal

For this test case the maximum green time of signal 2 is varied between 16 seconds and 26 seconds. A
maximum green time of 16 seconds is the smallest maximum green time ¢g5*** satisfying (4.20) and thus
the smallest maximum green time for which we can find an optimal trajectory. In Figure 6.2 we can
see the results for test case 2a. The result obtained for g5*** = 16 seconds is not shown in this figure
because it results in instability: the queue length of queue 2 keeps increasing. We can explain this
instability as follows. For the hybrid fluid model, during the maximum green time ¢g5*** = 16 seconds
the traffic that arrives during a red period (with duration ¢g"" + 012,1) can precisely depart during a

green period:

60

ga' " = lf—Qm(gimn +01,21)

Due to determinism, for the hybrid fluid model the red time of signal 2 is always equal to 8 seconds
(the minimum green time of signal 1 plus the setup times). However, when including stochastic arrivals
the average red time is greater than 8 seconds because every red time is at least 8 seconds (otherwise
we do not satisfy the minimum green time of signal 1) and the red time exceeds 8 seconds whenever
at least 3 road users depart during a green period of signal 1. This larger average red time causes the
instability.

40 I I I I
—— Proposed policy (stochastic model)

351 « Proposed policy (hybrid fluid model) |
-+ Exhaustive policy

30-

T 251
201
)

15

10 Rl e e e il e R it el R e ittt LT AT e

5+ ,

0 | | | | | | | | |

16 17 18 19 20 21 22 23 24 25 26

93—

Figure 6.2: The average delay of a road user § versus ¢g5'** for test case 2a.

In this figure we can see that the relation between the maximum green time and the average delay
has the shape of a sawtooth. The proposed policy works better when the maximum green time is not a
multiple of the inter-departure time % This can be explained since a new departure process is started
when, at the moment of a departure, the corresponding signal is green and its queue is not empty (see
Section 3.1). Hence, during a maximum green time of ¢5***, [¢5***1] road users depart. We can see
the function [g5***u] for the different values of ¢5**® in Figure 6.3. Thus, the number of departures
during a maximum green period of 20 seconds is the same as the number of departures during a green
period of 18.5 seconds which causes the sawtooth relation between the maximum green time and the
average delay of a road user.

In Figure 6.2 we can see that the global trend (disregarding the sawtooth shape) is that smaller
maximum green times result in larger delays.

61

I |

(95"]

16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21

max
92 >

Figure 6.3: The number of departures during g5***.

6.3.2 Test Case 2b: Effect of the Maximum Green Time of the Low Traffic
Signal

For test case 2b the maximum green time of signal 2 is infinite and the maximum green time of signal 1 is
varied between 4 seconds and 9 seconds. A maximum green time of 4 seconds is the smallest maximum
green time ¢7"** satisfying (4.20) and thus the smallest maximum green time for which we can find
an optimal trajectory. For the optimal trajectory we serve signal 1 for the minimum green time g}*"
(independent of ¢7**). In Figure 6.4 we can see the results.

11 T T T T T T T T T

3 + + + + + + + + +
10

T T o= —— Proposed policy (stochastic model) *
) « Proposed policy (hybrid fluid model)
6 -+ Exhaustive policy B
5 L x x x x % * x % * 3
\ \ \ \ \ \ \ \ \
4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
91" "

Figure 6.4: The average delay of a road user § versus ¢g7*** for test case 2b.

We again see the sawtooth relation between the maximum green time and the average delay of
a road user. At signal 1 on average more traffic can depart during a minimum green time than what
arrives during a red time. As a result, the low traffic signal is often already emptied before the minimum
green time is reached (for all values of ¢7"**). Hence, the effect of changing the maximum green time is

(except for the sawtooth shape) limited.

62

6.4 Test Case 3: Effect of Maximum Queue lengths

In this section we address the effect of the maximum queue lengths. For test case 3a and test case 3b
the arrival rate at signal 2 is 5 times as large as the arrival rate at signal 1. We use ’low traffic signal’

to refer to signal 1 and we use “high traffic signal’ to refer to signal 2.

6.4.1 Test Case 3a: Maximum Queue Length of the High Traffic Signal

For test case 3a the maximum queue length of signal 1 is infinite and we vary the maximum queue
length of signal 2 between 3 road users and 30 road users. A maximum queue length of 2% seconds is
the smallest maximum queue length satisfying (4.20) and thus the smallest maximum queue length for

which we can find an optimal trajectory. In Figure 6.5 we can see the results.

11

I T T S S e S S T

101

6 -

—Proposed policy (stochastic model)
. Proposed policy (hybrid fluid model)

-.- Exhaustive policy

0.35
I 0.3
0.25
B
= 02
8
>
© 0.15
(-
o
§ o1
3
& 005
0

5 10 15 20 25 30
m'énax)
(a) Average delay as function of the maximum queue length of queue 2
5
0 5 10 15 20 25 30

(b) Fraction of the time that the maximum queue length at queue 2 is exceeded

function

manaz

of the maximum queue length of queue 2

as

Figure 6.5: Effect of the maximum queue length of queue 2 for test case 3a.

63

max

Note that in a stochastic setting we switch signal 1 to red at the moment that xz2(t) > 5% — 01 22
(also whenever the minimum green time is not satisfied). Hence, for smaller z3'** a green period of
signal 1 is sometimes shorter than the minimum green time. As a result, changing the maximum queue
length of queue 2 has a limited effect on the average delay of a road user. However, we can see that for
smaller maximum queue lengths £5'** the maximum queue length is exceeded more often.

When comparing Figure 6.5a with Figure 6.1 we can also see the effect of asymmetrical arrival
rates. In Figure 6.1 we can see that when assuming infinite maximum green times and infinite queue
lengths, the delay is about 12 seconds for symmetrical arrival rates and A = Ay = A2 = 0.2 (resulting in
p1+p2 = 0.8). In Figure 6.5a we can see that when assuming infinite maximum green times the average
delay is about 9 seconds seconds at large values of the maximum queue length for asymmetrical arrival
rates (and p; + p2 = 0.8). Thus, asymmetrical arrival rates result in smaller mean delays. We can see

that the average delay goes to zero for g\\—f — 00. Assuming infinite maximum green times, the delay
goes to zero for f\‘—f — 00 because all of the road users arrive at signal 2. Hence, if queue 2 is emptied

once, it always stays empty (slow mode).

Further, we can see that for test case 3a the proposed policy results in a smaller average delay
than the exhaustive policy. For the proposed policy slow modes where observed at signal 2. These
slow modes are desirable because most of the traffic arrives at signal 2 and all traffic arriving during
a slow mode crosses the intersection without delay. Hence, the proposed policy results in small delays
(compared to the exhaustive policy) especially for asymmetrical arrival rates.

In Figure 6.5b we can see that the queue length is exceeded more often when the maximum queue
length of queue 2 is smaller. For a maximum queue length of 10 or higher the maximum queue length
is (almost) never exceeded.

6.4.2 Test Case 3b: Maximum Queue Length of the Low Traffic Traffic
Signal

For test case 3b the maximum queue length of signal 2 is infinite and the maximum green time of
signal 1 is varied between 2 and 7. A maximum queue length of 1% seconds is the smallest value for
27" satisfying (4.20) and thus the smallest value for 27*** for which we can find an optimal trajectory.
In Figure 6.6 we can see the results.

We can see that for smaller values of 27*** the average delay of a road user increases because the
high traffic signal (signal 2) has to switch to red before its queue is emptied. The road users that could
not cross the intersection during the green period experience large delays. Further, for smaller values

of 21"** the maximum queue length of queue 1 is exceeded more often.

64

12

é
. —o— Proposed policy (stochastic model)]
x - Proposed policy (hybrid fluid model)
6 —+— Exhaustive policy -
5 X X X X 3
4 1 1 1 1
2 3 4 5 6 7
x'{naa: e
(a) Average delay as function of the maximum queue length of queue 1
0.07
0.06 |
0.05 |
s 0.04 i
0.03 |
0.02 i
0.01 i
0.00 ‘ ‘ :
2 3 4 5 6 7

x’iﬂﬂn’l))
(b) Fraction of the time that the maximum queue length at queue 1 is exceeded as
function of the maximum queue length of queue 1

Figure 6.6: Effect of the maximum queue length of queue 1 for test case 3b.

65

Chapter 7

Trajectory Optimization: An
Intersection with Two Signal Groups

In this chapter we again consider the trajectory optimization problem. However, this time we consider
the trajectory optimization for a more general intersection with two signal groups (instead of an in-
tersection with two signals). In Figure 1.2 we showed an example of an intersection with two signal
groups. For this example one of the signal groups consists out of signals 1,3,7,8,11,12,15,16,19 and 20
and the other signal group consists out of signals 2,4,5,6,8,10,13,14,17 and 18.

In this chapter we assume without loss of generality that the signals in signal group 1 are numbered
1,2,..., N7 and that the signals in signal group 2 are numbered Ny + 1, N1 + 2,.... N. We use G; =
{1,2,..,N1} and Gy = {N; + 1,..., N}. First we explain the trajectory optimization problem for this
more general intersection in Section 7.1 and Section 7.2. Subsequently, in Section 7.3 we prove that we
can always find an optimal trajectory satisfying some properties. Using these properties an optimization
problem is proposed in Section 7.5.

7.1 Problem Description

To solve the trajectory optimization problem we model the intersection with the hybrid fluid model
given in Section 3.2. In Section 7.2 we present the behavioral equations of the hybrid fluid model for
an intersection with two (or more) signal groups. A solution of these behavioral equations is called a
trajectory and consists of the evolution (as function of time) of the following variables:

- z;(t), 1 € N: the queue lengths of all signals as a function of time.
- my;(t), 1 € N: the signal state of all signals as a function of time.
- di(t), i € N: the departure rate of all signals as a function of time

We want to find a trajectory minimizing the average weighted queue length:

J =limsup - /Zfl x;((7.1)

t—o0 ieN

where f; : Ry — Ry is a weight function. Weight function f; relates the queue lengths at signal ¢
to costs. We assume that the functions f; are strictly increasing, i.e. larger queue lengths result
in higher costs. In Section 7.5 we use more specific weight functions f;: the linear weight functions

67

filz;i(t)) = wix;(t), 1 € N. In Section 7.1.1 we show that minimizing the linear weight function, where
w=w; = -+ = wy, is equivalent to minimizing the average delay of an arbitrary road user at this
intersection.

7.1.1 Average Delay of A Road User At the Intersection

In this section we show that minimizing the linear weight function where w = w; = --- = wy, is
equivalent to minimizing the average delay of an arbitrary road user at this intersection. In this section
we assume that each arrival rate \;, ¢ € N is given in number of vehicles per second, number of cyclists
per second or number of pedestrians per second and that each queue length z;, i € N is given in number
of vehicles, number of cyclists or number of pedestrians. When different types of traffic arrive at a signal
it does not hold that minimizing the linear weight function where w = w; = - -- = wy, is equivalent to
minimizing the average delay of an arbitrary road user at this intersection.

Similar to Section 4.1.1, we can find that when f;(x;) = wz;, i € N we can write (7.1) as follows:

J = wAé, (7.2)

where

g
0= Zdiya

ieN
A=A+ Ao
In this equation § is the average delay of an arbitrary road user at the intersection and §; is the

average delay of a road user at signal 4.
To obtain (7.2) we have used:

1t
T; = limsup —/ x;(s)ds, i€N,
t—o0 0

EA
0; = —l,) € N,

¥ !
A=)\iv

iEN

where, T; is the average queue length at queue ¢ (including the road user that is departing) and d;
is the average delay of a road user at signal 7.
A fraction AT of the road users arrives at signal i € N. Hence, Y. §; AT is the average delay of
ieN
an arbitrary road user at the intersection. Note, that the optimal trajectory does not change when
multiplying the objective function (cost function) with - > 0. Hence, minimizing the linear weight
function, where w = w; = --- = wy results in the same optimal trajectory as minimizing the average

delay of an arbitrary road user at the intersection.

7.2 Behavioral Equations of the Hybrid Fluid Model

In this section we give the behavioral equations of the hybrid fluid model. First, we introduce the
variables that we use in these behavioral equations in Section 7.2.1. In Section 7.2.2 we give the
behavioral equations of the hybrid fluid model for an intersection with two (or more) signal groups.

68

7.2.1 Manifest Variables and Latent Variables

We use the following manifest variables:

- z;(t) € RT, i € N: the queue length of queue i as a function of time. The function x;(t), i € N is
right-continuous.
m;(t) € {©, @}, i € N: the signal state of signal ¢ as a function of time. The function m;(t), i € N
is right-continuous.
- d;(t) € RT,i € N: the departure rate at signal i as a function of time. The function d;(t), i € N is
measurable.

Further, we use the following latent variables:

- Li(t) € RT, i € N: the time that has elapsed since the last change in the signal state of signal i.

7.2.2 Behavioral Equations

In this section we give the behavioral equations for an intersection with two (or more) signal groups.
In these behavioral equations we use:

; - 1 if signal ¢ and j are conflicting,
G310 otherwise.

For an intersection with two signal groups, z; ; is 1 whenever signal 7 and signal j are partitioned
in different signal groups. Whenever signal ¢ and signal j are partitioned in the same signal group it
holds that z; ; is 0.

The change in the queue length is equal to the net inflow (arrival rate minus departure rate):
:Cl(t) =\ — di(t), ieN. (73&)

The latent variable L (t), i € N denotes a time. Hence, its derivative with respect to time is equal
to one:

Lit)y=1, ieN. (7.3b)

The time that has elapsed since the last change in the signal state, is set to zero when the signal
state changes:
Li(t)y=0 ifm;(t™) #mi(t), i€ N, (7.3¢c)
where

m;(t7) = lﬁrtl m;(y).

Whenever a signal is red, the traffic from the corresponding queue cannot cross the intersection:
di(t)=0 ifm;(t)=@, iecN, VtcRT. (7.3d)
When there is no traffic waiting at queue i € A/, traffic can depart at a rate that is smaller than or

equal to the arrival rate A; (otherwise it would result in a negative queue length z;(t)):

69

dl(t) <\ if :Cl(t) =0, € N, YVt e RT. (738)
Traffic cannot depart at a rate that exceeds the maximum departure rate:

dl(t) <, 1€ N, vt € RT. (73f)

Two conflicting signals cannot be green at the same time:

m;(t) =@ if 3j e N (z; =1 and m;(t) =()), ieN. (7.3g)
A signal can only switch to green whenever all corresponding setups have been performed:
mi(t) =@ if3j €N (z; =1and m;(t) = @ and LL(t) < 0;;), i€N. (7.3h)
The maximum queue length cannot be exceeded:

zi(t) <z ieN. (7.31)

The duration of a green period must be at least the minimum green time and cannot exceed the
maximum green time:

mi(t) =@ if THt) < g™ Ami(t7) =@, ieN, (7.3)
mi(t) =@ if THt) > g™ Am(t7) =@, icN. (7.3Kk)

A solution of these behavioral equations (the manifest variables as function of time) is called a
trajectory. Note that we allow every initial condition as long as it satisfies (7.3).
7.2.3 Assumptions
We assume that the arrival rate and the maximum departure rate of a signal is positive:
Xi,p; >0, ieN. (7.4a)

We assume that all setup times are non-negative and that the setup o n,1 is strictly positive:

0;; >0, i,5€ N, (74b)
O1,N,1 > 0. (7.40)

We assume that the minimum green times are non-negative:

g >0, ieN. (7.4d)

We assume that for all signals the average green time and the average red time converges. Thus, we
assume that the following limits exist for all signals in A:

70

We only consider trajectories where the signals are served in a fixed order. This is a desirable feature
in practice because some of the vehicles, cyclists and pedestrians already start to accelerate when they
expect their signal to switch to green. When the order in which these signals are served changes, these
expectations may be wrong and can result in unsafe situations. For a fixed order for an intersection with
two signal groups each signal in G; is green during the red period of the signals in G» and each signal
in Go is green during during the red period of the signals in G;. Note that because we only consider
non-negative setup times, each signal in G; is red whenever a signal in G, is green and vice versa.

For example when G; = {1} and G; = {2,3}, we only consider the trajectory where signals 2 and
3 are both served during each red time of signal 1. In Section 7.5.4, we show that another trajectory
(that does not satisfy this property) might result in a lower value for the cost function 7.1.

Further, we assume that the setup times are related according to:

Tiryis = Oir,ls = Olyis — Ol lss Viy,l1 € Gy ig,l2 € Go (7.4e)

Oig,iv = Oig,ly = Olaiy = Oly,la) Vilv li € Gy 12, l2 € Ga 74f)

Using this assumption we can always switch signal is to green oy, i, — 04, 1, seconds after (if oy, 5, —
Oiy 1, > 0) or before (if 04, 4, — 04y 1, < 0) signal lo switches to green and we can always switch signal
i1 to green oy, ;, — 0y, 1, seconds after (if oy, — 04,1, > 0) or before (if 0y, 5, — 04,1, < 0) signal 4
switches to green.

Whenever a green period is extremely short or extremely long (and as a result a red period of another
signal is extremely long), road users can get irritated which probably results in more red negation, i.e.
in more people ignoring a red light. Further, whenever a green period is extremely short or extremely
long, road users might think the traffic lights are malfunctioning. From this practical point of view it is
logical to assume that we are given restrictions on the maximum red times instead of a restriction on the
maximum green times. Hence, we assume (7.4g) and (7.4h). Note that g;"*" + 0, i, i1, 91 € G1,12 € G2
is the maximum duration of a red period of signal iy and that g7*" + oy, 4,4, 11 € G1,i2 € G2 is the
maximum duration of a red period of signal ;.

meac + Oy yin,in = gﬁm + Oj1,i2,415 Vilvjl € glv Vig € g27 (7'4g)
gg,aw + Oy in,in = g;;mw + iy g its Vi, € Ql, Vig,jg € Gs. (74h)

In Figure 7.1 we can see an example for the case where (7.4h) is not satisfied. In this example we can
see that signal 2 is already finished performing the setup o3 1 while the setup 03,1 has not yet finished.
Hence, at the moment that the setup o2 ; has finished, signal 1 cannot yet switch to green. Since the
purpose of a maximum green time is to reduce the red times of another signal, signal 2 is red without
purpose.

Further, we assume that inequalities (7.4i)—(7.4t) are satisfied for all i; € G; and for all i3 € G5. In
Section 7.5.2 we show that we can always find a periodic trajectory satisfying the behavioral equations
(7.3) if and only if (7.4i)—(7.4t) are satisfied for all i; € G; and for all is € Go. For more information
see Section 7.5.2.

71

! 1 !

Iy N

max . |

| 01,2 | 92 L 021 ‘ w

> C———————————————————pC————— !

013 . g3 . 023
time ——»

Figure 7.1: Situation where ¢5'** + 0121 > g5"** + 01,3,1. The dark gray rectangles visualize when a
signal is red and the light gray rectangles visualize when a signal is green.

iy ,iz,i1 Pia .
9i, " 2 T 7.4
" 1- pi1 - p’iz ()
9" 2 95" (7.4j)
gZL(ll’ 2 (ggbm + Jil,iz,h)l Pi) (7.41{)
— Piy
Ty ,ia,i1 Pia
gin " Z 7.41
" 1- pi1 - p’iz ()
g > g, (7.4m)
) i
g;;mr 2 (g;;un + Uil,iz,il) 1 = > (7.411)
— Pis
Ti iz i Pi
it > Ah(ﬁ + Tiy inin) (7.40)
2w > vy, T ERUR (7.4p)
— Piy
”me >)‘il (gglm + Ui17i2,i1)7 (74(;1)
Tiy inir Pi
xgam >)\12(% + iy inir)s (7.4r)
ey > o, el Tia, (7.45)
— Piy
x;;ma; > Aiy (gﬁm + Ui17i2,i1)' (7.4t)

7.3 Properties of Optimal Trajectories

In section we prove that we can always find an optimal trajectory(minimizing (7.1)) that satisfies a few
properties.

From Lemma 4.1 and Lemma 4.2 we know that there is always an optimal trajectory where we
always use the highest possible departure rate during a green period of signal i € N

72

, _ i if J?Z(t) >0,
dl(t) - {)\z if xl(t) =0.

Lemma 7.1 Without loss of generality it can be assumed that for an optimal trajectory in the behavior,
it holds Vk > 1 that:

gzl'cl + Oy in,in = g;'cl + 01 iz,510 Vii,j1 € G1, Vig € Go, (7'53)
gfz + Oiyin,in = g;-z + Tiyjains Vi1 € G, Via, j2 € Ga. (7.5b)

Proof. In this proof we use the following notation:

__ | 2 ife=1,
V11 ife=2.

Suppose that we are given a trajectory that satisfies gf + 0, ivi. > 95 405, iz jos Jeric € Ge, iz € G,
¢ = 1,2. Thus, the property given in this lemma is not satisfied. For this trajectory signal j. switches
to green at time ty + 0, ;, and switches to red at time t; — o, ;. (see Figure 7.2).

Original trajectory

k
" 9i., |

N T I o |
iz e,)! : : 1 Fieriz
i i i k
i ' ' i
i ' ' i
i ' . . ' i
| ' Alternative trajectory ! |
1 1
L Oigig o L Gigie
L S E— >
i Oig,je o Ojeiz
——»

} |

signal j. -
to

Figure 7.2: Visualization of Lemma 7.1. The dark gray rectangles visualize when a signal is red, the
light gray rectangles visualize when a signal is green and the highest possible departure rate is used and
the medium gray rectangles visualize when a signal is green and a departure rate equal to zero is used.

time ——» f

Consider the alternative trajectory, which only differs from the original trajectory for signal i, and
only differs from the original trajectory during the interval [to,t¢]. For this alternative trajectory, signal
i. switches to green at time t¢ + o ;. and signal i, switches to red at time t; — 0y, ;. (see Figure 7.2).
The alternative trajectory uses a departure rate equal to zero at the times where signal i, is green for

73

the alternative trajectory and signal i, is red for the original trajectory. The alternative trajectory uses
the highest possible departure rate at the times where signal i. is green for the alternative trajectory
and signal i. is also green for the original trajectory.

Hence, the evolution of the queue length of queue i. is exactly the same for both trajectories.
As a result the alternative trajectory satisfies the constraints on queue lengths whenever the original
trajectory does. Further, from assumptions (10.1) and (10.2) we know that we satisfy behavioral
equations (7.3g) and (7.3h). From (7.4g) and (7.4h) we know that the alternative trajectory satisfies
the constraints on green time duration whenever the original trajectory does.

Since the evolution of the queue lengths is exactly the same for both trajectories, both trajectories
result in the same costs (calculated via (7.1)).

Thus, whenever we are given a trajectory that does not satisfy the property given in this lemma,
we can always give an alternative trajectory that does satisfy this property and that works at least as
good. Hence, there must be an optimal trajectory that satisfies the property given in this lemma. m

Lemma 7.2 Without loss of generality it can be assumed that for an optimal trajectory in the behavior,
a queue is always emptied during its green period and green periods always take equally long, i.e. gf =
gt vE > 1.

Proof. The proof of this lemma is shown in Appendix C.3. The proof of this lemma is very similar to
the proof of Lemma 4.3. m

Lemma 7.3 Without loss of generality it can be assumed that for an optimal trajectory in the behavior,
a signal is green as long as possible during a red period of a conflicting signal:

Tiy = iy + Oiyinn, Vi1 € G1, Vig € G, (7.6)
Tiy = Gis + Oiyjinyins Vi1 € G1, Viz € Go, (7.7)

where, g; respectively r; is the duration of all green times of signal i € N and the duration of all red
times of signal i € N

Proof. In this proof we use the following notation:

__J 2 ife=1,
TV 1 ife=2.

Suppose we are given a trajectory where the green times and red times of the different signals are
given and denoted with g¢;, i € N and r;, i € N and that this trajectory does not satisfy the property
given in this lemma. We can prove that there is always an alternative trajectory that does satisfy this
property and that results in costs (calculated via (7.1)) that are not larger than the costs of the original
trajectory. This alternative trajectory has the same green times as the original trajectory. The red
times of this alternative trajectory are chosen such that the property given in this lemma is satisfied.
We use ri““ for the red times of signal ¢ € N for the alternative trajectory. For the alternative trajectory
we switch signal i; € G; to green exactly oy, ;, seconds after we switch signal i, € G5 to red and we
switch signal io € Gy to green exactly o, ;, seconds after we switch signal iy € G; to red. Thus, we
switch a signal to green as soon as its allowed. The alternative trajectory is shown in Figure 7.3.

Note that a red time of signal i, € G, ¢ = 1,2 must satisfy r;, > gi. + i, iz,i., Vie € Ge because
otherwise constraint (7.3g) or (7.3h) is violated. Hence, it holds that r* < r;, Vi € N.

In Figure 7.4 we can see the queue length evolution of signal ¢ for both original trajectory and
the alternative trajectory. In this figure we use ¢4 for the time at which a red period starts for the
alternative trajectory and we use ¢;' Y for the time at which a red period starts for the original trajectory.

74

| iy X 021,22: i 1 Oig iy, 9iy 1
1

——— e — e —— —— 1 a——
time —)p
Figure 7.3: Visualization of the alternative trajectory. The dark gray rectangles visualize when a signal

is red and the light gray rectangles visualize when a signal is green. The behavior in the interval [¢o, /]
repeats itself.

Original trajectory

)\ﬂ'glt ******************* "
T /\l 3 i i
z;(t) |
ralt L9
talt time —>»
Alternative trajectory
Ay 7= :
)\ﬂ"?lt N il . 3
T i i i
i(t) i ‘ ‘
l rolt 7:"2 - Tfltl gi ‘
<« b
to"d time —)

Figure 7.4: Queue length evolution for the original trajectory and the alternative trajectory. For the

alternative trajectory the behavior in the interval [tg!, t&!* + r¢!* 4 g;] repeats itself. For the original

trajectory the behavior in the interval [tg"?, 0" + r; + g;] repeats itself.

75

We introduce the following notation:

J't: The average costs related to signal i during a red period (during the interval [t§", t3"* 4 r’]) of
the alternative trajectory.

J'?: The average costs related to signal ¢ during the interval [tg™, tg"? +7¢'"] of the original trajectory.

Jg': The average costs related to signal i during a green period (during the interval [t§" + ¢, 5" +
rot + g;]) of the alternative trajectory.

J5+ The average costs related to signal i during a green period (during the interval [tg™? + 1, ¢0" +
r; + g;]) of the original trajectory.

J3"9: The average costs for signal ¢ during during the interval [t"? + 73!, 3" + r;] of the original
trajectory.

For the alternative trajectory the average costs related to signal ¢ are equal to:
1
Jqlt _ T? ! alt 9i alt
3

It 1,2 + It 2,8
I+ g rit + g

We can see that the queue length evolution during [tg™?, 0" + r2!] of the original trajectory is the
same as the queue length evolution during the interval [t/ 3!t + r@t] of the alternative trajectory .
Hence, J{ = J7"?. Furthermore, we can see from Figure 7.5 that J§'f < J377 because f; is strictly
increasing. During the interval [tg"? +r&* g™ +7;] the queue length of signal i for the original trajectory
satisfies ;(t) > \;r®t. For the alternative trajectory the queue length (always) satisfies z;(t) < \;r@!t.
Thus, it holds that J§'f > J because f; is strictly increasing.

AiT
/\”,,qlt
z;(t)
: gi '
time —_—>

Figure 7.5: Queue length evolution during a green period of the original trajectory (visualized with

a light gray line) and the queue length evolution during a green period of the alternative trajectory
(visualized with a dark gray line).

76

Using this information we can derive that:
alt alt
Jorg o org 9i org Ty — T org
i . Y1, . Y2,] Y2
i+ gi i+ Gi Ti + gi

alt alt alt
i t9i T gi Ty — T
_ N i org org i org
= Jii + Joi | +———J3;

ri+gi \ri+g; it + g; ri + gi
It It It
> ’I’;‘l 19 (’I’;‘l Jal}f + 9i alﬁ) Ty — ’I’;‘l Jqlt
Tomitg \rfltg T ht a4 g7 ritgi '
It It
> ’I";l + g J{zlt + Ty — ’I";l alt
T oritg " ritgi
2 J;Ilt.

Hence, the costs related to each signal i € A are not larger for the alternative trajectory than for
the original trajectory.
Furthermore, we can see that the alternative trajectory is feasible because:

- Assuming (10.1) and (10.2) there is exactly enough time to perform the setups and thus to satisfy
constraint (7.3g) and constraint (7.3h).

- For the original trajectory the queue length of signal ¢ € A is at most A\;r; and for the alternative
trajectory the queue length of signal 7 is at most)\irf“ < \;jr;. Hence, when the original trajectory
satisfies the constraints on maximum queue lengths the alternative trajectory does as well because
the queue length of signal i. increases with the duration of a red period.

- both trajectories have the same green times. Hence, when the original trajectory satisfies the con-
straints on maximum queue lengths the alternative trajectory does as well.

7.4 Shape of the Periodic Optimal Trajectory

Using lemmas 4.1, 4.2, 7.1, 7.2 and 7.3 we can find the following corollary for the intersection with two
signal groups.

Corollary 7.4 For an intersection with two signal groups and assumptions given in Section 7.2.8 we
can without loss of generality assume that an optimal trajectory (minimizing (7.1)) has the periodic
shape shown in the (x;,, x;,)-plane, i1 € G1,ia € Go that is shown in Figure 7.6. This periodic shape in
the (x;,,x;,)-plane consists of the following phases (these phases repeat periodically):

phase 1 Signal i1 is green and d;, (t) = w;, until queue i1 is empty.
phase 2 Signal 1 is green and d;, (t) = \;, -

phase 3 perform a setup to signal io, i.e. switch signal is to red and keep both signals red for a period
equal to o;, i,

phase 4 Signal iz is green and d;, (t) = w;, until queue iz is empty.
phase 5 Signal iz is green and d;,(t) = A, .

phase 6 perform a setup to signal i1, i.e. switch signal io to red and keep both signals red for a period
equal to o, i,

7

Since all green periods of a signal have the same duration and all red periods of a signal have the
same duration, we use:

91:91]67 Z€N7k217
r=rF ieNk>1,
PV

g =g i eEN k> 1,

g =g ie Nk > 1.
(7.8)
Step 2 and phase 4 are the so called slow modes and may have a duration equal to zero. We call this
periodically repeated sequence a cycle. On the left hand side of Figure 4.7, this cycle is plotted in the
(4, , x4,)-plane. The right hand side graphs show the queue lengths over time, with the slopes annotated

to them. The duration of a cycle is denoted with c and is equal to gi; + Gi, + Ty is iy -
The green times are related according to:

Gis T Ciryinyin = Gju + Ojryingas Vit,J1 € G1, iz € G, (7.9a)
Giz T Ciyinyis = Yjn + Oy joyins Vi1 € 1, Vig, j2 € Ga. (7.9b)

— Miy

g

1 1 1
. I A . H A

Ty —> VOivyini Giy 1 9in 1 Tinyin 95y 1 95,
DI 3t . :

time —>

Figure 7.6: Shape of the periodic optimal trajectory. Left: periodic optimal trajectory in the (iy,142)-
plane. Right: queue lengths over time.

78

The traffic that arrives during a red period of signal i € A" can (precisely) depart during ¢!'. Hence
we can find:
gétl = 1 f“p (giz + 0'711,1'2,711)7 7;1'1 € gilv 7;1'2 € gi2a (7.10&)
71

Pi . .
QZ = 1_ > - (gi1 + Ji17i2;i1)7 iy € Giys liy € Gy (710b)
io

7.5 Periodic Optimal Trajectory

From Corollary 7.4 we know that w.l.o.g. we can assume that optimal trajectories are periodic. For
these periodic optimal trajectories a queue is emptied during each green period. Using these properties
we can rewrite the behavioral equations (7.3). In Section 7.5.1 we give the rewritten form of these
behavioral equations. In Section 7.5.3 we elaborate on the solutions of this optimization problem.

7.5.1 Optimization Problem

We want to minimize the linear cost function. From now on we use a more specific form of the cost
function J: the linear cost function shown in (7.11).

/ Z wix; (s (7.11)

iEN

From the right side of Figure 7.6 and using (7.9) we can obtain the following expression for the
linear cost function for an intersection with two signal groups.

J = —/ Zwixi(s)ds,
¢Jo jen

_ Z w; Usz +gn + g) (oini + gn)Ni
2(o1,n1+ 91 +9n)

3

1€Gy
I Z wi(01,51 + gn +gl)(01,1,1 +g1)\
2(oc1,n1+ 91+ 9n) '

(7.12)
1€G2

Recall that by definition signal 1 is element of signal group 1 and signal IV is element of signal group
2. Using (7.10) we can obtain:

M ki(oini+gn)?+ Y ki(oini +g1)?

min i€G i€G2 , (7.13)
g1,9N g1+tgn +0o1,N1
where
/\ﬂl)z'
ﬁi - XS N
2(1 = pi)

79

The green time of a signal must be large enough for the traffic, that arrives during a red period,
to depart. Otherwise, we would not get the periodic optimal trajectory from Corollary 7.4 because a
queue length goes to infinity.

9i 2 LH, VieN. (7.14a)
L —pi
The maximum queue length of a signal must be larger than the amount of traffic that arrives during
a red period:

rp<=— VieN. (7.14b)
Each green time must exceed the minimum green time:

g > g™, VieN. (7.14c)

Each green time may not exceed the maximum green time:

9i 2 9", VieN. (7.14d)

Using the relations between green times given in (7.9) we can rewrite (7.14) to:

g1 > max PIN Y 0N _ (7.15a)
i€G1 1— Pi
gN > max pigrt ouit O1.N1, (7.15Db)
1€Gs 1—p; ”
xmaw
< min — — i1s 7.15¢
g1 < min - 01,i,1 ()
m(l.’E
< min - — O§,N,i 7.15d
WS RB TN T o (715d)
g1 > max g™ + Oi,N;i— O1,N,1, (7.15¢)
i€G1 T
gy > max g™ + 011 — 01N 1 (7.15f)
i€G2 ’
g1 < 97", (7.15g)
gn < gr*" (7.15h)

We want to find values for g1 and gy that satisfy constraints (7.15) and minimize the linear cost
function (7.13). From these values for g; and gnx we can derive the green times of all other signals via
(7.9).

7.5.2 Existence of a Solution

A solution to the optimization problem with constraints (7.15) is only possible if we can find values for
gi,, Vi1 € Gy and g;,, Via € Ga satisfying inequalities (7.14). We can find values for g;,, Vi1 € G; and
Jin, Via € Go satisfying inequalities (7.14) if and only if the following inequalities are satisfied for all
signals i1 € G; and for all signals i5 € Gs:

80

gpar > it (7.16a)

1- Pir — Pis ’
gt = g, (7.16b)
gzvlmzr > (ggbm + Jil,iz,h)l Pi > (7.160)
— Piy
max i1 ia,i1 Pis
> 7.16d
(I G — ()
gt > g, (7.16¢)
glv;mr (gzm + 0'73177327731)1 Pis) (7.16f)
— Pis

Oy ,ia,01 Pi

it = iy (ﬁ + Tiy inin) (7.16g)
min o

2w >y, T Lo, (7.16h)

— Pis
meT Ai (g:;”n + 0i17i2,i1)7 (7161)
Tis ia,i1 Pi .
Tt = N 2(% + Ty insin) (7.16j)

min o

2o >\, 2l Lonn, (7.16k)

— Piy
x;r;aw =)‘12 (g:?m + 0i17i2,i1)' (7.161)

The inequalities in (7.16) can be interpreted as follows. Whenever, a periodic trajectory satisfies

o Gii i o D2 -
gi, = %‘1[)’)” and ¢;, = %‘jp’)” (and we let traffic depart at the maximum departure rate) we
iy —Pis iy —Pis

get a pure bow tie curve in the (i1,42) —plane (see Figure 7.7). The green times g;, = % and
iq io
Tiy,ig

Giy, = T‘lp’h; are the smallest green times for which all traffic that arrives during a cycle at signal i,
and signal io can depart during a cycle.

The inequalities (8.1h),(8.1k),(8.1n) and (8.1q) make sure that this pure bow tie curve in the (i1, i2)-
plane does not violate the maximum green times g;'** and g;7** and it does not violate the maximum
queue lengths z"** and x7**.

However, a pure bow tle curve in the (i1, 2)-plane might violate a constraint on the minimum green
time duration. The inequalities (8.1i),(8.11),(8.10) and (8.1r) make sure that there exists a periodic
trajectory where g;, = gfi”", such that the maximum green times g;"** and g;'** and the maximum
queue lengths 271" and x{*" are not violated. Similarly, inequalities (8.1j), (8 1m),(8.1p) and (8.1s)
make sure that the maximum green times ¢;'** and g;7** and the maximum queue lengths 2"** and

x?;“‘” are not violated.

7.5.3 Solution

In this section we present the solution to the optimization problem for two cases. First we consider an
intersection where G1 = {1}, Go = {2,3} and 01,21 = 01,3,1. Subsequently we consider an intersection
where Q1 = {1}, gg = {2,3} and 01,2,1 7é 01,3,1-

81

max
xiz
Ly
O /
N max
0 Ly Ty

Figure 7.7: Pure bow tie curve in the (i1,i2) —plane

Equal Setup Times

In this section we consider an intersection where G; = {1}, Go = {2,3} and 01,21 = 01,3,1. From (7.9)
we know that in this case g2 = g3. For this intersections the objective function (7.13) reduces to:

1 [¢ 2
J= _/ S wii(s)ds = Bilorsa +95) + (P2 + Ba) (01,31 +91)° (7.17)
cJo fox 01,31+ 91+ 93
where
A W;
Bi=——"—, PiEN.
2(1 = pi)

Further, the constraints (7.15) reduce to:

g1 >

P1
T (01,31 + 93),

max p;
=2,
g3 > ———— (01,31 + 91)s
T-ppe

=2,

min = = o151,
% — 01,31,
1
91> 9",
gs > min{gy"", g5"'"},

max

g1 S 91)
g3 < g3" .

IN

g1

IN

gs

82

This optimization problem can be solved analytically (see Appendix C.1). The periodic optimal
trajectory can have 0, 1 or 2 slow modes. For more information see Appendix C.1. The optimization
problem with objective function (7.17) and constraints (7.18) is related to the optimization problem in
C.1 as follows.

Whenever (82 + 83) < 1, the two optimization problems are related according to:

(B2 + f33)
k= ——=
B1
_ 9
y1 =)
01,3,1
_ 93
Y2 = ’
01,3,1
min
min __ 91
yl -)
01,3,1
min ,min
min __ maX{QQ 93 }
y2 -)
01,3,1
min{g¢7"®, min I‘A — 0131}
mazx __ 1=2,3 4
yl - 9
01,3,1
. mazx ',L"{nam
e MIn{gZ" T L — 0131}
y2 -)
01,3,1
a1 = pP1,
Qrg = max p;.
g P

Whenever (82 + 83) > (1, the two optimization problems are related according to:

B
- 3
(B2 + B3)
_ 93
Y1 =)
01,3,1
_ 9
Y2 = ’
01,3,1
min ,min
min __ ma’X{QQ » 93 }
Y1 -)
01,3,1
min
min __ 91
y2 -)
01,3,1
: maz 17 _
e MIn{gd T H— — 0131}
yl -)
01,3,1
: max T
min{g{"**, min ~ — o131}
mazr __ 1=2,3
y2 -)
01,3,1
a1 = ax P;
e Pi
Qy = pP1.

83

Generalization: using the assumptions in Section 7.2.3, the analytical solution in Appendix C.1 can
be used for any intersection with two conflict groups where:

O1,N,1 = 0i; ,N,iy,Vi1 € Gi,

O1,N,1 = Ty 1,ip, Vig € Go.

For this class of intersections we can find the following expressions for the optimization problem in
Appendix C.1. Without loss of generality we assume that 0 < k < 1.

>, Bi

1€Go
k= -,
> Bi
1€Gy
_ %
Y1 =)
01,N,1
_ 4~
Y2 =)
01,N,1
min __ 1€G1
Y1 =
01,N,1
max g}
min __ 1€G2
Y =
01,N,1
min{g**, min T —o1N1)
maxr __ 1€Ga
yl -)
01,N,1
. . w'{rza:n
min{ g, min — — 01N}
maxr __ 1€G1 B
y2 -)
01,N,1

Q1 = max p;,
1€G1

Qg = max p;.
i€G2

Unequal Setup Times

In this section we consider an intersection where Gy = {1}, Go = {2,3} and 01,91 # 01,3,1. From (7.9)
we know that g2 + 01,21 = g3 + 01,3,1. For this intersection the objective function (7.13) reduces to:

1 c 2 2 2
J— _/ Zwixi(s)ds _ Bi(o131+93)° + Ba(o1,21 +91)° + B3(01,31 + g1) 7 (7.19)
cJo ‘Zx 01,31+ 91+ 93
where
A\ W;
Bi=——"—, PiEN.
2(1 —Pv:)

Further, the constraints (7.15) reduce to (7.20). Note that (7.20b) and (7.20c) both follow from
(7.15d).

84

g1 =

gs

gs

g1

gs

251
g3
251
g3

> 1

1—,01
P3

1I—ps

v

1

p291 + 0121
L —po

(01,31 + 93)s
(01,31 +91),

— 01,31,

< mi Zq
min — —01.4.1
i=2,3 \; L

< — —013,1,

A1

> g,

min

. min
> min{gy"" + 0121 —0131,95" "}

< g7,

max

< g3

Assuming (with loss of generality) that 8; > (82 + f3) and assuming w.l.o.g. that o131 > 012,71 this
optimization problem is solved analytically (see Appendix C.2). The periodic optimal trajectory can
have 0, 1 or 2 slow modes. For more information see Appendix C.2. The optimization problem with
objective function (7.19) and constraints (7.20) is related to the optimization problem in Appendix C.2

as follows.

k1
ko
k3
Y1

Y2

min

U

min

Y2

max

Y

max

Y2

Q2

(e%:]

B
B
B
B
01,3,17
g1
01,3,17
g3
01,3,17

min

91
01,3,1

max g;"" + 01,1
1=2,3

min{g

-1,
01,3,1
max

o
"%, min 35+ 011 — o131}
1=2, B

min{g

01,3,1

maz T
N T ol

= P1,
= P2,
:p3.

)
01,3,1

85

3

Generalization: using the assumptions in Section 7.2.3, the analytical solution in Appendix C.2 can
be used for the class of intersections satisfying the following properties:

- All signals i1 € G; have the same setup time o, i, 1.6. 01,N,1 = Tiy,N,is» Vi1 € G1.
- Each signal i € G5 can be partitioned into one of two sets B1 or By. All signals i € B; have the same
setup time oy ;1 > 0 which we denote with op,. All signals ¢ € By have the same setup time
01,5,1 > 0 which we denote with oz, .
- > Bi= > B
i€G1 i€G2
For this class of intersections we can find the following expressions for the optimization problem in
Appendix C.2. Without loss of generality we assume that 0 < k3 < 1 and w.l.o.g. we assume that
signal N is partitioned in Bs, i.e. N € Bs.

>, B

€8y
kl =)
> Bi
i€G1
> Bi
1€B2
ky = —<—,
> Bi
i€G1
0B
ks = —%, (7.21)
0B,
_ 0
Yy =)
01,N,1
_ 9N
Y2 =)
01,N,1
max g;"*" + 05 N
min __ 1€G1 1
yl - -4
01,N,1
max g;"" + 01,41
min __ i€G2 1
Yo - - 4L
01,N,1
min{g{"**, min £ + 01,1 — 01N 1}
maxr __ 1€Gy
yl - 9
01,3,1
min{gx**, min $* + 0i N — 01,81}
max 1€G1 7
y2 - 9

01,3,1

1 = Inax p;
i€G1 pi

Qg = Max p;,
1€B,

Q3 = IMax pP;.
1€EB2

7.5.4 Fixed Order and Optimality

In this chapter we have only considered signals where we serve the signals in a fixed order; we alternate
between serving all signals in G; and serving all signals in Gs. In practice, often signals are served
in a fixed order. Some of the vehicles, cyclists and pedestrians already start to accelerate when they

86

expect their signal to switch to green. When the order in which these signals are served changes, these
expectations are likely to be wrong and can result in unsafe situations.

Using an example we show that trajectories that do not serve signals in a fixed order might results
in a lower value for the cost function (7.1).

Example 7.5.1 Consider an intersection with two signal groups: G; = {1} and Gy = {2,3}. We are
given the following information about the intersection.

A1 = 0.3 vehicles per second, Ao = 0.1 vehicles per second, A3 = 0.001 wvehicles per second

w1 = 0.5 vehicles per second, o = 0.5 vehicles per second, s = 0.5 vehicles per second,

p1 =0.6 p2 = 0.2, p3 = 0.002,
01,2 = 2.5 seconds, 02,1 = 2.5 seconds,
01,3 = 20 seconds, 03,1 = 20 seconds.

We do not impose restrictions on minimum green times, maximum green times and mazrimum queue
lengths. We consider the linear weight function in (7.11) where wy = we = w3z = 1. Thus, we like to
minimize the average delay of a road user at the intersection (see Section 7.1.1).

For a fixed order, signal 2 and signal 8 are both served during every red period of signal 1. The green
times of the optimal trajectory with a fized order can be obtained by solving the optimization problem
with objective function (7.20) and constraints (7.19). We can obtain the following green times:

g1 = 63.6275 seconds,
g2 = 35.2077 seconds,
g3 = 0.2077 seconds.

From these green times we can calculate the average delay of a vehicle via (7.19) and (7.2), which
is J = 21.7587 seconds. This periodic trajectory is shown in Figure 7.8a.

However, in Figure 7.8b we show a trajectory where signal 2 is served twice as often as signal 3.
The green times shown in this figure are:

g1 = 61 seconds,
g% = 16.5 seconds,
g% = 35.5 seconds,
gs = 0.5 seconds.
(7.22)

This trajectory reduces the value for the average delay of a vehicle to 18.294 seconds. This trajectory
works better for this example because the setup time o131 is large. As a result whenever signal 3 is
served, signal 1 has to wait very long until it is served again. Further, the arrival rate at signal 3 is
very small. As a result, it is better to sometimes skip serving signal 3.

87

time—>

time —

(b) A trajectory where the signals are not served in a

fixed order.

(a) Periodic optimal trajectory when the signals are

served in a fixed order.

Figure 7.8: Trajectories that do not serve the signals in a fixed order might result in a lower value for
88

the cost function (7.1).

Chapter 8

Regulation: An Intersection with Two
Signal Groups

In the previous chapter we considered the trajectory optimization problem. We showed how to de-
rive periodic optimal trajectories for an intersection with two signal groups. To obtain these desired
trajectories we assumed deterministic arrivals and deterministic departures. However, due to for ex-
ample stochastic arrivals we may deviate from the desired trajectory. The second problem discussed
in this thesis is regulation. In this chapter we consider the regulation problem for an intersection
with two signal groups: signal group 1 and signal group 2. We assume without loss of generality that
the signals in signal group 1 are numbered 1,2, ..., N; and the signals in signal group 2 are numbered
Ni+1,Ny+2,....N. Weuse G; ={1,2,..., N1} and Go = {N7 + 1,..., N}. The problem description of
the regulation problem is given in Section 5.1. In this chapter we use 'desired trajectory’ to refer to the
trajectory obtained via trajectory optimization.

8.1 Assumptions

We assume that the arrival rate and the maximum departure rate of a signal is positive:
Xiopi >0, ieN. (8.1a)

We assume that all setup times are non-negative and that the setup oy 1 is strictly positive:

0ij >0, i,jeEN, (8.1b)
o1n1 > 0. (8.1c)

Further, we assume that the setup times are related according to:

Oiryia = Tinla = Olyis — Oly 1o Vi1l € Gy i2,l2 € Ga (8.1d)
Oinin = Tinly = Oloiy — Oly las Vi1l € Gy i2,l2 € Ga (8.1e)

Furthermore, we assume that the maximum green times are related according to (8.1f) and (8.1g).
See Section 7.2.3 for more information about this assumption.

gZ””” + Oy iniy = g;rlL(lﬂC + 04y in,j1> Vil,jl c gl, Vig € gg, (81f)
g;:,aw + iy in,in = g;rzmw + Oiq,ja,its Vi, € gl, Vig,jg € Gs. (Slg)

89

Furthermore, we assume that (8.1h)—(8.1s) are satisfied. The inequalities (8.1h)—(8.1s) are the strict
form of (7.16). For more information about these assumptions see Section 7.5.2.

i1 ia,i1 Pi1
gi " > T 8.1h
" 1- Piy — Pio ’ ()
gnt > g™, (8.1i)
G > (G - 0y iy i) (8.1j)
1- Piq
i1 ia,i1 Pis
giy®t > — 8.1k
" 1- pi1 - piz ()
9i, " > 95, (8.11)
glh;am > (gl"l'm + Jil,iz,h) Pis > (8.1m)
1- Pis

Oy ,ia,01 Pi
x;rlm,w >)\1'1 (ﬁ + O'il,iQ,il)a (8111)
T > Ay gZ”"Pliz i ; (8.10)

— Pis
{EZ“M >)\il (g;;nn + 0i17i2,i1)7 (81p)

z Oy ,in,i1 Pi
Z‘ZLGT >)\12(% + 0'1'171'271'1), (81q)
x> g, ggmplil LT ; (8.1r)

— Piy
x;r;aw > Aiy (gva + 0i17i2,i1)' (8.18)

Further we assume that a desired trajectory (the trajectory that we want to converge to), satisfies the
periodic shape from Corollary 7.4.

8.2 Convergence

Before proposing the policy we show that convergence to the desired trajectory is not always possible.

The (z;,,i,)-plane, i1 € Gi, ia € G can be divided into regions from which it is impossible to
converge to the periodic optimal trajectory when in a certain mode. When entering the area annotated
with @ (see Figure 8.1a) while serving signal i1, eventually one of the constraints is violated. When

performing a setup to signal 2, a maximum queue length is exceeded. Moreover, if we do not perform
this setup, a maximum queue length is exceeded as well. Similarly, whenever entering the area annotated

with @ while serving signal i2, eventually one of the constraints is violated. If the trajectory is on

the pure bow tie curve in the upper right corner the trajectory stays here (if the minimum green times
allow so).
Further, because of restrictions on the minimum green period duration, we may not start serving

signal 7; respectively signal ¢2 in the areas annotated with respectively (see Figure 8.1Db).
Hence, when the initial queue lengths are in the area annotated with we have to start serving
signal group 2 and when the initial queue lengths are in the area annotated with m we have to

with serving signal group 1. When the initial queue lengths are in the area with both and ,
eventually a constraint is violated.

90

max

xil

max _

:1:’7?721(11' xlz
i1t i1 t|[i2t |
— Niy Oy i)
2Y11,12
— X2(gi"™ + 0y i)
periodic optimal
trajectory
/,/ igt
Tio Liz
0
0 0 Tiy ! mrj‘mz 0 Tip —> ! x;’faz
max ! 21 mazx min
T3 = Niy Gy g 3" = A(giy ™ + Tigsiy)

(a) When entering the area annotated with an encircled (b) When starting to serve signal ¢ or signal i3 in the
417 or an encircled i2f while serving signal i; respec- areas annotated with a boxed i1} respectively a boxed
tively signal i3 no convergence to the periodic optimal 42} a constraint will be violated.

trajectory is possible anymore.

Figure 8.1: Convergence to the periodic optimal process is not always possible.

8.3 Proposing a Policy

In this section we propose a policy that makes sure that a trajectory converges to the desired periodic
trajectory. First we introduce some notation.

Just like the desired trajectory, the policy switches signal i3 € G to green o;, ;, seconds after signal
i1 € Gy switched to red and the policy switches signal is € G; to green o;, ;, seconds after signal i5 € Go
switched to red.

Without loss of generality we assume that the signals in signal group 1 are numbered such that:

O1,N 2 02N ="+ 0N, N

and that the signals in signal group 2 are numbered such that:

ON,+1,1 = ON; 42,1 = *** 2 ON,1-

For this order, signal 1 is the first signal in G; to switch to red (see Figure 8.2). Further, signal
i1 € Gy switches to red o1y — 0y, v seconds after signal 1 has switched to red and signal iz € G
switches to green o, ;, seconds after signal 1 switched to red. In the same way, signal N7 + 1 is the first
signal in Gy to switch to red. Signal iy € Gy switches to red oy, 41,1 — 0i,,1 seconds after signal N; 41
has switched to red and signal ¢; € G; switches to green o, 41,4, seconds after signal Ny + 1 switched
to red.

We want to derive a rule that defines when to switch signal 1 to red and when to switch signal
N7 +1 to red. From these two switch actions, we can derive when to switch each of the signals to green
and red.

For the policy that we propose we use zf

i for the queue length of queue 7; € G; at the moment that

signal 1 switches to red for the desired trajectory. We use x§2 for the queue length of queue is € Go at

the moment that signal N7 + 1 switches to red for the desired trajectory. We can obtain the following
expressions for x?l and x?Q:

91

signal N

signal 1

signal 2

signal 3

Time (seconds}——>

Figure 8.2: Sequence in which signals in G; switch to red.

xgl = (7"1‘1 - Jil,N)Aim (823)

xﬁ = (’”2 - Uiz,l))\iQ- (82b)

i1
where r;, i € N is the red time of signal i for the desired trajectory. Furthermore, we use:

i f
17 =1,

iyf = Ny 4+ 1.
Thus %/, ¢ = 1,2 refers to the signal in the set G. that is switched to red first. We use iﬁ”f to refer
to the signal in the set G; that switches to green first:

i = argminoy;, . (8.3)
i1€G1

We use ig’f to refer to the signal in the set G that is switches to green first:

ig’f = argminoy j,. (8.4)

12€G2
Further we use o for the residual time that signal i; € G; has to be red for at the moment that
signal i97 switches to green:

res
11

= Oiy,iy — 0, sof, 12 € Ga. (8.5)

g,
12,17

We use o7¢° for the residual time that signal ia € G2 has to be red for at the moment that signal

%7 switches to green:

0{265 = Oiyip — Uﬁ,ig’f’ i1 € G1. (86)

We use 7; for the time that has elapsed since the last mode change at signal i € .

92

8.3.1 Overview of the Policy

First we give a short overview of the policy. In Section 8.3.2 we give a formal expression to determine
when to switch signal 1 to red and when to switch signal Ny + 1 to red.

We want to serve the signals in the set G., ¢ = 1, 2 long enough to satisfy the following 3 conditions:

1.1 all queues i, i. € G. are (expected to be) emptied during their green period (assuming a hybrid
fluid model).
1.2 all signals are served for at least the minimum green time.

. . 1 ifc=2
1.3 the queue length of at least one of the queues iz € Gz satisfies x;. > x?ﬁ, whre ¢ = { 9 ;f E*I’

Whenever conditions 1.1-1.3 are satisfied we switch signal 1 (if ¢ = 1) or signal Ny +1 (if ¢ = 2) to
red.

It might not be possible to serve the signals in the set G. long enough to satisfy conditions 1.1-1.3.
We might have to stop earlier because of condition 2 or condition 3:

2 The maximum green time of signal 1 (if ¢ = 1) or the maximum green time of signal Ny +1 (if ¢ = 2)
is reached. From (8.1f) we know that when signal 1 is served for the maximum green time then all
signals in Gy are served for the maximum green time and from (8.1g) we know that when signal
Ni + 1 is served for the maximum green time then all signals in Gs are served for the maximum
green time.

3 queue iz € Gz has reached a queue length of z"** — X;_ g1, (if ¢ = 1) or a queue length of z"** —
N0 Ny 414 (if ¢ = 2). In this case queue iz is switched to green when its queue length reaches

2% (assuming a hybrid fluid model).

8.3.2 Switching the Signals 1 and N; + 1 to Red

In this sections we give formal expressions for when the conditions, introduced in the previous section,
are satisfied.

Formal expression for condition 1.1 Condition 1.1 is satisfied when all queues i., i, € G. are
(expected to be) emptied during their green period (assuming a hybrid fluid model).

When signal i/ € G, ¢ = 1,2 switches to red at time ¢, signal i, € G. is still red for max{o7* —
T (8),0} = (07" — 705 (t))* seconds (see Figure 8.3). When (0]* — 7(t))* is positive, this means
that the setup towards signal i. is not finished yet. During this residual part of the setup, traffic arrives
at signal ¢. at arrival rate \;,.

Since signal i, switches to red Oirid j98 = 05 jo.s seconds after signal i/ switches to red, signal

i i0d (07 — 705 (t)) T if signal i"f switches to red

ic € Gc is still green for a duration of 0,5 ;0.5 — 0
at time t. /
Hence, condition 1.1 is satisfied when:

Vis € Go (% () < (05 405 = 0, 0.8)i = Xi) = (077" = Tigvf(t))JrMu) - (8.7)

93

T.g,f(t)

& lc Ny

< >
gnat 2/
signal 2’ ‘

UiZ’f,ig’f

A
'y

. -r f
signal 47
e

(07 —r0s ()T Tt
P S— :

signal i,

Time (seconds) ——>

Figure 8.3: Visualization of the formal expression for condition 1.1. The dark gray rectangles visualize
when a signal is red and the light gray rectangles visualize when a signal is green.

Formal expression for condition 1.2 Condition 1.2 is satisfied when all signals are served for at
least the minimum green time.

Using the fact that signal i. switches to green o7°® seconds after signal 9/ switched to green (see
Figure 8.4) and using the fact that signal i. switches to red Oirst g0 = 04 seconds after signal i’/

switches to red we can find that condition 1.2 is satisfied when 7,7 () > magx(g{”m + 07 0, s —
c ZCE - c c crbe

Tyt oot)-
T.g,f(t)

1e -
>

<

< | |
ignal ¢/ [l I
signal 9 ‘ ‘ ‘

O.r.f .
> ic f,z%’f

|
Il X >
signal 77/ [

res

Te . : I
sl i | N

Time (seconds) ——>

A

Figure 8.4: Visualization of the formal expression for condition 1.2. The dark gray rectangles visualize
when a signal is red and the light gray rectangles visualize when a signal is green.

Formal expression for condition 1.3 Condition 1.3 is satisfied when Jiz € Gz (xif > xgz)
Formal expression for condition 2 Condition 2 is satisfied whenever the maximum green time of
signal 1 (if ¢ = 1) or the maximum green time of signal N7 + 1 (if ¢ = 2) is reached.

The green period of signal i/ starts 0"%$ seconds after signal i%"/ is switched to green. Using (8.1f)

le
and (8.1g) we can see that condition 2 is satisfied whenever 7.,/ (t) > g7 + 07%.
c 2 2

Formal expression for condition 3 Condition 3 is satisfied when Jiz € Gz (xiz(t) > xf

94

Thus, we switch the signal i’ to red when serving signal group ¢ = 1,2 if the following expression
is true:

(ti1 Atia Atis) Via Vis,

where
t11 = Viz € Ga (% () < (0475 498 = 05 aos) (Wie = Aie) = (0377 = Tygs (t))JrMic) ,

_ in res _
tro =Tus(t) > gleagf(gic + 00+ 0, e =0t),

ti.3 = Fiz € Ge (xig > xf,) ;
by = Ty (1) > 7% + 0755,
t3 = E'Zz S gz (xl?(t) 2 :C;;“” - O'ig'f,igAi?) .

Proposition 8.1 A feedback policy which stabilizes an intersection with two signal groups to the desired
periodic trajectory if started from a feasible starting point (for which we avoid the areas in Figure 8.1
from which no convergence is possible) is given by:

e Mode 1: Serve signal i1 € G1 at the highest possible rate if signal i1 is green. Switch signal i1 € Gy
to green if Tig > 07, If (8.8) results in the boolean ‘true’ for ¢ =1 then switch signal 1 to red
and go to Mode 2.

o Mode 2: Switch signal i1 to red if 1 > o1y — 04y, ,N. If 71 > 197 then switch signal ig’f to green
and go to Mode 3.

e Mode 3: Serve signal ia € Go at the highest possible rate if signal is is green. Switch signal ia € Ga to
green if Tigd > o7 If (8.8) results in the boolean ‘true’ for ¢ = 2 then switch signal Ny + 1 to
red and go to Mode 4.

o Mode 2: Switch signal iy to red if Tn, 41 > ONny4+1,1 — Tig1- If TNy 41 > O Ny 41,69 then switch signal

iﬁ”f to green and go to Mode 1.

Proof. Below we give a sketch of the proof. See Appendix D for the entire proof of this proposition.

We distinguish 5 different reasons why we switch signal ig’f, c = 1,2 to red: switch.la, switch.1b,
switch.2, switch.3a and switch.3b (see Appendix D).

We consider an infinite sequence of reasons why we switch the signals in the set G; from green to
red and why we switch the signals in the set Go from green to red. Below we can see an example of
such an infinite sequence. We use s' for the /th switch reason. When we start serving the signals in the

set G; then the switch reasons s?+1, 1 =0,1,2,..., 00 refer to why we switch signal 1 from green to red
and all switch reasons s%, [= 1,2,3,...,00 refer to why we switched the signal N; + 1 from green to
red.

st = s = s = ... = switch.3a — switch.3a — switch.3a — switch.3a — switch.3a — -+ —

switch.2 — switch.3a — switch.2 — switch.3a — - -+ — switch.la — switch.la — switch.la — ...

We can prove that after some (finite) time only switch.la occurs or only switch.1b occurs. Which
of these two depends on the characteristics of the desired trajectory. We prove that whenever one of

95

these two switch reasons (either switch.la or switch.1b) occurs until infinity we converge to the desired
trajectory.

Below we show an overview of how to prove that eventually (in finite time) only switch.la occurs
or only switch.1b occurs. We consider combinations of 2 subsequent switch reasons (s' — s'*1), [> 1
(for example (s' — s'*1) = (switch.3a — switch.3a), (s* — s'*1) = (switch.2 — switch.3a) etc.). We
use C; = 1,...,n. to refer to a certain combination of switch reasons. We use C;, i = 1,...,ng to refer
to a set of combinations of switch reasons. These sets satisfy:

Ci #0,
Uca=c

i=1

Cne; =0, i=1,...,ns, j=1,...,ns,1F#],
where

Cn.—1 = {(switch.la — switchla)},

Cn, = {(switch.1b — switchl1b)},

C:{Cl‘liZL...,nc}.

Thus, none of the sets C;, i = 1,...,ns is empty and each combination C; = 1,...,n, is partitioned

in exactly one of the set C;, i = 1,...,ns. Note, that in total there are 5 x 5 = 25 combinations of 2

subsequent switch reasons possible because there are 5 different switch reasons (switch.la, switch.1b,
switch.2, switch.3a and switch.3b). However, we do not use all combinations, i.e. n. < 25. We have
chosen the n. combinations such that for every (feasible) infinite sequence of switch reasons, each of

those switch reasons s', I > 1 makes a combination C;, i = 1,...,n. with either the previous switch
reason, the next switch reason or both, i.e. VI > 1: (7! — s!) € Cv (s! — s'T1) € C. Thus, every
switch reason is part of a combination C;, i = 1,..., n..

First of all, we can prove that whenever s, | > lyap (where lgq.¢ 1s a finite integer) is part of
a combination that is in C;, 1 < i < n, (with either s'~! or s*1) then s'*! cannot be part of a
combination that is in the set C;, 1 < j < i (with either s’ or s'¥2). Note that this means that whenever
a combination in the set (s;—1,s;) = C;i, 2 < i < n, | > lstart has occurred then a combination in the set
Cj,1 < j < can never occur again. Furthermore, we can prove that only a finite number of subsequent
switch reasons s! can be part of a combination in the set C;, 1 < i < ngy — 2 (with either st or sl“).
Hence, eventually only combinations in the sets C,,_1 or C,, can occur. As previously mentioned for
an infinite sequence of switch.la switch reasons or an infinite sequence of switch.1b switch reasons we
can show convergence to the desired signal.

]

96

Chapter 9

Quality of the Policy in a Stochastic
Setting: An Intersection With Two
Signal Groups

In Chapter 7 we derived periodic optimal trajectories for an intersection with two signal groups by
modeling the intersection with a hybrid fluid model. In Chapter 8 we proposed a (feed-back) policy.
In this chapter we consider the third problem discussed in this thesis; we address the quality of the
proposed policy for an intersection with two signal groups in a stochastic setting. To this end, we model
the intersection with the stochastic model described in Section 3.1. Recall that this stochastic model
assumes Poisson arrivals and deterministic departures. To obtain results for the policy in a stochastic
setting a simulation program is made in the programming language x3.0. The code of this simulation
program is given in Appendix B. For each test case we obtain the average delay ¢ (in seconds) of a
road user at the intersection and we obtain the fraction of the time that the maximum queue length is
exceeded at each of the queues. A road user could either be a vehicle, a cyclist or a pedestrian.

Before simulating a test case we calculate the following information about the periodic optimal
trajectory (see Chapter 4).

The coordinates xgl, i1 € Gy xi, i € Go calculated with (8.2).

The cycle duration ¢ = g1 + gy + 01,n5,1-

- The queue lengths of the signals i1 € G; at the beginning of a green period, which is equal to
)‘il (gN + Ui1,N,1'1)7 7;1 S gl-

The average delay of a road user. This average delay is obtained using (7.12), where w = w; = -+ =
wy =1 and (7.2).

For each test case we perform at least 100 runs. We perform enough runs such that the 95%
confidence interval for the average delay of a road user is at most 1% of the average delay of a road
user. For each run we start with the situation where all signals in signal group 1 are green. At the start
of a run the queue length of queue i1 € Gy is taken equal to [A;, (gn + i, N4,)] (obtained from the
periodic optimal trajectory). At the start of a run the queue length of queue iz € Gs is zero. Each run
simulates 100c seconds, were c is the cycle duration of the periodic optimal trajectory (see Section 7.4).
We consider the following test cases.

97

test case la

test case 1b

test case 1c

A1 = A2 = A3 = Ay = 0.0125,0.0250,...,0.2375 Ay = Xy = % A1 =X3=02
>\3=>\4=% >\2=>\4=%
f=112..4 f=112..4

g = gper = oo g = gFeT =00 gPeT = gI'et = oo

9T = g = oo g = g =00 gRT = gt = oo

x?fla:r I ernaw = 00 xrlnaw — x?Qna:z = 00 xrlnaw I x?Qna:z = 00

xgla:z —_ lenaw = 00 x:rgnaw — lea:z = 0 x:rgnaw —_ lea:z = 0

test case 2a test case 2b

)\1:/\3:$ /\1:/\3=l5

)\2—A4—1—5 A2:A4:ﬁ

g7 = g5 = o0 gt = g5t = 4,4.5,...,9

gy = g5t =16,16.5,...,26 ¢35 = g""" =00

test case 3a test case 3b

)\1:/\3:$ /\1:)\3:$

)\2—A4:1—5 AQZ)\4:E

gina:r géna:r = 0 ginax — ggnax = 0

gF = g = 00 9B = g = o0

T = 2 = 00 P =g =2,3,...,7

Ty =gt =3,4,...,30 25 =z = o0

For all these test cases it holds that:

For test cases 1b, 1lc, 2a, 2b, 3a and 3b it holds that max{p1, p2} + max{ps, p4a} = 0.8. In this
chapter we use y = 1 = po. In sections 9.1-9.3 we show the results for these test cases. In Section
6 we compared our proposed policy to an exhaustive policy. We do not compare our proposed policy
to an exhaustive policy in this section because (6.1) considers intersections where 1 signal is green at a

time.

min

G = {172}a

G2 = {3,4},

p1 = p2 = pi3 = pra = 0.5,
01,3 =014 =023 =024 =031 =032 =041 =042 = 2

91

min

=94

min

=93

9.1 Test Case 1: Effect of the Arrival Rates

In this section we address the effect of the arrival rate on the average delay of a road user. The results

for the different test cases are shown in sections 9.1.1-9.1.3.

9.1.1

In this test case we address the effect of increasing the arrival rates on the delay; we want to determine
d(A) for the proposed policy, where the arrival rates are varied as follows:

98

Test Case 1a: Effect of Increasing Arrival Rates

A=A = A2 = \3 = Ay = 0.0125,0.025, ..., 0.2375.

As a result p = max{p1, p2} + max{ps, p4} varies as follows:

p=0.05,0.1,...,0.95.
In Figure 9.1 the results are shown.

120 ‘ \

—oProposed policy (stochastic model)
100- | . Proposed policy (hybrid fluid model)

80 -

60 -

5 40 -

1

% i
0 0.05 0.1 0.15 0.20 0.25

A

Figure 9.1: The average delay of a road user § versus A for test case la.

The results shown in this figure are very similar to the results shown in Figure 6.1. Especially
for A < 0.15 the delays obtained for an intersection of 4 signals are close to the delays obtained for
an intersection of 2 signals. As seen in Section 6.2 we can again observe that d()\) goes to 2 for the
proposed policy when A — 0 (assuming the stochastic model). However, for larger arrival rates we
can see that the difference in delays obtained for an intersection with 4 signals and obtained for an
intersection with 2 signals gets larger. The delays are larger for an intersection with 4 signals because
for this intersection it takes longer to satisfy condition 1.2 given in Section 8.3.1, i.e. it takes longer
before all queues in the same signal group are emptied.

9.1.2 Test Case 1b: Effect of Asymmetrical Arrival Rates Between Signal
Group

For this test case the arrival rates are varied as follows:

0.4
>\ :)\ = —
1 2 1+f-7

0.4f
>\ :)\ = —
3 4 1+f-7
f=1,12,..,4.

The results are shown in Figure 9.2. In this figure we can see that larger differences in arrival rates
(and the same value for p) result in smaller delays. When the differences in arrival rates between signal
groups is larger, a larger proportion of the road users arrives at signals from signal group 2. As a result,

more road users can benefit from a slow mode at a signal in signal group 2. We can see that the average
max{Ai1,\2}

delay even goes to zero for max{%s Aa}

— oo when assuming infinite maximum green times and infinite

99

12| —Proposed policy (stochastic model) -

10k « Proposed policy (hybrid fluid model) i

E—

I 15)) 3 35 4

f —

Figure 9.2: The average delay of a road user § when the difference in arrival rates between the signals
in different signal groups increases.

maximum queue lengths. The delay goes to zero for i‘\—f — oo because all of the road users arrive at
signals in signal group 2. Hence, signals in signal group 2 can always be green. As a result, if queue
12 € G2 is emptied once, it always stays empty (slow mode) and each of the road users arriving during

a slow mode experiences a delay of zero seconds.

9.1.3 Test Case 1c: Effect of Asymmetrical Arrival Rates in a Signal Group

For this test case the arrival rates are varied as follows:

Al=X3=02
0.2
Ao =Ny = —
f
=112 ..4
20 T T T
—— Proposed policy (stochastic model)
« Proposed policy Ehybrid fluid model)
15}
510 = —
5 s 2 25 3 35 4

f —

Figure 9.3: The average delay of a road user 6 when the difference in arrival rates between signals in
the same signal group increases.

100

The results are shown in Figure 9.3. When f increases the arrival rates at signal 2 and 4 decrease.
Hence, for f — oo all traffic arrives at signals 1 and 3 and the intersection with 4 signals is equivalent
to an intersection with 2 signals. Thus, we can conclude that for an intersection with two signal groups
the average delay of a road user increasing for an increasing number of signals in each of the signal

group.

9.2 Test Case 2: Effect of The Maximum Green Time

In this section we address the effect of the maximum green times on the delay of a road user. For test
case 2a and test case 2b the arrival rates at the signals in signal group 2 are 5 times as large as the
arrival rates at the signals in signal group 1. We use ’low traffic signals’ to refer to the signals in signal
group 1 and we use ’high traffic signals’ to refer to signals in signal group 2.

9.2.1 Test Case 2a: Effect of The Maximum Green Time of the High Traffic
Signals

For this test case the maximum green time of the signals in signal group 2 are varied between 16 seconds
and 26 seconds:

gIaT = gmeT — 16, 16.5, ..., 26. (9.1)

A maximum green time of 16 seconds is the smallest maximum green time ¢5'** satisfying (4.20)

and thus the smallest maximum green time for which we can find an optimal trajectory. However, for
the same reason as explained in Section 6.3 a maximum green time ¢g5'** = ¢;"** = 16 seconds, does

not result in stability; the queue lengths of queue 3 and queue 4 keep increasing.

5 0 T T T T T

451 ——Proposed policy (stochastic model) B
40| « Proposed policy (hybrid fluid model) | |

35/
300
I 250
20
0 15/
100

0 | | | | | | | | |
16 17 18 19 20 21 22 23 24 25 26

max

g3

Figure 9.4: The average delay of a road user ¢ versus g5*** = g;*** for test case 2a.

Just like in Figure 6.2 we can see the sawtooth shape function of the average delay of a road user as
function of the maximum green time ¢5***. In Figure 9.4 we can see that the global trend (disregarding
the sawtooth shape) is that smaller maximum green times result in larger delays. This global trend is
more obvious for the intersection of 4 signals (Figure 9.4) than it was for the intersection of two signals

(Figure 6.2).

101

9.2.2 Test Case 2b: Effect of the Maximum Green Time of the Low Traffic
Signals

For test case 2b the maximum green time of the signals in signal group 1 are varied between 4 seconds
and 9 seconds:

g = g5 = 4,45,

A maximum green time of 4 seconds is the smallest maximum green time satisfying (4.20) and thus the
smallest maximum green time for which we can find an optimal trajectory. For the optimal trajectory
we serve the signals in signal group 1 for the minimum green time of 4 seconds (independent of g***

max

and ¢2***). In Figure 9.5 we can see the results.

35

30 —oProposed policy (stochastic model)
. Proposed policy (hybrid fluid model)

25
-

15

10

4 4.5 5 5.5mam 6 6.5 7 7.5 8 8.5 9
91

Figure 9.5: The average delay of a road user § versus ¢g7"** = ¢5'** for test case 2b.

We again see the sawtooth relation between the maximum green time and the average delay of a
road user. The global trend (disregarding the sawtooth shape) is that smaller maximum green times
result in larger delays.

9.3 Test Case 3: Effect of Maximum Queue lengths

In this section we address the effect of the maximum queue lengths on the average delay of a road user.
For test case 3a and test case 3b the arrival rates of the signals in signal group 2 are 5 times as large
as the arrival rates of the signals in signal group 2. We use ’low traffic signals’ to refer to the signals in
signal group 1 and we use ’high traffic signals’ to refer to the signals in signal group 2.

9.3.1 Test Case 3a: Maximum Queue Length of the High Traffic Signals

For test case 3a the maximum queue lengths of the signals in signal group 2 are varied between between
3 road users and 30 road users:

A maximum queue length of 2% seconds is the smallest maximum green time satisfying (4.20) and
thus the smallest maximum green time for which we can find an optimal trajectory. In Figure 9.6 we

can see the average delay of a road user as function of the maximum queue lengths of signal 3 and
signal 4.

18 T T T
16 — Proposed policy (stochastic model)
i . Proposed policy (hybrid fluid model])]
14 |
12 |
I 10 +
5 8 B
|)\‘ | |))\‘))))
0 5 10 15 20 25 30
max

Ty "—

Figure 9.6: The average delay of a road user § versus x5'** = x}'** for test case 3a.

We can see that the average delay of a road user is about 9 seconds except when the maximum
queue length is close to 3. In Figure 9.7 we can see that the fraction of the time that the maximum
queue length (of signals 3 and 4) is exceeded, increases for decreasing maximum queue length. In this
figure we can see that the variation in the results obtained for the fraction of overflow is quite large

since the fraction of overflow should be the same for queue 3 and for queue 4 (because both signals have
the same characteristics).

0.25 P ‘ ‘
I . fraction of overflow of queue 3
i - fraction of overflow of queue 4
0.20 A i
B i
S ;o
5 0.15 (AN 7
> + X
o .
B0.10 ey 7
= M
= .
£0.05 i
CSS \\ x RN
b 0 | A] | |

=~
(=]
oo
—
)
—
N
—
H~

16

x&naa:

Figure 9.7: The fraction of the time that the maximum queue lengths of queues 1 and

queue 2 are
exceeded versus x5'** for test case 3a.

9.3.2 Test Case 3b: Maximum Queue Length of the High Traffic Signals

For test case 3b the maximum queue lengths of the signals in signal group 1 are varied between between
2 road users and 11 road users:

103

maxr __ maxr __
] =y =2,3,...,11.

In Figure 9.8 we can see that the average delay of a road user is about 9 seconds except when the
maximum queue length is close to 2.

35 w \ \ \ ‘

—Proposed policy (stochastic model)
. Proposed policy (hybrid fluid model)

30

25

20

|1

10

| | | | | | | |
09 3 4 5 6 7 8 9 10 11
xTax

Figure 9.8: The average delay of a road user § versus 27 = x5'** for test case 3b.

104

Chapter 10

Conclusions and Recommendations for
Further Research

In this chapter we state the most important conclusions of this master thesis, thereafter we state our
recommendations for further research

10.1 Conclusions

In this master thesis we have considered the following three problems for intersections with two conflict
groups.

1 Trajectory optimization: finding an optimal trajectory minimizing the average weighted queue length
at an intersection.

2 Regulation: finding a set of rules (a policy) that defines when to switch the state of a traffic light.

3 Addressing the quality of the proposed policy in a stochastic setting.

We state our most important conclusions for these three problems in sections 10.1.1-10.1.3.

10.1.1 Trajectory optimization

To solve the trajectory optimization problem we modeled intersections with a hybrid fluid model. This
hybrid fluid model assumes deterministic arrivals and departures.

For an intersection with two signal groups and using assumptions (7.2.3) we derived that we can
w.l.o.g. assume that an optimal trajectory, minimizing the average weighted queue length at an inter-
section, satisfies the following properties:

- always the highest possible departure rate is used during a green period of signal i € N:

‘ . g if Jz(t) > O,
dl(t) - { /\7 if Jz(t) =0.

- a queue is always emptied during its green period
- green periods always take equally long

105

- a signal is green as long as possible during a red period of a conflicting signal:

Tio = Giy + Oiyisin> Vi1 € G1, Via € Ga,
Tiy = iy + Oiy isin,» Vi1 € G1, Vig € Go,

where, g; respectively r; is the duration of all green times of signal ¢ € N and the duration of all
red times of signal i € N.

Using these properties, we proposed an optimization problem which we could solve (analytically)
for two classes of intersections (see Section 7.5.3).

10.1.2 Regulation

A policy is proposed for an intersection with two signal groups. For this policy we try to serve the
signals in a signal group long enough to satisfy conditions 1.1-1.3

1.1 all queues in this signal group are (expected to be) emptied during their green period (assuming a
hybrid fluid model).

1.2 all signals are served for at least the minimum green time.

1.3 the queue length of a signal ¢ in the other signal group satisfies x;(t) > 2t

(2

It might not be possible to serve the signals in the set long enough to satisfy conditions 1.1-1.3.
We might have to switch earlier because otherwise a maximum green time or a maximum queue length
(assuming a hybrid fluid model) is exceeded.

We have proven that when the intersection is modeled with a hybrid fluid model, trajectories converge
to the desired trajectory (derived with the trajectory optimization problem) if started from a feasible
starting point.

10.1.3 Addressing the Quality of the proposed policy

We have tested the proposed policy on several test cases. For these test cases we varied the arrival rates,
maximum green times and maximum queue lengths. For intersections with two conflicting signals the
proposed policy is compared to an exhaustive policy. The proposed policy works better than the
exhaustive policy for smaller arrival rates. For large arrival rates the exhaustive policy works better.

Further, for an intersection with two signals the proposed policy works better than than the exhaus-
tive policy if most of the traffic arrives at one of the signals (asymmetrical arrival rates). In this case
slow modes at the high traffic signal are desirable because all traffic arriving during a slow mode crosses
the intersection without delay.

For the proposed policy, a signal could have slow modes in a stochastic environment even if this
signal does not have any slow modes for the desired trajectory (derived with the trajectory optimization
problem).

10.2 Recommendations for Further Research

Here we state our recommendations for further research on the topics treated in this thesis.

106

10.2.1 Comparison of proposed policy to existing policies

In this thesis the proposed policy is only compared to the exhaustive policy for an intersection of two
signals (see Section 6). To address the quality of the proposed policy, this proposed policy can be
compared to other existing policies. Further, the proposed policy has to be tested for intersections with
more than 4 signals.

We can compare the proposed policy to the policy proposed in Newell and Osuna [22] for an inter-
section of two two-way streets. In [22] it is proposed to switch both signals in a sign group to red at
the moment that both queues are cleared. Further, we can compare the proposed policy to the policy
proposed in Haijema and van der Wal [12]. In [12] the decision when to switch and which signals to
serve next is modeled as a Markovian decision process. Furthermore, the policy can be compared to a
fixed cycle traffic light control.

10.2.2 Improving our Policy

It can occur that the policy proposed in this thesis does not satisfy the restriction on minimum green
time duration in a stochastic setting. In a stochastic setting the proposed policy might switch a signal
to red before the minimum green time has elapsed whenever the queue of a conflicting signal is close
to its maximum queue length (see Section 6). For safety reasons, the policy should always satisfy these
minimum green times. When changing (8.8) to the following equation we always satisfy the restrictions
on green times:

(tl.l ARATORAY t1,3) Vig V (tg A tl,g),

tl.l, tl.g,tl_g, tQ and t3 remain as defined in 8.8

For the hybrid fluid model we only considered situations for which none of the constraints were
violated. Hence, Chapter 5 and Chapter 8 are still valid for this altered policy. However, the outcome
of test cases 3a and 3b in Chapter 6 and Chapter 9 will be different for this altered policy.

Furthermore, we observed that a signal could have a slow mode in a stochastic setting if it does not
have a slow mode for the desired trajectory (for more information see Section 6). The cause is that we
switch a signal only to red when a conflicting signal i satisfies z;(t) > xf We could adjust the policy
by adjusting the definition of zt i1 € G1 and xi, is € Go:

717?

:Eﬁ B { (7”7;1 — 0'1'17]\/)/\7;1 if Vi1 € Gy gg?l > Og,
i1

0 if 3i1 € Gi (g7, = 0).
2= (riy — 0ig,1)Niy if Viz € Go (g > 0),
i2 0 if iz € G2 (g, =0).

Note that this new definition for xf, i € N differs from the definition used in this thesis only when
a signal in the same signal group has no slow mode for the desired trajectory (derived via trajectory
optimization).

For these new definitions the proof of Proposition 8.1 is not entirely valid anymore and has to be
adjusted.

10.2.3 Setup Times

In this thesis we assumed Non-negative setup times:

107

Oiris >0, 141 €G1,i2 € Gy,
Oipiy >0, i1 €Gy,iz € Go,

For further research, we might drop this assumption. The proofs of Lemma 4.1 and Lemma 4.2 are
still valid when dropping the assumption of positive setup times. The proofs of lemmas 7.1-7.3 need
some (minor) modifications. Further, the shape of the optimal trajectory given in Corollary 7.4 does
not hold anymore because for negative green times two conflicting signals can be green at the same
time.

The policy that is proposed in Section 8 switches a signal to green only if all conflicting signals are
red. If a setup time is negative, two conflicting signals can be green at the same time. Hence, a new
policy must be proposed.

Further, in this thesis we assumed that:

Tiryis = Oir,ls = Olyis — Ol lss Viy,l1 € Gy ig,l2 € Go (10.1)

Oig,iv = Oig,li = Olayin = Oly,la Vilv I €G 12, I € Gy (102

This assumption was needed in the proof of Lemma 7.1. Hence, when dropping this assumption
Lemma 7.1 is not valid anymore. Lemma 7.2 is still valid. However, when dropping assumptions (10.1)
and (10.2), we have to formally prove that the alternative trajectory satisfies behavioral equations (7.3g)
and (7.3h).

10.2.4 Multiple Signal Groups

In this thesis we have considered intersections with two signal groups. In practice, often more signal
groups are needed. When considering more than two signal groups lemmas 7.1-7.3 have to be adjusted.
Furthermore, the order in which these signal groups are served has to be determined and a new policy
has to be derived for the case of more than two signal groups.

10.2.5 Networks of Intersections

In this thesis we considered isolated intersections; the arrival rates where assumed to be constant. For
a network of intersections these arrival rates are not constant and so called platoons can arise. A
first step towards deriving optimal trajectories for a network of intersections is to consider an isolated
intersection with piecewise constant arrivals. A possible starting point might be the research done by
van Eekelen in [10]. In Section 5.8 of [10], an intersection with two conflicting signal with piecewise
constant arrivals is considered. In Section 5.8 of [10] no constraints on green times and maximum queue
lengths are considered.

108

Appendix A

Table of Symbols (Used in x3.0
Simulation Code

A.1 Types
In this section we give the newly defined types used in the x simulation program.
Type Definition
Trafficlight The type ’trafficlight’ contains information about a certain traffic
light.

Trafficlight.mu
Trafficlight.lambda
Trafficlight.tif

Trafficlight.tfi

Trafficlight. Xsharp
Trafficlight. Xmax
Trafficlight.gmin
Trafficlight.gmax
Trafficlight.Arrival Time

Maximum departure rate of this traffic light.

Arrival rate of this traffic light.

Amount of time between the moment that this traffic light
switches to red and the moment that the first conflicting traffic
light switches to green

Amount of time between the moment that the first traffic light in
the same signal group switches to green and the moment that this
traffic light switches to green.

Value for a:f for this traffic light.

The maximum queue length of this trafficlight.

Minimum green time of this traffic light.

Maximum green time of this traffic light.

List of arrival times of the road users waiting at this traffic light.

IntervalType
Interval Type.StartTime
IntervalType.EndTime

An interval consists out of a start time and an end time.
Start time of an interval.
End time of an interval.

Output1Type

Output1Type.AvgDelay
Output1Type.Overflow

Type used to store information that is written to the output file
‘outputl.txt’

The average delay of a road user at the intersection

List of the fraction of the time that the maximum queue length is
exceeded for each of the traffic lights.

109

Output2Type

Output2Type.Green
Output2Type.Red
Output2Type.Slowmode
Output2Type.X

Output2Type.Time

Type used to store information that is written to the output file
‘output2.txt’. This information can be used to visualize the green
periods, red periods and slow modes of each traffic lights. Fur-
thermore, it can be used to plot the queue length at each of the
traffic lights over time.

Intervals of green periods for each of the traffic lights.

Intervals of red periods for each of the traffic lights.

Intervals of green periods for each of the traffic lights.

List with queue lengths for each of the traffic lights. This list can
be used to plot the queue length as function of time for each traffic
light (together with Output2Type.Time).

List with times for the traffic lights. This list can be used to plot
the queue length as function of time for each traffic light (together
with Output2Type.X).

tlControllnfoType
tlControllnfoType.SetServed
tlControllnfoType.SetNotServed

tlControllnfoType.tlServedFirst

tlControllnfoType.tlSwitchedFirst

tlControlInfoType.ToLS

tlControlInfoType.Switched

tlControllnfoType.Switched

tlControllnfoType.Green

This type contains the input that the policy needs and the output
that the policy returns.

The index (either 0 for signal group 1 and 1 for signal group 2) of
the signal group that is currently served.

The index (either 0 for signal group 1 and 1 for signal group 2) of
the signal group that is currently not served.

This integer refers to the traffic light in the set ’SetServed’ that
(always) switches to green first (of all traffic lights in the set ’Set-
Served’).

This integer refers to the traffic light in the set ’SetServed’ that
(always) switches to red first (of all traffic lights in the set ’Set-
Served’).

Time of the most recent time that the traffic light tlServedFirst
switched from red to green or that the traffic light tISwitchedFirst
switched from green to red.

Time of the most recent time that the traffic light tlServedFirst
switched from red to green or that the traffic light tISwitchedFirst
switched from green to red.

This boolean is true whenever the the signal tlSwitchedFirst is
red.

List with the state of each of the traffic lights: True whenever a
traffic light is green and False whenever a traffic light is red.

110

A.2 Symbols

In this section we give the most important symbols used in the x simulation program.

Symbol Definition

AvgDelayHFM The average delay of a road user obtained via trajectory optimization. This
variable is read from an input file.

SimDelay The average delay of a road user obtained for a single run.

ListSimDelay List of average delays obtained for different runs of a test case.

SimFracOverflow List with the fraction of overflow (fraction of time that a queue length is ex-
ceeded) for each of the traffic lights for a single run.

ListSimFracOverflow List of the variables ’SimFracOverFlow’ obtained for different runs of a test
case.

SimDuration The duration that is simulated during a run.

StartSimTime The simulated time keeps increasing for a chi simulation. StartSimTime is the
duration that is simulation when a run start. This variable is used to determine
the simulated time since the start of a run.

FirstRun Only during the first run of a test case we write information to output2.txt.
FirstRun is a boolean that is true whenever it is the first run of a test case.

G G[0] contains the indices of the signals in signal group 1 and G[1] contains the
indices of the signals in signal group 2.

N = Number of traffic lights at the intersection.

NumOfDepartures Number of road users that have crossed the intersection.

DepProcStarted This variable is true whenever a departure process is started.

111

3
#

10
11
12
13
14
15
16
17

18
19
20
21
22
23

24
25

26
27
28
29
30
31
32
33

Appendix B

Y 3.0 Simulation Code

This simulation considers a traffic intersection with two signal groups where the
traffic light control is subject to:

- maximum and minimum green times

- maximum queue lengths. This is a soft constraint; a queue could exceed the
maximum queue length but we try to avoid it.

We keep track of the fraction of the time that this maximum queue length is
exceeded .

- Clearance/setup times. When traffic light i and traffic light j are conflicting (

may not be green at the same time) then traffic

light i must be red for a certain amount of time before traffic light j may turn

green (and vice versa).

In this simulation we try to follow periodic behavior using a policy
a policy is a set of rules that specify when to switch traffic lights from green
red and from red to green.

#

BEE RS R S B R RS
HEHHBHGRH RS RHE RS #Defining types HAHHHARHAHARASRERARERS
BHBEABH BB HBERBH BB R B R R HBER SR AR BB AR R B AR BB RS R B RRRHRSS

to

type trafficlight = tuple(list real ArrivalTime; real mu; real lambda; real tif; real

tfi; real Xsharp; real Xmax; real gmin; real gmax);
type IntervalType = tuple(list real StartTime; list real EndTime);
type OutputiType = tuple(real AvgDelay; list real FracOverflow);

type Output2Type = tuple(list IntervalType Green; list IntervalType Red; list
IntervalType Slowmode; list list int X; list list real Time);

type tlControlInfoType = tuple(int SetServed; int SetNotServed; int tlServedFirst;
tlSwitchedFirst; real ToLS; bool Switched; list bool Green);

BHBEABH BB HBERBH BB R B R R HBER SR AR BB AR R B AR BB RS R B RRRHRSS
HHBEAFHBERBHBEABHBERERE Model H#EHHHAAHHHAAHBRAAHBRRAEHBRS
BEE RS R S B R RS

model intersection():

Variable declaration
real stddev;

113

int

real SimDelay;

real AvgDelayHFM;

real StartSimTime;

real SimDuration;

real real_temp;

real Width95IntSimDelay = 0.0;

real AvgSimDelay = 0.0;

list real ListSimDelay;

list real SimFracOverflow;

list list real ListSimFracOverflow;

int Number0OfRuns = 0;
int NumberOfTestcases;
int id;

int N;

list (2) set int G

bool FirstRun;

trafficlight tl_temp;
list trafficlight tl;

chan real chan_Delay;

chan list real chan_Overflow;
chan int a_temp, d_temp;

list chan int a,d;

chan void t;

file InputFile ,QutputiFile, Output2File;

Opening input and output files
InputFile = open("input.txt","r");
OutputiFile = open("Outputl.txt","w");
Output2File = open("Output2.txt","w");
Read the number of test cases
NumberO0fTestcases = read(InputFile,int);
for k in range (NumberOfTestcases):

emptying some lists for the new test case

d = d[1:1];

SimFracOverflow = SimFracOverflow[1:1];
ListSimFracOverflow = ListSimFracOverflowl[1:1];
ListSimDelay = ListSimDelay[1:1];

resetting some variables for the new testcase
Width95IntSimDelay = 0.0;
AvgSimDelay = 0.0;

read all inputs for this testcase from the input file.

(id, AvgDelayHFM, SimDuration, N, G, tl) = ReadInput (InputFile);
write some of the information to outputfiles

write (DutputiFile, "%s , id);

write (DutputiFile, "%s \t", AvgDelayHFM);

write (DutputiFile, "%s \t", N);

write (Dutput2File, "%s \t", id);

write (Dutput2File, "%s \t", N);

114

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116

117
118
119
120

121
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

Making sure that lists have the right size

for i in range(N):
a = a + [a_templ;
d =d + [d_temp];
SimFracOverflow = SimFracOverflow + [real_templ;
end ;
FirstRun = true;
NumberOfRuns = 0;
while Width95IntSimDelay >= 0.01*AvgSimDelay or NumberOfRuns < 100:
StartSimTime = time; # The time at which we start a run.
We start a run
start buffer (StartSimTime , SimDuration, tl, G, FirstRun, chan_Delay,
chan_Overflow, a, d, t, OutputiFile, Output2File);
We obtain the results of this run via channels
chan_Delay ?SimDelay ;
chan_Overflow?SimFracOverflow;
add the obtained results of this run to arrays that contain the results for all
runs of this testcase
ListSimDelay = ListSimDelay + [SimDelayl];
ListSimFracOverflow = ListSimFracOverflow + [SimFracOverflowl];
From all runs of this testcase obtain the average delay of a vehicle at the
intersection.
AvgSimDelay = mean(ListSimDelay);
From all runs of this testcase obtain the width of the 95% confidence interval
of the average delay.
stddev = StdDev(ListSimDelay);
Width95IntSimDelay = 2%1.960* stddev/size(ListSimDelay);
FirstRun = false; # We already performed at leatst one run
Number0OfRuns = NumberOfRuns + 1; # The number of runs is increased with one.
writing information to the screen
write("Simulating case ¥%s \n", k+1);
write ("Number of runs %s \n", NumberOfRuns);
write("average Delay %s \n", AvgSimDelay);
write("width of 95-confidence interval Y%s \n", Width95IntSimDelay);
end
write information obtained for a testcase to the file OutputlFile
write (DutputiFile ,"%s\t",size(ListSimDelay));
for i in range(size(ListSimDelay)):
write (OutputiFile ,"%s\t",ListSimDelay[i]);
end
for i in range(N):
for j in range(size(ListSimFracOverflow)):
write (DutputiFile ,"’%s\t",ListSimFracOverflow[jl[i]);
end
end
write (DutputiFile ,"\n");
end ;
end
B EEEEEEEEEEEEEEE R S

HHBEGABHBERBHBERBHBERESR Processes HH#HHHHAHHERAHHERAHHERS

115

152
153
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192

193
194

195

196
197
198
199
200
201
202
203
204

205

proc buffer(real StartSimTime; real SimDuration; list trafficlight tl; list set int G;
bool FirstRun; chan! real chan_Delay; chan! list real chan_Overflow; list chan? int
a,d; chan void t; file OutputlFile; file Output2File):

Variable declaration

int N = size(tl);

int k;

int NumOfDepartures = 0;

list (N) 1list int list_int_temp;

real deltaT = 0.001; # We sample the feedback of the controller every deltaT seconds.
list(N) real real_temp;
list (N) list real list_real_temp;

list(N) bool DepProcStarted;
list(N) bool PreviousGreen;
1ist(N) bool SlowmodeStarted;
list(N) bool bool_temp;

QutputiType Outputl;
Output2Type Output2;

tlControlInfoType tlControlInfo;

list(N) IntervalType interval_temp;

making lists the right size
tlControlInfo.Green = bool_temp;
Outputl .FracOverflow = real_temp;

Qutput2.Green = interval_temp;
Output2.Red = interval_temp;
Qutput2.Slowmode = interval_temp;

Qutput2.X = list_int_temp;
Output2.Time = list_real_temp;

Initialization:

(tlControlInfo , Output2, SlowmodeStarted) = Initialization(G, FirstRun,tl, Output2,
SlowmodeStarted , tlControlInfo);

We start with the situation where all traffic lights in set 1 (G[0]) are green and
all traffic lights in set 2 (G[1]) are red

Starting departure processes for the traffic lights that are green and whose queues
are non-empty.
When a traffic light is green and its queue is empty then traffic can immediately
cross the intersection (without delay).
for i in G[O0]:
if size(tl[i].ArrivalTime)> O:
start departure (tl[i].mu,i,d);

DepProcStarted[i] = true;
else:
DepProcStarted[i] = false;
end
end;

for i in G[1]: # All traffic lights in set 2 (G[1]) are red. Traffic cannot depart
and we start a red period
DepProcStarted[i] = false;

116

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223

224
225
226

227
228

229
230
231
232
233
234
235
236
237
238

239
240
241
242
243
244
245
246

247
248
249
250
251
252
253

254

end ;

Start arrival processes for all traffic lights
for i in range(N):

start arrival (tl[i].lambda,i,a);
end

Start the timer process. This process sends a signal every deltaT seconds.
start timerprocess(deltaT,t);

while (time - StartSimTime) < SimDuration:
select

Sampling the Controller decision whenever we receive a void from channel t.

t?: PreviousGreen = tlControlInfo.Green;
tlControlInfo = CalcGreenTls(tl,G,time-StartSimTime ,tlControllInfo);
if FirstRun: # Some information we will only gather during the first run of a

testcase
(Output2, SlowmodeStarted) = UpdateOutput2(PreviousGreen, tlControllInfo.Green
, Output2, tl, time - StartSimTime);

end

If a traffic light is green and its queue is not empty then we start a
departure process (if it was not already started)
for i in G[tlControlInfo.SetServed]:
if tlControllInfo.Green[i] and not DepProcStarted[i] and size(tl[il].
ArrivalTime) >0:
start departure (tl[i].mu,i,d);
DepProcStarted[i] = true;
end
end ;

We again start the timerprocess
start timerprocess(deltaT,t);
alt
unwind j in range(N):
al[jl?k: # If we receive a signal via channel a[j] then a vehicle arrives at
traffic light j
start arrival (t1[k].lambda,k,a); # We again start a new arrival process

The arrived vehicle is only added to the queue when the queue is not empty
or the traffic light is red. We assume that a vehicle arriving when

the queue is empty and the traffic light is green can immediately

cross the intersection.

if size(tl[k].ArrivalTime)>0 or not tlControlInfo.Green[k]:

Outputl .FracOverflow[k] = UpdateFracOverflow((time - StartSimTime), Output2
.Time[k][-1], Outputl.FracOverflow[k], size(tl[k].ArrivalTime), t1l[k].
Xmax) ;

if FirstRun: # Some information we will only gather during the first run
of a test case

Output2.X[k] = Output2.X[k] + [size(tl[k].ArrivalTime)];

OQutput2.Time[k] = Output2.Time[k] + [time - StartSimTime];

end

tl[k].ArrivalTime = tl[k].ArrivalTime + [time - StartSimTime]; # Store the
time of arrival

Output2.X[k] = Output2.X[k] + [size(tl[k].ArrivalTime)]; # Update the
queue length

Output2.Time[k] = Output2.Time[k] + [time - StartSimTime]; # Update the
time of the last change in queue length

elif size(tl[k].ArrivalTime) == 0 and tlControlInfo.Green[k]: # If a

vehicle arrived when the traffic light was green

117

255

256
257
258
259
260
261
262

263
264
265

266

267
268

269
270
271
272

273

274

275

276

277
278
279
280
281
282
283

284

285

286
287

288
289
290
291
292
293
294
295
296
297
298
299

and the queue was empty then this vehicle
experienced no delay

NumOfDepartures = NumOfDepartures + 1;
Outputl.AvgDelay = UpdateAvgDelay(NumOfDepartures , QOutputl.AvgDelay, 0.0);
end

end
alt
unwind 1 in range(N):
d[1]7k: # If we receive a signal via channel d[j] then a vehicle has just
departed at traffic light j
Update the average delay
NumOfDepartures = NumOfDepartures + 1;
Outputl.AvgDelay = UpdateAvgDelay(NumOfDepartures , Outputl.AvgDelay, (time -
StartSimTime - tl[k].ArrivalTime [0]));
Outputl .FracOverflow[k] = UpdateFracOverflow((time - StartSimTime), Output2.
Time[k][-1], Outputl.FracOverflow[k], size(tl[k].ArrivalTime), tl[k].Xmax
)

if FirstRun: # Some information we will only gather during the first run of
a testcase
Output2.X[k] = Output2.X[k] + [size(tl[k].ArrivalTime)];

OQutput2.Time[k] = Output2.Time[k] + [time - StartSimTime];
end
tl[k].ArrivalTime = tl[k].ArrivalTime [1:]; # Erase the first element

of the array ’ArrivalTime’
(the vehicle that corresponds to the erased
element has just departed).
Output2.X[k] = Output2.X[k] + [size(tl[k].ArrivalTime)]; # Update the queue
length
Output2.Time[k] = Output2.Time[k] + [time - StartSimTime]; # Update the time
of the last change in queue length
if tlControlInfo.Green[k] and size(tl[k].ArrivalTime) >0: # Again start a
departure process whenever the traffic light is green and
the queue length is non-zero
start departure (tl[k].mu,k,d);

DepProcStarted[k] = true;
else:
DepProcStarted[k] = false;
end
if FirstRun: # Some information we will only gather during the first run of
a test case
if size(tl[k].ArrivalTime) == 0 and tlControlInfo.Green[k] and not

SlowmodeStarted[k]: # If the queue length is zero and the traffic light
is green then a slow mode

starts (if it was not
already started).

SlowmodeStarted[k] = true;

Output2.Slowmode [k].StartTime = Output2.Slowmode [k].StartTime + [time-

StartSimTime];
end
end
end
end;
end ;

let all started departure processes finish:
for i in range(N):
while DepProcStarted[il: # for some reason it does not work with an if loop
d[il7k;
DepProcStarted[i] = false;

118

300
301
302
303
304
305
306
307
308
309
310
311

312

313
314
315
316
317
318
319
320
321
322
323
324
325

326

327
328
329
330
331
332
333
334
335
336

337

338
339
340
341
342
343
344
345
346
347

348
349
350
351
352
353

end
end

let all started arrival processes finish:
for i in range(N):
alil?k;
end
let the timer process finish:
t7;

if FirstRun:

Output2 = Write20utput2File (Output2File, Output2, tl, time - StartSimTime); # This
function writes information to the file ’Qutput2File’.

We received ’0Output2’ from the function. However ’0Output2’ has not changed. A
function must always return something.

end

chan_Delay !Outputl.AvgDelay;
chan_Overflow!Outputl.FracOverflow;
end

The timerprocess sends a void signal after deltaT seconds
proc timerprocess(real deltaT; chan! void t):

delay deltaT;

t!
end

The process ’arrival’ sends a interger i over chanel a[i] after exponentially
distributed amount of time has elapsed.
When such a signal is send this means that a vehicle has arrived at traffic light ’i
b
proc arrival(real lambda; int i; list chan! int a):
dist real interarrivaltimedist = exponential (1/lambda);
real interarrivaltime;

interarrivaltime = sample (interarrivaltimedist);
delay interarrivaltime;
alil!'i;

end

The process ’departure’ sends a integer i over channel a[i] after 1/mu seconds has
elapsed.
When such a signal is send this means that a vehicle has departed at traffic light °’i
)
proc departure (real mu; int i; list chan! int d):
delay 1/mu;
dfil!i;
end
HEHHHER B AR RS H AR B E B RS R RSB A BB R R AR RSB R SR AR R AR R HE SR AR S
HEHHHARHEH AR AHHEHEEHE Functions #HA#HHHHHHASHARBHRASHARSY
HEHHHER B AR RS H AR B E B RS R RSB A BB R R AR RSB R SR AR R AR R HE SR AR S

func tuple(int id; real AvgDelayHFM; real SimDuration; int N; 1list(2) set int G; list
trafficlight tl) ReadInput (file InputFile):

Variable declaration
real AvgDelayHFM;

real SimDuration;

int XO_temp;

119

354
355
356
357
358
359
360
361
362
363
364
365

366
367
368
369
370
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

398
399
400
401
402
403
404
405
406
407
408
409
410
411

int id;

int N, N1, N2;
list int XO;
list(2) set int G;

trafficlight tl_temp;
list trafficlight tl;

Read the id of the test case
id = read(InputFile, int);

Read the average delay for this test case that was obtained via the Hybrid Fluid
Model (calculated with matlab)
AvgDelayHFM = read(InputFile, real);

Read the simulation time of a single run
SimDuration = read(InputFile, real);

Read the number of traffic lights in set 1 (N1) and the number of traffic lights in
set 2 (N2)

N1 = read(InputFile, int);

N2 = read(InputFile, int);

N = N1+N2;

The first N1 traffic lights (0,...,N1) are in set 1 (G[0])

for i in range(N1):
G[0] = G[0ol + {i};
end;

The other traffic lights (N1i+1,...,N) are in set 2 (G[1])
for i in range(N1,N):
G[1] = G[1]1 + {i};

end

Making sure that lists have the right size
for i in range(N):

tl = t1 + [tl_templ;
X0 = X0 + [XO_templ;
end;

Reading the initial queue lengths
for i in range(N):

X0[i] = read(InputFile, int);
end

At the start there are already XO[i] vehicles waiting in front of traffic light i.
We assume these vehicles have arrived at time 0.0.
for i in range(N):
for j in range(X0[i]):
t1[i].ArrivalTime = t1[i].ArrivalTime + [0.0];
end
end

Reading the maximum departure rates
for i in range(N):

tl[i].mu = read(InputFile, real);
end

Reading the arrival rates

for i in range(N):
tl[i].lambda = read(InputFile, real);

120

412
413
414

415
416
417
418
419

420
421
422
423
424

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

448
449

450
451
452
453
454
455

456
457
458
459

460
461
462

end

tl[i].tif: Always when traffic light i has been red for tl[i].tif seconds, the
first traffic light in the other set is switched to green.
for i in range(N):
t1[i].tif = read(InputFile, real);
end

tl[i].tfi: traffic light i is switched to green tl[i].tfi seconds after the first
traffic light in the same set is switched to green.
for i in range(N):
t1[i].tfi = read(InputFile, real);
end

Xsharp (X~{#}) is needed for the controller. See 7777?77 for more information about
Xsharp
for i in range(N):
t1l[i].Xsharp = read(InputFile, real);
end

Reading the maximum queue lengths
for i in range(N):

t1[i].Xmax = read(InputFile, real);
end

Reading the minimum green times
for i in range(N):

tl[i].gmin = read(InputFile, real);
end

Reading the minimum green times
for i in range(N):

tl[i].gmax = read(InputFile, real);
end ;

return (id, AvgDelayHFM, SimDuration, N, G, tl)
end

func tuple(tlControlInfoType tlControlInfo; Output2Type Output2; list bool
SlowmodeStarted) Initialization(list(2) set int G; bool FirstRun; list trafficlight
tl; Output2Type Output2; list bool SlowmodeStarted; tlControlInfoType
tlControlInfo):

tlControlInfo.Switched = false; # We start with the situation where all traffic light
in group 1 are green.

tlControlInfo.ToLS = 0.0;

tlControlInfo.SetServed = 0; # We start serving set 1 (G[0])

tlControlInfo.SetNotServed 1;

for i in G[O]:
tlControllInfo.Green[il]
green

true; # the traffic lights in set 1 (G[0]) are switched to
end
for i in G[1]:
tlControlInfo.Green[i] = false; # the traffic lights in set 2 (G[1]) are switched
to red

end

Calculating the traffic lights in the set 1 (G[0]) that is the first traffic light
(in the set 1) to switch to green.

121

463
464

465
466
467
468
469
470
471
472
473
474

475
476
aT7
478
479
480

481
482

483
484

485

486
487

488
489
490
491
492

493
494
495
496
497
498
499
500

501
502
503
504
505
506
507

508
509

tlControlInfo.tlServedFirst = CalcServedFirst(G[0], tl);

Calculating the traffic light in the set 1 (G[0]) that is the first traffic light (
in the set 1) to switch to red

tlControlInfo.tlSwitchedFirst = CalcServedFirst(G[0], tl);

for i in range(size(tl)):
ODutput2.X[i] = Output2.X[i] + [size(tl[i].ArrivalTime)]; # The initial queu length
OQutput2.Time[i] = Output2.Time[i]l + [0.0]1; # The initial time

end

Initialization of all other information in Output2.
if FirstRun:
(Output2, SlowmodeStarted) = InitializationOutput2Info (G, tl, Output2,
SlowmodeStarted) ;
end

return (tlControlInfo , Output2, SlowmodeStarted)
end

func tuple(Output2Type Output2; list bool SlowmodeStarted) InitializationQutput2Info(
list(2) set int G; list trafficlight tl; Output2Type Output2; list bool
SlowmodeStarted):

We start with the situation where all traffic lights in set 1 (G[0]) are green and
all traffic lights in set 2 (G[1]) are red
for i in G[O]:
Output2.Green[i].StartTime = Qutput2.Green[i].StartTime + [0.0]; # All traffic
lights in set 1 start a green period.
if size(tl1l[i].ArrivalTime)> 0: # If the queue (in set 1) is not empty at the start
then we start the departure process
SlowmodeStarted[i] = false;
else: # If the queue (in set 1) is empty at the start then this is the start of a
slowmode

SlowmodeStarted[i] = true;
Output2.Slowmode [i].StartTime = Output2.Slowmode[i].StartTime + [0.0];
end

end;
for i in G[1]: # All traffic lights in set 2 (G[1]) are red. Traffic cannot depart
and we start a red period
SlowmodeStarted[i] = false;
OQutput2 .Red[i].StartTime = Output2.Red[i].StartTime + [0.0];
end

return (Output2, SlowmodeStarted)
end

func tuple(Output2Type Output2; list bool SlowmodeStarted) UpdateOutput2(list bool
PreviousGreen; list bool Green; Output2Type Output2; list trafficlight tl; real
CurrentTime) :

Variable declaration
int N = size(Green);
1ist(N) bool SlowmodeStarted;

for i in range(N):
if PreviousGreen[i] and not Green[il: # If a traffic light was green and is now red
then this is the end of a green period and the start of a red period.
Output2.Red[i].StartTime = Output2.Red[i].StartTime + [CurrentTime];
OQutput2.Green[i].EndTime = Output2.Green[i].EndTime + [CurrentTimel];

122

510

511
512
513
514

515
516
517

518
519
520
521
522
523
524
525
526
527

528
529
530
531
532
533
534
535
536

537

538
539

540
541
542
543
544
545
546
547
548
549
550
551

552

553
554

555
556
557
558
559

if size(Qutput2.Slowmode[i].StartTime) > size(Output2.Slowmode [i].EndTime): #
When a slowmode started during the previous green time, the slowmode is ended

OQutput2.Slowmode [i].EndTime = Output2.Slowmode[i].EndTime + [CurrentTimel;
SlowmodeStarted[i] = false;
end
elif not PreviousGreen[i] and Green[i]: # If a traffic light was red and is now
green then this is the end of a red period and the start of a green period.
Output2.Green[i].StartTime = Output2.Green[i].StartTime + [CurrentTimel];
Output2.Red[i] .EndTime = Output2.Red[i].EndTime + [CurrentTime];
if size(tl[i].ArrivalTime)== 0 and not SlowmodeStarted[il: # If a traffic light
is empty at the beginning of its green period, a slowmode is started.

SlowmodeStarted[i] = true;
Output2.Slowmode [i].StartTime = Output2.Slowmode [i].StartTime + [CurrentTimel];
end
end
end

return (Output2, SlowmodeStarted)
end

func Qutput2Type Write20utput2File(file Output2File; Output2Type Output2; list
trafficlight tl; real CurrentTime):

int N = size(tl); # Number of traffic lights

for i in range(N):
Output2.X[i] = Output2.X[i] + [size(tl[i].ArrivalTime)];
Output2.Time[i] = Output2.Time[i] + [CurrentTimel;

end

for all traffic lights we first write the number of green periods of the traffic
light to the file ’Qutput2File’.
Herafter we write all the start times of these green periods to the file ’0QOutput2’
followed by all the end times of these green periods
for i in range(N):
if size(Output2.Green[i].StartTime) > size(Output2.Green[i].EndTime): # A green
period is not finished yet
Output2.Green[i].EndTime = Output2.Green[i].EndTime + [CurrentTime];
end
write (Dutput2File, "%s \t", size(Output2.Green[i].StartTime));
for j in range(size(Output2.Green[i].StartTime)):
write (Qutput2File, "%s \t", Output2.Green[i].StartTimel[jl);
end
for j in range(size(Output2.Green[i].StartTime)):
write (Output2File, "%s \t", Output2.Green[i].EndTime[j]);
end
end;

for all traffic lights we first write the number of red periods of this traffic
light to the file ’Output2File’.
Herafter we write all the start times of these red periods to the file followed by
all the end times of these red periods to the file ’QOutput2File’.
for i in range(N):
if size(Output2.Red[i].StartTime) > size(Output2.Red[i].EndTime): # A green period
is not finished yet
Output2.Red[i].EndTime = Output2.Red[i].EndTime + [CurrentTimel];
end
write (Dutput2File, "%s \t", size(Output2.Red[i].StartTime));
for j in range(size(Output2.Red[i].StartTime)):
write (Qutput2File, "%s \t", Output2.Red[il].StartTime[jl);

123

560 end

561 for j in range(size(Output2.Red[i].StartTime)):

562 write (Output2File, "Y%s \t", Output2.Red[i].EndTime[j]);
563 end

564 end

565

566 # for all traffic lights we first write the number of slowmodes of this traffic light
to the file ’Output2File’.

567 # Herafter we write all the start times of these slowmodes to the file followed by
all the end times of these slowmodes to the file ’0Output2File’.

568 for i in range(N):

569 if size(Output2.Slowmode [i].StartTime) > size(Output2.Slowmode[i].EndTime): # A
slowmode is not finished yet

570 Output2.Slowmode [i].EndTime = Output2.Slowmode [i].EndTime + [CurrentTime];

571 end

572 write (Dutput2File, "%s \t", size(Output2.Slowmode[i].StartTime));

573 for j in range(size(Output2.Slowmode [i].StartTime)):

574 write (Qutput2File, "%s \t", Output2.Slowmode [i].StartTime [j]);

575 end

576 for j in range(size(Output2.Slowmode[i].StartTime)):

577 write (Output2File, "%s \t", Output2.Slowmode [i].EndTime[j]);

578 end

579 end

580

581 # For all traffic lights write the queue lengths to the file ’Output2File’ and
hereafter write the times corresponding to these queue lengths to the file °’
Qutput2File’

582 for i in range(N):

583 write (Dutput2File, "%s \t", size(Output2.X[i]));
584 for j in range(size(Output2.X[i])):

585 write (Qutput2File, "%s \t", Output2.X[il[jl1);
586 end

587 for j in range(size(Output2.X[il)):

588 write (Qutput2File, "%s \t", Output2.Time[il[j1);
589 end

590 end

591

592 # Go to a new line for the next testcase.

593 write (Dutput2File, "\n");

594

595 return QOutput2

596 | end

597

598 # Calculate the traffic light in the set G that is switched to green first (of the
traffic lights in the set G).

599 # The traffic light that satisfies tf[i].tfi = 0.0 is the first traffic light in the
set G to switch to green.

600 # This because tl[i].tfi seconds after the first traffic light has switched to green
traffic light i switches to green.

601| func int CalcServedFirst(set int G; list trafficlight tl):

602 int tlServedFirst;

603

604 for i in G:

605 if t1[i].tfi == 0.0:
606 tlServedFirst=1i;
607 end

608 end ;

609

610 return tlServedFirst
611| end

612

124

613|# Calculate the traffic light in the set G that is switched to red first (of the
traffic lights in the set G).

614 # The traffic light in the set G that has the largest value for tf[i].tif is the first
traffic light in the set G to switch to red.

615 # This because tl[i].tif seconds after traffic light i has switched to red the first
traffic light in the other set is switched to green.

616 func int CalcSwitchedFirst(set int G; list trafficlight tl):

617 int tlSwitchedFirst;

618 real Maxtif = 0.0;

619

620 for i in G:

621 if tl[i].tif >= Maxtif:
622 tlSwitchedFirst=i;
623 Maxtif = t1l[i].tif;
624 end

625 end ;

626

627 return tlSwitchedFirst
628| end

629

630| # This function controls which of the traffic lights are green and which of the traffic
lights are red

631| func tlControlInfoType CalcGreenTls(list trafficlight tl; list set int G; real Ctime;
tlControlInfoType tlControlInfo):

632

633 if tlControlInfo.Switched: # In this case we already switched the ’tlSwitchedFirst’

to red.

634 if (Ctime - tlControllInfo.ToLS) >= tl[tlControlInfo.tlSwitchedFirst].tif: # t1[
tlControlInfo.tlSwitchedFirst].tif seconds after we switched the trafficlight ?
tlSwitchedFirs’ to red a trafficlight in the other set is switched to green.

635 tlControlInfo.SetServed, tlControlInfo.SetNotServed = tlControlInfo.SetNotServed,

tlControlInfo.SetServed; # We change the set that is currently served

636 tlControlInfo.tlSwitchedFirst = CalcSwitchedFirst(G[tlControlInfo.SetServed], tl)

H # We calculate the traffic light (in the set that is currently

served) that was switched to green the first (of the trafficlights in the set
that is currently served).
637 tlControlInfo.tlServedFirst = CalcServedFirst(G[tlControlInfo.SetServed], tl);

We calculate the traffic light (in the set that is currently
served) that will be switched to red the first (of the trafficlights in the
set that is currently served).

638 tlControlInfo.ToLS = Ctime; # The last time that the traffic light 2

tlSwitchedFirst’ was switched to red or the traffic light ’tlServedFirst’ was
switched to green.

639 tlControlInfo.Switched = false; # We have not yet switched the traffic light 2

tlSwitchedFirst’ to red.

640 end

641 else: # If we have not yet switched the traffic light ’tlSwitchedFirst’ to red we

evaluate whether we should switch the traffic light ’tlSwitchedFirst’ to red.

642 tlControlInfo.Switched = switch(tl, G, tlControlInfo.SetServed, tlControlInfo.

SetNotServed, tlControlInfo.tlServedFirst, tlControlInfo.tlSwitchedFirst , Ctime
- tlControlInfo.ToLS);

643 if tlControllInfo.Switched: # If we switch the first traffic light in the set
SetServed to red, we change ToLS (Time of Last switch) ot the current time.
644 tlControlInfo.ToLS = Ctime; # The last time that the traffic light

tlSwitchedFirst’ was switched to red or the traffic light ’tlServedFirst’ was
switched to green.

645 end
646 end ;
647

648 for i in G[tlControlInfo.SetNotServed]: # Whenever a set is not served all the
traffic lights in this set are red.

125

649 tlControlInfo.Green[i] = false;

650 end

651

652 for i in G[tlControlInfo.SetServed]:

653 if tlControlInfo.Switched: # (tl[tlControllInfo.tlSwitchedFirst].tif - tl1[i].tif)
seconds after’tlSwitchedFirst’ switched to red, trafficlight i switches to red

654 if (Ctime - tlControlInfo.ToLS) < (tl[tlControlInfo.tlSwitchedFirst].tif - t1[i].

tif):

655 tlControlInfo.Green[i] = true;

656 else:

657 tlControlInfo.Green[i] = false;

658 end

659 else: # tl[i].tfi seconds after’tlServedFirst’ switched to green, trafficlight i
switches to green. During the first green time of set 1 (when tlControllInfo.
ToLS = 0.0) all traffic lights in set 1 are green.

660 if (Ctime - tlControlInfo.ToLS) >= t1[i].tfi or tlControlInfo.ToLS <= 0.00001:

661 tlControlInfo.Green[i] = true;

662 else:

663 tlControlInfo.Green[i] = false;

664 end

665 end

666 end ;

667

668 return tlControlInfo

669| end

670

671| # With this function we evaluate whether we should switch the traffic light °
tlSwitchedFirst’ to red if we have not yet switched the traffic light
tlSwitchedFirst’ to red.

672| # For more information about when we switch the traffic light ’tlSwitchedFirst to red
see 777777

673| func bool switch(list trafficlight tl; list set int G; int SetServed; int SetNotServed;
int tlServedFirst; int tlSwitchedFirst; real tstar):

674 bool b1l3 = false;

675
676 # tstar is the time that has elapsed since the traffic light ’tlServedFirst’ was
switched to green.

677 # If the maximum green time is exceeded then we switch the traffic light
tlSwitchedFirst’ to red.

678 if tstar >= (tl[tlSwitchedFirst].gmax + tl[tlSwitchedFirst].tfi):

679 return true

680 end

681
682 # We switch the traffic light to red (that must be switched first) if otherwise a
queue would exceed its maximum queue length (for a hybrid fluid model).

683 # If we switch ’tlSwitchedFirst’ to red then traffic light j (in the set that is not
served) will be green (tl[tlSwitchedFirst].tif + t1[j].tfi) seconds

684 for j in G[SetNotServed]:

685 if size(tl[j].ArrivalTime) >= t1l[j]l.Xmax - (tl[tlSwitchedFirst].tif + t1[j].tfi)x*tl
[j]l.lambda:

686 return true

687 end

688 end

689

690 # We also switch the traffic light ’tlSwitchedFirst’ to red whenever conditions 1.1,
1.2 and 1.3 are satisfied

691
692 # Is condition 1.3 satisfied?

693 for j in G[SetNotServed]:

694 if size(tl[j].ArrivalTime) >= t1l[j].Xsharp and b1l3 == false:
695 b13 = true;

126

696
697
698
699

700
701
702
703
704

705

706
707

708

709
710
711
712
713

714
715
716
717
718
719

720

721
722

723
724
725
726
727
728

729

730
731

732
733
734
735
736
737
738
739
740
741
742

end
end

If condition 1.3 is not satisfied and condition 2 and 3 are both not satisfied then
we do not switch traffic light ’tlSwitchedFirst’ to red
if b1l3 == false:
return false
end

Condition 1.1 is satisfied whenever all traffic lights j in the set ’SetServed’
satisfy size(tl[jl.ArrivalTime) <= ((tl[tlSwitchedFirst].tif - t1[jl.tif)=*(tl[j].
mu - tl[j].lambda) - max((tl[j].tfi -tstar),0.0))

Condition 1.2 is satisfied whenever all traffic lights j in the set ’SetServed’
satisfy tstar > (tl[j].gmin + t1[jl.tfi + t1[j].tif - tl[tlSwitchedFirst].tif).

for j in G[SetServed]:

if size(tl[j].ArrivalTime) > ((tl[tlSwitchedFirst].tif - t1[j].tif)*(tl[j].mu - tl
[j]l.lambda) - max((tl[jl.tfi -tstar),0.0)) or tstar < (tl[jl.gmin + t1[jl.tfi +
t1[jl.tif - tl[tlSwitchedFirst].tif):
If condition 1.1 or 1.2 is not satisfied and condition 2 and 3 are both not
satisfied then we do not switch traffic light ’tlSwitchedFirst’ to red
return false
end
end

if condition 1.1, 1.2 and 1.3 are all satisfied then we switch traffic light °
tlSwitchedFirst’ to red
return true
end

This Function updates the average delay whenever a vehicle has departed.

About the input of this function:

- NumOfDepartures is the number of Departures at the intersection (including the
vehicle that has just departed)

- AvgDelay is the average delay of the vehicles (excluding the vehicle that has just
departed)

func real UpdateAvgDelay(int NumOfDepartures; real AvgDelay; real Delay):

AvgDelay = (NumOfDepartures -1)/NumOfDepartures*AvgDelay + 1/NumOfDepartures*Delay; #
updating average delay

return AvgDelay
end

This Function updates the fraction of time that a queue exceeded its maximum queue
length.
func real UpdateFracOverflow(real CurrentTime; real TimeOfPreviousChange; real
FracOverflow; int X; real Xmax):
if X > Xmax:
FracOverflow = (CurrentTime -TimeOfPreviousChange)/CurrentTime *FracOverflow +
TimeOfPreviousChange/CurrentTime # updating fraction of overflow
else:
FracOverflow = (CurrentTime-TimeOfPreviousChange)/CurrentTime *FracOverflow
end

return FracOverflow
end

Function calculating x squared
func real Square(real x):

return x*x
end

127

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764

Calculating the average of a list
func real mean(list real xs):

real sum;
for x in xs:
sum = sum + X;
end;
return sum / size(xs)
end
Calculating the standard deviation

func real StdDev(list real xs):
real avgx;
real sum;

avgx = mean(xs);
for x in xs:

sum = sum + Square(x - avgx);
end

return sqrt(1/(size(xs)-1)*sum)
end

128

Appendix C

Proofs (Trajectory Optimization)

C.1 Analytical Solution Optimization Problem 1

In this section we find an analytic solution for the optimization problem posed in Section 4.8. We
assume that we can find a solution to this optimization problem. Below we show the objective function
and the inequality constraints of the optimization problem:

Objective:
k(yz +1)* + (y1 +1)°
J(y, = . C.1a
(y1,92) 1+u1+ 0 ()
Constraints:
biiy1 =g Pl (14 y), (C.1b)
!
P2
by yo > (14w1), (C.1c)
L—po
bs Y™ <, (C.1d)
by y3""" <y, (C.1e)
b5 T S y{n'(m, (le)
be 1 y2 < Y3, (C.1g)
where
0< k<1,
""", >0 i=1,2,
0< pi < 1, 1=) &y
p1+p2 <1,
01,2,1 > 0.

Unconstrained optimization problem
the derivative of (C.la) with respect to y1 and y» and setting them to zero we obtain two stationary

First we consider the unconstrained problem. By taking

129

points:

(yhy?) = (_17 _1)7
o) — (L L
W) = \s+1k+1)

k-1 1-k
k+17 k+1

C.1 we have shown some level sets for different values of k. As can be seen in these plots, the level sets
are ellipsis. The shape of these ellipses depends on the value of k. Note that the scales on the axes of
these figures differ.

(y1,¥2) = (=1,—1) is a local maximum and (y1,y2) = () is a local minimum. In Figure

(a) Level sets for k = 0.01 (b) Level sets for k = 0.1

(c) Level sets for k = 0.5 (d) Level sets for k =1

Figure C.1: Level sets for different values of k.
Both stationary points (the local maximum as the local minimum) cannot be positioned in the

feasible area of the constrained optimization problem. As a result, one of the constraints b; until bg
must be active, i.e. the constrained minimizer is positioned on a boundary of the feasible area.

130

Feasible area In Figure C.2 we can see all constraints of the optimization problem. In this figure all
boundaries of the constraints are positioned in the feasible area.

bo bs be
g /. b
yl feasible area | b,
(0,0) ymin >y

Figure C.2: Feasible area of the optimization problem.

Upper bounds We can derive g—y‘]l + g—y‘z = 2(y2i?$;fyt§gyly2) which is greater than zero for y; >

0 A y2 > 0. Hence, on the boundary of constraint b5 and bg and in the feasible area we can always
decrease the linear cost function J by moving towards the y; — axis or yo — axis. As a consequence,
the global constrained minimum can only be positioned on a boundary of constraint by, ba, bs or by.

Unconstrained minimum on a line

Lemma C.1 On the line y» = ay; + by, were a,b € R, the linear cost function J has two stationary
points: a local (unconstrained) minimum and a local (unconstrained) mazimum. The yi-position of the
local minimum could be non-negative. The y1-position of the local mazimum could not. The position of
the local (unconstrained) minimum on the line yo = ay1 + by, is:

unc,min __ _(1 + b) \/(a‘ — b)2 + (1 + b)2k
T T d T T At/ ah)

Proof. In Figure C.7 we give an overview of what we are about to prove. In this figure we can see the
following:

- A local (unconstrained) maximum at y; = root; = 75}:;17) - gi;?\;?fi:jgk) 0.
—(1+b)
- An asymptote at e < 0.

—(1+b) + ((a—b)2+(1+b)2k)
l+a (1+a)y/(1+a2k)

- A local (unconstrained) minimum at y; = roots =

131

i] B
rooty ' TOOly
—(1+b)
e < 0

Yy —»

Figure C.3: Overview of this proof.

Using y2 = ay; + b and (C.1a) we obtain the following equation for J:

[tet by et

(C.2)
ne + Ny, Y1
where
tc =1+ (1+b)%k >0,
ty, =2+2a(1+0b)k >0,
tye =1+4a%k >0,
nc=1+b>0,
Ny, =1+a>0.
Note that |J| goes to infinity for y; — %‘zb) < 0, i.e. there is an asymptote at y; = %‘zb) < 0.
When taking the derivative with respect to y; we obtain:
2
dJ B noty, —tony, + 2ncty%y1 + nylty%yl . (©3)

d_yl B (nc +ny1y1)2

We can find the y;-position of the stationary points of (C.2) by setting the denominator of (C.3)
equal to zero. By using the abc-equation and after some rewriting we can find expressions for the 2
stationary points: root; and roots.

132

~(1+b) V@b IR

root, = — <0,
1+a (1+a)\/ (14 a?k)
_ —)2 2
rooty = (1+0b) \/(a b)2 4+ (1 +0b) k.
1+a (14 a)y/(1+ a?k)

Note that these roots are real (not imaginary) since (a — b)? + (1 +b)2k > 0. We can see that root;
is smaller than the asymptote. The other stationary point rooty is larger than the asymptote.

We can easily see that root; is a maximum and root, is a minimum because the objective function
in (C.2) goes to oo for y; — oo and the objective function in (C.2) goes to —oo for y; — —o0.

Hence, the root 32" that corresponds to the unconstrained minimum on the line y = ay; + b

is equal to:
' 1+a 1+avitak '
[

Similarly to the proof of Lemma C.1 we can find that on the line y; = ays + b, where a,b € R,
the linear cost function J has two stationary points: a local (unconstrained) minimum and a local
(unconstrained) maximum. The yo-position of the local minimum could be non-negative. The y;-
position of the local maximum could not. The position of the local (unconstrained) minimum on the
line y; = ayz + b is:

unc,min __ (]- + b) \/(1 + b)2 + (Cl - b)Qk
Y2 l+a 1+aWa®+k (©5)

Using (C.15) and (C.5) we can find the unconstrained minima on the boundaries of the constraints
by until by. By writing the boundaries of these constraint in the form y; = ays + b, a,b € R or

Y2 = ayr + b, a,b € RT we have obtained the following expressions for y% (k) = (g?i (k),gg'i(k)),
it =1,...,4, which is the (y1,y2)—position of the minimum on the boundary of constraint b;:

1_
2’_1+ plz 3 |
kl—m + pi k(1= p1)? + pf

(- VE(1 = py) Vkpa)
VI =p2)? +kp3 /(1= p2)® + kp3

VT2 + L+ yM))

y min 1+ymzn)+

)

vk

1 +yM7n + \/ mvn 1+ym7n)2k ymﬂ?

(C.6)

We can see that Q?Z(k) = -1+ \/%
boundary of constraint by cannot be positioned in the feasible area.

As a result, the constrained global minimizer of the optimization problem with objective (C.1a) and
constraints (C.1b) until (C.1g) is positioned on the boundary of constraint by, b3 or by.

< 0. Thus, the unconstrained minimum on the

133

Monotonicity For now we are going to consider the optimization problem with only constraints by ,bs
and by, i.e. for the moment we forget about constraints be, b5 and bg (see Figure C.4). Note that the
three lines can intersect in different ways.

bg bl
Y2 feasible area
Y
ygrin W77y
(0,0 ymin y1—>
1

Figure C.4: Whenever we consider only constraints by,bs and by and we increase k, the position of the
constraint minimizer follows the arrows annotated to the boundaries of the 3 constraints.

Lemma C.2 When we consider the constrained problem with the objective shown in (C.1a) and con-
straints by, bs and by, the position of the constrained minimum follows the arrows annotated to the
boundaries in Figure C.4 when increasing k.

. .oyt oybs ayte . -
Proof. We can easily see that the derivatives -, 52 and —;— are according to the arrows in Figure
oyl oybs dyP4
C.4:We can easily see that the derivatives %, % and g]i are according to the arrows in Figure
C.4:
dyy _ . A=-p)m <0
ok 2(k(1 = p1)? +p7)t>
Oy’ (1 —ypn)?
— = — A . <0,
Ok 2k15\/(1 + yinln)Q + (yinzn)Qk
8yb4 1 _ gmin)2
21 _ () <> 0.

Ok 2v/k(1+y5™)2 + (y5™)?
From now on we use k; j, 7, j = 1, ..., 6 for the value of k for which gbi is positioned at the intersection

of the boundary of constraint b; and the boundaries of constraint b;.
We can derive:

134

P21 — ypin?)
(1= pr)2ypin®’
kl 4 = ! ; - p%)
S Ay (L =p)?
At
(1= i
(145’

ki3 =

s

T T)
kig = ! - yg“'”% ;

o (L=p)? (Tym)?
hpy = (LEUTA 4 YT 4 2957)

| (1 +u5™p
We have to show that:

- k4,3 > k34 when the intersection between the boundary of by and the boundary of b3 is positioned in
the feasible area.

- ka1 > k1,4 when the intersection between the boundary of by and the boundary of b; is positioned in
the feasible area.

- k3,1 > k1,3 when the intersection between the boundary of b3 and the boundary of b; is positioned in
the feasible area.

We can see that always k43 > k34 because 1+ y"" < 1+ y"™ 4 2y (hence the numerator of
kys is larger than the nominator of ks 4) and 1 + y3*™ < 1 + yZ*™ + 2y7" (hence the denominator
of k4,3 is smaller than the denominator of ks 4). It also holds that k41 > ki 4 because we can derive
2(p1 5™ (A+pr1y5*™)

kag — k14 = (=PREGE Oy > 0. We can derive that the ys-position of the intersection between
2 . .
the boundary of bs and the boundary is non-negative for y{"" > 1f1p1. When using yi**"* > 1f1pl we
min 2 min 4 min
can find k31 — k13 = Wi —p1)py (tyy > P04y, Hence, it holds that k31 > ki3

(1—p1)2(L4+p1)y " = (1—p1)2(1+p1)yHim
when the intersection between the boundary of b3 and the boundary of b; is positioned in the feasible

area.

Thus, when we consider the constrained problem with the objective shown in (C.1a) and constraints
b1, bs and by, the position of the constrained minimum follows the arrows annotated to the boundaries
when increasing k. m

Lets again consider the optimization problem with constraints b; until bg. We know that the con-
strained minimum is positioned on the boundary of by, bs or by. We can obtain expressions for the
constraint minimum on each of these lines. We use k™" for the smallest value for k such that the un-
constrained minimum 3" (k) is positioned in the feasible area. We use k"** for the largest value for k
such that the unconstrained minimum g% (k) is positioned in the feasible area. Whenever the boundary
of constraint b; is not positioned in the feasible area (and hence there is no constrained minimum on
this boundary) it holds that k" > k™3 Before we give the expressions for k" i = 1, 3,4 and k"%,
we give the relevant expressions for k; ;:

135

(1 —p2)(1 = p2—2p1)

k =
C=p)
o
= Aoy
A min?’
(1= p1)?yy
1 2
k1,4 = min\ 2 - pl 2
(1 +y5mm) (1 —p1)
1 2
k175 = max\2 A 27
(L+y3) (1—p1)

m(lfl,'2)

by = P%(l — U
- 29
(1= p1)?yee
2 1 min\2
_ pi(1+yr™")

3,1 min?’
(1= p3)yin®
(1 —p2)?(1+ym)?

ks = (14 yiim)2 — (1 — py)2yrin®”
st = (L +ym)? .
T (g (L ys 4 297
k3s = (L+y7)° -
T (LYt (1 g+ 2y
kag = L ygnmz
T =p)? (g
hey = (i — 3y |
T (L ygrn)?
Fis — I+ ™) (A +y" + 2y5”’3")7
’ (1+y5rm)?
Fis — (1 + g (L + 1" +295"™)

(5P
We found the following expressions for the constrained minima on the boundaries of constraints by,

b3 and b4 .

Constrained minimum on the boundary of b;:
Y (k) 3 BT < k< RO
ybl (k{nax) if k?“n S kina:r S]C,

where
k{mn = max{k‘lﬁ, k176},

max M
k7" =min{ks 2, k1,3, k1,4}-

136

Constrained minimum on the boundary of bs:

gb3 (kgun) if k S kgnn S kgnax’
yPe (k) if k5™ < k < k5,

where

kgnn = max{kg’l, k3’5},

kgnar = min{kgg, k374}.
Constrained minimum on the boundary of b4:

Y (k) A k< R < ke
gbz; (k) if kzun S k S kinaw’
gb4 (kin(w) if kznm S kznar S k‘,

where

]@Tln = max{k4’1, k4’3},
kzlna:z = min{k4,2, k4’6}.

Solution Using Lemma C.2 we can find the analytical solution (shown below) for the position of the

. P con,min _ con,min
constrained minimizer (yl » Yo)

PR R < R < kTR,

else if ™" < k < kma®,

else if k5™ < KV RPOT < kP
PL(RE™) else if kb < RET < kPO,

else if k5" < k < k§*e®,

else if k7% < kpvin,

else if k < k7M™ < ko,

k) else if k"™ < k < ko®,

otherwise.

o o~
[t
I T
=3
2
8
~—

con,min con,min\ __
Y1 » Yo -

o o~
[
I
»PSDJ
5 8
~— —

S g (S S S g I
5 5

AAS SIS S22
1 Z

o
S
5
~3
8
8
—

where

p1 1-—p

My = [—2 1 ——— P)
e ® <\/k<1—p1>2+p% i k(l—p1>2+p%>

min min min)2f 4 (] 4 qmin)2
y" (k) = <y1 =4y + V(™) \/E(yi)) 7
(0 = (0 S).
k;’”n = ma.)({kl,s,kl,g}7

max .
k" = min{ki1,2, k1,3, k1,4},

137

E5™ = max{ks 1, kas},
k5" = min{ks,2, k3,4},
Ey'™ = max{ka, ka3},
EP® = min{ka,2, ka6},

o, = (L= p2)(L = p2 = 2p1)
1,2 — ’

(1—=p1)?
.2
ki3 = L0 =y
’ min2’
(1 — p1)%yi
by — 1
T A4y (1= p1)?
hys — 1 _
T (Iygen)2 (1-p0)?
2
- pi (1 — gy
) - mazQ’
(1= p1)%yi

- pi(l+ym)?
(1= p)ypin®’
(1= p2)*(1 4 y1"")?

02 = Ty — = e
ks = (g™
() (U £ 2

Fas — (1+ymm)? '
T Aty (L 4yt + 290
oy = B
T (I=p)? (L)
hao = U= PRy
T (L)
has = HU A+ + 2958

(14 ygrm)?
g = LEI U™ 2
’ (1+ygm)?

C.2 Analytical Solution Optimization Problem 2

In this section we find an analytic solution for the optimization problem posed in Section 7.5.3. Before
you read this section we advice you to read Section C.1 first. In Section C.1 we find the analytical
solution of a more simple optimization. However, finding the analytical solution is very similar for both
optimization problems. Below we show the objective function and the inequality constraints of the
optimization problem. We assume that we can find a solution to this optimization problem.

138

(1+y2)? + k(1 +y1)? + ka(ks +y1)?
14+y1+y2

1 ;
1—0[2(+y1)

. k-
bz;yzzm_L
1—0&3

(6
! (1 +y2)a

J(y1,y2) =) (C.7)

a2

by :y2 >

by :yp >
3 yl_l—al

by sy <y,
bs : y5" < o,
be : y1 < yi"*",
by i y2 < 3",

where

0<ky+k <1,
0 < ks, ki, ko <1,
Y >0, i=1,2,
a; >0, 1=1,2,3,
a1 +as <1,
o+ ag < 1.
(C.8)

Unconstrained optimization problem First we consider the unconstrained problem. By taking
the derivative of (C.7) with respect to y; and y» and setting them to zero we obtain two stationary
points:

\/(k‘l + kz)(kl(l + kz(l — k3)2) + k‘ng) -1 - k‘Q(l — k‘g) — \/(Iﬁ + kz)(kl(l + kz(l — k3)2) + kzkg)

(y17y2) = <_1 -

\/k1+k2(k1 —|—k2k‘3) ’ 14 k1 + ke ’
(C.9a)
([V/ (k1 + k2) (ki (1 + ka2 (1 — ks)?) + kak3) —1— ka(1 — ks) + \/(k1 + k2) (k1 (1 + ka(1 — ks)?) + k2k3)
Y1, Y2 VE1 + Fa (k1 + kaks) ’ 14+ ki + ko .
(C.9b)

The coordinate in (C.9a) is a local maximum. It is positioned outside the feasible area since both
its y1-coordinate and its ys-coordinate are negative. The coordinate in (C.9b) is a local minimum. This
point is positioned outside the feasible area because for this coordinate it holds that y; + y2 < 0. We
proof this below:

—VE1 + k2 + R (1 + ka(1 — k3)2) + kok?
Vki + ko .

Y1+y2 =

139

Thus, y1 +y2 < 0 if k1 + ko > k(1 + kao(1 — k3)?) + k2k3. Below we prove that this is indeed the
case:

Ey + ko > K1 (1 + ko(1 — k3)?) + kok?,
ko > kiko(1 — k3)? + kok3,
1> k(1 —k3)? + k2.
Thus, both stationary points (the local maximum as the local minimum) cannot be positioned in

the feasible area of the constrained optimization problem. As a result, one of the constraints b; until
b7 must be active, i.e. the constrained minimizer is positioned on a boundary of the feasible area.

Feasible area In Figure C.5 we can see all constraints of the optimization problem. In this figure all
boundaries of the constraints are positioned in the feasible area. However, this does not have to be the
case.

b4 b3 bs
ygna:c Jw‘/ b7
! | ”
Y2 'feasible are b
K~y
yg / = bs
(07 0) yinzn Yyr—> y{naw

Figure C.5: Feasible area of the optimization problem.

Writing the boundaries of the constraints b;, i = 1,2, 3 in the form y, = a’y; + b’ gives us:

1 Q2

= >0
“ 1— (65 ’
a? = a3 > 0,
1— Q3
1—
a® = a > 0.
aq
(C.10)
Lemma C.3 The boundary of constraint bs, i.e. the line ys = 0‘31{17;:“3 — 1, could be positioned in the

feasible area only if az > an. In this case it holds that a® > a?.

Proof. When we write the constraints b;, i = 1,2 in the form ys = a’y; + b® we get:

140

1 Q2

a:].—OCQ,
2 _ 3
a_l—ag’
(&%)
bt =
1—0&2,
oty
].—043
When a3z < as it holds that bl—bQZﬁ—lf—f}s<O. In this case it holds that a®> > a! and the

boundary of constraint by cannot be positioned in the feasible area. This situation is shown in Figure
C.6.

+k3

.

Hence, boundary of constraint bo, i.e. the line yo = 0‘31’_173

1 — 1, could be positioned in the feasible

area only if a3 > . In this case it holds that a® > a2

Y2

y1_)

Figure C.6: The boundary of constraint by could only be positioned in the feasible area whenever
Qg > 0.

Upper bounds We can derive:

oJ 0J 2y1+ka(ks+y1)(y2 + (1 —k3)) + (k1 + (k1 + Dy1)ye

oy1 | yr (1+y1 +y2)2

We can see that g—@;’l + % > 0if y; > 0 Ays > 0. Hence, on the boundary of constraint bg and
b7 and in the feasible area we can always decrease the linear cost function J by moving towards the
Y1 — axis or ys — axis. As a consequence, the global constrained minimum can only be positioned on a
boundary of constraint by, by, b3, by or bs.

Unconstrained minimum on a line

141

Lemma C.4 On the line yo = ayy + by, were a,b € R, the linear cost function J has two stationary
points: a local (unconstrained) minimum and a local (unconstrained) mazimum. The yi-position of the
local minimum could be non-negative. The y1-position of the local mazimum could not. The position of
the local (unconstrained) minimum on the line y» = ay1 + by, is:

anemin _ (140) V(1L +0)2 +ki(a =0)% + k(1 + a)kz — (1 +b))?
S RN - o

Proof. In Figure C.7 we give an overview of what we are about to prove. In this figure we can see the
following:

C(4b) /(1452 Fki (a=b)>+ha (I+a) ks —(1+D))> <0
1+a (14a)VaZ+k1+ke)

- A local (unconstrained) maximum at y; = root; =

—(1+b)

1+a <0.

- An asymptote at

_ (14b) n \/(1+b)2+k1(afb)2+k2((1+a)k37(1+b))2.

- A local (unconstrained) minimum at y; = roots = Tta TV Thih

.] "
rooty ' rooty
—(1+b)
7o <0

vy —»

Figure C.7: Overview of this proof.

Using y2 = ay; + b and (C.1a) we obtain the following equation for J:

142

J = to +ty, 1 + tyfy%

(C.12)
nc + Ny, Y1
te = (14 b)* + kaok3,
ty, = 2(&(1 + b) + k1 + kgk‘g),
tyf =a®+ k1 + ko,
ne =1+ b,
ny, =1+a.
(C.13)
Note that |J| goes to infinity for y; — _&tb) < 0, i.e. there is an asymptote at y; = _S:Lb) < 0.
When taking the derivative with respect to y; we obtain:
2
A _ ncty, —tomy, + ety + gty (C.14)

d_yl ne + Ny, Y1

We can find the y;-position of the stationary points of (C.12) by setting the denominator of (C.14)
equal to zero. By using the abc-equation and after some rewriting we can find expressions for the two
stationary points: root; and roots.

(1+b) @ +b)2+ki(a—b)2+ka((1+a)ks — (1+0))>

t = — - <0,
ooty 1+a (14 a)vVa®+ ki + ko
oot — (140 VO 452 +Ei(a =0+ ko ((L+a)ks — (1+D))?

? 1+a (1+a)Va?®+ ki + ko '

Note that these roots are real (not imaginary) since (1+b)%+kq(a—b)?>+kao((1+a)ks — (1+5))% > 0.
We can see that root; is smaller than the asymptote. The other stationary point roots is larger than
the asymptote.

We can easily see that root; is a maximum and roots is a minimum because the objective function
in (C.12) goes to oo for y1 — oo and the objective function in (C.12) goes to —oo for y; — —oc.

unc,min

Hence, the root y, that corresponds to the unconstrained minimum on the line yo = ay; + b
is equal to:

(140 VOAFD)2+Ri(a—b)2 + ko ((1+a)ks — (1+D))?
1+a (1+a)VaZ +ky + ks .

(C.15)

|

Similarly to the proof of Lemma C.1 we can find that on the line y; = ays + b, where a,b € R,
the linear cost function J has two stationary points: a local (unconstrained) minimum and a local
(unconstrained) maximum. The ys-position of the local minimum could be non-negative. The y;-
position of the local maximum could not. The position of the local (unconstrained) minimum on the
line y; = ayz + b is:

N) Y T et U U S T S
a (14 a)\/1+ a?(k1 + ko)

143

Using (C.11) and (C.16) we can find the unconstrained minima on the boundaries of the constraints
b, until by. By writing the boundaries of these constraint in the form y; = ays + b, a,b € R or

Y2 = ay1 + b, a,b € RT we have obtained the following expressions for y% (ki) = (gﬁi(kl),ggi (kl)),
i =1,...,5, which is the (y1,y2)—position of the minimum on the boundary of constraint b;:

Y (k) = (—1 Uit k) coyvith(k)) : (C.17a)

V1 +E2)(1 = a2)? + a3 (k1 +k2)(1 — a2)? + a3

Qb2(k1) = <—k‘3_|_ (1—as) k1(1—k‘3)2+k§ (- k) 4+ a3\//€1(1—k3)2+k§ > (C.17h)

V0 + k)1 —a3)® + a2’ V(k1 +k2)(1 — a3)? + o

/ 2 / 201 _
Yy (k) = il +52k3a1 14 fa t kQ]Z?’(l a1) , (C.17¢)
- V (k1 +k2)a? + (1 —a1)? V (k1 +k2)a? + (1 —a1)?
() = (5 (0) S B R) (C.17d)

1 min)2 k min)2 ko(1 min_k 2 .
\/(+y2) + 1(y2) + 2(+y2 3) ymzn> i (Cl?e)

VEki1+ ko 172

We can see that gg3(k1) < 0 because \/k1 + k2k3(1—a1) < (1—aq) and v/ (k1 + k2)af + (1 —aq)2 >
(1 — a1). Hence at least one of the boundaries b; i = 1,2, 4,5 must be active.

y¥ (k) = (—(1 + 5 +

Monotonicity For now we are going to consider the optimization problem with only constraints
bii = 1,2,4,5, i.e. for the moment we forget about constraints b3, bg and b; (see Figure C.8). Note
that the three lines can intersect in different ways.

by
!
Y2 feasible area by
y5n é/” ‘ bs
(0,0) yin y—>

Figure C.8: Whenever we consider only constraints by,b2,04 and bs and we increase k1 (in the range
[0,1]), the position of the constraint minimizer follows the arrows annotated to the boundaries.

Theorem C.1 When we consider the constrained problem with the objective shown in (C.7) and con-
straints b;, i = 1,2,4,5 the arrows annotated to the boundaries of constraints b; ,i =1,2,4,5 shown in
Figure C.8 visualize the direction in which the constrained minimum moves when increasing k1 (in the
range [0,1]).

144

Proof. Before we prove Theorem C.1 we first prove some lemma’s.

Lemma C.5 The constraint minimum gbi(kl), i =1,4,5 moves in the direction shown in Figure C.8
when increasing k.

Proof. We can derive:

8%?1 _ (1 — 042)2\/ 1+ k‘g(l — k3)2

=- <0,
Okq 2((k1 4 k2)(1 — a3) + a3)'5
Oy’ _ (Lt yp) .
Ok 2 /(™) + ka (U4 57" + ha (ks + ™)
oy Ba(1 = ks) (1 — ks + 208"™) + (1 43"
Ok, <0.

2(kn +) 5 Ra - (1 9502 4 (1 — ks + 55?2

.. aytt ayba dy’s . N
Thus, the derivatives o o and S are accordance with the arrows in Figure C.8. m

Lemma C.6 When g? (k1) >0 and gl; (k1) > 0 then it must hold that k3 > as.

Proof. Lets assume that g’{g (k1) >0A ggg (k1) > 0 is also possible when k3 < as. First we derive that
if g’f(kl) >0A g? (k1) > 0 was possible when k3 < a3 then it must hold that k3 < 1 — a3. Hereafter
we derive that when k3 < a3 and k3 < 1 — a3 it holds that gl; < 0. Hence, g? (k1) > 0A gg2(k1) >0
could not occur when k3 < as. In case glf (k1) > 0A gg2 (k1) > 0 it must hold that:

k(1 — k3)? + k2
YRy =—1+ 10— ks)® 1 ks

B V1 + k)1 —a3)?+ (1 —aq)? (C.18)

(C.19)
This because otherwise either g’{g is negative, ggg is negative or both are negative and the uncon-

strained minimum y%2(k;) could not be positioned in the feasible area. Lets use:

Te1(1— k3)? + k2
q= :
V1 + k2)(1—a3)? + a2

(C.20)

We can derive that:

9 _ (-0 Vh(kPR _
8k2 o 2(&% —|— (1 — a3)2(k1 _|_ k2))1_5 .

Hence, it holds that:

(L= ka)? 42
\/kl(l — 043)2 + Oé%

<q

For k; = 0 we can derive:

145

ﬂ o (1 — k3)2a§ — (1 — a3)2k§
k1 2(k1(1 — a3)? 4 a3)t5y/ki(1 — k3)2 + k3
We know aa—kql > 0 because k3 < «z. Hence it holds that:
\/(1 — k‘g)Q +k‘§ > \/k‘l(l — k3)2 +k§

VI —as)?+af ~ VEi(l-a3)? +af
Hence, when ¢ > 1 it must hold that:

(1—Fk3)* + k3> (1—a3)®+ai. (C.21)

In Figure (C.9) we can see the function f(x) = (1 +)2+ 22 for 0 < x < 1. We can see that this
function is symmetric around the line x = 0.5. Both z/, 0 < 2’ <1 and 1 — 2’ result in the same value
f(2). From this figure we can easily see that when k3 < a3 and ag > 0.5 then f(ks) > f(as) could
only hold if k3 < 1 — a3. Hence, when k3 < ag, (C.18) could only be satisfied when it also holds that
ks <1 — ag (for the case where ag < 0.5 it also holds that k3 < 1 — a3 because k3 < as).

symmetry axis

0.5

r —»

Figure C.9: The function f(z) = (1 — x)? + 22

Thus, when k3 < a3 and the unconstrained minimum ng (k1) is positioned in the feasible then it
must hold that k3 < 1 — a3. Lets distinguish the two situations below:

situation 1 k3 < agz < 1 — a3. In this situation it holds that az < 0.5.
situation 2 k3 < 1 — ag < as. In this situation it holds that az > 0.5.

For both situations we can show that the y» coordinate of the unconstrained minimum g2 (k1) is

negative. As a result the unconstrained minimum gb2 (k1) could not be positioned in the feasible area
when k3 < as.

Situation 1 From (C.17b) we can obtain that:

8ggz —1_ Qs kl(l — kg) — kg
Oks3 af + (1 —az)?ke \/ky(1 — k3)2 + k2

Hence, we can derive:

146

Oég\/k‘l(l — k‘g)Q + k‘g

\/(kl + kg)(l - 0&3)2 + 0&%7
1— 2 2

Y <—(1—as)+ agy/li1 — ag)? + o] =

- \/(kl + kg)(l - 0&3)2 + a3
32 a2

B <~ 1t L0l ras

= \/(kl + kg)(]. — 043)2 + a%

Y2 < —1+ 203,

v == (1—ks) +

<0.

In the first step we used k3 = as. Hence, in situation 1 the unconstrained minimum y2(k;) could
not be positioned in the feasible area.

Situation 2 In situation 2 we can derive:

= (1 ko) 4 2O R R
V (k1 +k2)(1 —a3)2 + a2
azvkiad + (1 —az)?
V (k1 + ko) (1 —a3)? + 0437
Novsaiern A
V (k1 + k) (1 — a3)? + a3 .

gg2é—043+

Y2 <as(

V/ (k1+k2)(1—ag)?+a3
situation 2 it holds that gg2 < 0 and the unconstrained minimum gb2 (k1) could not be positioned in the
feasible area. m

Using k2(1 — a3)? > 0 and 1 — a3 < a3 we can derive that < 1. Hence, in

Lemma C.7 When the unconstrained minimum gb2 (k1) is in the feasible area, it moves in the direction
shown in Figure C.8 when increasing k1 (in the range [0,1]).

ayb2
Proof. In this lemma we prove that Ekll < 0 whenever the unconstrained minimum gbg is positioned
in the feasible area. ,
oy°2
We do so by proving that 8%411 > 0 could only occur if g? + Ql; < 0. If g? + Ql; < 0 then the

y1-coordinate or the yo-coordinate of gb2 is negative (and thus gb2 is positioned outside the feasible

area).
. . . ayt?
We can derive the following expression for —-:

ko (1 — a3)*(1 — k3)® — (k3 — az)(a3(1 — k3) + k3(1 — a3))

2(1 — 043)((]61 + k‘g)(l — 043)2 + 0&%)1'5\/ k% + k‘l(l — k3)2 .

147

We can see that:

8y?2

= if k h
ks <0 i o < N,
Oyb?

SL_0 it ky=h
(9/{51 0 1 2)
Oyb?

=1 if k h
ks >0 i 2 > N,

where
h— (kg — Oég)(O[3(]. - k3) + k3(1 - a3))

(1 —k3)*(1 — a3)?

From Lemma C.6 we know that g’{g >0A g? > 0 is only possible when k3 > as3. Hence, it holds

b b
that h > 0. When h > 1 it holds that 88%;12 < 0 because ko < 1. We still have to proof that Ov)” <0

k
for h < 0 < 1. We do so by proving that 0 < h < 1 and ks > h is not possible. '
We can derive the following:

Oy +y5') _ /(1 —ks)? + K3(1 — a)? o
Ok ((k‘l + kg)(l - 0&3)2 + Oé%)l'5

Therefore, when 0 < h <1 and ko > h it holds:

k(1 — k3)? + k2
gliz +gb2:_]—+ 1(3) 3

! V ki +E2)(1—a3)?+ (1 —a1)?
1-k
<1+ 2 <o.
1— Q3
We used ko = h which is the smallest value for ko satisfying 0 < h <1 and k; > h. When 0 < h <1
b b
and ko > h this value for ko results is the largest value for glf + Q?Q since 8(%;?22) < 0. In the last
step we used k3 > ag.
b
Thus, when the unconstrained minimum gb2 (k1) is in the feasible area it holds that 88%112 < 0. Thus,

the unconstrained minimum gbZ (k1) it moves in the direction shown in Figure C.8 when increasing k;
(in the range [0,1]). =
From now on we use y'=7 = (yi:j , yézj) for the coordinate of the intersection of the boundary of

constraint b; and the boundaries of constraint b;. Further we use k; 4, 4,j = 1,...,7 for the value of k;
for which gbi is positioned at y*=7.

Lemma C.8 Whenever the coordinate y'=2 is positioned in the feasible area and 0 < ko1 < 1, it holds
that k‘172 Z k‘271.

Proof. We can obtain y'? = ((1_a3;;fz(21_a2), (;]f‘i;”) From y5* > 0 we can obtain that ay < as

and from yf’3 > 0 we can obtain that k3 < %

148

Furthermore, we know from Lemma C.6 that if g’{g (k1) > 0A g;& (k1) > 0 then it must hold that
ks > a3. Hence, we know that when y'=?2 is positioned in the feasible area then 0 < ko1 < 1 holds only
when k3 > as.

17

Thus, we have to prove that k12 — k21 > 0 whenever ap < a3z < k3 < (1_—22) Note that this also
1

2—0&2 °

means that az < We can derive that:

oo = k2l —as)(1 — k3)?((1 = a2) + (a3 — ag)) + a3 (1 — k3)* — (a3 — az)?
b2 (1 — a2)%(1 — k3)? ’
ko 1 ko(1 - k3)2(1 — a3)? + (a3 — k3az)((1 — k3)az — kz(az — az))
(1= ko)*(1 = a2)((T —) — (a — a2)) '

We can derive:

2(0&3 — 042)2(1 — OZ3)
(1 —a2)*((1 —az) — (a3 — a2))
2(ag — ag)(as — kzaz)((1 — k3) — (a3 — a2)) >0
(1= k3)2(1 — a2)?((1 —a3) — (a3 —a2)) —

We can see that k%’3 — k%’z > 0 by using as > ao and because:

kio— ka1 = k2,

as(og — as)

> 0.
1—0&2

(1—043)—(043—042)2(1—k3)—(a3—a2)>

]

We shortly elaborate on the result of Lemma C.8. Lets consider the optimization problem with
objective function (C.7) and we want to find the constrained minimum on the boundary of either b; or
on the boundary of by (see Figure C.10). Thus, we want to solve the following optimization problem:

Objective function:
(1+y2)* + k(1 +y1)* + ka(ks +31)°

J(y1, =
(w1, 2) 1+y1+y2
Constraint:
(65
> 1 ,
2 2 7 -+ w)
k
y22a3y1+ 3_15
].—043
« asyr + k
Yo = (1+y1)\/y2=M—1-
1—ao 1—a3

For 0 < k1 < 1 it holds that the constraint minimum is positioned on the line yo = 0‘3‘1”717;;’”’ —1 (the

boundary of constraint by) if k1 < ko1 for ko1 < k1 < k12 the constrained minimum is positioned on
the intersection of the two lines and for k; > k2 the constrained minimum is positioned on the line
Y2 = 122-(1+y1) (the boundary of constraint b1). Thus, when increasing k; the constrained minimum

moves along the arrows (see Figure C.10).

5

Lemma C.9 Whenever the coordinate ylz is positioned in the feasible area, it holds that ks > ki 5.

149

Yyi—>

Figure C.10: The constrained minimum moves is on the boundary of by for k1 < kg 1. For kyy <k <
k1,2 the constrained minimum is positioned on the intersection of the two boundaries and for k; > k1 2
the constrained minimum is positioned on the boundary of b;.

Proof. We can obtain y'° = (—1 + = = ygmn,ygnm), which could only be positioned in the feasible

area if y'" > 92— -

(1 + Y52 + ko (1 — ks + y5"™)?) — koyy™
(1 - a3)yg™*
(14 ko(1 — k3)2)a2 — (ka(1 — as)? + a2)ymin”
(1 — ap)?ygn? '

51 _
kYT =

1,5 _
ky? =

Using ygvn > 722 we can find:

2a§(y§ni"(1 k(1 = k3) + (1 — ag)ys™™) — aa(1 + ko (1 = kz)(1 — k3 +y5""))
(1 — a2)?(1 + az)(y5"")?
203 (Y5 (1 + ko (1 — k3) + (1 — a)ys™™) — y5"" (1 — o) (1 + ko (1 — k3)(1 — k3 + y5"'™)))
(1 —a2)2(1 + az)(y5"™)?
- 203y5V " (Y5 (1 — a2) (1 — ko(1 — k3)) + ao (1 + ka(1 — k3)?) + ko (1 — ks)ks)
- (1 — a2)?(1 + az)(y5in)?

5,1 1,5
ki =kt =

vV

> 0.

Lemma C.10 Whenever the coordinate y'=* is positioned in the feasible area, it holds that kag > kia.

We can obtain:

k1’4 _ OZ% 1-— k2(2 — k3 — mm)(k3 + y{nm)
1 (1 — a2)2 (1 4 ymvn)Q s
gt L a1 = s 4y 4 92 4 (2 ag)any™) 2

(1 a2)?(1 + 47"
we can obtain:

2(an + Y (1 + ag) + ka1 — ko) (1 — a)? (ks + y7"")) (1 + any?™™)
(1 —a2)?(1 +ypm)?

k! =kt = > 0.

150

Lemma C.11 Whenever the coordinate y*=> is positioned in the feasible area and 0 < ko5 < 1, it
holds that k572 Z k2’5.

From Lemma C.6 we know that the minimum on the boundary of b2 can only be positioned in the

feasible area whenever k3 > a3. We can obtain 3?2 = (7k3+(17i33)(1+y?m) , yg’””), which could only be

positioned in the feasible area whenever k3 < (1 + az)(1 + y5*").
Thus, we have to prove that ks o — kg 5 > 0 whenever a3z > as > (1+ a3)(1+ y5*™). Note that this

+m_

also means that as < 5

(1 — ag)?(1 — ks +y5"")>

3= — : k
1 (1— ks + (1 — ag)y5"™) (—ks(1 — a3) — as(1 — k) + (L + y5) (1 — ag))
L 03 (1 — 2y + 4" ™) (1 + ™)
(1= ks + (1 —az)ys"™)(—ks(1 — az) — az(l — k3) + (1 +y3""*)(1 — az))’
e (1 —af)(1 — ks +y5""")° < Oky
1 (1—]€3+(1—0¢3) m7n)(1—k3+(1+0¢3) mm) -
o3 (14 y5in)?
(]. — k3 + (1 — OZ3) mm)(l — k3 + (]. =+ 043) mm)
We can prove k% — k2° > 0 by using:
2 1 + min X mzn 1 + min
1—ky—as+y0"m >1— 2034y >1— 7((“ ymm)) +yy" > —Ay,ffn) > 0.
2
and using:

1—Fks+ (1 — 043)y§m" (1 - k‘g)(l — 043) — a3(1 — kg) + (1 _ ag)ygnm
—k3(1 — az) —az(1 — k3) + (1 — as) (1 + y5"™)
—(1—as)*(L+y53"") — as(l — a3)s) + (1 — az)(1 + y5"")

>
>
>
> az(1 — az)yy'™ > 0.

we can find:

(1 —a3)?(1 — ks +y5m)?

52 25 (
! ! (1—Fks+ (1 —a3)yd)(—ks(1 — as) — as(l —k3) + (1 + y5"")(1 — a3))
(1—a3)(1 — ks +y5")? kg) ko
(1 — ks + (1 — a3)yd* ™) (1 — ks + (1 + ag)ym")
n 205(1 — ks 4+ y5"") (1 — ks — az + y5"") (1 4 y5"™") > 0.

(1= ks + (1= az)yg")(1 — k3 + (1 + a3)yg"") (—k3(1 — az) — az(1 — k3) + (L +y5"")(1 — az)) ~

Lemma C.12 Whenever the coordinate y>=* is positioned in the feasible area 0 < ko4 < 1, it holds
that k472 Z k2’4.

151

From Lemma C.6 we know that the minimum on the boundary of by can only be positioned in the

feasible area whenever k3 > a3. We can obtain 324 = (y}”i”, a3(1+y§“_2;(17k3)), which could only be

positioned in the feasible area for k3 > 1 — az(1 + y*").
Thus, we have to prove that k4 Z_ k2 1> 0 whenever ag < ks A1 — asz(1+ yvin) <0.

24 (ks + yim)? . (ks + asy™™) (azyi™™ — kz(1 — 203))
' (L +yrm) (=1 +2ks +y1™) 7 (1= as)?(L+y™) (=1 + 2k + yn)’
a2 _ (ks +yp)? (ks + (2 — as)yi™™) (ks + asyi™™)
! (L +y7m)? (1= a3)?(L+y™) (=1 + 2k +y7™")
Using:

—1+0[3+/€3—|—yinin > —1+2a3+ymm
(1 _ as)ymln > 0

we can find that:

2(1 — k) (ks + y"")2

(14 y™)2 (1 + 2ks + ™)

2(ks + y7"") (=1 + ks + a3 + y7"") (ks + asy™™) >0
(1= @3)2(1 4+ y7")2 (=1 + 2k + y*") -

4,2 24
k't =k =

Lemma C.13 Whenever the coordinate y*=° is positioned in the feasible area, it holds that ky o > ko 4.

We can find:
s _ halks + g+ (L4 g (1+ 29 + g5
1 (1 +ym7n)2 5
k5’4 o k (k3 + ymm)(k3 _ 2(1 + ymm) y{mn) (1 + yS””)Z
1 a .

(1 + y{nzn)(l + y{nvn + 2ymzn)

: 4,5 5,4 :
From these expressions for k;"” and k;"~ we can derive:

201+ g™ + 5 (ko (1 — ks) (ks + y7™) + (1 + 95" ("™ + y5"™))
(T4) (1 4y + 2g50")

45 154 _
kYW — k)T = .>0
Combining Lemma C.5 until Lemma C.13 we can see that the arrows annotated to the boundaries
of constraints b; ,7 = 1,2,4,5 shown in Figure C.8 visualize the direction in which the constrained
minimum moves when increasing k; (in the range [0, 1]) when we consider the constrained problem with
the objective shown in (C.7) and constraints b;, i = 1,2,4,5. ®

Lets again consider the optimization problem with constraints b; until b;. We know that the con-
strained minimum is positioned on the boundary of by, by ,by or bs. We can obtain expressions for
the constraint minimum on each of these lines. We use k7" for the smallest value for k such that the
unconstrained minimum gbi (k) is positioned in the feasible area. We use k™" for the largest value for &

152

such that the unconstrained minimum y% (k) is positioned in the feasible area. Whenever the boundary
of constraint b; is not positioned in the feasible area (and hence there is no constrained minimum on
this boundary) it holds that k™™ > k™?®. Below we give the expressions for &7", i = 1,2,4,5 and
kma® Note that in these expressions 2", i = 1,2,4,5 and 2% i = 1,2, 4, 5 actually refer to positions
where b; intersects with another boundary From the expressions for me and 2]"** we can calculate
k:’”". Recall that for ag < g the boundary of b3 is always positioned below the boundary of bs. Thus,
the boundary of a3 < ay is not positioned in the feasible area.

Constrained minimum on the boundary of b;:

b2 (ky) if KV < Ky < KO
ybg (k{n(mv) if k{nzn S k{nar S klv

gbg (k?“n) if kl S k{nln S k{naw7
Y

where
2 i i
; « 1—ko(2 — ks + 2}) (ks + 27) . .
k) =— 2 + 1 LEA 1 € {min, max},
! (1 - ag)? (1+29)2 { }
Z;ﬂin _ mll’l{ymaT, 1()[;!2 yng -1, %} if ag > s,
mll’l{ymaT, a;m mazx 1} if ag < o,
1-— 9 . a1
Zm(I.T — max m7n7 main _ 1’ .
1 {y1 o Y2 T —oy
Constrained minimum on the boundary of bs:
(Tnzn) lf kl < kgmn < km(l/l‘
le (kl) if kmzn < kl < krnaw7
le (km(l.’l‘) if kazn < kmar < kla
where
if ag > 2,

(20 (— Lt 25+ 2k3) (1—3)2

) k3(1—as3)®— (2 +k3)? (k2 (1—as3)’+a3)
ks =] i € {min, max},
—00 if az < ao,

max k3 + (1)(1 + ymaT)

zg'" =min{y"*", o },
R —k3 + (1 —a3)(1 + Z/§"‘m)7 ksaq 7 1—k3(l —az) —a3 b
a3 1—a; —ag a3 — 0

Constrained minimum on the boundary of b,:

gb“(kl) if k;;“” < k1 < k"““”
gbzl (kin(w) if k:mn S kznar S kl,

153

where

_ —ka(ks + ") + (1 + 20) (1 + 247" + 25)

ki = (1 NI , i € {min, maz},
min
k
ZZ” _mln{ymvn’ 1 . (1+ mvn)7p3y11_p_|3' 3 _1}7
max max 1-— Pl min
2" =max{yy"*", -1+ U I

Constrained minimum on the boundary of b5:

where

() if kl < kmln < kmaav7
g 5(ky) if K2V < Ky < EDOT,
ybs (k‘ng) if kgnzn S kgn(n" S klv

(L y5"™)? + ko(ks — 2(1 + y3"™) — 28) (ks + 28)

ki = - , 1 € {min, mazx},
> (14 28)(1 + 2ymin 4 z{) { }
m max 1- A2 min _k3 +(1- ag 1+ ymln
P e (o)),
Zgnaw _ma’x{ymln7 1 (1 + mln)}.

(C.23)

Using Lemma C.2 we can find an analytical solution for the position of the constrained minimizer

con, min
(91 Y

con,min _con,min\ __
yl 9 y2 -

where

con,min \ .
’J2

b2 (kgnn) if k< kmin < km‘m
b2 (k1) else if kP < ky < km(mv’
(hg0) else K < K AREST < R K < R,
bi(kmin) else if ky < ki < fmer
b1 (k1) else if k7in < ky < kmar7
(k=) else if kT <]gg”n A kper < kz“‘n’
b3 (ki) else if ky < kM < ke,
b (k1) else if k" < ky < ko,
bs (kgnaw) else if k ar - kmzn7
bu(gniny else if ky < kin < kper
ba (kl) else if kzun < kl < kzlnax7
ba(krar) otherwise.

I I| I I € I€ |I€ | | | <

y" (ky) =

<_1+ (1 —042) 1—}—/{52(1 —k3)2 (6 l—l—k‘g(l —k‘g)Q >
Vil + k) (1= a2)? + a3 \/(k1 + ka)(1 — a2)? + a3

154

1-— k1(1 — k3)2 + k2 k(1 — k3)2 + k2
Ty (i Gk 23R GV P 8 AVA L Gl S
- V (k1 + k2)(1 — a3)? + o3 V (k1 + k2) (1 — a3)? + o3
() = (0 =0) P B R)

1 + ymvn) + kl(mvn)2 + k2(1 + ymzn k3)2 .
bs ki) = 1+ mvn + \/(2 , min ,
y " (k1) (() T Ys

, a3 1—ko(2 — k3 + 28) (ks + 21)
ki =— 2 + “1 L i € {min, max},
! (1 — ag)? (14 2%)2 { !
Zmin — mln{ymax %yénam -]-7 %} if a3 > Qg
1 mln{ymaaf’ 10{;!2 maxr __ 1} if Qs < g
max { min - min 1 a1
z = max — S ———
1 Y1) o Ya ’ 1— a1 — as
) k3(1—as)®—(z54ks)*(ko(1—as)®+a3) .o
ks = (1+23) (= 1425+2ks) (1—as)? %f s > 02 , 1 € {min,max},
—00 if ag < an
min max —ks + (1 — 1+ ymaw
g = mingypres, o (10T,
Lmar max{ymzn k3 + (1 - 063)(1 + ygnzn) k3051 1- k3(1 — 042) B 043}
2 Q3 ,1—OZ1—OZ3, Q3 — Qg ’
) —ko(k min 1 7 1 2 min)
ki = 2(ks +y1"") (j'i y‘nf;iiz;))Q(T2y T+ 24)7 i € {min, max},
1
min min P2 mzn p3y{nln + k3
- 1 pavi T
24 mln{y ’ 1— (+)a 1— 03 }a
1
Zzlnax — max{yma:r 14+ " P1 mzn}
i (L Y3")? + ka(ks — 2(1 +y5"™) — 25) (ks + 25) i € {min, maz}
° (1+28)(1+ 295" + 22) 7 ’ 7
1 , ks + (1 — ag)(1 + y5n
Zgnzn _ mln{ymaT7 a2 ygn,zn o 1’ 3+ (0[3)(+ Yo)}’
0&2 Qa3
Zgnaac _ maX{ymzn’ T (1 + ymzn)}.

C.3 Proof of Lemma 7.2

Below we give the proof of Lemma 7.2. This lemma is given on page 74.
Proof. Lets consider a trajectory defined on the time interval [0, 00) where a queue is not emptied at

least once or where the duration of the green periods is not always the same for a signal. Lets call this
trajectory the ’original trajectory’. In Figure C.11a we can see an example of the original trajectory.

155

We introduce the following notation for the average duration of g¥, %, g™* and g/*:

Mok

g, = li =L g .24

g Ml;n@f e i €N, (C.24a)
M 'f’k

o= lim Y AL e N, 24D

ry = lim Dy, ieN (C.24b)
M A

Y . i .

t =1 .24

g; = Jim_ i i g EN, (C.24c)
Mk

o . i .

gt = N}linoo E R eN. (C.24d)

(C.24e)

We can propose an alternative trajectory where a queue is always emptied during a green period and
where the green time of a signal is always the same (see Figure C.11b). For this alternative trajectory
we take the green times and red times of signal i € N equal to respectively g; and 7;. We serve signal
i1 € G1 during the red period of the signals in G5 and we serve i3 € Go during the red period of the
signals in Gj.

We can show that the costs J related to this alternative trajectory are not greater than the costs
related to the original trajectory.

My
First we prove that the limits in (C.24) exist. We assume that the limits N}im g, i € N exist
— 00 k=1

M
and that the limits lim 3 %%, ¢ € A exist (see Section 7.2.3).

M—o0 k=1

Whenever signal ¢ € N satisfies \;7; # (i — A\;)g!" for the original trajectory, this means that the
queue length of queue i would go to oo or —oo because:

M
im zi() = T s — Mg = T o — (s — M)
Jim ;(2) A}gnoo;(&n (i = Ai)gi™) = lim M, (AiFi = (i = Ai)gl)-

Note that we have used that each green time of signal i is finite. A queue length must be a non-
negative number and therefore a trajectory where a queue length goes to —oo is not feasible. Further,
whenever a queue length goes to oo, the costs calculated with (7.1) are infinite. Hence, it must hold
that:

NiT; = (/J,l —)\Z)gf,l =1,2. (C25)

Thus, the amount of traffic that arrives during a red period of signal i € N is equal to \;7; and we
can let this amount of traffic depart during a period equal to exactly g/'. As a result, from g; = g!' + g
we can obtain that for the alternative policy the length of the slow mode is equal to g} during each
green period. From (C.25) we can see that g!' exists (because 7; exists) and from g; = g’ + g} we know
that gf‘ exists. Hence, g;, 7, gj and g!' all exist.

Also note that the alternative trajectory is always feasible. First of all, the green periods of the
alternative trajectory (with duration g;) always take longer than the shortest green period of the original

156

trajectory. Second of all, the green periods of the alternative trajectory (with duration g;) always take
shorter than the longest green period of the original trajectory. Furthermore, the maximum queue
length are less for the alternative trajectory than for original trajectory. As a result, whenever the
original trajectory satisfies (7.3d) until (7.3k), the alternative trajectory does as well.

Now we prove that the costs related to the alternative trajectory are not bigger than the costs of the
original trajectory. We use bgg,k, k> 1 and b,x, k > 1 for the time at which the green period g¥ starts
respectively the time at which the red period r¥ starts. Further, we use € gutes k > 1 for the time at

which queue i is emptied during g* and we use e,.x, k > 1 for the time at which 7* ends. We distinguish
three different areas (see Figure C.11): A¥ k> 1, A5, k> 1 and A%, k> 1.

Ak = / T a(t) — i (b)), =t
b ok ’

Ak — / " (@alt) — wile,)dt, k21,
bk '

Af = @by) (egur = byun) + @ile s)(epr —byp), k=1,

In Figure C.11, A% is visualized in dark gray, A% is visualized in medium gray and A% is visualized
in light gray.

:L‘z(t)

2

X3 1 72

: [T 2T 3 w3 : ‘
RN R I R SN 9i ‘ i ‘
time —> time —»

(a) Queue length of signal ¢ for an example of the original (b) Queue length of signal ¢ for the alternative trajectory.
trajectory.

L2 (g Loghd
9 g0 90

Figure C.11: Visualization of the original trajectory and the alternative trajectory.

Because the queues are always emptied for the alternative trajectory, it holds that A5 =0, k > 1
for this trajectory.

Now we prove that the costs related to signal ¢ and made during only the red periods are not bigger
for the alternative trajectory than for original trajectory. Thus, we only consider the signal during the
red periods of signal ¢ € N, i.e. we cut out the parts where signal 7 is green (see Figure C.12a).

Now we can shift each and every red period towards the time axis for the original trajectory, i.e.
removing the areas A%. Note that since f; is strictly increasing, shifting the red periods of the original
trajectory towards the time axis cannot increase the costs related to the red periods of signal i.

157

On the left side of Figure C.12b we can see AY and A’f“ plotted for the shifted original trajectory.
Without loss of generality we can assume that the first red period r¥ is longer than the second red

k1 rkprktl
Q 2

period r for two adjacent red periods. When we take both green times equal to we get the
areas AY and A’f“ as can be seen on the right side of Figure C.12b. We can see that the dark gray areas
are the same and that the medium gray areas differ (the difference is the light gray area). Since f; is
strictly increasing, taking the red time of two adjacent red periods equal to each other cannot increase
the costs related to the red periods of signal i. Hence, taking all red periods equal to each other cannot
increase the costs related to the red periods of signal i. Note, that the costs, of this shifted trajectory
where all red periods are equal to each other, are exactly the costs made during the red periods of the
alternative trajectory. Thus, the costs related to the red periods of the alternative trajectory cannot be
bigger than the costs related to the red periods of the original trajectory.

i k+1 |
i A3 |

k+1
9; T

time —

(a) Visualization of only the red periods of the
original trajectory.

x;(t) z;(t)

> I —
k41

T r;

time —» time —»

(b) Left: visualization of the shifted red periods of the original trajectory, right: 2 equal red periods instead
of 2 unequal red periods.

Figure C.12: Comparing the costs made during the red periods for both trajectories.

In exactly the same way we can show that the costs related to the green periods of signal i € N
cannot be bigger for the alternative trajectory than for the original trajectory. Hence, the costs of the

158

alternative trajectory are not bigger than the costs of the original trajectory.

Thus, whenever we are given a trajectory that does not satisfy the property given in this lemma,
we can always give an alternative trajectory that does satisfy this property and that works at least as
good. Hence, there must be an optimal trajectory that satisfies the property given in this lemma. m

159

Appendix D

Proof of Proposition 8.1 (Regulation)

Below we give the proof of Proposition 8.1. This proposition is given on page 95. Before reading this
proof we advice you to read the overview of this proof given on page 8.1.

In this overview we used five different reasons to switch signal i7/,c = 1,2 to red: switch.la,
switch.1b, switch.2, switch.3a and switch.3b. In Section D.1 we elaborate on these different reasons to
switch a signal from green to red. In Section D.2 we present some notation and definitions used in the
proof of Proposition 8.1. All lemmas used in this proof are shown in Section D.4.

D.1 Different reasons to switch

In this section we show 5 different reasons to switch a signal to red.
Recall that 7; is used for the time that has elapsed since the last mode change of signal i € N.
When signal 7%/ is green, we use 7§, for the smallest value of 7, for which condition C' €

{1.1,1.2,1.3,2,3} is satisfied during this green time. See Section 8.3.1 and Section 8.3.2 for more

information about these conditions. Further we use 7., , for the smallest value of T;9.s for which

ic
conditions 1.1, 1.2 and 1.3 are all satisfied:

1 _ 1.1 1.2 1.3
Ti.q,f - maX{Tig,f) Ti.q,f) Ti.q,f .
e c e e

We switch the signals in the set G, for the following reasons:

switch.l We switch because of the reason switch.1l whenever we switch signal Tii’f to red when Til_q_f <

2 ATL . <713 .. We split switch.1 into switch.la and switch.1b:
i 2 ic

switch.la We switch because of the reason switch.la whenever we switch signal Tii’f to red when
Tilg‘f < Té‘f A Tilé,,f < T%,f and Jiz € Gz (xiﬁ(t) > xft)
switch.1b We switch because of the reason switch.1b whenever we switch signal Tii’f to red when

Tilg‘f < TEg.f A Tili,,f < TZ,,f and Vig € Gz (xiﬁ(t) < xft)

switch.2 We switch because of the reason switch.2 whenever we switch signal T[C’f to red when Ti%,,f <
7'1,1_3, ; /\7'1,2_3, ; < Tﬁz ;- Thus, we switch because otherwise the maximum green time would be exceeded.
switch.3 We switch because of the reason switch.3whenever TZ,,f < Tili,,f /\TZ,,f < Ti,,f. Thus, we switch

because otherwise a queue would overflow. We split switch.3 into switch.3a and switch.3b:

161

switch.3a We switch because of the reason switch.3a whenever we switch signal Tii’f to red when

3

T < Til‘q,f A Tﬁ,.f < Ti%,,f and the queue(s) that would overflow first if we do not switch,

was (where) not emptied during its (their) previous green time. In Figure D.1 we show the
situation where we switch signal 1 to red because of the reason switch.3a. The queue of
signal i3 € Gy would overflow if we did not switch signal 1 to red. We can see that during
the previous green time of signal i2, queue i2 was not emptied.

switch.3b We switch because of the reason switch.3a whenever we switch signal Tii’f to red when

3

Tios < Tilg.f A Ti?;,f < ng.f and a queue that would overflow first if we did not switch, was

emptied during its previous green time. In Figure D.2 we show the situation where we switch
signal 1 to red because of the reason switch.3b. The queue of signal is € Go would overflow
if we did not switch the signal 1 to red. We can see that during the previous green time of
signal i2, queue i was emptied (points 2 and 3 could also overlap).

max \
12 5

xT

max

L, — Ol,iy >‘i2

O Ve
—>
0 1 x'{nam

Figure D.1: Visualization of the switch reason switch.3a.

162

max

12
max

= 01,05 Aiy

0 $1_>

Figure D.2: Visualization of the switch reason switch.3b.

D.2 Notation and definitions

In this section we introduce some notations and definitions.

D.2.1 Referring to Signals and Sets

With ¢; and [; we refer to two different signals in the signal group Gi:

11 € Gy, l € G, i1 # 1.

With iy and Iy we refer to two different signals in the signal group Go:

ia € G, Iy € Go, ig # Ia.

Further we use:

c=1,2,

_ | 1 ife=2,
€=\ 2 ife-l.

Using ¢ and ¢ we are able to express to cases at once: the case where ¢ = 1 and ¢ = 2 and the case

where ¢ = 2 and ¢ = 1.

Further, we use i to refer to a signal in the set G. which queue length is equal to x;"*" at the start

of gfc . Queue i, is active whenever a queue i. reaches its maximum queue length.

D.2.2 Green times and Red times

We use gF, i € N to refer to the kth green time of signal i € V. We assume without loss of generality
that we start serving the signals in signal group 1. Further we use r; for the red period of signal i that

comes between the kth and (k + 1)th green period of signal i:

163

7‘?1 = gg + Ty in i s i1 € G1,12 € Ga, (D.la)
ko k1 : ‘
T =05+ i, 01 €G1iz € Ga (D.1b)

From D.1 we can obtain that the green periods are related according to:

gfl + i1 ,inyin — gil‘cl + 014 ,ia,l1 11, Iy e gla i3 € g2; (D'Qa‘)
95+ Oy s = 95+ i ain i1 € G1, 2,1l € Ga. (D.2b)
f(k)

When using ¢ and ¢ we use that g;_

k if c=1,
Fk) = { k+1 if c=2.

Further, we split up g¥, i € N in gé"k and g{\’k. We use g;"k for the length of the slow mode at

signal 7 during the kth green period of signal i and we use gf’k for the length of the interval during the
kth green period of signal 7 during which the queue of signal 7 is not empty.

comes between gfc and gffl. We can find:

Further, we use gflbf’h to refer to the green time of signal i; of the pure bow tie curve in the

(i1,12)-plane and we use gf;b;l to refer to the green time of signal i of the pure bow tie curve in the
(i1,12)-plane:

O (D-3a)
gy, = et ‘ip ’“_p;iQ. (D.3b)
Further we use:
g" = max g}, (D-4a)
gr," = max gb%, . (D.4b)
(D.4c)

From Lemma D.17 we know that the queues in the set S. are the only queues in G. that could go
from empty to their maximum queue lengths without exceeding a maximum queue length and that a
queue is € S, can only go from empty to its maximum queue length whenever all queues in the set S,
go from empty to their maximum queue lengths.

max

It must hold that 7}]‘2 < w; , is € S¢, Yk > 1 because otherwise the maximum queue length of
queue i, (and the maximum queue lengths of all other signals in the set G.) would be exceeded. Hence,

max

using (D.1) we can see that the green time of signal i. cannot be larger than w)\l — g iy ies bs € Sz
Hence, we can find that:

164

gfc S glnzaT’ ic S gc; (D5a)

k ~max .
i ST, ic €Ge, (D.5b)
where
xma"r
~max : x Vs : .
" = min{git®, —— = i} ic €Ge, s €Sz (D.5¢)
1s
m(lfL‘
=~ x : x ls . . .
TZL(” = mln{gg(”’ s - Uiaisﬂiz} + Oz ic,iz lc € g(!a iz € gEv is € Sc. (D5d)
1s
~ . ~ e E
Note that gfa = g;"** = g;"** whenever sk = switch.2 and that gfa = g;"* = $ = i i ie

whenever s* = switch.3b. Further, note that:

f:?(” = gln_z(n" + Oipizios Vie € Ge, Viz € Ge. (D.6)

D.2.3 Definition of Cycle 1 and Cycle 2

In this section we introduce two different cycles. Cycle 1 starts when signal iﬁ”f switches to green and
ends when signal i{ J switches to green. Cycle 2 starts when signal ig’f switches to green and ends when

signal %'/ switches to green.
We can distinguish the following phases for the kth cycle 1.

phase 1 finish the setup oy, ;,, which still has a duration of o7

phase 2 perform gfl

phase 3 perform the setup oy, 4,

phase 4 perform gl]z

phase 5 Perform the setup o;, ;, until the signal if’f switches to green, which has a duration of Ty it -

We can distinguish the following phases for the kth cycle 2.

phase 1 finish the setup oy, ;,, which still has a duration of o7 *
phase 2 perform gZ.

phase 3 perform the setup oy, ;,
phase 4 perform g’ﬁl

2

phase 5 Perform the setup o;, ;, until the signal ig’f switches to green, which has a duration of Oy o -
i)

We use x’fz for the queue length at queue i, € G. at the beginning of the kth cycle 1. Similarly,

we use x5 ; for the queue length at queue i. € G. at the beginning of the cycle 2. We can find the
5 ;. for the q length at q i € G. at the beginning of the kth cycle 2. Wi find th
following expressions:

ATl =t — a2l = (g8 + 00, i) A — 9" (s, — M), (D.7a)
ATl =2t — a2l = (08 + 00,00 A — 905" (13 — Nia), (D.7b)
Akl = ot —ab = (g5 + 04, i) N — g0 (1 — M), (D.7c)
Akl =gt —ab = (g5 4 0y i)i — 00 (B — Mia).- (D.7d)

165

smax N
:I:l ’Lz

(xl 111’ xlf 121)

k k
T1,iqs 1’1,12)

/

SMAn > Fmazx
1 Ty Ty ,i1

Figure D.3: Mapping of cycle 1. The mapping is shown in dark gray. We show actual queue length in
light gray whenever it differs from the mapping.

Further we can derive:

xlf-il—ll = xIQC ,01 + (i + 912 + J ,i‘i]’f))\h’ (Dga')
xlgh = x’f@ + (res _|_g“ + o il,ig'fp‘lé' (D.8b)

D.2.4 Mappings

Instead of using the actual evolution of the queue length we often use mappings from the queue lengths
at the beginning of a cycle (either cycle 1 or cycle 2) to the queue lengths at the end of this cycle.

In the previous section we showed the phases that we distinguish for the kth cycle 1. For the
mapping from (x’f “1, ¥ 121) i1 €G1,i2€Ga k>0to (:c’f“ , x’f’h) we change the order of the phases to
the following order: phase 2, phase 1, phase 3, phase 5, phase 4 (see Figure D.3). Note that changing
the order of these phases does not change the queue length at the end of a cycle.

In Figure D.3 we show the mapping from (xlfgll, a:]f;;) 11 €G ,io€Ga k>1to (331 i T, m) The
actual queue length can range from zero to the maximum queue length. Hence, for this mapping the

feasible range of x;, is equal to:
[t)‘117 s _tf /\ :| = [xgnlzln’x;nlalf] :
For this mapping the feasible range of x;, is equal to:

maw _ ~min smax
[f)‘lza +0i2,i{)‘i2:| = [xl in 2 Ll,ig] .

In the previous section we showed the phases that we distinguish for the kth cycle 2. For the
mapping from (x’;“l,xg 121), i1€G1,i2€ G k>0to (xlg’il,x’ih) we change the order of the phases

to the following order: phase 2, phase 1, phase 3, phase 5, phase 4 (see Figure D.4).

166

smax N
1:2 ’Ll

(2555 255,)

k k
T2 ios 1’2,11)

/

5MEn > 5 Mmazx
1 Ty Lo ,i2

Figure D.4: Mapping of cycle 2. The mapping is shown in dark gray. We show actual queue length in
light gray whenever it differs from the mapping.

For this mapping the feasible range of x;, is equal to:

m(l’I‘ _ ~main Lmax
|: f)‘“’ 1115/\ :|_[x211’x211]'

and for this mapping the feasible range of z;, is equal to:
[t e =t | = [, @]

Using some of the introduced notation we can summarize (D.8) in one equation:

ol = abi + 07N A el (D-9)
Also note, that queue i, € G, is full at the beginning of gic iff x’j% = #Mae and that queue i. € G,
is empty at the end of g¥ iff xf(k) = x%"ff.

In Figure D.5a we show the mapping of the pure bow-tie curve. In Figure D.5b we can see the case
where the green time of signal i, exceeds gi 46 and the green time of signal iz exceeds gp bt4 and both
signals do not have a slow mode during these green times.

D.3 Proof of the Policy

In this section we prove policy proposed in Section 8.1 makes sure that a trajectory converges to the
desired trajectory. We use s* for the reason why we stopped the kth green period of the signals in the
set Ge.

We want to prove that every switch reason s k > 1 is part of a combination in the set Cj,
i=1,.. . Further, we want to prove that when sk k> n€ +1 (where n® is a finite integer) is part
of a comblnatlon in the set C;, i = 1,...,n, then sf() cannot be part of a combination C;, 1 < j < 4.
We explain later what the exact deﬁnitlon of n¢1 is. Further, we want to prove that only a finite number
of adjacent switch reasons can be part of a combination in the set C;, 1 < i < ny, — 2 (either with the
previous or the next switch reason).

167

SMat, \ SMat, \

C,te C,te
2 2
t \ t
L Liz 4
fﬂzzn ” 57“1“1 4
e . ~max e . ~max
oy T Lesic e T Lesic
(a) Mapping of the pure bow-tie curve. (b) Mapping when the green time of signal i. exceeds gfffiz,
the green time of signal iz exceeds gf;ti(and both signals do
not have a slow mode during these green times.
First of all we want to prove that s¥, >1 is a part of combination C;, i = 1,...,ns. In the simplified
p cr e p))) p

overview of the proof (on page 95) we told that we consider combinations of 2 subsequent green periods.
However, this is not entirely true. In fact we consider combinations of 2 subsequent green periods in
combination with some knowledge about queue lengths. In Table D.1 we have shown the combinations
that we consider. Further, in this table we have shown these combinations are partitioned in the sets
Ci, i =1,...,ns. Note that we consider all combinations of two subsequent switch reasons shown in
Table D.2. In Table D.3 we can see all possible combinations of three subsequent switch reasons. In
this table we can see that s¥ is always part of a combination, except for the cases 37, 53, 60 and 61.

~mazx N
Tik
Lmax
TZH = Nk Ok i i

Tk
ZC
Smin
ik 4
~min 1"__’ 5.max
ULl iz ULy
xc,zz € zc,lﬁ

Figure D.5: When sg(k)% — sk — sg(k) = switch.3a — switch.la — switch.2 then it holds that
sk=1 = switch.3a if k > 1

168

Combination s — s—(k) A In the set

& switch.la — switch.la - Ciu1
Csy switch.la — switch.1b - Ci2
switch.la — switch.3a - not possible !
Cs switch.la — switch.3b - Cio
Cy switch.1b — switch.1b - Cia
Cs switch.2 — switch.la - Co
Cs switch.2 — switch.1b - Ci2
Cr switch.2 — switch.2 max Azl <OoA max Amk“ <0 Cy
€0, e ic€Ge
Cs switch.2 — switch.2 magx Axffi[l >0V magx Amkﬂ >0 C
iz€G, e iz€0z
Cy switch.2 — switch.3a max AzFt1 <0 Cs
iz€Ge e
switch.2 — switch.3a max AzFt1 >0 not possible 2
iz€Ge e
Cho switch.2 — switch.3b magx Axffi[l <0 Cs
€6, e
C1 switch.2 — switch.3b magx Axffi[l >0 Cy
€0, e
Cio switch.3a — switch.1b - Ci2
Ci3 switch.3a — switch.3a - C1
Cha switch.3a — switch.3b magx Axff;l <0 Cs
iz€G, ’
Chs switch.3a — switch.3b magx Axff;l <0 Cu
iz€G, ’
Cis switch.3b — switch.1b - Cia
switch.3b — switch.3b max AmkH < 0V max Axff_l <0 not possible *
ic€Ge iz€Gz :
Cir switch.3b — switch.3b max AwkH = 0 A max Axff_l =0 Cs
ic€Ge iz€Gz
Cis switch.3b — switch.3b magx Amff_l >0 Cy
€0z
Cho switch.3b — switch.3b max AwkH >0 Cy
lcegc
1 From Lemma D.1 we know that this combination is not possible.
2 Whenever g].C is stopped for the reason switch.2 and gf(k) is stopped for the reason of switch.3a then max A1k+k 1 >0
e ic€Ge c ‘c+
(because a queue in the set G has reached its maximum queue length at the start of qk+1) oFi = 9maY > 9.k+1 (because
ik i ik
of inequalities (8.1h) and (8.1k)) and g" k+1 =g "k+1 (because otherwise we stopped because of switch.3b instead of switch.3a).
Now we can see from Lemma D.18 that when 5 f(k) = switch.2 — switch.3a then it holds that ineaéc AJ. iz <o
3 160 ‘ k1

Whenever gf is stopped for the reason switch.3b and gj < oV

max AcFtl
is€0s ke

is stopped for the reason switch.3b then max Ax

ic€Ge cyic

< 0 cannot occur. First of all, there is a queue in the set i € G, that has a maximum queue length at the

start of gk+1. Hence, AzFT!l > 0. Furthermore, because we stop ¥ for the reason switch.3b, there is at least one signal

iz that is emptied during gJ | . This signal satisfies 2 ,_ = im}f. In general it must hold that T’L‘ i 27 “Z"ff iz € O,
Jiz . 2 2

E>1 (TL io < i'g‘;f implles a negative queue length). Hence it holds that the signal that satisfies T’L‘ e = “le” also satisfies
yig s

Az’c“‘*;l > 0. Therefore max Am’;‘i'_l > 0.
T

Table D.1: The combinations that we consider and how we partition these combinations into sets.

169

f(k)

k
Sc—>SE

switch.la — switch.la
switch.la — switch.1b
switch.la — switch.3a
switch.1la — switch.3b
switch.1b — switch.1b
switch.2 — switch.la
switch.2 — switch.1b
switch.2 — switch.2

9 switch.2 — switch.3a
10 switch.2 — switch.3b
11 switch.3a — switch.1b
12 switch.3a — switch.3a
13 switch.3a — switch.3b
14 switch.3b — switch.1b
15 switch.3b — switch.3b

0O Uik Wi

Table D.2: We consider all combinations of two subsequent switch reasons shown in this table.

170

Table D.3: All possible combinations of 3 subsequent switch reasons. When s¥ — s

case SJE=1 kL, S(R) comment
C c C
e e
1 switch.1b — switch.1b — switch.1b
_—
e e
2 * — switch.1b — switch.1b
—_—
3 * — * — switch.1b
e e
4 switch.la — switch.la — switch.la
_—
e e
5 switch.la — switch.la — switch.2
e e
6 switch.la — switch.la — switch.3a
—_—
e e
7 switch.la — switch.la — switch.3b
_—
8 switch.la — switch.2 — switch.la
[—
9 switch.la — switch.2 — switch.2
[S ——
10 switch.la — switch.2 — switch.3a
—_—
11 switch.la — switch.2 — switch.3b
_—
—_—
12 switch.la — switch.3a — switch.la
e e
13 switch.la — switch.3a — switch.2
e e
14 switch.la — switch.3a — switch.3a
-
e e
15 switch.la — switch.3a — switch.3b
_—
e e
16 switch.la — switch.3b — switch.la
e e
17 switch.la — switch.3b — switch.2
—_—
18 switch.la — switch.3b — switch.3a
—_—
19 switch.la — switch.3b — switch.3b
—_—
—_—
20 switch.2 — switch.la — switch.la
—_—
21 switch.2 — switch.la — switch.2
~
22 switch.2 — switch.la — swi .3a
—_—
~
23 switch.2 — switch.la — switch.3b
—_——
24 switch.2 — switch.2 — switch.la
—_——
25 switch.2 — switch.2 — switch.2
—_——
26 switch.2 — switch.2 — switch.3a
e N |
27 switch.2 — switch.2 — switch.3b
—_—
28 switch.2 — switch.3a — switch.la
e N
29 switch.2 — switch.3a — switch.2
—_—
30 switch.2 — switch.3a — switch.3a
—_—
31 switch.2 — switch.3a — switch.3b
—_—
—_—
32 switch.2 — switch.3b — switch.la

I(k)

c

is in Table

D.1 this is visualized with braces. * means that this switch reason can be either one of the five switch
reasons except for switch.1b. Note that for case 3, sg(k)fl — 5" could also be a combination from Table

D.1.

171

case S ok SR comment
I c ra
—_—
33 switch.2 — switch.3b — switch.2
—_—
34 switch.2 — switch.3b — switch.3a
—_—
35 switch.2 — switch.3b — switch.3b
—_—
36 switch.3a — switch.la — switch.la
—_—
37 switch.3a — switch.la — switch.2 for more information see footnote !
38 switch.3a — switch.la — switch.3a
_—
39 switch.3a — switch.la — switch.3b
o ———
40 switch.3a — switch.2 — switch.la
N ———
41 switch.3a — switch.2 — switch.2
—_—
42 switch.3a — switch.2 — switch.3a
-
43 switch.3a — switch.2 — switch.3b
_—
—_——
44 switch.3a — switch.3a — switch.la
—_——
45 switch.3a — switch.3a — switch.2
—_—
46 switch.3a — switch.3a — switch.3a
_—
—_——
a7 switch.3a — switch.3a — switch.3b
_—
—_—
48 switch.3a — switch.3b — switch.la
—_—
49 switch.3a — switch.3b — switch.2
—_—
50 switch.3a — switch.3b — switch.3a
_—
—_—
51 switch.3a — switch.3b — switch.3b
_—
52 switch.3b — switch.la — switch.la
_
53 switch.3b — switch.la — switch.2 not possible. See footnote 2
54 switch.3b — switch.la — switch.3a
—_—
55 switch.3b — switch.la — switch.3b
_—
56 switch.3b — switch.2 — switch.la
S —
57 switch.3b — switch.2 — switch.2
—_—
58 switch.3b — switch.2 — switch.3a
S ———
59 switch.3b — switch.2 — switch.3b
—_—
60 — switch.3a — switch.la not possible. See footnote 3
61 ; — switch.3a — switch.2 not possible. See footnote 2
62 switch.3b — switch.3a — switch.3a
_
63 switch.3b — switch.3a — switch.3b
N— ————
—_———
64 switch.3b — switch.3b — switch.la
—_——
65 switch.3b — switch.3b — switch.2
—_——
66 switch.3b — switch.3b — switch.3a
—_——
67 switch.3b — switch.3b — switch.3b
—_—
! In Figure D.5 we show the case where s2() ™1 & oB F(F) — uitch.3a - switch.la — switch.2. We use
i¥ to refer to the queue that is full at the start of g¥ . From ST ok — switch.3a — switchla we know

k

that we could always empty queue 7’; during a green time of _z;;’é‘”‘ (because we where able to empty queue i

during g). Furthermore, from sé(=1 _ switch.3a, we know that queue i¥ was not emptied during gkt

ic C c
Therefore s¥~1 = switch.la, s#~1 = switch.1b are not possible (if k > 1). Further, s¥~1 = switch.2 and
s#=1 = switch.3b are not possible if k > 1 because we could always empty queue i¥ during a green time of
@7, Hence, it must hold that sk=1 — switch.3a.

2 From Lemma D.2 we know that this sequence of switch reasons cannot occur.

3 From Lemma D.3 we know that this sequence of switch reasons cannot occur.

is in Table D.1

Table D.3: All possible combinations of 3 subsequent switch reasons. When s¥ — s
this is visualized with an braces. * means that this switch reason can be either one of the five switch

reasons (except for switch.1b). Note that for case 3, sg k-1

Table D.1.
172

— s¥ could also be a combination from

We can prove that cases 53, 60 and 61 cannot occur (see the footnotes of Table D.3). For case 37 we
can prove that when this combination of three subsequent switch reasons occurs then sk L = switch.3a
if & > 1 (see the first footnote of Table D.1). Thus, if case 37 occurs and k& > 1 then sf(k) Y
part of a combination in the set C;. Further, sg(k) is part of a combination Cj, j = 8,9,...,17 (see
Table D.1). Hence, sf(k) is part of a combination in the set C;, i = 2,3,4,5,6,7,9,11. Whenever
sg(k)_l — sk — sf() = switch.3a — switch.la — switch.2 occurs then we define sk to be part of a
combinatlon in the set Co (however according to Table D.1 it is not). Because of this definition, it still
holds that every switch reason s*, k > 1 is part of a comblnatlon Ci,i=1,2,...,25.

The first problem is that we have to prove that when s¥ k& > n¢ + 1 is part of a combination in
the set C;, i = 1,...,n, then sg(k) cannot be part of a comblnatlon in the setC;, 1 < j < i. Note that
this holds for sg(k)ﬂ — sk sg(k) = switch.3a — switch.la — switch.2 (case 37). We use n°! for
the smallest number k& > 0 such that s¥ is not part of a combination in the set C;. We can prove (see
Section D.3.1) that nt is finite and that s5, K > n¢ and s¥, k > n¢* cannot be part of a combination
in the set C; anymore.

The second problem is that we have to prove that only a finite sequence of switch reasons s’j
part of a combination in the set C;, 1 <i <mnz, — 2.

In sections D.3.1-D.3.12 we consider these two problems for the sets C; until Cys.

can be

D.3.1 s* is part of a combination in the set C;

For the set C; we have to show that an infinite number of adjacent switch reasons s* that are all part
of a combination in the set C; is not possible.
1 F() 2 1@

In this section we assume an infinite sequence sy — 32 — 8] — 5 - = switch.3a —
switch.3a — switch.3a — switch.3a — We prove that 97: < gf“ Vk >0 Vzc S gl UGs. Hence, an

infinite sequence s* — sf(k) = switch.3a — switch.3a — ... is not possible because eventually
the green times are too blg for switch.Sa to occur.

Increasing green times

We show that gF < gk‘|r1 Viy € G1, Vk > 0 and that gF < gk'|r1 Vis € Go, Vk > 0 by distinguishing the
following two situations:

. . F(k) bt
situation 1 ¢’ g > gpf(,c)+1 ey

bt
situation 2 gff((k))+1 < g f(lc)+1 ke

We prove that in situation 1 it holds that gi < gf“ Vi. € G. and that in situation 2 it holds that
g < git', Vi, € G.. Hence, it follows that g¥ < gi*', Vii € G, Vk > 0 and that g& < gi't", Vij € G,
Vk > 0.

We have visualized situation 1 and situation 2 in Figure D.6.

173

smax AN
x
cﬂ.é(kHl
3
~max
%041 — A F0+10 F00+1 ka1 F(R)+1
[~ 1z e sle e
sl [c c 5
1
T 4
T f(k)+1
‘e
~min
x
c,ié(’“Hl /
~min xT. —)
T k+1 z’f.Jrl smaz
Cyle .’EC ikJrl
e
(a) Situation 1
~ . N
max
x
c’ié(’le
~max
T — Ay o : 5
e (B+1 L F1O 1)+ k1 57 (R)+1
1T [c c
4
N s/
T 6
Tfk)+1
T
~min
x
c,ié(k)+1 /
~min _}
xc ikl $i§+1 ~max

sle

(b) Situation 2
Figure D.6: Situation 1 and situation 2
We can distinguish the following sections:
1 between point 1 and point 2, ngl is performed.

2 between point 2 and point 3,thé setup o s(+1 k41 k)41 is performed.
e sbe e

174

3 between point 3 and point 4, gff((],?)ﬂ is performed.
iz

4 between point 4 and point 5, gﬁtll is performed.

Using (D 7a) and (D.7d) we can find that in situation 1 point 1 is positioned above point 4 because

f(k) 1, f (k) f(k) Fk)+1

g; i > gP m>+1 o (see definition of situation 1), g, simn = =g 04 (queue iz is not emptied

durlng gff((,c))+1 since shT! = switch.3a) and Ax’”,}+1 >0 (because queue "1 is full at the start of

g’“ktll) Further point 2 cannot be positioned above point 5 (otherwise the maximum queue capacity

would be exceeded). Hence, g ko1 < gkktll The green periods are related according to D.2. Hence,

1
gfkﬂ < gﬁﬂ also means gi < glJr Vie € Ge.

In situation 2, it holds that g: f((,c)Hl < g’%w o which could happen only if g b S <4 kﬂ IO

(Between the points 2 3 and 6 We shows the mapplng of the pure bow-tie curve). We can see thls us1ng
(D.7a) and (D.7b), g f(lc)+1 < g f(,c)“ e (see definition of situation 2), g"j(f,‘()ﬁ1 = gff((i)Hl (queue zf(k)ﬂ
is not emptied during g/ f((,c)Hl since sk‘“ = switch.Sa) and Amkﬂ.ﬂl >0 (because queue i**1 is full at the

start of gk,ctll) Thus, it Tholds that g5 i < " k+1 FCRE However, it must hold that glitll > gp,f’il e

because otherwise no convergence is possible (see Section 8.2). Hence, g ko1 < gk,ctll The green perlods

are related according to D.2. Hence, gﬁ,H < gkkﬂ also means gi < gf“ Vi, € gc.

Hence, we know that gF < gk‘|r1 Vi1 € G1, Vk > 0 and that gF < ng'1 Vig € Ga, Vk > 0.

Now we know that for an infinite sequence s — sf() ... = switch.3a — switch.3a — ... the
green times keep increasing. We want to show that eventually the green times are too large for switch.3a
to occur. However, when the green times of all signals increase, it can be the case that these green times
converge to an asymptote. For example the series 1,1+ 3,1+ 3+ 1, 144+ 3+4,1+3+1+5+ 15, -
is increasing. However, this series has an asymptote at 2.

We want to exclude that the green times converges to an asymptote. To this end we first show that
for each set G; and Go, the queue that is active can only change finitely many times, i.e. the queue that
reaches its maximum queue length can only change finitely many times. Hereafter, we prove that when

the queue that is active does not, change anymore for both sets (see Figure D.7) then Angr1 = gf“ —gfc,
Vi, € G, increases for increasing gic. As a result we cannot converge to a asymptote.

The Buffer That is Active in G. Can Only Change a Finite Number of Times

Now we show when the active queue in the set G. can change. When, x’(f’i =T8N :c e < Tk,
ic € Ge,je € G and x“l < EPEA xkjcl = B, ic, je € Ge (the queue that is active changes from i,

to j.), then it must hold that AmkH < 0 and Axk"’l > 0. Hence, using g; m < glc gi’k = gf (because

if j. becomes active when g“ P < gk then the s1gna1s would switch for the reason switch.3b and not

for the reason switch.3a), (D 7a), (D 7d) we can find that for an infinite sequence of switch.3a switch
reasons the active buffer can change from i, to j. whenever we satisfy the following strict inequalities:

(gf;(k) + Oivivic)Nie < g0 (i, — i), (D.10a)
k
1™ + 0 img)N > 95 (. — N (D.10b)

175

Using (D.2) we can see that we can find a value for gf;(k) that satisfies the inequalities in (D.10) if
and only if:

gf;(k)aimjc — bic,jc > 0, (D].].)

where

Pj. Pic
L—pj. 1-pi.’
_ Oicyiyic Ojesicje

1- Pie 1- P2

Fic,je =

bi, j.

Thus whenever signal i. is active then j. can become active if (and only if) the inequality in (D.11) is
satisfied. We can represent which signals could become active using a transition system. This transition
system has the states 1,2, ..., N, where N, is the number of signals in the set G.. The state represents
which of the queues is active. The transitions between these states represent which signals could become
active. We could make a transition from state i. to the state j. whenever the inequality (D.11) holds.
Note that the following holds:

Qic,je = ~jeyics (D.12a)

bic.jo = =bjeic- (D.12b)

Hence, it holds that whenever g{(k)aic,jc —b;, j. > 0 then g{;(k)ajmic —bj,:. < 0. Thus whenever a

transition from i, to j. is possible then a transition j. to 4. is not possible
We distinguish two different transitions.

c

type 1 we make a transition from the state i. to the state j. and a;,;, > 0.
type 2 we make a transition from the state i. to the state j. and a;_; <O0.

First we consider the first type of transitions. Because gif;k) increases for increasing k and because
Qj,.is = —Qj, iy, We can see that whenever we make a type 1 transition from i. to j., from that moment

on it holds that g;;i(k)ajmic —bj..i. <0. Hence, we cannot make a direct transition from state j. to the
state i, anymore.

Lets consider an indirect path from the state j. to the state i. via the path I' — 2 — ... — "
where I' = j, and {® = 45. Thus, from the state j. we make a transition to the state {2 and from the

state [? we make a transition to the state [* etcetera. Using (D.12) we can derive:

m=n
k k
g;,fz()ajmic — bjmic = Z (glff()alnL’lnL+1 — bl'm’l'm#»l) < 0 (D.IS)
m=1

Hence, Im : gi);(k)a,lm’lm-f—l — bym ym+1 < 0 and thus every path from j. to i. contains a transition
that is not possible. In conclusion whenever we make a type 1 transition out of the state i., we can

never reach the state i. again. In other words, the signal i. can never become active anymore (when
IR ... = switch.3a — switch.3a — .. D).

considering the infinite sequence s¥ — s.

A type 2 transition from the state i. to the state j. is only possible whenever b;_ ;. < 0, i.e. when
Zizimde ~, Ziedmie Thys, when there are Nyeqehapie reachable states then we can make maximally

1=pj. 1-pi. o)
Nyeachable — 1 type 2 transitions in a row.

176

Thus, we can make maximally Ny.cqchapie —1 type 2 transitions in a row (and then the next transition
has to be a type 1 transition). Whenever we make a type 1 transition out of a state we can never reach
this state again (number of reachable states decreases with at least one). Hence, we cannot make more

than S i = w transitions (and thus the active queue in the set G. cannot change more than
i=1
w times), which is finite when we assume N, is finite.

The Green Times Cannot Converge to a Asymptote

Now we prove that when the queue that is active does not change anymore for both sets (see Figure
D.7) then Agi ™! = gF™ — gF Vi, € G. k > 0 increases for increasing g¥ . Lets assume queue i* € G,
is the active queue in G. and assume that queue ig(k) € Gz is the active queue in Gz and

We can distinguish the following sections:

1 between point 1 and point 2, g . is performed.
2 between point 2 and point 3, the setup o,) gk) is performed.

3 between point 3 and point 4, gff((,c)) is performed.

4 between point 4 and point 5, gik. 1 is performed.

5 max N
xT
c,ii(m
e 3
~maxr
T Ag® TG0 i 1 . 3
1 / ,,,,,
k+1
Az e
T 4 / 77777
L1 (k)
Fmin
xc 2_<k>~ g
l’ngl ik —> smax
Cylg c :L‘c ik
e

Figure D.7: when the queue that is active does not change anymore for both sets

*P —p, j(k)
k+1 k+1 k1
Using Ax =0 we can derive Ax o = Y o Hig o) + O ik (k) a9 - It is easy to see
c
A kt1 1— _
m,(k) ka P.f(k) .k.f(k-).k
that Aght! = —==— = git+!

B0 i Pikp, f(k) Pii(k)

The green perlods are related accordlng to D.2. As a result the green periods cannot converge to a
asymptote.

177

Eventually s* = switch.3a is not possible because eventually we satisfy eventually the green period
is long enough to empty all queues (with a finite maximum queue capacity) during their green period
(and therefore no queue in set Go can be active anymore):

Vi1 € Gi <xf1“” =ocoVgh > 1) .
My —)‘il

NN

Hence, an infinite sequence s% — sz -+ = switch.3a — switch.3a — ... is not possible.

Thus, n¢* (which is the smallest number for k such that s¥ is not element of a combination in the set
Cy) is finite. From Lemma D.4 and Lemma D.1 we know that whenever s’j is not part of a combination
in the set C; then sg(k) cannot be part of a combination in the set C;. Hence, s¥, k > n¢ cannot be part
of a combination in the set C;. Thus for Vk > n two subsequent switch reasons s’j — sz(k) cannot be

both equal to switch.3a.

D.3.2 s" is part of a combination in the set C,

In this section we consider the case where s* is part of a combination in the set Co.

Finite Sequence Using Lemma D.14 we can see that we cannot have an infinite sequence of switch
reasons s¥ where each switch reason is part of a combination in the set C.

Restricting Combinations We can prove that when s* is part of a combination in the set C; =
{C14}, then sg(k) cannot be part of a combination in the set C;.

F(k)

sz cannot be part of Because:

a combination in the set:

Cy If sg(k) is part of a combination in the set C; then it must hold that
sg(k) = switch.3a. From Lemma D.4 we know that s® — sg(k) —
skl = switch.2 — switch.3a — switch.3a is not possible.

D.3.3 s is part of a combination in the set C;

[

In this section we consider the case where s’g is part of a combination in the set C3 = {C14}

Finite Sequence From Lemma D.20 we know that whenever s& — sg(k) — skl sg(k)ﬂ =

switch.3a — switch.3b — switch.3a — switch.3b then it holds that max Aw’jf = xﬁf — xff_l > 0.
/LEE = -y bc rvc -y bc

Hence, a maximum of 2 subsequent switch reasons can be part of a combination in the set C3 = {C14}.

Restricting Combinations We can prove that when s* is part of a combination in the set C3 =

{C14}, ie. si-1 sk = switch.3a — switch.3b or sF — sg(k) = switch.3a — switch.3b then sg(k)

<

cannot be part of a combination in the set C;, i < 3.

178

sg(k) cannot be part of Because:

a combination in the set:

Cy If sg(k) is part of a combination in the set C; then it must hold that
sg(k) = switch.3a. From Lemma D.4 we know that s® — sg(k) —

sk+l = switch.2 — switch.3a — switch.3a is not possible.

J(k)

Cs From Lemma D.2 we know that sz cannot be part of a combination

in the set Co = {Cs}.

D.3.4 s" is part of a combination in the set C,

In this section we consider the case where s’g is part of a combination in the set C4 = {C11, Cy5, C15, C19}.

Finite Sequence Lets assume that an infinite sequence of switch reasons exists where each switch
reason is part of a combination in the set Cy.

From Lemma D.2 we know that combination C7; can only occur in this infinite sequence if the
combinations C1g and Ci9 do not occur in this infinite sequence. Further, from Lemma D.14 we know
that an infinite sequence of switch reasons where each switch reason is part of C'1; is not possible and
that an infinite sequence of switch reasons where each switch reason is part of either Cig or Cig is not
possible. Hence, eventually for an infinite sequence of switch reasons that are all part of a combination
in the set G4, the combination C75 must occur. From Lemma D.5 we know that whenever combination
C15 occurs (after another combination in the set C4) then combination Ci;, Cis and Cig can never
occur again.

Hence, if an infinite sequence of switch reasons where each switch reason is part of a combination
in the set Cy4 is possible then an infinite sequence of the combination C15 must be possible:

sk By gkt J(R)+1

c c c c

— -+ = switch.3a — switch.3b — switch.3a — switch.3b — ...

From Lemma D.20 we know that for this infinite sequence it holds that Jiz € Gz : Ax’gj; >
0Agd™ = gfz(h) Aglh > gfzbt for all h > k.

iz 7 iz

Using Lemma D.19 we can see that each queue i. € G. either goes empty, i.e. the queue length
is zero at the end of gf:, h > k or its queue length decreases minimally Ac(glhE) > 0. Note that
Ac(gg) = Ac(gf:l), h > k because glhc = gffl = g{"**, h > k. As a result, for an infinite sequence
of switch reasons that are all part of combination Cis, the queues in the set G. are eventually emptied
(and we switch because of the reason switch.la or switch.1b). Hence, an infinite sequence sequence of

switch reasons that are all part of combination C5 is not possible.

Restricting Combinations We can prove that when s* is part of a combination in the set C4 then

sg(k) cannot be part of a combination in the setC;, i < 4.

179

sg(k) cannot be part of

a combination in the set:

Because:

G

If sg(k) is part of a combination in the set C; then it must hold that

sé(k) = switch.3a is needed. However, from Lemma D.4 we know that

sk — sg(k) — skl = switch.3b — switch.3a — switch.3a is not possi-
ble.

Cs From Lemma D.2 we know that sg(k) cannot be part of a combination
in the set Cs.

Cs From Lemma D.20 we know that sé(k) cannot be part of a combination

in the set Cs.

D.3.5 s” is part of a combination in the set C;

[

In this section we consider the case where s* is part of a combination in the set C5 = {C17}.

Finite Sequence From Lemma D.15 we know that an infinite sequence is not possible.

Restricting Combinations We can prove that when s* is part of a combination in the set C5 then

e

cannot be part of a combination in the set C;, i < 5.

sg(k) cannot be part of
a combination in the set:

Because:

Ci

if sg(k) is part of a combination in the set C; then it must hold
that sg(k) = switch.3a. However, from Lemma D.4 we know that
A sk — sg(k) — sk = switch.3b — switch.3a — switch.3a is

not possible.

F(F)

Ca From Lemma D.2 we know that s2*"/ cannot be part of a combination
in the set Cs.

Cs From Lemma D.20 we know that sg(k) cannot be part of a combination
in the set Cs.

Cy We can prove that when s¥ is part of a combination in the set C5 then

sg(k) cannot be part of combination C11,C5,C1s and Cig. From Lemma

D.2 we know that sg(k) cannot be part of combination C7;. From Lemma

D.20 we know that sg(k) cannot be part of combination Ci5 and from
fk)

Lemma D.21 we know that sz’ cannot be part of combination Cig or

Cho.

D.3.6 s" is part of a combination in the set Cg

In this section we consider the case where s* is part of a combination in the set Cg = {C1o}.

Finite Sequence From Lemma D.15 we know that an infinite sequence of switch reasons, where each
switch reason is part of combination Cjg is not possible.

180

Restricting Combinations We can prove that when s* is part of a combination in the set Cg then

sg(k) cannot, be part of combination C;, i < 6.

sg(k) cannot be part of Because:

a combination in the set:

C1 If sg(k) is part of a combination in the set C; then it must hold that
sg(k) = switch.3a. However, from Lemma D.4 we know that s*¥ —
sg(k) — s" 1 = switch.3b — switch.3a — switch.3a is not possible.

Ca From Lemma D.2 we know that sg(k) cannot be part of a combination
in the set Cs.

Cs From Lemma D.20 we know thatsg(k) cannot be part of a combination
in the set Cs.

Cy We can prove that when s” is part of a combination in the set Cs then
sé(k) cannot be part of combination Cy1,C15,C18 and Ci9. From Lemma
D.15 we know that sg(k) cannot be part of combination Ci;. From
Lemma D.9 we know that sg(k) cannot be part of combination Cig and
combination Cy5 because and from Lemma D.2 we know that sg(k) can-
not be part of combination C1g and combination C1g.

Cs From Lemma D.2 we know that sg(k) cannot be part of a combination
in the set Cs.

D.3.7 s” is part of a combination in the set C;

[

In this section we consider the case where s* is part of a combination in the set C; = {C7}.

Finite Sequence From Lemma D.15 we know that an infinite sequence of switch reasons where each
switch reason is part of combination C7 is not possible.

Restricting Combinations We can prove that when s* is part of a combination in the set C; then

D)

cannot be part of a combination in the set C;, i < 8.

sg(k) cannot be part of
a combination in the set:

Because:

G

If sg(k) is part of a combination in the set C; then it must hold that

sé(k) = switch.3a. However, from Lemma D.4 we know that s*¥ —
sg(k) — sFt = switch.2 — switch.3a — switch.3a is not possible.

Ca From Lemma D.15 and Lemma D.21 we know that sg(k) cannot be part
of a combination in the set Cs.

Cs, C4, Cs, Cg From LemmaD.2 we know that sg(k) cannot be part of a combination in

these set.

D.3.8 s" is part of a combination in the set Cg

[

In this section we consider the case where s* is part of a combination in the set Cg = {Co}.

181

Finite Sequence Lets assume that an infinite sequence of switch reasons where each switch reason
is part of a combination in the set Cg = {Cy} exists:

I(k)

c

f(k)+1

sF sl it) — -+« = switch.2 — switch.3a — switch.2 — switch.3a — ..., (D.14)

where max xfiﬁl <0,Vh>k.
ic€Gs T

Since, we stop glhz h > k for the reason switch.3a, the signal i, that reaches its maximum queue (at
the start of gZH, h > k) satisfies g‘.‘u’h’ =gr, Ax?jcl > 0 (because Aa:’jf{ul < 0 would imply a queue

(2
length that exceeds the maximum queue length) and g¥ > g ét (because of inequalities (8.1h), (8.1k)).
Hence, using Lemma D.18 we can see that each queue iz € Gz either goes empty, i.e. the queue

length is zero at the end of gf (h), h > k or its queue length decreases minimally Az(g!) > 0. Note

e
that gf: = g?jl = g"**, Vh > k. Hence, eventually all queues iz € Gz are emptied (and we do not stop
serving the signals in the set Gz for the reason switch.3a but for the reason switch.la or switch.1b).

Thus, an infinite sequence where each switch reason is part of combination Cy is not possible.

Restricting Combinations We can prove that when s* is part of a combination in the set Cg then

sg(k) cannot be part of a combination in the set C;, ¢ < 8.

sg(k) cannot be part of Because:

a combination in the set:

Cy If sg(k) is part of a combination in the set C; then it must hold that
sg(k) = switch.3a. However, from Lemma D.4 we know that s* —
sg(k) — sh*1 = switch.2 — switch.3a — switch.3a is not possible.

Cs From Lemma D.5 we know that sg(k) cannot be part of a combination
in the set Cs.

Cs From Lemma D.2 we know that the sequence sg(k)_l — sk — sg(k) =
switch.2 — switch.3a — switch.3b and the sequence s® — sg(k) —

skl = switch.2 — switch.3a — switch.3b are not possible. From
Lemma D.4 we know that the sequence sg(k)_l — sk — sg(k) — shtl =

switch.2 — switch.3a — switch.3a — switch.3b is not possible.

Cy We can prove that when s¥ is part of combination Cjo then sg(k) cannot
be part of a combination in C4y = {C11, C15, C1s, C19}. From Lemma D.5

f(k)

=~ cannot be part of a combination C1;. Further, sg(k)

cannot be part of combination Ci5 for the same reason why sg(k)

be part of a combination in the set C3. From Lemma D.2 we know that

we know that s

cannot

sg(k) cannot be part of a combination Cig or Cig.

Cs From Lemma D.2 we know thatsg(k) cannot be part of a combination in
the set Cs.

Cs, Cr From Lemma D.5 we know that sg(k) cannot be part of a combination

in the set Cg or a combination in the set C7.

D.3.9 s" is part of a combination in the set Cy

In this section we consider the case where s* is part of a combination in the set Cy = {C5}.

182

Finite Sequence From Lemma D.16 we know that an infinite sequence where each switch reason is
part of a combination in the set Cg is not possible.

Restricting Combinations We can prove that when s* is part of a combination in the set Cy then

sg(k) cannot be part of a combination in the set C;, i < 9.

sg(k) cannot be part of Because:

a combination in the set:

Cy If sg(k) is part of a combination in the set C; then it must hold that
sé(k) = switch.3a. However, from Lemma D.4 we know that s*¥ —
sg(k) — st = switch.3b — switch.3a — switch.3a is not possible.

Ca From Lemma D.7 we know that sg(k) cannot be part of a combination
in the set Cs.

Cs From Lemma D.1 we know that sg(k) cannot be part of a combination
in the set Cs.

Cy We can prove that when s* is part of combination Cjo then sg(k) cannot
be part of a combination in C4 = {C11, C15, C1s, C19}. From Lemma D.7
we know that sg(k) cannot be part of a combination C7;. From Lemma
D.1 we know that sg(k) cannot be part of a combination Ci5 and from
Lemma D.7 we know that sg(k) cannot be part of a combination Cig or

Cs From Lemma D.7 we know that sg(k) cannot be part of a combination
in the set Cs.

Cs From Lemma D.2 and Lemma D.10 we know thatsg(k) cannot be part
of a combination in the set C3 € Cg. Further, from Lemma D.7 we know
that sg(k) cannot be part of a combination in the set Cg € Cg.

Cr From Lemma D.7 we know that sg(k) cannot be part of a combination
in the set Cr.

D.3.10 s’j is part of a combination in the set C;,

In this section we consider the case where s¥ is part of a combination in the set C1o = {Cs}.

Finite Sequence From Lemma D.16 we know that an infinite sequence of switch reasons, where each
switch reason is part of combination Cg is not possible.

Restricting Combinations From Lemma D.7 we know that when s* is part of a combination in the
fk)

set Cio then sz*" cannot be part of a combination C;, ¢ < 10 whenever k > nf.

D.3.11 s* is part of a combination in the set C;

In this section we consider the case where s* is part of a combination in the set C1; = {C1}.
Assume an infinite sequence where each switch reason is part of a combination in the set Cy1:

sk k f(k)+1 .

.= sé(k) — str1 — 8% .-+ = switch.la — switch.la — switch.la — switch.la — ...

183

From Lemma D.22 we know that:

gl > g™ Vi€ Go, Vh>k,
g > g?", Vi€ G, Vh >k

Further, we know from Lemma D.11 that:

L= = pic) pbt _f(h)
Ag/ W+ _ F+1 _ f(h) pi.(c c) (pbt <0. Vh>k
9ie Yie Yie = eGiloeos 1—pi it = 9ic7) <0, -

htl _ htl R pi(1 = p1. = pr) , por h
Agim =g g S max e (9. —91.) <0, Vh>k

From these two lemmas we can see that for k¥ — oo the green times (note that the green times of
the signals in the set G; are related to each other and that the green times of the signals in the set Go
are related to each other) converge to the smallest green times that satisfy gfl > gflbt, Vi; € Gp and
satisfy gfz > gfjt, Viy € Go. Note that for & — oo, the green times converge to the smallest green and
red times that satisfy the inequalities in (7.14a). Hence, the green times converge to green times that
are smaller than (or equal to) the green times of the trajectory that we want to follow (for an infinite
sequence of switch reasons equal to switch.la).

When the green time gfc is smaller than the green times for the desired trajectory then we switch
for the reason switch.1b (see section D.1). If the green times that we converge to are equal to the green
times of the desired trajectory we converge to the desired trajectory.

Note that we only have an infinite sequence where each switch reason is part of a combination in
the set C11 whenever the green times of the desired trajectory are the green times that we converge to.

I(k)

Restricting Combinations When s” is part of combination C1; then sz~ cannot be part of com-

bination C;, i < 11 because of Lemma D.12 and Lemma D.1.

D.3.12 s’j is part of a combination in the set C;

In this section we consider the case where s’j is part of a combination in the set Cis.

From Lemma D.23 we know that whenever s* = switch.1b then we follow the desired trajectory

from the start of the k 4 1th cycle c. Whenever s* = switch.1b it holds that:

s¥ = switch.1b, Vh >k, (D.15)
sT) = switch.1b, Vh > k. (D.16)

D.4 Lemmas

In this section we show the different lemmas that we use in the proof of the policy.

184

D.4.1 Lemmas Excluding Sequences of Switch Reasons
f(k)

Lemma D.1 The sequence s¥ — s.'") = switch.la — switch.3a is not possible.

Proof. Whenever sg(k) = switch.3a then there is a queue i. € G, that was not emptied during
g% (see Section D.1 for the definition of the switch reason switch.3a). However, when s¥ = switch.1a
this means that all signals in the set G. are emptied during their green time gfc . Hence, the sequence

sk — sg(k) = switch.la — switch.3a is not possible. m

Lemma D.2 s* = switch.3b can occur iff s" # switch.2, Vh > 1.

Proof. From Lemma D.17 we know that whenever a queue in the set Gz goes from empty to the
maximum queue length then all queues in the set Sz will go from empty to the maximum queue length.
When s* = switch.3b then this means that a queue goes from empty to the maximum queue length
before the maximum green time is reached, i.e. Tf::T — Oiginic < 900%%, ic € Ge, is € Sg (see the
definitions of switch.2 and switch.3b in Section D.1). Moreover, when s¥ = switch.2 this means that a
quelée”?innot go from empty to the maximum queue length before the maximum green time is reached,

Le. =— — 0y i.i. = 97", ic € G, is € Sz. Hence s¥ = switch.3b can occur iff s # switch.2, Vh > 1.
. .

Ts,

L l®

sg(k) — sFt = switch.2 — switch.3a — switch.la are not possible.

k
c

— sl = switch.3b — switch.3a — switch.la and s* —

Lemma D.3 The sequences s ;

Proof. The visualization of this proof can be seen in Figure D.8a. In this Figure i, € G, is the
signal that causes sg(k) = switch.3a, i.e. the queue that is full at the beginning of gffl. The signal

iz € Gg could refer to any signal in the set Gz.

5 MAT, O
Tl
C,te

Smax . L.

xc{if)\7/60-7/6:1?77/6

o
s

f J

Tz
5Mmin
c,ig = ’
S min : smax
xl T, —> :
Cylc Cyle

(a) Visualization of Lemma D.3

In this figure we can see the following sections:

~Fmax

1 Between point 1 and point 2, g¥ = §"** is performed.

2 between point 2 and point 3, the setup oy ;. ;. is performed.
f(k)

3 between point 3 and point 4, g; ™ is performed.

185

4 Between point 4 and point 5, ng'1 is performed.

We were not able empty queue ¢, during 91' = gi2e® (since sg(k) = switch.3a) and the queue length

at the beginning of gf“ cannot be less than the queue length at the beginning of gf (queue i, is full

at the beginning of g/ ™). Hence, we cannot empty queue i, during g/ < %%, Thus, the sequences
sk — sf(k) — skl sf(k)'H = switch.3b — switch.3a — switch.la and s& — sf(k) — skl
sg(k)H = switch.2 — switch.3a — switch.la are not possible. m
Lemma D.4 s¥ — sf(k) — shH = switch.2 — switch.3a — switch.3a and sk — J®) 5 g+l —
switch.3b — swltch 3a — swztch.?)a are not possible

Proof. We can see the case where s¥ — sf() = switch.2 — switch.3a or sk — sf() = switch.3b —

switch.3a in Figure D.8. We use i**1 for a mgnal that has a queue length that is equal to the maximum

k+1 (f(k)

queue length at the beginning of g;"" (which exists because sz = switch.3a). We use iz for a signal

(could be any sign) in the set Gz.

S Mmax N\
xX
cz]§+1 4
1
smax
ink"'l >‘z‘f§+10 ikt Jiz 3

SL‘ilCchl
T Tiz > Fmas
Figure D.8: Visualization of Lemma D.4

We can distinguish the following sections in this figure:
1 between point 1 and point 2, g o is performed.
2 between point 2 and point 3, gf() is performed.
3 between point 3 and point 4, the setup o, k1 is performed.
4 between point 4 and point 5, gkktll is performed.

Because Amkﬁ}“ > 0 (because queue if ™" is full at the beginning of g; kﬂ) g’;fl gli1 (because
buffer i¥*! was not emptied during g i1 since s’i = switch.3a) and g B > g ,C+1 (because of the
inequalities in (8.1h), (8.1k), (8.1n) and (8.1q)) we can use Lemma D.18. From Lemma D.18 it follows

that each queue iz € Gz either empties, i.e. the queue length is zero at the end of its green time gf (k)

i
or its queue length decreases minimally Az(g¥) > 0 during the kth cycle c.

186

As a result, for each signal iz € Gz it holds that the queue length at the start of gk,ctll is not larger

than the queue length at the start of g jaey Further, because it holds that gkktll g"““” (because of
inequality (D.5a)) and gﬁH = g (see the definition of gi"** in Section D.2) the queue length of queue

iz cannot be larger at the end of gk,:frll than it was at the end of g e As a result s — sf(k) — s’g“ =
switch.2 — switch.3a — switch.3a and s — sf(k) — s = switch.3b — switch.3a — switch.3a are

not possible. m

Lemma D.5 If s — I(k) = switch.2 — switch.3a or s¥ — sf(k)

S+ _ F(k)+1

= switch.3b — switch.3a then

= switch.3b is not possible and s = switch.2 is not possible.

Proof. The proof of this lemma is shown in Figure D.9a

~max N
mc,ig

1 7

Liz
Fmin ¢
e T k+1 —> Fmazx
Smin Te X
Tkt ¢ c,ikt1

cyic
(a) Visualization of Lemma D.5

In this figure we use ik“ € G. to refer to a signal in the set G. which queue is full at the start of
gf“ (which exists because sf() = = switch.3a) and iz € Gz could refer to any signal in the set Gz. In
this figure we can see the following sections:

1 Between point 1 and point 2, gi = g2 is performed.
2 between point 2 and point 3, the setup O, ik+1 18 performed.
fk) y

Vi

3 between point 3 and point 4, g; " is performed.

4 Between point 4 and point 5, g’“ktll = graee
5 between point 5 and point 6, the setup o,_ k41, 1s performed.

f(k)+1

is performed.

6 between point 6 and point 7, g;_ is performed.

First of all point 1 cannot be positioned on the right side of point 4 (because queue i**1 is full
at the beginning of ng'1 and otherwise the maximum queue length would be exceeded). Further, it
holds that gfc > gffl (because gi = gfmm) As a result point 2 cannot be positioned on the right of
point 5. Hence, it follows that gj;()+ < 9 1 (k) , Viz € Gz (because otherwise queue i. would overflow).
It holds that gif;k) < gie® (since sg(k) = switch.3a). Hence, gf(k)Jr1 < gif;k) < g*®. As a result,
G R)+1] f(k)+1)

C

= switch.3b is not possible and sz = switch.2 is not possible. m

187

Lemma D.6 The following sequences are not possible:

f(k)

1 s’j — Sz Fk)+1

— shtl — sl
2 sk sg(k) — sktl sg(k)ﬂ = switch.2 — switch.la — switch.2 — switch.3b
3 sk~ sg(k) — skt sg(k)ﬂ = switch.3b — switch.la — switch.3b — switch.2

4 sk — sg(k) — shtl sg(k)ﬂ = switch.3b — switch.la — switch.3b — switch.3b

= switch.2 — switch.la — switch.2 — switch.2

Proof. Whenever s¥ = switch.2 this means that at the start of g{jk) the queue length of queue

iz € Gz satisfies x;.(t) > (377" + 04, iz,i.) Aiz because (G + 0i, izi.) Air is the amount of traffic that

arrived during the red period. During gf(k) é(k)

)1 -

iz

all queues iz € G; are emptied (because sz’ = switch.1a).

At the beginning of g the queue length of a queue iz € Gz is exactly z;_(t) = (""" + 0y, iz ic) Nie

(which is less than or equal to the queue level at the start of gj;(k))

f(k)+1

iz

. Hence, we can also empty all queues

in the set G;_ during g before we have to stop for the reason switch.2 or for the reason switch.3b.

Lemma D.7 The following sequences are not possible if k > nc + 1

1 sk~ sg(k) — sk*1 = switch.1a — switch.2 — switch.3b

2 sk~ sg(k) — s**1 = switch.1a — switch.3b — switch.3b
3 sk~ sg(k) — sk*1 = switch.1a — switch.2 — switch.2

4 sk — sg(k) — skt = switch.la — switch.3b — switch.2

5 sk — sg(k) — sk*1 = switch.1a — switch.2 — switch.3a

6 sk — sg(k) — sFt = switch.la — switch.3b — switch.3a

Proof. First of all we are going to proof that if the sequence 1,2,3,4,5 or 6 exists then it must
hold that 8?16)71 = switch.2 if sg(k) = switch.2 and it must hold that sg(k)ﬂ = switch.3b if sg(k) =
switch.3b.

From Lemma D.2 we know that s
k-1
C

F)-1

= switch.2 cannot occur if sg(k) = switch.3b.

= switch.3b cannot occur if sg(k) = switch.2 and that
From Lemma D.12 we know that it is not possible that sg(k)ﬂ

D.23 we know that sg(k)_l = switch.1b is not possible. Further, we also look at s’f’l to proof that
f(k)-1 (k)-1
Se

= switch.la and from Lemma

= switch.3a is not possible. In the table below we show why sg = switch.3a is not possible.

fR)—1 F(k) k+1

skl sl equal to not possible when s¥ — 52" — s5*1 is sequence 1,2,3,4,5 or 6 because

switch.la — switch.3a Lemma D.1

switch.1b — switch.3a Lemma D.23

switch.2 — switch.3a Lemma D.3

switch.3a — switch.3a s¥~! cannot be part of a combination

in the set C; whenever k > nft + 1
switch.3b — switch.3a Lemma D.3

Hence, if a sequence 1,2,3,4,5 or 6 exists then it must hold that sg(k) = switch.2 if sg(k)ﬂ = switch.2
and that sg(k) = switch.3b if sg(k)H = switch.3b. From Lemma D.6 we can now see that sequences
1,2,3 and 4 are not possible. From Lemma D.8 it follows that sequences 5 and 6 are not possible.

188

Lemma D.8 The following sequences are not possible:

FR) _y ght1 — switch.2 — switch.la — switch.2 — switch.3a

c

k ok
c-c
2 shsh=1 sg(k) — st = switch.3b — switch.la — switch.3b — switch.3a

Proof. Assume s**! = switch.3a. We use ig(k)ﬂ to refer to the queue that is fulll at the end of

gffl see Figure D.9a. It holds that queue ig(k)ﬂ is not emptied during gf (k)

skl = switch.3b). We know from inequalities (8.1h), (8.1k), (8.1n) and (8.1q) that gff((lz))+1 > g’ff(t,c)ﬂ.

In Figure D.9a we can see that any queue i. is emptied before queue ig(k)H is full.

Furthermore, using inequalities (8.1j), (8.1m), (8.1p) and (8.1p) and using (D.7a) and (D.7d)) and

using ¢" f’(’;()li)l = gff((lz)) +1 we can derive that the minimum green times of the signals in G. are satisfied
7"? 7"?

(because we otherwise

before sf“ = switch.3a oceurs.
Furthermore, we know that we satisfy condition 1.3 (see Section 8.3.1) before s**! = switch.3a
occurs (otherwise a maximum queue length is exceeded for the desired trajectory). Hence, we switch

for the reason s**1 = switch.la or s¥t1 = switch.1b before we have to switch for the reason skt! =

c c c
switch.3a.
~max N\
CT,ic
T = NieOrot1 s+
= stests
3
1
Li,.
2 :)
~min . . x .
T) b S— ! = fR)+1
57i£(k)+1 A I<k)+1 Ote
T+ —> Gre
(a) Situation 1
]
k . .)
Lemma D.9 The sequence s* — sg() skl = switch.2 — switch3b — switch.3a where max Axff;l <

1e€Ye
0 s not possible.
k — switch.2 and because of (8.1f) and (8.1g) it holds that:

c =

Proof. Because of switch reason s

gf =g;""", Vi.€G..

When magx Axljf} < 0, the queue length of every signal ¢, € G. cannot be greater at the start of
i—eG. i

gf“ than it was at the start of gfc. When we performed the maximum green time gf = g"**, no

c

189

k+1

maximum queue lengths where exceeded. Hence, when performing a green time g; ™" < ¢;"** again

no queue lengths would be exceeded and therefore s**! cannot be equal to swztch.Ba (we reach the
maximum green time before we have to switch for the reason s¥*! = switch.3a). =

Lemma D.10 The following sequences are not possible:
fk)+1

Fk) s’“rl — 8 = switch.3b — switch.la — switch.la — switch.3b
f(k) sh+t O = switch.3b — switch.la — switch.la — switch.2
sf(k) — s’“rl — sf(k)'H switch.2 — switch.la — switch.la — switch.3b
g(k) sh+t J+ _ = switch.2 = switch.la — switch.la — switch.2

sequence 1 s; — s

sequence 2 s — S

_>

k
c
ko
c
sequence 3 s*
N

sequence 4 s; — S5

Proof. Lets assume sequence 1,2,3 or 4 are possible. In these cases it holds that gi = g,

Vi. € G.. Hence, the queue length of queue iz € G is at least (§;"" + 0, iz i) Niz = Tin®® Aiz at the

beginning of gf() The queue length at the begmmng of gf()*1 is at most (G2 + 04, iz yie) Nir (because

ig,ie
k+1 < gmaT)
we are also able to empty all queues

f(k)+1

all queues in the set Gz where empty at the end of 9@—) and 9;.

~Smax

Because we could empty all queues iz € Gz during gf (k) <gr

FR)F1 _

ic € G during g;_ fR)+1 < g; f (k) < gi2**. However, sz swztch 2 or s = switch.3b can only

occur if we are not able to empty all queues during gf()+ < g2 (see Section D.1 for the definitions
of the switch reasons switch.2 and switch.3b). m

f(k)—1 k f(k) +1

Lemma D.11 Whenever, s: — s; = s, — s = switch.la — switch.la — switch.la —
k41 _ piz(1=p1.—pi) ¢ pbt f(k) :
switch.la then it holds that Ag;” gic g l egj,%xegp #(gé‘;lc — gi.) <0, Vi € G,
The sequence sf(N sk — sf(k) — skl sg(k)ﬂ = switch.la — switch.la — switch.la —
switch.la — switch.3b and the sequence sf(=, sk — sf(k) skl sf(k)'H = switch.la —
switch.la — switch.la — switch.la — swztch.2 are not posszble.
Proof. In Figure D.9a we can see the situation where sf(k) i sk — sf(k) — skl = switch.1a —

switch.la — switch.la — switch.la. We use iz- € Gz for the signal that satisfies g’ SR {i(k) and

i} € G, for the signal that satisfies g” AL gf{“ (From Lemma D.22 we know these 51gnals exists).

In this figure we can see the followmg sections:

1 Between point 1 and point 2, the setup oz ;x i=.
2 between point 2 and point 3, 91* is performed

3 between point 3 and point 4, gf() is performed.

4 Between point 4 and point 5, the setup oz gz 4z
5 between point 5 and point 6, gf,fl is performed.

Using g” F) (and g” ok+1 = gk*1 and (D.7) we can find that:

gttt _ B Piz 7 pi) oo o1k
C’Lf 1_p1: c ’

From lemma D.22 we know that:

190

5Mmax .
xaiz _)\zgaz;,z* ik

¢ e

2
.
€T
s
5N
Lz, ix 3 /
i i
~mi P >
$£nzl*n Lix ' F)+1 ! roar
e AmE P ' C,ix
e

(a) Visualization of Lemma D.11

k .
gl® > g™ Vi, €g..

From (D.4) we know:

bt bt . .
gff > gp Vie € Ge, Vic € Gz.

— Jig,ie?

Hence, it holds that:

f(k)+1 Mz‘g(l — Pir — Pig) bt fk

Amé,(ii) = 11—, (9 — gty <o

[« —_ pl: c [«

Aat 41
Note that Agit! = git!t — gk = —=— and thus:

piz(L = piz = piz) k

Aghtt =B _p (gt — gl <.
1/: c c c

The green times are related via (D.2). Therefore, it also holds that:

piz(1 = piz — piz)

Agk-‘,—l k+1

b k .
i. —Yi., — gz]‘i = (gf%,tiz - glfg()) <0, Vice€g..

L= pi;
As a result we can find that:
Aghtl = ght1_gk _ piz(1 = pix — Pig)(gpbtl —gf®) < max piz(1 = p1. — pi) (" —gf®) <0, Vi.eg
" o T 1= pi i i = eg, leegs 1—p, feole e e
(D.17)

191

sg(k)_Q — skl sf(k) T sk — sf(k) — gkl is impossible because
* — switch.la — swztch.la — swztch.la — switch.la — switch.2 Lemma D.11
* — switch.2 — switch.la — switch.la — switch.la — switch.2 Lemma D.13

switch.la — switch.3a — switch.la — switch.la — switch.la — switch.2 Lemma D.1

switch.2 — switch.3a — switch.la — switch.la — switch.la — switch.2 Lemma D.3
k

switch.3a — switch.3a — switch.la — switch.la — switch.la — switch.2 s cannot be part of a combination
in the set C; whenever k > n¢ +1

switch.3b — switch.3a — switch.la — switch.la — switch.la — switch.2 Lemma D.3

x — switch.3b — switch.la — switch.la — switch.la — switch.2 Lemma D.13
* — % — switch.2 — switch.la — switch.la — switch.2 Lemma D.10
* — switch.la — switch.3a — switch.la — switch.la — switch.2 Lemma D.1
* — switch.2 — switch.3a — switch.la — switch.la — switch.2 Lemma D.3
* — switch.3a — switch.3a — switch.la — switch.la — switch.2 sk cannot be part of a combination
in the set C; whenever k > nf +1
x — switch.3b — switch.3a — switch.la — switch.la — switch.2 Lemma D.3
x — % — switch.3b — switch.la — switch.la — switch.2 Lemma D.10
f(k)—2 k—1 f(k)—1 fk) +1

Table D.4: In this table we show that all sequences sz — S0 = 8% — s — 8%
f(k) sh+1

where s¥ — s = switch.la — swztch.la — switch.2 are not possible. We do not c0n81der

the sequences Where sf(k) 2, sk=1or sf(T equal to switch.1b. * means that this switch reason can

be either one of the five switch reasons (except for switch.1b)

The queue length of queue iz € Gz equals (gi€ + 0, izi.)Ni= at the beginning of gf()

(957 + e MNic < (9F +0110.) i, at the beginning of g/,

and equals
For all signals iz € Gz an amount of

k+1
Ac+ + Uicvifvic)AiE <

g**. Hence, an amount of (g;

(gl + 0. iz.i.) iz traffic could depart during gf() <gr
f()Jrl m(l’l"

(gic + G, izi.) Nir could depart during g; < g
Thus, the sequence siﬁ(k)fl " sf(k) — skl sf(k)Jrl = switch.la — switch.la —
switch.la — switch.la — switch.3b and the sequence sf(-1, s’C — sf(k) — sk“ — sf(k)'H =

switch.la — switch.la — switch.la — switch.la — switch.2 are not possible because during gf()+1

we switch because of the reason switch.la or switch.1b before we have to switch because of the reason
switch.2 or switch.3b. m

fk)

b sl

Lemma D 12 The sequences s skt = switch.la — switch.la — switch.2 and s* —

(k) — s = switch.la — switch.la — swztch.Sb are not possible for k > n° + 1 (in Section D.3
we ewplam the definition of n* +1)

Proof. We first prove that the sequence s — sf(k) 1 = switch.la — switch.la — switch.2
is not possible by also looking at sf(k) 2 s’j‘l and sf(k) 1. We prove that all sequences sf()-2
sh=1 sf(k) i sk — sf() , where s¥ — sf() — sk = switch.1a — switch.1a — switch.2
are not possible if k 2 ner + 1.
First of all, whenever sf(k) 2, s’f’ or sf(k) is equal to switch.1b then s — sf(k) “ =

switch.la — switch.la — swztch.2 is not p0551ble because of Lemma D.23. All other p0551b1e sequences
are shown in the Table D.4.

192

sg(k)_Q — skl sf(k) o sk — sf(k) — shtl is not possible because
* — switch.la — swztch.la — swztch.la — switch.la — switch.3b Lemma D.11
* — switch.2 — switch.la — switch.la — switch.la — switch.3b Lemma D.13

switch.la — switch.3a — switch.la — switch.la — switch.la — switch.3b Lemma D.1

switch.2 — switch.3a — switch.la — switch.la — switch.la — switch.3b Lemma D.3
k

switch.3a — switch.3a — switch.la — switch.la — switch.la — switch.3b s cannot be part of a combination
in the set C; whenever k > n¢ +1

switch.3b — switch.3a — switch.la — switch.la — switch.la — switch.3b Lemma D.3

x — switch.3b — switch.la — switch.la — switch.la — switch.3b Lemma D.13
* — % — switch.2 — switch.1la — switch.la — switch.3b Lemma D.10
* — switch.la — switch.3a — switch.la — switch.la — switch.3b Lemma D.1
* — switch.2 — switch.3a — switch.la — switch.la — switch.3b Lemma D.3
* — switch.3a — switch.3a — switch.la — switch.la — switch.3b sk cannot be part of a combination
in the set C; whenever k > n¢ +1
x — switch.3b — switch.3a — switch.la — switch.la — switch.3b Lemma D.3
x — x — switch.3b — switch.la — switch.la — switch.3b Lemma D.10
f(k)—2 k—1 f(k)—1 fk) +1

Table D.5: In this table we show that all sequences sz — S0 = 8% — s — 8%

f(k) k+1

where sk — s = switch.la — swztch.la — switch.3b are not possible. We do not c0n81der

the sequences Where sf(k) 2, sk=1or sf(T equal to switch.1b. * means that this switch reason can

be either one of the five switch reasons (except for switch.1b)

Fk) _y sk+l = switch.la — switch.la —

N N

— 52
— skt = switch.la — switch.1a — swztch.Sb are not possible if

In the same way we can prove that the sequence s — 8%

switch.3b is not possible for k£ > n® + 1. We prove that all sequences s
N sf(k) ght1 f(k)
C

ancl—i—l.

, where s — 8%

First of all, whenever sg(k)ﬂ, sk=1 or sg(k)fl is equal to switch.1b then s7

switch.la — switch.la — switch.3b is not possible because of Lemma D.23.
All other possible sequences are shown in the Table D.5.
]

k F&) shtl =

— Sz

Lemma D.13 The following sequences are not possible:

1sF — sf(k) — skl sf(k)'H — k2 = switch.2 — switch.la — switch.la — switch.la —
swztch 2

2 sk sg(k) — skl sf(k)Jrl — sk+2 = switch.3b — switch.la — switch.la — switch.la —
switch.3b

Proof. The queue length of a queue iz € Gz at the start of gf() is at least (G + 04, imyic) i

iz
The queue length of a queue iz € Gz at the start of gf(I s equal to (ngrl + Uic,iaicp\ < (g +

e
Vi, - Because we could empty each queue iz € Gz during gf()

queue during gi; < i f k),

T i we are also able to empty each

esle

f (k) kt1

Further, the queue length at queue i. € G. is at least (g; " + 0, ir.i.)Ai, at the beginning of g;”

The queue length at queue i, € G. is equal to (g {E(k)ﬂ + Jlmiaic))\ic < (g i;k) + i izio) N, At the

193

kt2 k42 s less than

beginning of g;""“. Thus at each queue i. € G, the queue length at the beginning of g;”

(or equal to) the queue length at the beginning of ng'1 We could empty queue i, durlng a green time
gffl gie®. Hence, we are also able to empty queue i. during a green time 91' < ng gmer.
However s’“r2 k+2

= switch.2 or s;7° = switch.3b can only occur if we are not able to empty all queues
during g¥ < g"*® (see D.1 for the definitions of the switch reasons switch.2 and switch.3b). m

D.4.2 Lemmas Excluding Infinite Sequences of Switch Reasons

Lemma D.14 The following infinite sequences are not possible:

sequence 1 An infinite sequence of switch reasons s’j — sg(k) — s — s—(k)Jrl — ..., k> 1 where
each stop reason is part of combination Cg.

sequence 2 An infinite sequence of switch reasons s’g — sg(k) — s — sf(k)'H — ..., k> 1 where
each stop reason is part of combination Ci;.

sequence 3 An infinite sequence of switch reasons s* — sf(k) — sk - sit(k)Jrl — ..., k> 1 where

each stop reason is part of combination Cis or part of combinatwn C’19

Proof. First of all, we know that g/ > gfbt Vi € Ge, Yh > k and that gf;(h) > gf:t, Vh > k from
(8.1h), (8.1k), (8.1n) and (8.1q).
We distinguish the following two types of combinations:

type 1 combination s" — sf and max Axh+ >0,h >k
1z€Ye

type 2 combination s — sf(h) and max Awhﬂ >0,h>k.
Tc c

This proof goes as follows. If an infinite sequence of switch reasons (sequence 1, 2 or 3) is possible
then we can prove that either an infinite sequence of switch reasons, where all switch reasons are part
of a type 1 combination must be possible or an infinite sequence of switch reasons, where all switch
reasons are part of a type 2 combination must be possible. We can prove that both are not possible.
Hence, we know that sequence 1, sequence 2 and sequence 3 cannot occur.

Lets assume infinite sequences 1,2 and 3 are possible. From (D.7b) and (D.7c) we can easily see
(see also Figure D.9) that whenever Jiz € Gz, h > k (Aa:h+1 > 0) for such an infinite sequence (infinite

C,le

sequences 1,2 or 3) then it holds that the same queue iz € Gz satisfies Aa:h“ Aa:?jf >0,h>k

h h41 e
because g“ = glc = gé‘c = gf’_‘“ and gi = glh'H. Hence, When we are given an infinite sequence

(either, sequence 1, sequence 2 or sequence 3) where s h > k and s ") form a type 1 combination then
the switch reason s?“, 2z € N (N is the set of non-negative integers) and the switch reason sf(h)+z
form a type 1 combination.

In Figure D.9, i, could refer to any signal in the set G. and iz € Gz is a signal that satisfies Axh+1 > 0.

In Figure D.9 we can distinguish the following sections:

1 between point 1 and point 2, g7 is performed.

2 between point 2 and point 3,the setup o;_;, i, is performed.

f(h)

3 between point 3 and point 4, g; " is performed.

4 between point 4 and point 5, gh+1 is performed.

5 between point 5 and point 6, the setup Oigie iz 15 performed.

f(h)+

6 between point 6 and point 7, g;_ Lig performed.

194

ymax N\
€T

c, iz
)T 6
~SMaT e
xc,ig)‘ZEUZE,’LC,ZE 5
3
b N
7
Aghtt
c,ig
[P .
Aw h+2
c, l—
T N 1
Tz
51N
c’lc'*mzn .
X xX; 5.Mmax
C, ’L c .
Cylc

Figure D.9: Whenever Jiz € Gz, h > k (Ax htl 0) for infinite sequences 1,2 and 3 then it holds that

CZ—

the same queue iz € Gs satisfies Axh“ Axh” >0,h>k

Hence, whenever for infinite sequences 1,2 and 3 a switch reason is part of a type 1 combination
then this infinite sequence contains an infinite sequence of switch reasons that are all part of a type 1
combination. On the other hand, whenever for infinite sequences 1,2 and 3 no switch reason is part of
a type 1 combination then this infinite sequence is an infinite sequence of switch reasons that are all
part of a type 2 combination.

We can show that an infinite sequence of switch reasons that are all part of a type 1 combination is
not possible and that an infinite sequence of switch reasons that are all part of a type 2 combination is
not possible

For an infinite sequence of switch reasons that are all part of a type 1 combination we can use Lemma,
D.19. Using Lemma D.19 we can see that each queue i, € G, either empties, i.e. the queue length is
equal to zero at the end of its green time, or its queue length decreases minimally A (gf_(h)) >0,h>k.

Note that A (gl_ h)ﬂ) A (gl_) h > k since gf(h) gl_(h)Jr1 As a result, for an infinite sequence of
switch reasons that are part of a type 1 comblnatlon the queues in the set G. are eventually all empty
(and we switch for the reason switch.la or switch.lb). Whenever we switch for the reason switch.la
or switch.1b this switch reason cannot be part of a combination Cg, C11, Cig or Chg. Thus, an infinite
sequence where each switch reason is part of type 1 combination is not possible.

Now we consider an infinite sequence of switch reasons that are all part of a type 2 combination.
We can derive:

h+1 h wyh ~max
Leie = Lejip — gzc (:u% - /\%) + T /\ica

where
h —_ zmin
pwh max Cic Cic
gz mln{g Y)\ }
Mic — N

Here g;" "(ui, — As,) is the net amount of traffic that is processed during the green period glhc and
(Cigimyie T g"““”))\lc is the amount of traffic that arrives during a red period. Note that whenever

h ~m1n
w,h — Zejie " Feic

glﬂ Hic— >\zc
We can distinguish two types of signals:

then buffer i. is emptied during 91

195

type 1 a signal that satisfies i. € G, satisfies g;"*" > ——<—

1—p..
type 2 a signal that satisfies i. € G satisfies g;"** < %
A signal of type 1 satisfies:
Azl = =gt (i, = M) + RN < =gl (i, = M) TR, 0. (D.18)

Hence a type 1 signal i. € G, could never satisfy Axh+1 > 0. Hence, if an infinite sequence of switch

reasons that are all part of a type 2 combination, is possﬂole then it must hold that there is a signal of
type 2.
for a type 2 signal we can find:

h FMin
. — &
h+1 _ -max ~max ~max Ctlc Cyic
Az G = Tie N — i (Mg = Aig) >0 if g; < ———c
Hig = Nig
c c
oh . _ gmin
h+1 _ ~ e ; cic cic h _
; L-i—c _ (i Tnnn + Tnzam)\ >0 if g;véaz > c c A << Tmnz + Tmaz/\l)
Hi Nig
c c
sh _ gmin
h+1 h - _ cic cic h _
A L‘:L = Teyic T 1””” + (o4, igic +g;"iaj)>‘ic 20 if gm""’ > < N < ANTe i, 28 +7?TLGTAZC
Hie = Nie

Note that g;"** > “Cfi‘“ Axh, > gmin 4 Fmar; - cannot be satisfied because when we fill in

te te h _ ~'m'i’nc ‘ Fmaz
x’g’ic > x?jc” + 7" A, into gt > % the result is g/"** > p% However, a signal of type

. s picfzar‘c ‘ ‘

2 satisfies (by definition) g;"** < e
Note that whenever a type 1 signal satisfies xh~ < xf;”ff + 7%\, then it holds that x?j’cl >
~m?" + 7% \;,. Further, when a type 3 signal satlsﬁes x > xm”’ —l—rm’”)\ then gi" gfc’h. Thus,
(type 1) signal i, € G, satisfies Amh+1 >0,Vh >k and g“ h— =gt = gic, Yh > k.
pbt

In the beginning of the proof we showed that gz > g;. , Vh > k. Hence, we can use Lemma D.18.
From Lemma D.18 it follows that each queue iz € Gz elther empties, i.e. the queue length is zero at
the end of its green time g;_ f(h) , h > k, or its queue length decreases minimally Az (gl) during the hth
cycle c. Note that gi = gf“ = gi"**, Vh > k. Hence, eventually all queues iz € Gz are emptied (and
we stop serving the signals in Gz for the reason switch.la or switch.1b). Whenever we switch for the
reason switch.la or switch.1b this switch reason cannot be part of a combination Cg, C11, Cig or Cig.
Thus, an infinite sequence of switch reasons where each switch reason is part of type 2 combination is
not possible. m

Lemma D.15 The following sequences are not possible:

f(k) fk)+1

sequence 1 An infinite sequence of stop reasons sk — sz = sk — 5z — -+ = switch.2 —>
switch.2 — switch.2 — switch.2 — ..., where max Amkﬂ <O0A max Amkﬂ < 0 (note that s*
ic€Ge i=€Gs
and sz 7 (k) form combination C7).
sequence 2 An infinite sequence of stop reasons st — sf(k) — sk = sf(k)Jr1 — -+ = switch.2 —

switch.3b — switch.2 — switch.3b — ..., where max Amkﬂ < 0 (note that s* and sg(k) form

(o egc
combination Ci1).

sequence 3 An infinite sequence of stop reasons st — sf(k) — sk — 52 FRHL = switch.3b —

switch.3b = switch.3b — switch.3b — ..., where magx AmkH =0A magx Axk"’l = 0 (note that
1c€Yc 1z€

sk and sg(k) form combination Cy7).

196

Further, we know that:

1 When sk — sf(k) — sk"’l — sf(k)Jrl = switch.2 — switch.2 — switch.2 — switch.2, where

max Amk"’l < 0 A max Amk‘H < 0 then it holds that max Axk+2 < 0 A max Axk+2 <0.
1c€Ge 1c€Ge i.€Gc 1c€Gs
2 When s — sf() — sk — sit(k)H = switch.2 — switch.3b — switch.2 — switch.3b, where

max Axk"’l < 0 then it holds that max Axk+2 <0

ir€Ge O iv€Gz -

3 When st — sf(k) — sk - sf(k)Jr1 = switch.3b — switch.3b — switch.3b — switch.3b, where

max Amkﬂ =0 A max Amkﬂ = 0 then it holds that max Axkﬂ =0 A max Axfffz 0.
ic€Gc ic€0e ic€Gc iz€0e ¢

Proof. Lets assume infinite sequence 1,2 and 3 are possible. For all these sequences it holds that:

gh = gne® Vi, € Ge,Yh > k, (D.19)
glr(h) g%aﬂc Vig € G, Vh > k. (D.QO)

Using (D.7a) and (D.7d) we can find that the queue length x’gjj, h > k can be calculated according
to the following equation (when assuming infinite sequence 1, 2 or 3):

h+1 _ _h w,h ~max
Leie = Lejip — gzc (:ulc - /\lr) + T /\ica
where
N th _ smin
Y max (X2 Cylc
gt = mingper, “oe S)
Mic - ic
. . . . o h .’l)h' . ~min
Note that a signal i, € G, is emptled whenever g; " = TM In the proof of Lemma D.14 we

have shown that when g;"* <! p“ then 3h > k (Axh+1 = PN — G (i, — Ai,) > 0). Hence,
sequence 1 and sequence 3 can only occur 1f all 51gnals ic € G satisfy gi"** > %

When a signal i. € G satisfies g;"** > 1 “Pic then we can find:

1=pi.
h — _ zmin
h+1 _ ~min Fmam y ~-max Ciic “ciic -m777. Fmaz
A(”—f +3"czc+ i Aio >0 1fgl > ANee g, < czc+ o Xig»
Hic = Nig
zh _ gmin
h+1 ~min -max ~mazx Te, ic T, ic h ~min max
A(”:— P e A i Xi, <0 1fg > » . Aax, ic>1czc+(a 1,1(‘#»91_ Wi
ic T Tic
zh _ gmin
h+1 _ h ~77L’L7L ~1nam _ ~mazx ‘c,ic C,ic h _ ~min max
Az ciie P +7 Xig =0 if g5, > 1 . NTeie = %eji +(‘7ic.z— zc+‘71— Wi
ic T e
Fmax h Fmin
7 i . -
h+1 _ -max -max N ic tc ~-max Clc Ciic
Az G = Tig N —Ji. (Mg = Aig) <0 if €% < g <
1= pi, Pig, — Nig
=max h FMin
) N 7 Pi . @ —
Aghtl — gmaxy GMAT (L XN,) =0 if _tc ¢ _ gmaz o “Clc Cic
cic ic ic ic ic ic ic =
1= i, Hig — A

(D.21)

Note the following things:

197

1 Whenever Amhﬂ < 0 then Ax?jf < 0. Hence, it also holds that whenever max Aa:?j’cl < 0 then

Zcegc
max Amh+2 <0.
1.€G.
2 Whenever Az 7" = 0 then Az = 0. Hence, it also holds that whenever max Azl =0 then
ic€G,
max Axh” =0.
1.€G. -
3 Whenever a queue i. € G, that satisfies gi"** > i is emptied during its green time gz then it is
h _~1nzn h+1 ~min
emptied during al subsequent green times, i.e. when g"** > % then g > %
4 All queues i. € G. that satisfy g;"** > ’1“7,: ¢ are emptied eventually (in finite time); if xﬁ’% >

QZLM(MC —Ni) — FiA® A, then Axh+1 = 7N, — gieT (i, — i) < 0 and if x’g’ic < gfj“m(u% -
Aip) = TN, then the queue is emptled (and it is emptled during all its subsequent green times).

“ i

5 It could be that a queue i. € G. is never emptied if g;"** > # (recall that for sequence 1 and

sequence 3 it cannot hold that g/"** > e Pic

Using (D.7a) and (D.7d) we can find that the queue length x’g“ h > k can be calculated according
to the following equation (when assuming infinite sequence 1, 2 or 3):

bt =al e — g™ -\, (D.22)
where
I yingges Feie ~ PR
" Hiz = Niz
When g” fR) M then queue iz € Gz will be emptied during g;_ f(h)

Higz—ANig
Using (D.9) we can find rewrite (D.22) to:

A+l _
T = max{xc T

PN — G (1, — M),). (D23)

Cyle
~m

Note that when gﬁjm < e "% then it holds that x _+ f”}“m)\i, > F™" hecause xf,_ > Fmin

1—piz c c,ig c,iz c,ie

(x ?1— < Z%™ implies a negative queue length) and rm“)\% — G2 iz — Aiz) > 0.
w.h

As a result it follows that Am?j; = TR N — gy (tiz = Niz) = TNy — G2 (iy — Aig) > 0.

Fmaz .

. ~ Pis
Hence, sequence 1, sequence 2 and sequence 3 can only occur if all signals iz € Gz satisfy gi"*" > —= pi; .

Further, we should note that x?lf < i?jg is not possible since it implies that queue iz had a negative
queue length.

Fmazx .

For a signal for which it holds that §"** > 17p- <, we can find that:
-
azltl—o it el =,
maz
Azt — o if g"”“" _ e P
e 1—pie
c
smaz,
Affj<0ifm ; >52"ZEA§Z"E’”>—1E —.

Note the following things:

198

1 Whenever Az < 0 then Az"12 < 0. Hence, it also holds that whenever max Aa:h+1 < 0 then

C,le C,lz

Zcegc
max Az 2 <0.
i=€Gs &re
2 Whenever Az 7" = 0 then Az = 0. Hence, it also holds that whenever max Azt =0 then
)l €0z
max Axh” 0.
i=€Gz

f(h)

3 Whenever queue iz € gc is emptied during its green time g; " it will be emptied during al subsequent

mzn h+1 _ =min
green times, i.e. if xc i = Toe then - ="
amda

4 All queues iz € Gz that satisfy gfmm > —’fi will be emptied eventually (in finite time); if xc - >
G (piy — Nig) — TR N, then Am?f_l P N — G (i — Aiz) < 0 and if xc i S G (i —
Aip) — TR N then the queue is emptled (and it will be emptied during all its subsequent green
times).

5 It could be that whenever a queue iz € G¢ satisfies gi2%" = % that this queue will never be
emptied. ‘

Now we know that:

1 Whenever magx Awhﬂ <0A magx Awhﬂ < 0 then magx Awh+2 <0A magx Axh” < 0. As a result,
1c€Gc iz€ €0, 1z€

(for infinite sequence 1) each switch reason s, h > k forms a combination C; with switch reason
f (h)

2 Whenever max Az <0 then max Az!'t? < 0. As a result, (for infinite sequence 2) each switch

uegc i=€Gs
reason s , h > k forms a combination C7g with switch reason sf(h).
3 Whenever max Axhﬂ = 0 A max Awhﬂ = 0 then max Axh” = 0 A max Awh+2 = 0. As a result

1c€Gc ie€Ge 1c€Gc iz€Ge
(for infinite sequence 3) each switch reason s, h > k forms a combination Cy7 with switch reason
A
CARS
First lets consider sequence 1 and sequence 3. Recall that when (g”cm“ = %) then it is possible

that queue i, € G, is never emptied. In the same way when iz € Gz (gfl”” = %) then it is possible

that this queue is never emptied.

~77La1 Fmaz

However, using (D.6) we can find that Ji. € G : gj"** > TF" and Jiz € Gz : g0 = 4= pf:_ can
only hold whenever Ji. € G.,ic € Gz : §i"** = %. However, this does not hold because of the

inequalities (8.1h), (8.1k), (8.1n) and (8.1q). Hence, either all queues in the set G. empty in a finite
time or all queues in the set Gz empty in a finite time. In this case we do stop because of the reason
switch.la or switch.1b. Hence, sequence 1 and sequence 3 are not possible.

smax

Now lets consider sequence 2. Recall that when Ji. € G. : g/"*" > % then it is possible that
this queue is never emptied. In the same way when Jiz € Gz : g% = Tif_ pp: then it is possible that
this queue is never emptied.)

However, using (D.6) we can find that Ji. € G. : g{"*" > T'if_pf:“ and Jic € Ge : g2 = #':_ can
only hold whenever Ji. € G,iz € Gg : "™ < % However, this does not hold because of the

inequalities (8.1h), (8.1k), (8.1n) and (8.1q). Hence, either all queues in the set G. empty in a finite

199

time or all queues in the set Gz empty in a finite time. In this case we do stop because of the reason
switch.la or switch.1b. Hence, sequence 2 is not possible. m

Lemma D.16 The following infinite sequences are not possible:

f(k) sk+1 f(k)+1
C

sequence 1 s¥ — sy — 55 — .- = switch.la — switch.3b — switch.la — switch.3b —

f(k) k+1 Fk)+1

sequence 2 sk — 1V — gt 5] — -+« = switch.la = switch.2 — switch.la — switch.2 — ...

Proof. For sequence 1 and sequence 2 it holds that every queue i. € G, is empty at the end of its
green time gf;, h > k. The green period glhc , te € G starts 7"** seconds after the end of gfc . However,
the green period gh‘J“1 starts o] “* seconds after the start of the h + 1th cycle c. Therefore, the h + 1th
cycle ¢ starts 7" — 07 after the end of gi During this time the queue length increases with rate
Ai.. Hence, it holds that:

all, = (F = o7\, ic€Ge, h>k (D.24)
Hence, it holds that:
Azltt =0, ic€Ge h>k. (D.25)

We distinguish the following three reasons for s? = switch.la, h > k (either s" = switch.1a or
sh = switch.1b):

reason 1 s = switch.l and 7, = Tlrlj, i.e. we switch immediately at the moment that all queues
(in the set that is served) are expected to empty.
reason 2 s" = switch.1 and 7} s = 7'1T2f, i.e. we use green times are exactly large enough to satisfy all

constraints on minimum green times.

Note that if TT 4= Tlr?} we switch for the reason switch.1b.

Note that for the second reason, there is a signal i, € G. where 7"\, of traffic could not depart
during a green time that is exactly large enough to satisfy all constraints on minimum green times.
Hence, when switch reason s, h > k occurs for the second reason then s”, ¥h > k occurs for the second
reason as well(for sequence 1 and 2). Hence, when sequence 1 or 2 is possible then either an infinite
sequence where we switch s”, Vh > k for the first reason must be possible or an infinite sequence where
we switch s, Vh > k for the second reason. We are going to show that both are not possible must be
possible.

First we consider an infinite sequence where we switch s, Vh > k for the first reason. At the
beginning of thls proof we have shown that Axh“ 0, Vzc € G., Yh > k. Further, in this case

Ji. € G : gi = gi , h > k, i.e. there is a signal that we switch to red exactly at the moment that

f(h) pbt

its queue is emptied. Further, it holds that g; ™ > g; ", Viz € Gz, Vh > k (because of the inequalities

(8.1h), (8.1k), (8.1n) and (8. lq))

Using (D.7a) and (D.7d), g/™ > ¢*, Vi; € G, Vh > k, AalT! = 0, Vi € G, Yh > k and
Jic € Ge : git " = ¢! we can find that Ji. € G, : Azl > OAgic =gl Agh > gfbt Vh > k.

200

Hence, we can use lemma D.18 to see that for an infinite sequence where we switch s, Vh > k for
f(h)

the first reason, either queue iz goes empty during g;_ "~ = g;"**, h > k, i.e. the queue length is zero at

the end of glfz(h) or its queue length decreases minimally Az(gl") > 0. (note that g/ = Q@hjla Vh > k).

Hence, eventually all queues iz € Gz are emptied (and we no longer stop serving the signals in the
set Gz because of the reason switch.3b or switch.2 but because of the reason switch.la or switch.1b).
Thus, an infinite sequence where we switch s, Vh > k for the first reason is not possible.

Now we consider an infinite sequence where we switch s, Vh > k for the second reason. Using the
inequalities (8.1j), (8.1m), (8.1p) and (8.1p) we can see that each signal iz € Gz can process less traffic
during its (maximum possible) green time than what arrives during its (minimum possible) red time.
Hence, eventually all queues iz € Gz are emptied (and we no longer stop serving the signals in the set Gz
because of the reason switch.3b or switch.2 but because of the reason switch.la or switch.1b). Thus,
an infinite sequence where we switch s, Vh > k for the second reason is not possible.

]

D.4.3 Other Lemmas

Lemma D.17 Whenever a queue length of signal i. € G. goes from empty to full during rfa then it

must hold that i. € Sc, Sc = {ic € Ge : == — i, izi. = lmiél T;\‘l —01,.is1.} and that all queue lengths
te i c€Gec < i

of the signals in the set l. € S, go from empty to full during their red period rlk

Proof. Queue i, € G. goes from empty to the maximum queue length during ¥ whenever r¥ =

ic
% Using (D.1) we can find that queue i, € G. goes from empty to the maximum queue length

during ¥ whenever:

Flky _ T

b= N Tiesmic: (D.26)
ic
”'{nam
Hence, a green time of signal iz can be at most lmlél T = Oigigic seconds, because otherwise
c€Ge e ’

. e
a maximum queue length would be exceeded. Only the queue(s) argmin *— — o;_;_;, can go from

1c€G. te

empty to full during its (their) red period(s) because the other queues need a longer green period gff
to go from empty to the maximum queue length and this is not possible.
Whenever a queue i, € G, goes from empty to the maximum queue length during rfl, this means

that gfﬁ = lnéiél T/\“ — Oi,izi.- This must mean that all queues [, € S. go from empty to their

maximum queue lengths during r{i because when a queue in this set was not empty at the beginning

max

of 7¥ its maximum queue length would be exceeded when gF = lmiél o — Oi,izi, and if a queue
c e c€G. e e

l. € S. was empty at the start of rlkc it goes from empty to the maximum queue length when gff =

min e — 04, i, W

1.€G. ie leylele

Lemma D.18 Whenever Ji. € G, : Aw’ij} >0A gic’k = gfc A gf > gfcbt then it holds that:

1 All signals iz € Gz that satisfy xlng < Ag(gfc) are empty at the end of the kth cycle c. It holds that
AE(QZ) > 0.

201

2 All queues iz € Gz that are not empty at the end of the kth cycle ¢, have a queue length (at the end
of the kth cycle c) that is at least Ag(gfc) > 0 lower than the queue length at the beginning of the
kth cycle c.

1—pi. —piz)iz
where Ag(gfc) (ng — gfﬁic)(plfﬁc)/ > 0.

Proof. Using AmkH >0, gic’k = g¥ and (D.7a) until (D.7d) we can find that:

At < —Ax(gh) if g™ = gl ™. (D.27)

c,ie —

From this equation it follows that if Ji. € G. : AzFtl > 04 gt = gk A gk > g?" then signal

iz € Gz must have a slowmode, i.e. giv™ < glf_(). whenever a . < Az(gl). This because otherwise it
would result in an infeasible negative queue length. As a result queue iz empties during gf *) whenever
< Ag(gh).
(‘ i T

Further, note that whenever z°*t1 > 0, i.e. queue iz € Gz is not emptied during gf (k) , then it holds

C,tz
that gfg’ = g{;(). Thus, whenever a queue is not empty at the end of the kth cycle ¢ then the queue
length is at least Az(g¥) > 0 lower than at the beginning of the kth cycle c. m

Lemma D.19 Whenever Jiz € Gz : Axff;l >0A gi’f() = glr(k) A gf(k) > gf:t then it holds that:

1 All signals i. € G, that satisfy xk < A (g (k) + iz,)t Ag(glfc(k)) are empty at the end of the kth
cycle c. It holds that Az (g f(k)) > 0.

2 All queues i. € G. that are not empty at the end of the kth cycle ¢, have a queue length (at the end
of the kth cycle ¢) that is at least Ag(9;.)) > 0 lower than the queue length at the beginning of

the kth cycle c.

1E,ic

f(k) f(k) bt \ (L=pic —piz)pic
where Az(g;) = (g;- gfﬂc)l_ipi? > 0.
Proof. First of all, note that when Az**! > 0, it holds that g”’f(k) = gj;(k), ie. gif;k) could not

C,le
have a slowmode. This because queue iz is not emptied during gf (k).

Further, it must hold that xkf{cl > Ni.(g iz(k) + 0i.,iz,.)- This because, at the end of the kth cycle c,
signal i. is red for (g;_ k) 4 Tieyiva,)-
Using (D.7a) until (D.7d), Axfff; >0 and gf;’f(k) = gj;(k), we can find that:
AzFtl < A (gz_(k)) if gii’f(k) _ glr(k) (D.28)

Cie —

The minimum queue length during the kth cycle ¢ (at the end of gf)is equal to xk .+ Aghtt —

Cic
Lk

i (gl,()+01F71L ..)- Hence, we can obtain from (D.28) that signal i € G. has a slowmode, i.e. g/"" < gF
if iz € Gs - Am’jjl >0A g” Sk) gzr(k) A gf(k) > gpbt and xcﬂv <)\Zc((k) + i ie,,) T A (ng,(k))
This because, if signal i, € gc does not have a slowmode it would result in an infeasible negative queue
length. This means that queue i, empties gf() when x’(f < i, (95 (k) +0i i,)+ Ac(glf;k)).

Further, whenever xk+1 > i, (gf(k) +0i, iz,), 1.6, the queue i. € G, is not emptied during gfc, then

it holds that g” b= gic. Thus, whenever a queue is not empty at the end of the kth cycle ¢ then the

queue length is at least Ac(g{;(k))

1E,ic

> 0 lower than at the beginning of the kth cycle c. m

202

f(k) f(k)+1

Lemma D.20 Whenever sz — sk“ — s = switch.3b — switch.3a — switch.3b then it will

hold that max Axk“ > 0.
1z€Ge
Whenever sf(k) — spT — sf(k)Jrl = switch.3b — switch.3a — switch.3b then it holds that Jiz €

G, : Axlccf >0 A gl FRTL _ glf_(k)+1 ngz(k)+1 > gf_bt

k+1

Proof. Lets consider the queue zf()+1

of its green time g{f(.,

Because sf(k) = s[(k)H = switch.3b it holds that gff((],?)ﬂ gff((],?)ﬂ = g’cf((i))i'll = g”}(“,jﬁﬂ We are

(the queue that has a maximum queue length at the start

going to show that Ax f(,c)ﬂ = xkffz(k)ﬂ — xkffl(k)ﬂ > O and thus that it holds that magx Axk” >0.
iz€0zs

F)+1

We know that queue i was not emptied during g, f((,c)) 1 (because 1 = switch.3a) and thus

it holds that g’j{i() +)1 = gff((lz)) +1- It also holds that g’j{i() +)1 = gff((i))il (because we could not empty

queue Zf()+1 durlng g f((,c))ﬂ and because queue Zf(1 is full at the start of gff((],i))i'll) Further, we

+1 k+2 _
can see that z¥ 7(,‘)“ § :c (k)+1 g,f(,c)ﬂ(uii(mﬂ —)\7;£(k-)+1) + T+ g f}\.f(k)+1 and that T e =

G,

xii(k.)ﬂ g’ f(k)ﬂ(u 41— A f(lc)+1) + o, 941 g, Iy s(+1 (since queue Zf()+ is full at the start of

f(k)+1 E+2 k1
gii(kwl) Hence Aa: f(k)+1 =7, IO z, 1 > 0.

During this proof we have already shown that Am (k)+1 >0A g”f{:()ﬁ)fl = gff((],?)ﬂ A gff((i))i'll
e

V

gif(k)ﬂ . n

k f(k) J(k)+1

Lemma D.21 Whenever s; — sz — sk“ — 87 = switch.2 — switch.2 — switch2 —

switch.2 and max Amk"’l < 0A max Amk'H < 0 then it holds that max Axf(k)H < 0A max Am H <
1c€Gc 1c€Ge ic€Gc ic€Ge
0.

Whenever s — sf(k) — ST = siﬁ(k)Jrl = switch.3b — switch.3b — switch.3b — switch3b and

max Axkﬂ = 0 A max Amkﬂ = 0 then it holds that max Amf(k)'H 0 A max Axf(ﬁ)ﬂ 0.
ic€Ge €0z ic€Gc iz€Gs

k+1

Proof.
Note that in this case:

k ~ .
gi =g, Yie € Ge,

k ~ma: .
gitt =g, Vic€g,,

lc

gl =gmer viieg,,

e

91!;(= g, Viz € Ga.

e

First we prove that max Axf(b < 0if max Amk'H < 0 and that max Axf = 0if max Amk'H
ic€Gc ic€Gc ic€Ge lcegc
0 (when s¥ — sf(k) skl sf(kH'1 = switch.2 — switch.2 — switch.2 — switch.2 or sk — sf(k)

sh+t Fo9 1 _ = switch.3b — switch.3b — switch.3b — switch.3b). Using (D.6) and (D.7) we can

ﬁnd the followmg expressions for Amkﬂ and Ax_(k)H

— Sz

203

Akl = —glF (s, — X)) + TN, (D.29)
AL = — gl (i, — i) + TN (D.30)

(’ 1(
Note that Axf (B)+1 4g equal to the expression from Axk+2 In Lemma D.15 we have shown that for
all signals i. € g(1t holds that:

1 max Amk+2 < 0 if max Axk"'l <0

lcegc lce c
2 max Amk+2 = 0 if max Ax?";l =0
i1c€Ge i1c€Ge ¢

Thus, it holds that max Axf(k)—H < 0 if max Axk'H < 0 and max Axf(k)—H =0 if max AzFTt =0

ic€Ge ic€Ge ic€Ge iceGe '
Now we prove that max Axf(k)ﬂ < 0if max Axkﬂ < 0 and that max Ax_ M+ _ 0if max Am’jjl
iz€Ge iz€Ge =€z zcEQp ¢
0 (when s* — sf(k) skl sf(k)+1 = switch.2 — switch.2 — switch.2 — switch.2 or sk — sf(k)

skt sf(k)Jrl = switch.3b — switch.3b — switch.3b — switch.3b). Using (D.6) , (D.7) we can find
k1 ond Agd B+,

the following expressions for Az, 7 z i

Aabtl = =gl T (i, = X))+ N (D.31)
Az f(ffm = giﬁf ® (i, — X)) + T N (D.32)

Note that Amk‘i——l = Az f(k)+1 - As a result ma’gX Axf(kH_l <0 if ma'gx Axk"'l < 0and magX Axf(k)-i—l =
C,ie ie€0e 1e€Ye 1=€Gz

k+1 = 0. This concludes this proof. =

0 if max Az,
lcegc

f(k) ws f(K) f(k)

Lemma D.22 Whenever s& — s.* = switch.la — switch.1la then Jiz € Gz : gi =g;_~ and it

holds that gf(k) > gf,bt, Viz € Ge.

Proof. Whenever sg(k) = switch.la then it holds that 3i. € G, : z;_(¢) > xn where z;_(t) is the

queue length of queue i, € G. when signal i/ switches to red (during rfjl ,le € gc) (see Section D.1 for
more information). The definition of xf is shown in (8.2). Because all queues in the set G, were empty
at the start of r¥ (since s¥ = switch.la) this means that Ji. € G, : (rfjl = Ot D, > xg , ic€Ge
Using (8.2) we can find that rfj’l > r;, (and thus that gf;(k) > gi,, Viz € Gg). Thus, it holds
that gf(k) > g¢;-. Using (7.14c), (7.14a) and (D.2) we can find that gif;k) > gfbt Viz € Gz and that
gz,(k) > gl Viz € Ge.
Note that (in general) when sg(k) = switch.la then either Jiz € Gz : glf,(k) = g (a signal is served

mof (k) _ f(k) (

for the minimum green time) or Jiz € Gz : i there is a signal iz € Gz that we switch to

red exactly at the moment it is emptied). Because, when sk — sf(k) = switch.la — switch.la it holds

that gf(k) > gmm Viz € Ge it must hold that Jiz € Gz : gl, () = f(k) (there is a signal iz € Gz that we
switch to red exactly at the moment that it is emptied). m

204

Lemma D.23 Whenever s¥ = switch.1b then we will follow the trajectory that we want to follow

from the start of the k + 1th cycle c. Whenever s’j = switch.1b then s’g = switch.1b, YVh > k and
sI = switch.1b, Yh > .

Proof. We switch because of the reason s*

Viz € Gzt wi(t) < xgz (see Section 8.3).

We are going to show that whenever s’j = switch.1b then it will hold that gfg = i, ic € Gz and
sg(k) = switch.1b.

Whenever s* = switch.1b we can find that:

— i 1 2 1 3
= switch.1b whenever Tia.s < Tt A Tia.s < Tio.s and

1.1 Tiz + O.i:"f- c)\z_ res res
Tig'Y‘meaX(—/""Uir,fiTirf Urj Tfo)+Urj <g7‘f+0-rj, (D'Ssa)
© i=€Ge i —)‘ip ¢ hleste
12 = min . . . res res
Tigd = @ag(gl ton oF g T Uig.u:’f?ig,f) + O < girs + Orifs (D.33b)
€0z z r r
#
T)y = min (xiE — Oyt go.f) = Girs + Urf?, (D.33c)
te i=€0z Nig te " ste
2 __ _max res res
Tigd =Ygt T 0y 2 Girs + 0,07, (D.33d)
c T
pmaz
3. = i e res
Tgf = ‘I,nln,(— = O'iz,fﬂ,i,f) > g i+ 0- (D33e)
< i=€G0c >\7/E T

We will explain these expressions one by one.

For the desired trajectory the queue length of queue iz € Gz equals :c o,)\Z, when the green
time of signal iz starts. For the desired trajectory the amount of traffic that arrlves durlng a red period
can depart during a green period. Hence, it holds that:

:E + 0’7]:‘ f Z—AZE .
——— <y, Viz € Ge.
iz — /\lE

Further, because the green times are related according to (D.2) we can find that for the desired
trajectory it holds that:

x + o Nie
max (———=F = — 4 Oyt it — Oyt gt grd) < Gyt
, Ty Ty T Ty .
i=€0=" iz — Aig e iesic i i iet) = i

Further, to find the expression (D.33a) we have used the fact that signal ig’f is switched to green

o seconds after signal i%'/ is switched to green and the fact that each queues iz € Gz satisfied that

f

its queue length z;.(t) at the end of g%, ; is smaller than (or equal to) z;_ (because s; = switch.1b).

Because the green periods of the signals in the set G, are related according to (D.2) and using (7.14c)
we can find that:

min
1;69 (gl_ + Oiref imit! O'zﬁ‘f,zgf,zg’f) = gl;f

Further, to find the expression (D.33b) we have used the fact that signal ig’f is switched to green

o7 seconds after signal i9/ is switched to green.
e

205

4
Queue iz € Gz reaches a queue length of xgz when this signal has been red for :; Signal 9/

switches to green o, .o,s seconds after signal 94 switched red therefore we find that:

T.lg'?’f = min (L O'iz,f7ig,f). (D.34)
Using (8.2) and (D.2) we can find expression (D.33c).

We can find expression (D.33d) using the relation between maximum green times shown in (8.1f) and
(8.1g) and using the fact that signal z;f is switched to green 0”¢% seconds after signal 9/ is switched

it
c
to green.
maz

mazx
e

el

when this signal has been red for . Signal i/ switches

Queue i, reaches a queue length of —

to green oyr.s ja.s seconds after signal 9/ switched red. Using (7.14b) results in:

mazx
c

gy < min (

— O, f ~gyf)-
te i.€Gc)\iE bt

From (D.33) we can see that glfr(]f) = g,~s. Because all green times in the set . are related according

to (D.2) this means that gif;k) = gi, Vizc € Gg.
From (D.33) we can easily see that:

Til_ghf < Tf_g_f A Til_g,f < Tﬁé,f,wc €G.:x (t) < xgc.

Thus, it holds that sg(k) = switch.1b.

Hence, when switch.1b occurs from then on we always switch signals to red because of the reasons
switch.1b and from then on the green time of every signal is equal to the green time of that signal for
the trajectory that we want to follow.

We can easily see that when s® = switch.1b occurs then we follow the desired trajectory from the
start of the k + 1th cycle ¢ because it holds for all signals that iz € Gz that the queue length at the

end of gf;(k) are equal to zero (just like for the desired trajectory) and Vi. € G, it holds that the queue

f(k)

length at the end of Girs is equal to xf (just like for the desired trajectory). m

206

Bibliography

[1] A.S. Alfa and M.F. Neuts (1995). Modelling vehicular traffic using the discrete time Markovian
arrival process, Transportation Science. 29, 109-117.

[2] M.A.A. Boon (2011). Polling models, From theory to traffic intersections. PhD. thesis, Technical
University Eindhoven.

[3] O.J. Boxma and W.P. Groenendijk (1987). Pseudo-conservation laws in cyclic service systems. Jour-
nal of Applied Probability. 24, 949-964.

[4] E. Brockfeld, R. Barlovic, A. Schadschneider and M. Schreckenberg (2001). Optimizing traffic lights
in a cellular automaton model for city traffic, Phys. Rev. E. 64, 056132.

[5] M.S. van den Broek (2004). Traffic Signals - Optimizing and analyzing traffic control systems,
Master’s thesis thesis, Technical University Eindhoven.

[6] M.S. van den Broek, J.S.H. van Leeuwaarden and I.J.B.F. Adan (2006). Bounds and approximations
for the fixed -cycle traffic-light queue, Transportation Science. 40 (4), 484-496.

[7] C. Daganzo (1990). Some properties os polling systems. Queueing systems. 6, 137-154.
[8] J.N. Darroch (1964). On the traffic-light queue, Ann. Math. Statist. 35, 380-388.

[9] J.N. Darroch, G.E. Newell and R.W.J. Morris (1964). Queues for a vehicle actuated traffic light.
Operations Research. 12, 882-895.

[10] J.A.W.M. van Eekelen (2008). Modelling and control of discrete event manufacturing flow lines.
PhD. thesis, Technical University Eindhoven.

[11] M. Fouladvand and M. Nematollahi (2001). Optimization of green-times at an isolated urban
crossroads, Fur. Phys. J. B. 22. 395-401.

[12] R. Haijema and J. van der Wal (2007). An MDP decomposition approach for traffic control at
isolated signalized intersections. Probability in the Engineering and Informational Sciences. 22, 587-
602.

[13] D. Heidemann (1994). Queue length and delay distributions at traffic signals, Transportation Re-
search Part B. 28, 377-389.

[14] TRB (2000). Highway Capacity Manual 2000, Transportation Research Board.

[15] S. Lammer, D. Helbing (2008). Self-control of traffic lights and vehicle flows in urban road networks.
Journal of Statistical Mechanics: Theory and Ezperiment. P04019.

207

[16] J.S.H. van Leeuwaarden (2006). Delay analysis for the fixed-cycle traffic-light queue, Transportation
science. 40 (2), 189-199.

[17] V. Feoktistova, A. Matveev, E. Lefeber and J.E. Rooda (2011), On optimal switching interactive
decentralized control of networked manufacturing systems, Proceedings of the 18th IFAC World
Congress, Milan, Italy, 14048-14054.

[18] D.R. McNeill (1968). A solution to the fixed-cycle traffic-light problem for compound Poisson
arrivals, J. Appl. Probab. 5 625-235.

[19] A.J. Miller (1963). Settings for fixed-cycle traffic signals, Oper. Res. Quart. 14 273-386.
[20] G.F. Newell (1965). Queues for a fixed-cycle traffic light, Ann. Math. Statist. 31 589-597.

[21] G.F. Newell (1969). Properties of vehicle-actuated signals: I. one-way streets. Transportation Sci-
ence. 3, 31-52.

[22] G.F. Newell and E.E. Osuna (1969). Properties of vehicle-actuated signals: II. two-way streets.
Transportation Science. 3, 99-125.

[23] K. Ohno (1978). Computational algorithm for a fixed-cycle traffic-light queue, Transportation Sci-
ence. 12, 29-47.

[24] J.W. Polderman and J.C. Willems (1998). Introduction to Mathematical Systems Theory: A Be-
havioral Approach, Springer.

[25] T. Riedel and U. Brunner (1992). A control algorithm for traffic lights, Automic Control Laboratory,
Swiss Federal Institute of Technology, Switzerland.

[26] F. Viti and H.J van Zuylen (2010). Probabilistic models for qeueus at fixed control signals, Trans-
portation Research Part B. 44, 120-135.

[27] X. Wang and K. Yin. (2010) Vehicle actuated signal performance under general traffic at an isolated
intersection, Department of Civil Engineering, Texas A6M University.

[28] F.V. Webster (1958). Traffic signal settings, Road Res. Lab. Tech. Rep. 39.
[29] F.V. Webster and B.M. Cobe (1966). Traffic signals, Road Res. Lab. Tech. Rep. 56.

208

