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SummaryWith an in
reasing number of road users the e�
ien
y of tra�
 lights gets more and more important.Tra�
 light s
hedules 
ould have a great e�e
t on the 
ir
ulation of tra�
 at interse
tions and on the
ir
ulation of tra�
. To derive e�
ient tra�
 light 
ontrol more resear
h is needed.Most of the resear
h on this topi
 is devoted to �xed 
y
le tra�
 light 
ontrol. For �xed 
y
letra�
 light 
ontrol the durations of the green periods as well as the durations of the red periods arenot a�e
ted by tra�
. This type of tra�
 light 
ontrol 
an be e�
ient when a lot of tra�
 arrives atthe tra�
 lights. However, when little tra�
 arrives, road users might have to wait in front of a tra�
light for no apparent reason. For example, at night a road user might have to wait while there is noother tra�
 near this interse
tion.Another type of tra�
 light 
ontrol is vehi
le-a
tuated tra�
 light 
ontrol. In 
ontrast to �xed 
y
letra�
 light 
ontrol, for vehi
le-a
tuated tra�
 light 
ontrol the durations of the green periods as well asthe duration of the red periods are a�e
ted by arriving tra�
. For vehi
le-a
tuated tra�
 light 
ontrol,via dete
tors information is gathered about the queue lengths at the interse
tion. This information isused to regulate the duration of the green and red periods.In pra
ti
e, for safety reasons restri
tions on the duration of a green period are given: minimumgreen times and maximum green times. Most resear
h devoted to vehi
le-a
tuated tra�
 light 
ontroleither does not regard these restri
tions on green times or is restri
ted to one tra�
 light being greenat a time. Furthermore, one of the most studied vehi
le a
tuated tra�
 light 
ontrols is the exhaustivepoli
y whi
h swit
hes a tra�
 light to red when its queue is emptied.In this thesis we derive a vehi
le-a
tuated tra�
 light 
ontrol that does regard restri
tions on greentime duration, that is not restri
ted to one tra�
 light being green at a time and that is not restri
tedto swit
hing a tra�
 light to red whenever its queue is 
leared.We dis
uss three problems in this thesis. The �rst problem is traje
tory optimization, whi
h is�nding the desired behavior of the interse
tion. This desired behavior is derived by modeling theinterse
tion with a hybrid �uid model. This hybrid �uid model tra�
 assumes deterministi
 arrivals anddeterministi
 departures. We derive the desired behavior of the interse
tion, minimizing the averageweighted queue length at the interse
tion. Sin
e we assume deterministi
 arrivals and deterministi
departures to derive the desired behavior of the interse
tion, in pra
ti
e the interse
tion deviates fromit due to for example sto
hasti
 arrivals.The se
ond problem is regulation. The problem of regulation is to �nd a poli
y (a feedba
k 
ontrol),whi
h is a set of rules (as fun
tion of the queue lengths at the tra�
 lights) that de�nes when to takewhat 
ontrol a
tions (for example when to 
hange the 
olor of a tra�
 light). This poli
y should makesure that the interse
tion returns to the desired behavior whenever the interse
tion deviates from thisdesired behavior.The third problem is to address the quality of the proposed poli
y in a sto
hasti
 environment. Tothis end, we use a sto
hasti
 model for the interse
tion. This sto
hasti
 model assumes Poisson arrivals.In this thesis we 
onsider relatively small interse
tions. However, in the future we will try to extendto larger interse
tions.
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Summary (Dut
h)Door het toenemen van het aantal weggebruikers wordt de e�
iëntie van verskeersli
hten steedsbelangrijker. Het aanpassen van verskeersli
htregelingen kan een groot e�e
t hebben op de doorstromingvan verkeer. Om e�
iënte verskeersli
htregelingen te verkrijgen is onderzoek nodig.Het grootste deel van het onderzoek is gedaan naar verskeersli
hten met vaste groen- en roodtijden.Verkeersli
hten met deze vaste afstellingen zijn niet afhankelijk van het aankomend verkeer. Dit typeverskeersli
htregeling kan goed werken wanneer er veel verkeer aankomt bij de verskeersli
hten. Wanneerweinig verkeer aankomt bij een kruispunt kan het zo zijn dat je moet wa
hten zonder duidelijke reden.Bijvoorbeeld wanneer 's na
hts een auto aankomt bij een leeg kruispunt kan het zijn dat deze auto to
hmoet wa
hten voor een rood verskeersli
ht.Een ander type verskeersli
htregeling is de voertuigafhankelijke regeling. In tegenstelling tot eenverskeersli
ht met vaste groen- en roodtijden is de voertuigafhankelijke regeling wel afhankelijk vanaankomend verkeer. Via meetlussen in de weg wordt informatie verkregen over het wa
htend verkeerop een kruispunt. Deze informatie wordt gebruikt om groen- en roodtijden te bepalen.In de praktijk worden er boven- en ondergrenzen gesteld op groentijden. Het merendeel van hetonderzoek naar de voertuigafhankelijke regeling houdt geen rekening met deze grenzen op groentijden.Verder wordt er vaak aangenomen dat er hoogstens één verskeersli
ht tegelijkertijd groen is. Een veelonderzo
hte voertuigafhankelijke regeling is de regeling waarbij een verskeersli
ht rood wordt zodra ergeen verkeer meer staat te wa
hten voor dit verskeersli
ht.In dit verslag bes
houwen we een voertuigafhankelijke verskeersli
htregeling die wel rekening houdtmet de boven- en ondergrenzen op groentijden, waarbij meerdere (niet 
on�i
terende) verskeersli
htentegelijkertijd groen kunnen zijn en waarbij een verskeersli
ht niet per sé rood wordt als er geen verkeerstaat te wa
hten voor dit verskeersli
ht.Er worden drie problemen behandeld. Het eerste probleem wordt het traje
tory optimization pro-bleem genoemd. Voor het traje
tory optimization probleem wordt het gewenste gedrag van een kruispuntafgeleid door het kruispunt te modeleren met een hybride vloeistof model. Dit hybride vloeistof modelgaat uit van deterministis
he aankomsten en deterministis
he vertrekken. Tijdens het traje
tory opti-mization probleem wordt gezo
ht naar het gedrag van het kruispunt dat de gewogen wa
hrijlengte aanhet kruispunt minimaliseert. Om het gewenste gedrag van het kruispunt af te leiden wordt aangenomendat de aankomsten en vertrekken deterministis
h zijn. In de praktijk zijn de aankomsten en vertrekkensto
hastis
h en zal het kruispunt van dit gewenste gedrag afwijken.Het tweede probleem is regulation. Voor dit probleem wordt naar een feedba
k poli
y (als fun
tievan de wa
htrijlengtes bij de verskeersli
hten) gezo
ht. De feedba
k poli
y bestaat uit regels die bepalenwanneer welke a
ties ondernomen moeten worden (bijvoorbeeld wanneer de kleur van een verskeersli
htmoet veranderen). Deze regels moeten ervoor zorgen dat wanneer het kruispunt afwijkt van het gewenstegedrag (verkregen via het traje
tory optimization probleem), het kruispunt weer terug gaat naar ditgewenste gedrag.Verder worden deze regels getest in een sto
hastis
he omgeving. Via simulatie worden resultatenverkregen. Voor deze simulatie wordt het kruispunt gemodelleerd met een sto
hastis
h model. Ditsto
hastis
he model neemt aan dat de aankomsten bij het kruispunt Poisson verdeeld zijn.In dit verslag bes
houwen we relatief kleine kruispunten. In de toekomst wordt geprobeerd om ditwerk uit te breiden naar grotere kruispunten.
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Chapter 1Introdu
tionTra�
 lights are signalling devi
es that 
ontrol the a

ess of 
ompeting tra�
 �ows to an interse
tion.The main purpose of tra�
 lights is to improve safety and de
rease dis
omfort of road users. Thetra�
 lights origin, 
an be tra
ed ba
k to semaphores and lights used in regulating train tra�
. The�rst tra�
 light was already in use before automobiles dominated the roads and tra�
 
onsisted ofpedestrians, buggies and wagons. This tra�
 light was a rotating gas lantern with red and green lightsand it was installed in 1868 outside the British Houses of Parliament in Londen. The gas lantern wasvery similar to the railway signals of the time and it was invented by railway engineer J.P. Knight.With the rise of the automobiles, the roads got more o

upied. Hen
e, the tra�
 light got more usefuland more pra
ti
al. In 1920 the �rst four-way three 
olor tra�
 light was installed in Detroid.In the 1920s tra�
 lights were also introdu
ed in the urban streets of almost every sizable Dut
h
ity. Ea
h of these 
ities developed its own tra�
 light system. In the 1930s this variety of systemsgave way for the three-
olor system that would be
ome the international standard.With an in
reasing number of road users the e�
ien
y of tra�
 lights gets more and more important.Tra�
 light s
hedules 
ould have a great e�e
t on the 
ir
ulation of tra�
 at interse
tions and on the
ir
ulation of tra�
. Another way to in
rease the 
ir
ulation of tra�
 is by 
hanging the road stru
ture.Obviously, 
hanging tra�
 light s
hedules is relatively 
heap and easy to implement in 
omparison to
hanging road stru
ture. Besides, 
hanging road stru
ture is not always possible. For example, be
auseof limited spa
e in 
ities, adding an extra lane to de
rease tra�
 
ongestion is often out of the question.The main goal of this thesis is to make a �rst step in developing vehi
le-automated tra�
 light
ontrols that improve the e�
ien
y of tra�
 lights at interse
tions, i.e. improve the 
ir
ulation oftra�
. More spe
i�
ally, our goal is to minimize the average weighted queue length for relatively smallinterse
tions. Minimizing the average queue length is equivalent to minimizing the average delay ofroad users at an interse
tion. In this thesis we de�ne the delay as the additional travel time experien
edby a driver, 
y
list or pedestrian, whi
h is the same de�nition as 
an be found in [14℄. To minimize theaverage weighted queue length at an interse
tion, we distinguish two main roots of 
ontrol theory 
f.[24℄: traje
tory optimization and regulation.In Se
tion 1.1 we introdu
e some of the de�nitions and introdu
e some of the notation used in thisthesis. We give a summary of the introdu
ed de�nitions and the introdu
ed notation in Se
tion 1.2 andSe
tion 1.3. In Se
tion 1.4 we give the problem de�nition and in Se
tion 1.5 we give an overview of thisthesis.
11



1.1 Example: Interse
tion With 32 Tra�
 LightsIn this se
tion we introdu
e some of the de�nitions and some of the notation used in this thesis. Thede�nitions and notation introdu
ed in this se
tion are summarized in Se
tion 1.2 and Se
tion 1.3.PSfrag repla
ements
1

2

3

4

56

7

8

9 10

11

12

1314

15

16

17 18

19

20

Figure 1.1: An example of an interse
tion 
ontrolled with tra�
 lights.Vehi
le lanes, bi
y
le lanes and pedestrian 
rossings In Figure 1.2 we 
an see an example ofan interse
tion. This interse
tion 
onsists of 8 vehi
le lanes, 8 bi
y
le lanes and 8 (two-way) pedestrian
rossings. A vehi
le lane is de�ned as the part of the road leading to the interse
tion that is designed fora single line of vehi
les. A bi
y
le lane is a portion of the roadway that has been designated by striping,signing, and pavement markings for the ex
lusive use of bi
y
lists. In this example ea
h vehi
le laneand ea
h bi
y
le lane is equipped with one tra�
 light. We de�ne a pedestrian 
rossing as a designatedpla
e where pedestrians 
an 
ross a street and where vehi
les must stop to let them 
ross. Generally,at a pedestrian 
rossing pedestrians 
an walk in two dire
tions (two-way pedestrian 
rossing). Ea
hdire
tion is equipped with a tra�
 light. Hen
e, this interse
tion has a total of 32 tra�
 lights.The interse
tion depi
ted in Figure 1.2 is not very realisti
 due to its la
k of vehi
le lanes for turningtra�
. However, we have 
hosen this example be
ause it is one of the more 
omplex interse
tions thatwe 
ould 
ontrol using the results from this thesis.Signals and approa
hes We 
an partition ea
h of the tra�
 lights in exa
tly one set, ea
h set
orresponding to one signal. A signal is a set of one or more tra�
 lights, whi
h swit
h to greensimultaneously and swit
h to red simultaneously. A Signals is designated to either vehi
les, 
y
lists12



Signal Type of tra�
 number of tra�
 lights in ea
h signal1,...,4 Vehi
les going straight ahead 25,12 Cy
lists (in this example 
y
lists are not allowed tonot go 
lo
kwise) 113,...,20 Pedestrians. 2Table 1.1: partitioning the 32 tra�
 lights in Figure 1.2 into 20 signalsor pedestrians. Two tra�
 lights may only be partitioned in the same signal designated to vehi
les or
y
lists whenever the tra�
 arriving at these tra�
 lights originates from the same dire
tion. Signalsare numbered 1, ..., N and we use N = {1, 2, . . . , N} to refer to the set of all signals at an interse
tion.With approa
h i ∈ N we refer to the roads that lead to the tra�
 lights in signal i. In Figure 1.2and Table 1.1 we 
an see how we have numbered the approa
hes (and thus how we have numbered thesignals) respe
tively how we have partitioned the 32 tra�
 lights in 20 signals. Thus, in this example
N = 20. Another division of tra�
 lights in signals is also possible. The division of tra�
 lights insignals is up to the engineers that derive tra�
 light s
hedules for an interse
tion. The tra�
 lights thatare partitioned into the same signal swit
h simultaneously. Therefore, these tra�
 lights have exa
tlythe same tra�
 light s
hedule. For this example, by partitioning tra�
 lights into signals there are 20di�erent tra�
 light s
hedules (one for every signal) instead of 32 di�erent tra�
 light s
hedules.In ea
h dire
tion there are two lanes for vehi
les. Be
ause the tra�
 from these two adja
ent lanesoriginates from the same dire
tion and goes in the same dire
tion it is logi
al to swit
h the 
orrespondingtwo tra�
 lights to green simultaneously and to red simultaneously. Hen
e, we partition these tra�
lights in the same signal. Moreover, for this example we partition the two tra�
 lights of a pedestrian
rossing in the same signal.Signal state In most 
ountries, the state of ea
h of these signals 
an be either green, amber or red.We de�ne the signal state as the visual state of the tra�
 lights that are element of the same signal.However, in this thesis we do not 
onsider the amber (orange) signal state be
ause depending onthe assumptions this amber signal state 
ould be modeled as a red signal state, a green signal state or a
ombination of those two. When assuming that tra�
 still departs when its signal is amber, the ambersignal state 
an be modeled as a green signal state. When assuming that tra�
 does not depart whenits signal is amber, the amber signal state 
an be modeled as a red signal state. When assuming thatduring the �rst part of the amber signal state tra�
 departs and during the se
ond part tra�
 does notdepart, we 
an model the �rst part as a green signal state and the se
ond part as a red signal state.We use mi(t) for the signal state of signal i ∈ N at time t ∈ R

+. The signal state mi(t) is equal toi or i whenever the signal state is green or red respe
tively. When the signal state of signal i ∈ N isred, we often use the short version: signal i is red. When the signal state of signal i ∈ N is green weoften use one of the short versions: signal i is served or signal i is green.Green and red period We de�ne a green (red) period as the interval during whi
h the signal stateis green (red), i.e. the interval between the moment that the signal is swit
hed to green (red) and themoment that the signal is swit
hed to red (green). During the green period of signal i, tra�
 waiting atthe 
orresponding approa
h is allowed to 
ross the 
ommon 
rossing area. On the other hand, duringthe red period of signal i, tra�
 from the 
orresponding approa
h is not allowed to 
ross the 
ommon
rossing area. The duration of a green (red) period is 
alled a green (red) time. We use gki , k = 1, 2, . . .for the kth green time of signal i (starting from t = 0) and we use rki for the red time of signal i that
omes between gki and gk+1
i . A tra�
 light s
hedule is a spe
i�ed sequen
e of red and green periods fora tra�
 light. 13



In pra
ti
e, signals generally have 
onstraints on the length of the green period, i.e. a green timemay not ex
eed the maximum green time and a green time must ex
eed the minimum green time. Wedenote the maximum green time and the minimum green time of signal i ∈ N with gmax
i respe
tively

gmin
i , where gmax

i > 0 and gmin
i ≥ 0. Whenever a green period is extremely short or extremely long(and as a result a red period of another signal is extremely long), road users 
ould get irritated whi
hresults in more red negation, i.e. in more people ignoring a red light. Further, whenever a green periodis extremely short or extremely long, road users might think the tra�
 lights are malfun
tioning. Theselower and upper boundaries on green times should guarantee that the interse
tion is believable andshould limit the irritation of road users.Arrival rate We assume that at all of the tra�
 lights, tra�
 arrives. How mu
h tra�
 arrives isdenoted with the arrival rate. The arrival rate is the mean number of vehi
les, 
y
lists or pedestriansarriving at a signal or tra�
 light per se
ond. In pra
ti
e this arrival rate varies. For example moretra�
 arrives during rush hour. However we assume that the arrival rate at signal i ∈ N is 
onstant.The arrival rate at signal i ∈ N is denoted with λi and it is often obtained by 
ounting the number ofvehi
les, 
y
lists or pedestrians arriving at a tra�
 light. We assume λi > 0.Maximum departure rate The maximum departure rate is the highest possible rate at whi
h tra�
from a tra�
 light or signal 
ould 
ross the interse
tion in vehi
les per se
ond, 
y
lists per se
ond orpedestrians per se
ond. We use µi for the maximum departure rate of signal i ∈ N . In pra
ti
e thismaximum departure rate is not 
onstant be
ause at the beginning of a green time there is a startupe�e
t; people do not respond instantaneously and the tra�
 needs some time to a

elerate. Hen
e, inthe beginning the maximum departure rate in
reases. After a 
ertain amount of time the maximumdeparture rate does not 
hange anymore. The transient part, where the maximum departure ratein
reases, is 
alled the startup e�e
t in the departure rate. The maximum departure rate µi 
an beeasily 
omputed, based on the design of the interse
tion. The maximum departure rate satis�es µi > 0.We assume µi > λi. Further, we use ρi for the ratio between the arrival rate and the maximumdeparture rate of signal i, i.e. ρi = λi

µi
. i ∈ N whi
h is equal to λi

µi
.Queues The tra�
 waiting at a tra�
 light forms a queue. A queue is de�ned as the vehi
les, 
y
listsand pedestrians at an approa
h that are waiting to 
ross the interse
tion. With queue i ∈ N we referto the vehi
les, 
y
lists and pedestrians that are waiting at approa
h i. We use xi(t) to refer to thequeue length of queue i ∈ N . Sin
e there is limited spa
e for tra�
 to wait at a tra�
 light, thereare maximum queue lengths. The maximum queue length is the maximum amount of vehi
les, 
y
listsor pedestrian that 
ould be waiting in front of a tra�
 light or signal. These maximum queue lengthsfollow from the design of the interse
tion. The maximum queue length of queue i ∈ N is denoted with

xmax
i (t).Slow mode During a slow mode a signal is green and the 
orresponding queue is empty. During aslow mode arriving tra�
 experien
es no delay. We use gλ,ki for the length of the slow mode at signal iduring the kth green period of signal i. We use gµ,ki for the length of the interval during the kth greenperiod of signal i during whi
h the queue of signal i is not empty, i.e. gµ,ki = gki − gλ,ki .Con�i
ting signals For safety reasons, not all signals at an interse
tion that is 
ontrolled with tra�
lights may be green simultaneously (if this was the 
ase we would not need tra�
 lights). Two signalsare 
on�i
ting when the tra�
 from these approa
hes 
annot safely 
ross the 
ommon 
rossing areasimultaneously. In Table 1.2 we present the 
on�i
t matrix for the interse
tion in Figure 1.2. In a 
on�i
tmatrix we 
an see whi
h signals are 
on�i
ting (denoted with an 'x') and whi
h are not 
on�i
ting.14



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 x x x x x x2 x x x x x x3 x x x x x x4 x x x x x x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 xTable 1.2: Con�i
t matrix of the interse
tion in Figure 1.2.Some of the vehi
les, 
y
lists and pedestrians already start to a

elerate when they expe
t theirsignal to swit
h to green. When the order in whi
h these signals are served 
hanges, these expe
tationsmay be wrong and 
ould result in unsafe situations. Hen
e, in pra
ti
e, often signals are served in a�xed order. To de�ne the order in whi
h we serve these signals, we use signal groups. A signal group isa group of signals that do not 
on�i
t with ea
h other. The order in whi
h we serve these signal groupsis always the same.When we have more than 2 signal groups, we have to determine the order in whi
h to serve thesignals. For example in the 
ase of 3 signal groups (group 1, group 2 and group 3) we 
an 
hoose toserve the signals in the following orders:order 1 serve the signals in group 1 → serve the signals in group 2 → serve the signals in group 3 →serve the signals in group 1 → serve the signals in group 2 → serve the signals in group 3 → . . .order 2 serve the signals in group 1 → serve the signals in group 3 → serve the signals in group 2 →serve the signals in group 1 → serve the signals in group 3 → serve the signals in group 2 → . . .One way to �nd signal groups from a 
on�i
t matrix is by solving a graph 
oloring problem. Theverti
es of the graph 
oloring problem represent the signals. Two verti
es are 
onne
ted (with an edge)whenever the 
orresponding signals are 
on�i
ting. We 
an �nd the minimum number of signal groupsneeded, by 
oloring the verti
es with a minimum number of 
olors su
h that two 
onne
ted verti
es donot have the same 
olor.For the interse
tion in Figure 1.2 this graph 
oloring problem results in two signal groups. One ofthe groups 
ontains the signals 1, 3, 7, 8, 11, 12, 15, 16, 19 and 20. The other group 
ontains the signals
2, 4, 5, 6, 9, 10, 13, 14, 17 and 18.Determining the signal groups and determining in whi
h order to serve these signal groups is notin the s
ope of this thesis. In this thesis we assume that the signal groups are given. Furthermore, weonly 
onsider interse
tions with 2 signal groups. 15



PSfrag repla
ements

1 3 7 8 11 12 15 16 19 20
2 4 5 6 8 10 13 14 17 18Figure 1.2: Graph 
oloring for the interse
tion in Figure 1.2.Setup times A setup time is a �xed minimum time between the end of the green period of a signaland the beginning of the green period of a 
on�i
ting signal. A setup time is a safety measure thatlimits the hinder for tra�
 
rossing the interse
tion. The setup time between serving signal i ∈ N andserving signal j ∈ N is denoted with σi,j . During this setup time, signal i and signal j are both red.In pra
ti
e, setup times 
an be negative. Whenever σi,j < 0 this means that signal j may swit
h togreen (a maximum of) |σi,j | se
onds before signal i has swit
hed to red. For the interse
tion in Figure1.2, possibly signal 3 may swit
h to green before signal 5 has swit
hed to red be
ause it takes sometime for the vehi
les from signal 3 to rea
h the part of the road that 
y
lists from signal 5 also use.Furthermore, we should also note that in general σi,j and σj,i are not equal. for the interse
tion inFigure 1.2 it probably holds that σ1,4 < σ4,1 be
ause it takes longer for vehi
les from signal 4 (than forvehi
les from signal 1) to arrive at the part of the interse
tion that both the vehi
les from signal 1 andthe vehi
les from signal 4 use. Further, we use σi,j,i = σi,j + σj,i.In this thesis we restri
t ourselves to non-negative setup times.
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1.2 TerminologyBelow we list some of the terminology used in this thesis.Approa
h = Approa
h i refers to the roads that lead to the tra�
 lights in signal i, i =
1, ..., N .Bi
y
le lane = Portion of the roadway that has been designated by striping, signing, andpavement markings for the ex
lusive use of bi
y
lists.Con�i
ting signals = Two signals are 
on�i
ting when the tra�
 from the 
orresponding approa
hes
annot safely 
ross the 
ommon 
rossing area simultaneously.Delay = Additional travel time experien
ed by a driver, 
y
list or pedestrian with re-spe
t to the travel time of a driver, 
y
list or pedestrian that arrives at thesame tra�
 light during a green period while the queue is empty.Green period = Interval during whi
h the signal state is green, i.e. the interval between themoment that the signal is swit
hed to green and the moment that the signal isswit
hed to red. During the green period of signal i, tra�
 from the queue ofthe 
orresponding approa
h 
an 
ross the 
ommon 
rossing area.Green time = Duration of a green period.Interse
tion = Set of approa
hes and a 
ommon 
rossing area.Pedestrian 
rossing = A designated pla
e where pedestrians 
an 
ross a street and where vehi
lesmust stop to let them 
ross.Queue = The vehi
les, 
y
lists and pedestrians at an approa
h that are waiting to 
rossthe interse
tion. With queue i we refer to the vehi
les, 
y
lists and pedestriansthat are waiting at approa
h i.Red period = Interval during whi
h the signal state is red, i.e. the interval between themoment that the signal is swit
hed to red and the moment that the signal isswit
hed to green.Red time = Duration of a red period.Setup time = Fixed minimum time between the end of the green period of a signal and thebeginning of the green period of a 
on�i
ting signal.Signal = Set of one or more tra�
 lights whi
h swit
h simultaneously to green andsimultaneously to red. A Signals is designated to either vehi
les, 
y
lists orpedestrians. Two tra�
 lights may only be partitioned in the same signaldesignated to vehi
les or 
y
lists whenever the tra�
 arriving at these tra�
lights originates from the same dire
tion. Signals are numbered 1, ..., N .Signal group = A group of signals that do not 
on�i
t with ea
h other.Signal state = The visual state, i.e. green or red, of the tra�
 lights that are element ofthe same signal. We do not 
onsider the amber state. Vehi
les, 
y
lists andpedestrians are assumed to depart only when the signal state of their signal isgreen.Swit
h = Change in the state of a signal.Slow mode = Interval during whi
h the signal state is green and the 
orresponding queue isempty. The tra�
 that arrives during a slow mode experien
es no delay.Vehi
le lane = Part of the road leading to the interse
tion that is designed for a single line ofvehi
les.
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1.3 NotationsIn this se
tion we list some of the notation used in this thesis.
λi = Arrival rate at signal i, i.e. the mean number of vehi
les, 
y
lists or pedestrians arriving atapproa
h i per se
ond.
µi = Maximum departure rate of signal i, i.e. the maximum rate at whi
h tra�
 from signal i
ould 
ross the interse
tion in vehi
les per se
ond, 
y
lists per se
ond or pedestrians perse
ond.
N = The set of all signals at an interse
tion, i.e. N = {1, 2, . . . , N}
ρi = Ratio between the arrival rate and the maximum departure rate of signal i, i.e. ρi = λi

µi
.

σi,j = Setup time between serving signal i and serving signal j. During this setup time signal iand signal j are both red, i.e. during this setup, tra�
 from signals i and j may not 
rossthe interse
tion.
σi,j,i = σi,j + σj,i.
mi(t) = Signal state of signal i at time t ∈ R

+. The signal state mi(t) is equal to i or i wheneverthe signal state is green or red respe
tively.
gki = Length of the kth green period period of signal i.
gλ,ki = Length of the slow mode at signal i during the kth green period of signal i.
gµ,ki = Length of the interval during the kth green period of signal i during whi
h the queue ofsignal i is not empty, i.e. gµ,ki = gki − gλ,ki .
rki = Length of the red period of signal i that 
omes between the kth green period of signal i andthe k + 1th green period of signal i.
gmax
i = Upper boundary on the length of the green period of signal i, i.e. the maximum green time.
gmin
i = Lower boundary on the length of the green period of signal i, i.e. the minimum green time.
xi(t) = Amount of tra�
 in queue i at time t ∈ R

+, i.e. the queue length of queue i at time t.
xmax
i = Maximum queue length of queue i. The maximum queue length of queue i is the maximumamount of tra�
 that 
ould be waiting at approa
h i.1.4 Problem Des
riptionIn this thesis we dis
uss three problems.Problem 1: traje
tory optimization The �rst problem is traje
tory optimization. The problemof traje
tory optimization is the pro
ess of designing a traje
tory that minimizes or maximizes somemeasure of performan
e within pres
ribed 
onstraint boundaries. For small interse
tions we want to �ndoptimal traje
tories, minimizing the average weighted queue length at the interse
tion. These optimaltraje
tories 
an be seen as the desired behavior of the interse
tion. We assume that we 
an 
ontrol thesignal state and the departure rate of tra�
 at ea
h of the signals of an interse
tion.An example of a traje
tory optimization problem is the problem of �nding an optimal �ight traje
-tory of an airplane from Van
ouver to Cape town. Before the pilot even starts �ying he 
ould alreadyderive some traje
tory he wants to follow. For example the fastest traje
tory. Finding this traje
toryis the traje
tory optimization problem.For an interse
tion a traje
tory 
onsists out of the evolution (as fun
tion of time) of the followingvariables for ea
h of the signals i ∈ N : 18



- xi(t): the queue lengths of signal i as a fun
tion of time.- mi(t): the signal state, also 
alled the mode, of signal i as a fun
tion of time.- di(t): the departure rate of both signal i as a fun
tion of time.To solve the traje
tory optimization problem for an interse
tion, we model the interse
tion witha hybrid �uid model (see Se
tion 3.2). This model assumes deterministi
 arrivals and deterministi
departures. In pra
ti
e there are sto
hasti
 e�e
ts. However, this deterministi
 model is more suitablefor optimization purposes.Problem 2: regulation To obtain the desired traje
tory we assume deterministi
 arrivals and de-terministi
 departures. However, due to sto
hasti
 e�e
ts we may deviate from the desired traje
tory.The se
ond problem is regulation, whi
h is �nding a poli
y (a feedba
k 
ontrol). A poli
y is the set ofrules that de�nes when to take what 
ontrol a
tions (for example when to 
hange the 
olor of a tra�
light). When we deviate from the desired traje
tory, the poli
y should make sure that we again returnto this desired traje
tory.An example of a regulation problem is when an airplane wants to follow some traje
tory (for exam-ple the fastest traje
tory). This desired traje
tory follows from the traje
tory optimization problem.However, due to fa
tors like 
haoti
 air�ow, the airplane 
annot follow this desired traje
tory exa
tly.Whenever the airplane deviates from this desired traje
tory, the pilot 
an observe this and he 
ould
orre
t the airplane in the right dire
tion by steering, a

elerating or de
elerating. In this way theairplane returns to the desired traje
tory whenever it deviates from it. What a
tions the pilot shouldtake (and when it should take these a
tions) is the problem of regulation.Problem 3: Performan
e in a sto
hasti
 setting The third problem is a

essing the performan
eof the poli
y in a sto
hasti
 setting via simulation.1.5 Outline of this thesisFirst we give an overview of the literature about tra�
 light 
ontrol in Chapter 2. Subsequently, weintrodu
e two models, i.e. the sto
hasti
 model (SM) and the hybrid �uid model (HFM), in Chapter 3.The hybrid �uid model is used in the largest part of this thesis.In 
hapters 4, 5 and 6 we 
onsider a simple interse
tion of two signals. Subsequently, we 
onsider amore general interse
tion (with two signal groups) in 
hapters 7, 8 and 9.In Chapter 4 and Chapter 7 we address the �rst problem: traje
tory optimization. First we provethat we 
an always �nd an optimal traje
tories satisfying some properties. Using these properties we
an pose an optimization problem. This optimization problem 
an be solved analyti
ally for someinterse
tions.In 
hapters 5 and 8 we 
onsider the se
ond problem; regulation. In these 
hapters we propose apoli
y (a feedba
k 
ontrol) and we prove that this poli
y works as desired; the poli
y makes sure thatwe return to the desired periodi
 optimal traje
tory whenever we deviate from it. This poli
y does notneed to 
ontrol the departure rates. We only need to 
ontrol the signal states.In 
hapters 6 and 9 we address the quality of the proposed poli
y in a sto
hasti
 environment.Finally, in Chapter 10 we summarize the most important 
on
lusions of this thesis and we give somere
ommendations for future resear
h.
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Chapter 2LiteratureThere are two primary types of tra�
 light 
ontrol: �xed 
y
le tra�
 light 
ontrol and vehi
le-a
tuatedtra�
 light 
ontrol. For �xed 
y
le tra�
 light 
ontrol the duration of the green period as well as theduration of the red period are not a�e
ted by tra�
, i.e. the green time of a tra�
 light is always thesame and the red time of a tra�
 light is always the same. For a vehi
le-a
tuated tra�
 light 
ontrol,via dete
tors information is gathered about the queue lengths at the interse
tion. This information isused to regulate the red and green times. We give an overview of the literature about both types oftra�
 light 
ontrol.Fixed Cy
le Tra�
 Light Control There has been a broad e�ort to obtain exa
t expressions andgood approximations for the queue length and the delay of vehi
les at interse
tions with tra�
 lights.The delay is often used as an optimization and evaluation 
riterion for tra�
 light 
ontrol. However, itis not easy to determine the delay.In the e�ort to obtain good approximations for the delay, the �xed-
y
le tra�
 light (FCTL) queueis one of the best-studied models in tra�
 engineering. For this model, the tra�
 light alternatesbetween green and red periods of e�e
tive duration g and r and the vehi
les that arrive at a tra�
 lightform a queue. It is assumed that during the green periods tra�
 
an depart at equal time intervals.For the FCTL queue the duration of the green period as well as the duration of the red period arenot a�e
ted by tra�
, i.e. the green time of a tra�
 light is always the same and the red time of atra�
 light is always the same. The majority of the resear
h devoted to the FCTL queue is based onthe simplifying assumption that tra�
 arrives a

ording to a Poisson pro
ess. The most famous resultis that from Webster [28℄. It gives the mean delay of a vehi
le in 
losed form, whi
h is partly based ontheoreti
al grounds and partly based on simulation.Other expressions for the mean delay, assuming that tra�
 arrives a

ording to a (Compound)Poisson pro
ess, 
an be found in Darro
h [8℄, M
Neill [18℄ and Webster and Cobe [29℄. In M
Neill[18℄ an exa
t expression for the mean delay was given up to one unknown: the mean queue length atthe end of a green period. We denote this unknown with EXg. Later, in [8℄, Darro
h found an exa
texpression for EXg. In [23℄, Ohno gives a detailed des
ription of a 
omputational algorithm for several
hara
teristi
s su
h as the average delay, the average queue length and the probability of 
learing thequeue. This 
omputational algorithm 
al
ulates the (rather 
ompli
ated) expression for EXg given inDarro
h [8℄ in an exa
t manner. Further, Ohno gives an overview of new approximate expressionsand existing approximate expressions in 
omparison with the exa
t values of the average delay. InHeidemann [13℄ analyti
al results on statisti
al distributions of queue lengths and delays at tra�
 lightsare derived. To obtain these probability distributions Poisson arrivals are assumed.21



There is also some resear
h devoted to more general types of arrival pro
esses. In van Leeuwaarden[16℄, a probability generating fun
tion is given for the queue length distribution at the end of a greenperiod and a Lapla
e-Stieltjes transform is given for the delay distribution. To obtain this probabilitygenerating fun
tion and Lapla
e-Stieltjes transform, the queue is modeled in dis
rete-time and it isassumed that the number of vehi
les that arrive per time slot follows some dis
rete distribution (thePoisson distribution and Compound Poisson distribution are also dis
rete distributions). Also in Vanden Broek et al. [6℄, a more general dis
rete distribution is 
onsidered and several bounds and approxi-mations are presented for the average delay. Further, in [6℄ a new approximation is given, based on theheavy tra�
 limit and a s
aling argument. In Miller [19℄ and Newell [20℄ approximations for EXg arederived using fairly general arguments.More re
ently, a probabilisti
 queuing model is used in Viti and Van Zuylen [26℄, assuming anytemporal distribution of the arrivals. It 
an explain the dynami
 and sto
hasti
 behavior of queues at�xed-time 
ontrolled interse
tions and allows one to 
apture the temporal behavior of queues, as wellas the un
ertainty of a predi
tion.We have shown that there are several exa
t expressions and approximations available for the delay.These expressions 
an be used to �nd the optimal �xed 
y
le tra�
 light 
ontrol. In Webster [28℄, ate
hnique is proposed, that uses Webster's famous delay formula, to �nd �xed 
y
le 
ontrol s
hemes foran isolated interse
tion. In Van den Broek [5℄, a mixed integer program is given for �nding the optimal
ontrol and an algorithm is proposed to solve this mixed integer program. In Fouladvand and M.Nematollahi [11℄ the analyti
al solutions were found for a �xed-time 
ontrolled interse
tion of two one-way streets and a �xed-time 
ontrolled interse
tion of a two-way street with a one-way street. To �ndthis analyti
al solution, 
onstant arrival rates and 
onstant departure rates are assumed. Further, nosetup times, no 
onstraints on green times and no maximum queue lengths are 
onsidered. An algorithmfor designing tra�
 light s
hedules is proposed in Riedel et. al [25℄. The model of an interse
tion isderived by 
onsidering a small interse
tion. Using a 
ombination of dynami
 programming and bran
hand bound, a 
ontrol algorithm is developed.Further, there is also some resear
h devoted to networks of interse
tions. In Bro
kfeld et al. [4℄the goal is to minimize travel times for a 
ity network: a square latti
e of interse
tions. To thisend, the network is modeled with a 
ellar automata model. For syn
hronized tra�
 lights, one �ndsstrong os
illations in the global �ow as fun
tion of the 
y
le time. Further, green wave and randomswit
hing strategies are tested. In Alfa and Neuts [1℄, the arrival pro
ess is modeled using a dis
rete-time Markovian Pro
ess. This model takes into a

ount the bun
hing of tra�
, i.e. forming of platoons,and the 
orrelations between inter arrival times. They 
on
lude that ignoring the 
orrelation in thearrival pro
ess results in the underestimation of performan
e measures su
h as the mean queue length,espe
ially at high tra�
 intensities.Vehi
le-a
tuated Tra�
 Light Control For a vehi
le-a
tuated tra�
 light 
ontrol, via dete
torsinformation is gathered about the queue lengths at the interse
tion. This information is used to regulatethe red and green times.One of the most studied vehi
le-a
tuated tra�
 light 
ontrols is the exhaustive poli
y that swit
hesa tra�
 light to red when the queue is 
leared. One of the �rst e�orts in analyzing vehi
le-a
tuatedtra�
 light 
ontrol is done in Darro
h [9℄. In Darro
h [9℄ Poisson arrivals are assumed to analyze theexhaustive poli
y for an interse
tion of two one-way streets. In Newell [21℄ this exhaustive poli
y isanalyzed using �uid and di�usion queueing approximations for an interse
tion of two one-way streets.In [21℄ arriving tra�
 is assumed to be a stationary sto
hasti
 pro
ess with an arrival rate just slightlybelow that whi
h saturates the interse
tion. Newell 
on
ludes that the vehi
le-a
tuated tra�
 light
ontrol has a high e�
ien
y 
ompared to the �xed 
y
le tra�
 light 
ontrol.In Daganzo [7℄ and Boon [2℄ polling models with more general arrivals and departure pro
esses are22



used to model and analyze interse
tions. These polling models are either restri
ted to serving one �owof tra�
 at a time or restri
ted to the exhaustive poli
y.More re
ently an interse
tion of two interse
ting tra�
 �ows is 
onsidered in Wang and Yin [27℄.Wan and Yin analyze green extensions; after a queue is 
leared, arriving vehi
les a
tivate a green periodextension during a period 
alled the 
riti
al gap. When no vehi
les arrive during the 
riti
al gap, thesignal is swit
hed to red. Wang �nds that the optimal 
riti
al gap is generally not zero, whi
h indi
atesthat the exhaustive poli
y even in heavy tra�
 is not optimal.Some resear
h is devoted to interse
tion where multiple signals are served simultaneously. Haijemaand Van der Wal [12℄ 
onsider an interse
tion with a number of signals. The set of all signals ispartitioned into signal groups. The problem 
on
erning when to swit
h (and whi
h signal group toserve next) is modeled as a Markovian de
ision pro
ess in dis
rete time. In [22℄ the analysis of a vehi
le-a
tuated interse
tion from Newell [21℄ is extended to an interse
tion of two two-way streets (four-wayinterse
tion). They 
on
lude that the high e�
ien
y of a vehi
le-a
tuated tra�
 light 
ontrol, as foundin Newell [21℄, does not ne
essarily hold for the 
ase of two-way streets. Further, in Lämmer and Helbing[15℄ a self-organization approa
h to tra�
 light 
ontrol is proposed. This self-organization approa
his inspired by self-organized os
illations of pedestrian �ows at bottlene
ks. The 
ontrol strategy is a
ombination of two 
omplementary 
ontrol regimes, an optimizing regime and a stabilizing regime.
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Chapter 3ModelsIn this 
hapter we introdu
e two models for an interse
tion. Both models are used in this thesis.The �rst model is a sto
hasti
 model (SM) and the se
ond model is a hybrid �uid model (HFM).We model an interse
tion with a hybrid �uid model for the traje
tory optimization problem and forthe regulation problem. The sto
hasti
 model (SM) be used to obtain simulation results. For thetraje
tory optimization problem we assume that we 
an 
ontrol the departure rate of tra�
 at ea
hsignal. However, it turns out that the poli
y that we propose does not need to 
ontrol the departurerate. Thus, for the sto
hasti
 model we do not assume that we 
an 
ontrol the departure rate, we alwayslet tra�
 depart at the highest possible rate.We show that we 
ould model mixed arrival �ows with a hybrid �uid model. Further, we show howto model two-way pedestrian 
rossings for the hybrid �uid model. We do not model mixed arrival �owsand two-way pedestrian 
rossings in our sto
hasti
 model.3.1 Sto
hasti
 ModelWe des
ribe the behavior of an interse
tion with a sto
hasti
 queueing model. For this sto
hasti
queueing model we assume a Poisson arrival pro
ess and a deterministi
 departure pro
ess. We modelea
h tra�
 light (also those in the same signal) separately. Ea
h of these tra�
 lights has one queue,an arrival pro
ess, and a departure pro
ess. We assume that the arrival pro
esses and the departurepro
esses of the di�erent tra�
 lights are independent. However, in pra
ti
e this might not be the 
ase.When for example a vehi
le arrives at signal 1, 2, 3 or 4 in Figure 1.2, the driver de
ides at whi
h laneto wait and the arrival and departure pro
esses of these tra�
 lights are not independent.In this se
tion we use slightly di�erent notation than in the rest of this thesis. In this se
tion weuse:- λi for the arrival rate at tra�
 light i = 1, ..., Ntl, where Ntl is the number of tra�
 lights at theinterse
tion. In the rest of this thesis λi refers to the arrival rate at a signal and not at a tra�
light.- µi for the maximum departure rate at tra�
 light i = 1, ..., Ntl. In the rest of this thesis µi refers tothe maximum departure rate of a signal and not at a tra�
 light.- σi,j for the setup time from tra�
 light i = 1, ..., Ntl to (
on�i
ting) tra�
 light j = 1, ..., Ntl. Thissetup time is the �xed minimum time between the end the green period of tra�
 light i and thebeginning of the green period of 
on�i
ting tra�
 light j. Normally σi,j refers to the setup timebetween two signals and not the setup time between two tra�
 lights. σi,j is equal to the setuptime from the signal that tra�
 light i = 1, ..., Ntl is element of to the signal that tra�
 light25



j = 1, ..., Ntl is element of. Two tra�
 lights are 
on�i
ting when the 
orresponding signals ofthese two tra�
 lights are 
on�i
ting.3.1.1 Arrival Pro
esses and Departure Pro
essesWe assume that the inter-arrival times at tra�
 light i = 1, ..., Ntl are exponentially distributed withmean 1
λi

whi
h means that we 
onsider an isolated interse
tion. We de�ne the arrival time as the timeat whi
h a vehi
le, 
y
list or pedestrian would have 
rossed the stop line if its tra�
 light was greenand no tra�
 was waiting at that tra�
 light. Note that this assumption of exponential inter-arrivaltimes is not valid for a sequen
e of interse
tions be
ause vehi
les arrive in so 
alled platoons. Platoonso

ur espe
ially when the distan
e between two 
onne
ted interse
tions is small. A platoon is a groupof vehi
les, 
y
lists or pedestrians traveling together. When platoons arise the arrival rate �u
tuatesand the inter-arrival times are not independent.Ea
h tra�
 light has a separate departure pro
ess. The departure pro
ess is assumed to be deter-ministi
. Whenever there is tra�
 waiting in front of tra�
 light i = 1, ..., Ntl at the beginning of agreen period then a departure pro
ess is started. We register a departure at the moment that a vehi
le,
y
list or pedestrian has entirely 
rossed the stop line whi
h o

urs 1
µi

se
onds after the start of thisdeparture pro
ess. When a departure is registered the next vehi
le, 
y
list or pedestrian (if present)
an start its departure pro
ess. This inter departure time 1
µi

is assumed to be 
onstant. In Figure3.1 we show the departures during a green period whenever the queue is not empty during the wholegreen period. Sin
e at ea
h tra�
 light at most one departure pro
ess is a
tive at a time, this may notbe the best way to model the departures of 
y
lists and pedestrians be
ause in pra
ti
e 
y
lists andpedestrians 
an depart with more than one at a time.PSfrag repla
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olor of the time line islight gray and dark gray whenever the tra�
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tively red. A departure is visualizedwith a bold bla
k verti
al line.The departure time is de�ned as the time at whi
h a vehi
le, 
y
list or pedestrian a
tually 
rossesthe stop line. Hen
e, the delay of a vehi
le, 
y
list or pedestrian is equal to the di�eren
e between itsdeparture time and its arrival time. Whenever a vehi
le, 
y
list or pedestrian arrives when the queueis empty and the 
orresponding tra�
 light is green, this vehi
le, 
y
list or pedestrian 
ould departimmediately. In this 
ase its departure time is equal to its arrival time and it experien
es a delay ofzero se
onds. Whenever the queue is emptied during a green period it stays empty during this greenperiod.3.1.2 QueueVehi
les that have to wait in front of a tra�
 light form a queue. We model the queue with a FIFO(First-In-First-Out) bu�er. The queue length is a non-negative integer. We assume that tra�
 arrivesat the queue at the arrival time; the queue length in
reases with one at the moment of an arrival time.Furthermore, the queue length de
reases with one at the moment of a departure.26



There is no di�eren
e between a vehi
le, 
y
list or pedestrian that arrives when the maximum queuelength is rea
hed (or ex
eeded) and a vehi
le, 
y
list or pedestrian that arrives when the maximumqueue length is not rea
hed.3.1.3 Modeling Startup E�e
t in the Maximum Departure RateWe assume in our sto
hasti
 model that the inter departure time 1
µi

at tra�
 light i = 1, ..., Ntl is
onstant. However, at the beginning of a green time there is a startup e�e
t; people do not respondinstantaneously and tra�
 needs some time to a

elerate. Hen
e, the inter departure time is not
onstant; it de
reases and after a 
ertain amount of time the inter departure time does not 
hangeanymore. The transient part, where the inter departure time de
reases, is 
alled the startup e�e
t. Weassume that inter departure times are deterministi
 (also during the startup e�e
t) and we assume thethe startup e�e
t always has the same duration at a tra�
 light.We 
an model this startup e�e
t by adapting the duration of the setups. Assume for example thatthe startup e�e
t at tra�
 light i = 1, .., Ntl takes 5.0 se
onds. In these 5.0 se
onds, 2 vehi
les 
oulddepart. Hereafter, every 2 se
onds a vehi
le 
ould depart (hen
e, 1
µi

= 2)(see Figure 3.2). Assuming thatthe startup e�e
t takes less than the minimum green time we 
an get the same number of departuresduring a green period by taking the departure rate equal to zero vehi
les per se
ond in the �rst se
ondand hereafter equal to 0.5 vehi
les per se
ond. Tra�
 
annot depart during the red period and thereforethis maximum departure rate equal to zero vehi
les per se
ond 
an be realized by in
reasing the redperiod of this tra�
 light with one se
ond. In
reasing the red period of tra�
 light i with one se
ond
an be realized by in
reasing the setup time σj,i with 1 se
ond, for all tra�
 lights j = 1, ..., Ntl thatare 
on�i
ting with tra�
 light i.
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onds) of the startup e�e
t at signal i = 1, .., Ntland D is the number of vehi
les, 
y
lists or pedestrians that 
ould depart during this startup e�e
t atsignal i then we model this startup e�e
t by in
reasing the setups σj,i with tstartup − D
µi

se
onds for alltra�
 lights j that are 
on�i
ting with tra�
 light i. During the green period, every 1
µi

se
onds onevehi
le, 
y
list or pedestrian departs.
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3.2 Hybrid Fluid ModelWith the hybrid �uid model we 
an approximate the behavior of the sto
hasti
 model. We use thehybrid �uid model for the traje
tory optimization problem be
ause it is more suitable for optimizationpurposes. This makes it relatively easy (in 
omparison to using the sto
hasti
 model) to solve thetraje
tory optimization problem.For the hybrid �uid model, tra�
 is modeled as a �uid. First we 
onsider only one type of tra�
arriving at a signal (for example only 
ars or only pedestrians) and we show how we model queues,arrivals and departures for the hybrid �uid model. Subsequently, we illustrate how to deal with mixed�ows, i.e. signals and tra�
 lights where di�erent types of tra�
 arrive. We also show how to model atwo-way pedestrian 
rossing and how to in
orporate a startup e�e
t in the maximum departure rate.For the hybrid �uid model we model ea
h signal with one queue, one arrival pro
ess and one departurepro
ess. The arrival pro
ess at signal i ∈ N is de�ned by a 
onstant arrival rate λi and the departurepro
ess is de�ned by a 
onstant maximum departure rate µi.3.2.1 Modeling QueuesBe
ause we model tra�
 as a �uid, the queue length is a non-negative real value. For example, thequeue length at a signal 
ould be equal to 0.75 
ars.Be
ause there is limited waiting spa
e at tra�
 lights (approa
hes are �nite) we are given maximumqueue lengths. The maximum queue length of queue i ∈ N is the maximum amount of tra�
 that 
ouldbe waiting at approa
h i. These maximum queue lengths follow from the design of the interse
tion.The maximum queue length of queue i ∈ N is denoted with xmax
i (t). Whenever a signal 
onsists of

M tra�
 lights and the maximum queue lengths of these tra�
 lights are xmax
i,j , j = 1, ...,M , we 
andetermine the maximum queue length of signal i using:

xmax
i =

M
∑

j=1

xmax
i,j . (3.1)Re
all that in the sto
hasti
 model ea
h tra�
 light has a separate bu�er. Thus, the maximumqueue length of tra�
 light j (in signal i) that is used in the sto
hasti
 model is equal to xi,j .For ea
h signal we model its queue with one bu�er. Thus, all the tra�
 arriving at signal i is storedin one bu�er.The total time that a vehi
le, 
y
list or pedestrian spends at the interse
tion, 
onsists of:1 A travel time to the ba
k of the queue (whenever the queue is not empty) or to the tra�
 light(whenever the queue is empty). For the hybrid �uid model we assume that tra�
 arrives in-stantaneously, i.e. the travel time to the ba
k of the queue or to the tra�
 light (depending onwhether the queue is empty) is assumed to be equal to zero.2 The time between the moment of arrival (at the ba
k of the queue or at the tra�
 light, dependingon whether the queue is empty) and the moment of departure (the moment at whi
h this vehi
le,
y
list of pedestrian 
rosses the stop line). During a slow mode the time between the moment ofarrival and the moment of departure is equal to zero se
onds.3 A travel time (starting at the moment of departure) to leave the interse
tion. For a hybrid �uidmodel, we assume tra�
 departs instantaneously, i.e. the travel time to leave the interse
tion isassumed to be equal to zero se
onds.Hen
e, during a slow mode arriving tra�
 spends zero se
onds at the interse
tion. The delay at theinterse
tion is de�ned as the additional travel time experien
ed by a driver, 
y
list or pedestrian at theinterse
tion. For the hybrid �uid model the average delay at the interse
tion is equal to the average28



duration of part 2, i.e. the average time between the moment of arrival (at the ba
k of the queue or atthe tra�
 light depending on whether the queue is empty) and the moment of departure.3.2.2 Modeling ArrivalsAt ea
h of the approa
hes, tra�
 (vehi
les, 
y
lists or pedestrians) arrives with a 
ertain intensity. Weuse λi to denote the arrival rate at signal i ∈ N , i.e. the mean number of vehi
les, 
y
lists or pedestriansarriving at approa
h i per se
ond. For the hybrid �uid model we assume that the amount of tra�
 thatarrives at signal i during an interval of size T is equal to exa
tly λiT . Thus, we assume that the arrivalrate is 
onstant over time (think of it as a 
onstant �ow of water into the bu�er).The arrival rate is often obtained by 
ounting the number of vehi
les, 
y
lists or pedestrians arrivingat a tra�
 light. When signal i ∈ N 
onsists out of more than one tra�
 light, the arrival rate of signal
i is equal to the sum of the arrival rates of all tra�
 lights in this signal. When signal i 
onsists out of
M tra�
 lights and λi,j , j = 1, ...,M are the arrival rates at these tra�
 lights then the arrival rate atsignal i is given by:

λi =
M
∑

j=1

λi,j . (3.2)Re
all that in the sto
hasti
 model ea
h tra�
 light has a separate arrival pro
ess. Thus, the arrivalrate of tra�
 light j (in signal i ∈ N ) that is used in the sto
hasti
 model is equal to λi,j .3.2.3 Modeling DeparturesDuring the green period of a signal, tra�
 
an depart. For the hybrid �uid model, departures 
an beseen as a �ow of water pouring out of a bu�er.Consider the 
ase where signal i ∈ N 
onsists out of M tra�
 lights and λi,j , j = 1, ...,M and
µi,j are the arrival rates respe
tively the maximum departure rates at these tra�
 lights. The tra�
waiting at these M tra�
 lights is stored in one bu�er. For the hybrid �uid model, a fra
tion λi,j

λi
ofthe arrivals at signal i, a
tually arrive at tra�
 light j and a fra
tion λi,j

λi
of the tra�
 waiting at signal

i is tra�
 that is a
tually waiting at tra�
 light j. For the hybrid �uid model, a fra
tion λi,j

λi
of thetra�
 that departs at this signal is tra�
 that departs at tra�
 light j. Hen
e, we 
an 
al
ulate themaximum departure rate at signal i using:

µi =

M
∑

j=1

λi,j

λi
µi,j . (3.3)Re
all that in the sto
hasti
 model ea
h tra�
 light has a separate departure pro
ess. Thus, themaximum departure rate of tra�
 light j (in signal i ∈ N ) that is used in the sto
hasti
 model is equalto µi,j .3.2.4 Modeling Mixed Arrival FlowsIn this se
tion we show how to 
al
ulate the arrival rate, maximum departure rate and maximum queuelength of a tra�
 light with mixed tra�
 �ows. From the arrival rates, maximum departure rates andmaximum queue lengths of the tra�
 lights in a signal we 
an again 
al
ulate the arrival rate, departurerate and maximum queue length of a signal using (3.1), (3.2) and (3.3).At a tra�
 light M di�erent types of tra�
 arrive. We use:29



- λi, i = 1, ...,M is the arrival rate of type i tra�
, i.e. how many type i units arrive per se
ond.- µi, i = 1, ...,M is the maximum departure rate of type i tra�
, i.e. the maximum amount of type iunits that 
an depart per se
ond.- xmax
i is the maximum queue length in type i units, when the queue only 
onsists out of type i tra�
.Note that in this se
tion the index i refers to a type of tra�
. In the rest of this thesis this indexrefers to a signal.In this se
tion we give the equations for the arrival rate, the maximum departure rate and themaximum queue length of a tra�
 light when we are given λi, i = 1, ...,M , µi, i = 1, ...,M and xmax

i ,
i = 1, ...,M . These equations are explained using an example.For tra�
 of type i, i = 1, ...,M , we 
an 
al
ulate the dimensionless arrival rate λ̃i, the dimensionlessmaximum departure rate µ̃i, i = 1, ...,M and the maximum queue length x̃max

i in se
onds via:
λ̃i =

λi

µi
,

µ̃i =
µi

µi
= 1,

x̃max
i =

xmax
i

µi
.When 
onsidering the hybrid �uid model, the dimensionless arrival rate λ̃ at the tra�
 light, thedimensionless maximum departure rate µ̃ at the tra�
 light and the maximum queue length x̃max atthe tra�
 light 
an be 
al
ulated via:

λ̃ =

M
∑

i=1

λ̃i,

µ̃ = 1,

x̃max =

M
∑

i=1

λ̃i

λ̃
x̃max
i .Both x̃max and x̃max

i are real valued numbers (see also example below).Example 3.2.1 Consider the 
ase where tru
ks, tra
tors and 
ars arrive at the same tra�
 light.The arrival rate of tru
ks, tra
tors and 
ars are respe
tively λtruck = 0.05 tru
ks per se
ond,
λtractor = 0.01 tra
tors per se
ond and λcar = 0.3 
ars per se
ond. The maximum departure ratesof tru
ks, tra
tors and 
ars are respe
tively µtruck = 0.2 tru
k per se
ond, µtractor = 0.3 tra
tors perse
ond and µcar = 0.5 
ars per se
ond. Whenever the queue only 
onsists out of tru
ks, the maximumqueue length is xmax

truck = 4.4 tru
ks. Whenever the queue only 
onsists out of tra
tors, the maximumqueue length is xmax
tractor = 7.5 tra
tors and whenever the queue only 
onsists out of 
ars, the maximumqueue length is xmax
truck = 12 tru
ks.The dimensionless arrival rates of tru
ks, tra
tors and 
ars are equal to respe
tively λ̃truck = 0.25,

λ̃tractor = 1/30 and λ̃car = 0.6. We 
an interpret these arrival rates as the se
onds of work that arriveevery se
ond. For example, every se
ond λtrucks tru
ks arrive. When using the maximum departure rate(µtruck) this amount of tru
ks departs in λ̃truck = 0.25 se
onds. Thus, every se
ond, 0.25 se
onds ofwork of the type 'tru
ks' arrives. The total arrival rate at the tra�
 light is λ̃ = 1/4+1/30+4/5 ≈ 0.8833(se
onds of work that arrive every se
ond). 30



It is trivial to say that when we let tra�
 of type i depart at the maximum departure rate, everyse
ond one se
ond of work departs. Thus, µ̃i = 1. As a result, independent of the type of tra�
 thatdeparts, one se
ond of work depart every se
ond when working at the maximum departure rate. Hen
e,it holds that µ̃ = 1.The maximum queue lengths of tru
ks, tra
tors and 
ars are equal to respe
tively x̃max
truck = 22 se
onds(of work), x̃max

tractor = 25 se
onds (of work) and x̃max
car = 24 se
onds (of work).A fra
tion λ̃i

λ̃
of the arriving work is of the type i = truck, tractor, car. Thus when the maximumqueue length of the tra�
 light is rea
hed, this queue 
ontains λ̃i

λ̃
x̃max
i se
onds (of work) of type i.Hen
e, the maximum queue length of the tra�
 light in se
onds is equal to:

∑

i=truck,tractor,car

λ̃i

λ̃
x̃max
i ≈ 23.5 se
onds.Whenever we have 
al
ulated all the arrival rates, departure rates and maximum queue lengths ofthe tra�
 lights in a signal, we 
an 
al
ulate the arrival rate, maximum departure rate and maximumqueue length of this signal via (3.1), (3.2) and (3.3). In these equations all arrival rates, maximumdeparture rates and maximum queue lengths of the di�erent tra�
 lights must be expressed in thesame unit. For example, all arrival rates and maximum departure rates in their dimensionless form andall maximum queue lengths in se
onds (of work).3.2.5 Modeling Two-Way Pedestrian CrossingsAt pedestrian 
rossings pedestrians generally walk in two dire
tions (two-way pedestrian 
rossing). Inthis 
ase at ea
h side of the pedestrian 
rossing, a tra�
 light is positioned. In pra
ti
e these two tra�
lights swit
h to green at the same time and swit
h to red at the same time. Hen
e, these tra�
 lights
an be partitioned in the same signal. The arrival rate at this signal is simply equal to the sum ofthe arrival rates at both sides of the pedestrian 
rossing. Further, be
ause the pedestrian 
rossing hasto be 'shared' by the pedestrians that walk the pedestrian 
rossing in both dire
tion, it is logi
al toassume that the maximum departure rate µi at this signal (the number of pedestrians that 
an 
rossthe pedestrian 
rossing per se
ond) is 
onstant.For example, at a pedestrian 
rossing the maximum departure rate is equal to µi. This means thatwhen at a moment the departure rate at one side is equal to d(t) ≤ µi pedestrians per se
ond, at thatmoment maximally µi − d(t) pedestrians 
an 
ross the pedestrian 
rossing from the other side.Usually a large number of pedestrians 
an 
ross the pedestrian 
rossing simultaneously. Hen
e,pedestrian 
rossings usually have a large maximum departure rate. However, be
ause pedestrians moverelatively slow (in 
omparison to vehi
les and 
y
lists) it takes a while before a pedestrian has 
rossedthe pedestrian 
rossing. Therefore, a 
on�i
ting signal may only swit
h to green whenever the signal ofa pedestrian 
rossing has been red for a relatively long time (large setup times).Furthermore, it is fair to assume that the maximum queue lengths are in�nite at a pedestrian
rossing be
ause pedestrians always �nd a spot to wait in front of the tra�
 light.3.2.6 Modeling Startup E�e
t in the Maximum Departure RateWe assume in our hybrid �uid model that the maximum departure rate is 
onstant during a greenperiod. However, at the beginning of a green time there is a startup e�e
t; people do not respondinstantaneously and tra�
 needs some time to a

elerate. Hen
e, the maximum departure rate is not
onstant; it in
reases and after a 
ertain amount of time the maximum departure rate does not 
hangeanymore. The transient part, where the maximum departure rate in
reases, is 
alled the startup e�e
t.31



Just like for the sto
hasti
 model, we 
an adjust the duration of the setups to model this startupe�e
t. When tstartup is the duration (in se
onds) of the startup e�e
t at signal i and D is the numberof vehi
les, 
y
lists or pedestrians that depart at signal i during this startup e�e
t then we model thisstartup e�e
t by in
reasing the setup times σj,i with tstartup − D
µi

se
onds for all signals j that are
on�i
ting with signal i. During the green period, the maximum departure rate is 
onstant and equalto µi. We assume that the startup e�e
t always (every green period) has the same duration at a signal
i and we assume that the startup e�e
t takes less than the minimum green time.In this se
tion we introdu
ed two models; a sto
hasti
 model and a hybrid �uid model. For bothmodels we have shown how to model queues, arrivals and departures. Furthermore, we showed how tomodel a startup e�e
t in the maximum departure rate. For the hybrid �uid model we showed that we
ould also model mixed arrival �ows and two-way pedestrian 
rossings. In the next 
hapter we solve thetraje
tory optimization problem for a simple interse
tion with two (
on�i
ting) signals. In that 
hapterwe model the interse
tion with the hybrid �uid model. The sto
hasti
 model is used for simulation.
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Chapter 4Traje
tory Optimization: A SimpleInterse
tion of Two SignalsIn this 
hapter we 
onsider the traje
tory optimization problem for a simple interse
tion of two 
on-�i
ting signals. First we explain the traje
tory optimization problem more expli
itly in Se
tion 4.1and Se
tion 4.2. Subsequently, in Se
tion 4.3 we prove that we 
an always �nd an optimal traje
torysatisfying some properties. Using these properties an optimization problem (that we solve analyti
ally)is proposed in Se
tion 4.8. In Figure 4.1 we present two example of an interse
tion with two 
on�i
tingsignals: the interse
tion of two one-way streets a two-way street with a roadblo
k.
PSfrag repla
ements
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(a) An interse
tion of two one-waystreets. PSfrag repla
ements 1

2(b) Two-way street with a roadblo
k. Tra�
 lights 
ontrols whi
h tra�
 �owmay pass the roadblo
k.Figure 4.1: Examples of two 
on�i
ting signals.4.1 Problem Des
riptionThe problem of traje
tory optimization is the pro
ess of designing a traje
tory that minimizes ormaximizes some measure of performan
e within pres
ribed 
onstraint boundaries. A traje
tory is asolution of a mathemati
al model. Just like in [24℄ we 
onsider a mathemati
al model as an ex
lusionlaw. A mathemati
al model expresses the opinion that some things 
an happen, are possible, while other
annot, are de
lared impossible. These ex
lusion laws of a mathemati
al model 
an be expressed in the33



form of equations. These equations are 
alled behavioral equations. The out
omes that a mathemati
almodel allows, and are de
lared possible, are 
alled the behavior of the mathemati
al model, i.e. thebehavior is the solution set of the behavioral equations. A solution of the behavioral equations is 
alleda traje
tory. To solve the traje
tory optimization problem we model the simple interse
tion with thehybrid �uid model proposed in Se
tion 3.2. The behavioral equations of the hybrid �uid model for thissimple interse
tion are presented in Se
tion 4.2. A solution of these behavioral equations is 
alled atraje
tory and 
onsists out of the evolution (as fun
tion of time) of the following variables:- xi(t), i = 1, 2: the queue lengths of both signals as a fun
tion of time.- mi(t), i = 1, 2: the signal state, also 
alled the mode, of both signals as a fun
tion of time.- di(t), i = 1, 2: the departure rate of both signals as a fun
tion of time.For the simple interse
tion of only two 
on�i
ting signals, we want to �nd a traje
tory minimizingthe average weighted queue length:
J = lim sup

t→∞

1

t

∫ t

0

[f1(x1(s)) + f2(x2(s))]ds, (4.1)where fi : R+ → R+ is a weight fun
tion. Weight fun
tion fi relates the queue lengths at signal
i to 
osts. We assume that the fun
tions fi are stri
tly in
reasing, i.e. larger queue lengths resultin higher 
osts. In Se
tion 4.8 we use more spe
i�
 weight fun
tions fi: the linear weight fun
tions
f1(x1(t)) = w1x1(t) and f2(x2(t)) = w2x2(t). In Se
tion 4.1.1 we show that minimizing the linearweight fun
tion, where w1 = w2 is equivalent to minimizing the average delay of an arbitrary road userat this interse
tion.4.1.1 Average Delay of A Road User At the Interse
tionIn this se
tion we show that minimizing the linear weight fun
tion where w = w1 = w2, is equivalent tominimizing the average delay of an arbitrary road user at this interse
tion. In this se
tion we assumethat ea
h arrival rate λi, i = 1, 2, is given in number of vehi
les per se
ond, number of 
y
lists perse
ond or number of pedestrians per se
ond and that ea
h queue length xi, i = 1, 2, is given in numberof 
ars, number of 
y
lists or number of pedestrians. When di�erent types of tra�
 arrive at a signalit does not hold that minimizing the linear weight fun
tion where w = w1 = w2, is equal to minimizingthe average delay of an arbitrary road user at this interse
tion.When fi(xi) = wxi, i = 1, 2 we 
an write (4.1) as follows:

J = w(x1 + x2), (4.2)where
x1 = lim sup

t→∞

1

t

∫ t

0

x1(s)ds,

x2 = lim sup
t→∞

1

t

∫ t

0

x2(s)ds.Note that xi is the average queue length at queue i = 1, 2 in
luding the road user that is departing.From Little's Law we know that: 34



δi =
xi

λi
, i = 1, 2,where, δi is the average delay of a road user at signal i = 1, 2. Hen
e, we 
an rewrite (4.2) to:

J = wλδ, (4.3)where
δ =

(

δ1
λ1

λ
+ δ2

λ2

λ

)

, (4.4)
λ = λ1 + λ2.A fra
tion λ1

λ
of the road users arrives at signal 1 and a fra
tion λ2

λ
of the road users arrive at signal 2.Hen
e, δ =

(

δ1
λ1

λ
+ δ2

λ2

λ

) is the average delay of an arbitrary road user at the interse
tion. Note, thatthe optimal traje
tory does not 
hange when multiplying the obje
tive fun
tion (
ost fun
tion) with
1
wλ > 0. Hen
e, minimizing the linear weight fun
tion, where w = w1 = w2 results in the same optimaltraje
tory as minimizing the average delay of an arbitrary road user.4.2 Behavioral Equations of the Hybrid Fluid ModelIn this se
tion we give the behavioral equations of the hybrid �uid model. First, we introdu
e thevariables that we use in these behavioral equations in Se
tion 4.2.1. In Se
tion 4.2.2 we give thebehavioral equations of the hybrid �uid model.4.2.1 Manifest Variables and Latent VariablesIn this se
tion we give the manifest variables and the latent variables that we use in the behavioralequations. The manifest variables are the variables that we are interested in. A traje
tory 
onsists outof the evolution (as fun
tion of time) of these manifest variables. The latent variables are used so thatwe 
an give the behavioral equations in a 
ompa
t and readable form.We use the following manifest variables:- xi(t) ∈ R

+, i = 1, 2: the queue length of queue i as a fun
tion of time. The fun
tion xi(t), i = 1, 2 isright-
ontinuous.- mi(t) ∈ { i , i }, i = 1, 2: the signal state of signal i as a fun
tion of time. The fun
tion mi(t), i = 1, 2is right-
ontinuous.- di(t) ∈ R
+, i = 1, 2: the departure rate at signal i as a fun
tion of time. The fun
tion di(t), i = 1, 2is measurable.Further, we use the following latent variables:- Li

τ (t) ∈ R
+, i = 1, 2: the time that has elapsed sin
e the last 
hange in the signal state of signal i.The fun
tion Li

τ (t), i = 1, 2 is right-
ontinuous.
35



4.2.2 Behavioral EquationsIn this se
tion we give the behavioral equations of a simple interse
tion with two signals.The 
hange in the queue length is equal to the net in�ow (arrival rate minus departure rate):
ẋi(t) = λi − di(t), i = 1, 2. (4.5a)The latent variable Li

τ (t), i = 1, 2 denotes a time. Hen
e, its derivative with respe
t to time is equalto one:
L̇i
τ (t) = 1, i = 1, 2. (4.5b)The time that has elapsed sin
e the last 
hange in the signal state is set to zero when the signalstate 
hanges:

Li
τ (t) = 0 if mi(t

−) 6= mi(t), i = 1, 2, (4.5
)where
mi(t

−) = lim
y↑t

mi(y)When the signal state of signal i = 1, 2 
hanges, it holds that mi(t
−) (the left limit) is not equal to

mi(t) (the right limit) (see Figure 4.2).PSfrag repla
ements
m1(t) time11 m1(t

−)

m1(t)

tFigure 4.2: At time t signal 1 swit
hes from red to green.Whenever a signal is red, tra�
 from the 
orresponding queue 
annot 
ross the interse
tion:
di(t) = 0 if mi(t) = i , i = 1, 2, ∀t ∈ R

+. (4.5d)When there is no tra�
 waiting at queue i = 1, 2, tra�
 
an depart at a rate that is smaller than orequal to the arrival rate λi (otherwise it would result in a negative queue length xi(t)):
di(t) ≤ λi if xi(t) = 0, i = 1, 2, ∀t ∈ R

+. (4.5e)Tra�
 
annot depart at a rate that ex
eeds the maximum departure rate:36



di(t) ≤ µi, i = 1, 2, ∀t ∈ R
+. (4.5f)Sin
e signal 1 and signal 2 are 
on�i
ting, both signals 
annot be green at the same time:

m1(t) = 1 if m2(t) = 2 , (4.5g)
m2(t) = 2 if m1(t) = 1 . (4.5h)Signal 1 
annot swit
h to green whenever signal 2 swit
hed to red less than σ2,1 se
onds ago. In thesame way, signal 2 
annot swit
h to green whenever signal 1 swit
hed to red less than σ1,2 se
onds ago:

m1(t) = 1 if m2(t) = 2 ∧ L2
τ (t) < σ2,1, (4.5i)

m2(t) = 2 if m1(t) = 1 ∧ L1
τ (t) < σ1,2. (4.5j)The maximum queue length 
annot be ex
eeded.

xi(t) ≤ xmax
i , i = 1, 2. (4.5k)The duration of a green period must be at least the minimum green time and 
annot ex
eed themaximum green time:

mi(t) = i if T i
τ (t) < gmin

i ∧mi(t
−) = i , i = 1, 2, (4.5l)

mi(t) = i if T i
τ (t) ≥ gmax

i ∧mi(t
−) = i , i = 1, 2. (4.5m)A solution of these behavioral equations (the manifest variables as fun
tion of time) is 
alled atraje
tory. Note that we allow every initial 
ondition as long as it satis�es (4.5).4.2.3 AssumptionsIn this se
tion we give the assumptions used in this 
hapter. We assume that the arrival rate and themaximum departure rate of a signal is positive:

λ1, λ2, µ1, µ2 > 0. (4.6a)We assume that the setup times are both non-negative and that one of the setup times is stri
tlypositive:
σ1,2, σ2,1 ≥ 0, (4.6b)

σ1,2 + σ2,1 > 0. (4.6
)We assume that the minimum green times are non-negative:
gmin
1 , gmin

2 ≥ 0. (4.6d)We assume that the average green times 
onverge. Thus, we assume that the following limits exist:37



ḡ1 = lim
M→∞

M
∑

k=1

gk1
M

, (4.6e)
ḡ2 = lim

M→∞

M
∑

k=1

gk2
M

. (4.6f)(4.6g)Further, we assume that the maximum green times and the maximum queue lengths satisfy thefollowing inequalities:
min{gmax

1 ,
xmax
2

λ2
− σ1,2,1} ≥ ρ1σ1,2,1

1− ρ1 − ρ2
, (4.6h)

min{gmax
2 ,

xmax
1

λ1
− σ1,2,1} ≥ ρ2σ1,2,1

1− ρ1 − ρ2
, (4.6i)

min{gmax
1 ,

xmax
2

λ2
− σ1,2,1} ≥ gmin

1 , (4.6j)
min{gmax

2 ,
xmax
1

λ1
− σ1,2,1} ≥ ρ2

1− ρ2
(σ1,2,1 + gmin

1 ), (4.6k)
min{gmax

2 ,
xmax
1

λ1
− σ1,2,1} ≥ gmin

2 , (4.6l)
min{gmax

1 ,
xmax
2

λ2
− σ1,2,1} ≥ ρ1

1− ρ1
(σ1,2,1 + gmin

2 ). (4.6m)In Se
tion 4.8 we show that we 
an always (and only) �nd a traje
tory resulting in a �nite averageweighted queue length 
al
ulated with (4.1) whenever the inequalities in (4.6h)�(4.6m) hold.4.3 Properties of Optimal Traje
toriesIn Chapter 5 of van Eekelen [10℄ we 
an �nd some lemmas on optimal traje
tories, whi
h van Eekelenproves by a proof of 
ontradi
tion. In that 
hapter no restri
tions on green times where 
onsidered,i.e. (4.5l) and (4.5m) are not in the behavior. When in
luding these restri
tions on green times thelemmas from [10℄ are not valid anymore. Therefore, we have developed new lemmas to in
lude theserestri
tions on green times (minimum green times and maximum green times). Furthermore, with thesenew lemmas we avoided a 
ir
ular argument found in [10℄. The results are lemma 4.1� 4.3. BothLemma 4.1 and Lemma 4.2 hold in general (for any interse
tion).Lemma 4.1 Without loss of generality it 
an be assumed that for an optimal traje
tory in the behavior,during a green period a signal always uses the highest possible departure rate, after whi
h it might idle,i.e. use a departure rate equal to zero. This highest possible departure rate equals µi when the queue isnot empty (xi(t) > 0), and equals the arrival rate λi otherwise.Proof. Suppose that we are given a green time of gki = tf − t0, k ≥ 1 that satis�es gmin
i ≤ gki ≤ gmax

iand a traje
tory is given, for whi
h at the beginning of gki , the queue length of queue i equals x0
i and atthe end of gki the queue length equals xf

i . Then one 
an 
onsider the alternative traje
tory whi
h onlydi�ers from the original traje
tory during gki . This alternative traje
tory serves signal i equally long and38



�rst lets tra�
 depart at the highest possible rate, i.e. at the maximum departure rate when the queueis not empty(xi(t) > 0) and the arrival rate otherwise. In the end, this alternative signal idles, i.e. weuse a departure rate equal to zero, to make sure that at the end of gki the queue length equals xf
i (seeFigure 4.3). Clearly, the alternative traje
tory satis�es (4.5d)�(4.5m) whenever the original traje
torydoes. Further, during the green period the queue length 
annot de
rease faster in the beginning and
annot in
rease faster in the end. Therefore, for the alternative signal the queue length of type i issmaller or equal at every time instants. Further, the evolution of the queue lengths of the other queuesremain the same for both traje
tories and fi is stri
tly in
reasing. Hen
e, the alternative traje
toryworks at least as good, i.e. the 
osts (
al
ulated with (4.1)) of the alternative traje
tory are not biggerthan the 
osts of the original traje
tory.
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traje
toryalternative traje
toryrate µi rate λi idletimet0 tfFigure 4.3: Graphi
al representation of Lemma 4.1.Thus, whenever we are given a traje
tory that does not satisfy the property given in this lemma,we 
an always �nd an alternative traje
tory that does satisfy this property and that works at least asgood. Hen
e, there must be an optimal traje
tory that satis�es the property given in this lemma.Lemma 4.2 Without loss of generality it 
an be assumed that for an optimal traje
tory in the behavior,a signal never idles during its green period.Proof. Suppose that an optimal traje
tory would idle during a green period of signal i. Given theresult in Lemma 4.1 this is at the end of this green period. Lets 
onsider a traje
tory that starts idlingat ti0 and �nishes idling at tif (at tif the signal swit
hes to red). We 
an �nd an alternative traje
torythat does not idle and that works at least as good as the original traje
tory, i.e. it results in 
osts J(
al
ulated with (4.1)) that are not bigger than the 
osts of the original signal. Consider the followingalternative traje
tory whi
h only di�ers only from the original traje
tory after time ti0. During theinterval [ti0, tif ], we use di(t) = λi instead of di(t) = 0. (see Figure 4.4). Hereafter, during ea
h greenperiod we let tra�
 depart at arrival rate λi until the time tcross. At tcross both traje
tories result inthe same queue length (see Figure 4.4). After the time tcross both traje
tories are exa
tly the same.Thus, at signal i the original traje
tory only di�ers from the original traje
tory in the interval [ti0, tcross].39



Further, the evolution of the queue lengths of the other queues remain the same for both traje
toriesand fi is stri
tly in
reasing. Hen
e, the alternative traje
tory works at least as good, i.e. the 
osts(
al
ulated with (4.1)) of the alternative traje
tory are not bigger.
PSfrag repla
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timeti0 tifFigure 4.4: Graphi
al representation of Lemma 4.2.Thus, whenever we are given a traje
tory that does not satisfy the property given in this lemma,we 
an always �nd an alternative traje
tory that does satisfy this property and that works at least asgood. Hen
e, there must be an optimal traje
tory that satis�es the property given in this lemma.When we 
ombine the results of Lemma 4.1 and Lemma 4.2 we see that (as expe
ted) we alwaysuse the highest possible departure rate during a green period of signal i = 1, 2:
di(t) =

{

µi if xi(t) > 0,
λi if xi(t) = 0.It would have been a surprising yet interesting result, if using a lower departure rate 
an have apositive e�e
t on the 
osts. If this turned out to be true, we 
ould think about ways to 
ontrol thedeparture rate of tra�
 at a tra�
 light.Lemma 4.3 Without loss of generality it 
an be assumed that for an optimal traje
tory in the behavior,a queue is always emptied during its green period and green periods always take equally long, i.e. gki =

gk+1
i , ∀k ≥ 1.Proof. Lets 
onsider a traje
tory de�ned on the time interval [0,∞) where a queue is not emptied atleast on
e or where the duration of the green periods is not always the same for a signal. Lets 
all thistraje
tory the 'original traje
tory'. In Figure 4.5a we 
an see an example of the original traje
tory.
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We introdu
e the following notation for the average duration of gki , rki , gλ,ki and gµ,ki :
ḡi = lim

M→∞

M
∑

k=1

gki
M

, i = 1, 2, (4.7a)
r̄i = lim

M→∞

M
∑

k=1

rki
M

, i = 1, 2, (4.7b)
ḡλi = lim

M→∞

M
∑

k=1

gλ,ki

M
,i = 1, 2, (4.7
)

ḡµi = lim
M→∞

M
∑

k=1

gµ,ki

M
,i = 1, 2. (4.7d)We 
an propose an alternative traje
tory where a queue is always emptied during a green period andwhere the green times of a signal are always the same (see Figure 4.5b). For this alternative traje
torywe take the green times and red times of signal i equal to respe
tively ḡi and r̄i. We serve signal 1during the red period of signal 2 and we serve signal 2 during the red period of signal 1.We 
an prove that the 
osts J related to this alternative traje
tory are not greater than the 
ostsrelated to the original traje
tory.First we prove that the limits in (4.7) exist. We assume that the limits lim

M→∞

M
∑

k=1

gk
i

M
, i = 1, 2 exist(see Se
tion 4.2.3). Note that whenever ḡ1 and ḡ2 both exist then r̄1 and r̄2 also exist be
ause theaverage red period of a signal is related to the average green period of the other signal a

ording to:

r̄1 = ḡ2 + σ1,2,1,

r̄2 = ḡ1 + σ1,2,1.Whenever signal i = 1, 2 satis�es λir̄i 6= (µi − λi)ḡ
µ
i for the original traje
tory, this means that thequeue length of queue i would go to ∞ or −∞ be
ause:

lim
t→∞

xi(t) = lim
M→∞

M
∑

k=1

(λir
k
i − (µi − λi)g

µ,k
i ) = lim

M→∞
M(λir̄i − (µi − λi)ḡ

µ
i ).Note that we have used that ea
h green time of signal i is �nite. A queue length must be a non-negative number and therefore a traje
tory where a queue length goes to −∞ is not feasible. Further,whenever a queue length goes to ∞, the 
osts 
al
ulated with (4.1) are in�nite. Hen
e, it must holdthat:

λir̄i = (µi − λi)ḡ
µ
i , i = 1, 2. (4.8)Thus, the amount of tra�
 that arrives during a red period of signal i = 1, 2 is equal to λir̄i and we
an let this amount of tra�
 depart during a period equal to exa
tly ḡµi . As a result, from ḡi = ḡµi + ḡλiwe 
an obtain that for the alternative poli
y the length of the slow mode is equal to ḡλi during ea
hgreen period. From (4.8) we 
an see that ḡµi exists (be
ause r̄i exists) and from ḡi = ḡµi + ḡλi we knowthat ḡλi exists. Hen
e, ḡi, r̄i, ḡλi and ḡµi all exist.Also note that the alternative traje
tory is always feasible. First of all, the green periods of thealternative traje
tory (with duration ḡi) always take longer than the shortest green period of the original41



traje
tory. Se
ond of all, the green periods of the alternative traje
tory (with duration ḡi) always takeshorter than the longest green period of the original traje
tory. Furthermore, the maximum queuelength are less for the alternative traje
tory than for original traje
tory. As a result, whenever theoriginal traje
tory satis�es (4.5d)�(4.5m), the alternative traje
tory does as well.Now we are going to prove that the 
osts related to the alternative traje
tory are not bigger thanthe 
osts related to the original traje
tory. We use bgµ,k
i

, k ≥ 1 and brki , k ≥ 1 for the time at whi
h thegreen period gki starts respe
tively the time at whi
h the red period rki starts. Further, we use egµ,k
i

,
k ≥ 1 for the time at whi
h queue i is emptied during gki and we use erki , k ≥ 1 for the time at whi
h
rki ends. We distinguish three di�erent areas (see Figure 4.5): Ak

1 , k ≥ 1, Ak
2 , k ≥ 1 and Ak

3 , k ≥ 1.
Ak

1 =

∫ e
g
µ,k
i

b
g
µ,k
i

(xi(t)− xi(bgµ,k
i

))dt, k ≥ 1,

Ak
2 =

∫ e
rk
i

b
rk
i

(xi(t)− xi(erki ))dt, k ≥ 1,

Ak
3 = xi(bgµ,k

i
)(egµ,k

i
− bgµ,k

i
) + xi(erki )(erki − brki ),k ≥ 1.In Figure 4.5, Ak

1 is visualized in dark gray, Ak
2 is visualized in medium gray and Ak

3 is visualized inlight gray.
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itime(b) Queue length of signal i for the alternative traje
tory.Figure 4.5: Visualization of the original traje
tory and the alternative traje
tory.Be
ause the queues are always emptied for the alternative traje
tory, it holds that Ak

3 = 0, k ≥ 1for this traje
tory.Now we are going to prove that the 
osts related to signal i and made during only the red periodsare not bigger for the alternative traje
tory than for original traje
tory. Thus, we only 
onsider thesignal during the red periods of signal i = 1, 2, i.e. we 
ut out the parts where signal i is green (seeFigure 4.6a).Now we 
an shift ea
h and every red period towards the xi(t) = 0-axis for the original traje
tory, i.e.removing the areas Ak
3 . Sin
e fi is stri
tly in
reasing, shifting the red periods of the original traje
torytowards the time axis 
annot in
rease the 
osts related to the red periods of signal i.42



On the left side of Figure 4.6b we 
an see Ak
1 and Ak+1

1 plotted for the shifted original traje
tory.Without loss of generality we 
an assume that the �rst red period rki is longer than the se
ond redperiod rk+1
i for two adja
ent red periods. When we take both green times equal to rki +rk+1

i

2 we get theareas Ak
1 and Ak+1

1 as 
an be seen on the right side of Figure 4.6b. We 
an see that the dark gray areasare the same and that the medium gray areas di�er (the di�eren
e is the light gray area). Sin
e fi isstri
tly in
reasing, taking the red time of two adja
ent red periods equal to ea
h other 
annot in
reasethe 
osts related to the red periods of signal i. Hen
e, taking all red periods equal to ea
h other 
annotin
rease the 
osts related to the red periods of signal i. Note, that the 
osts, of this shifted traje
torywhere all red periods are equal to ea
h other, are exa
tly the 
osts made during the red periods of thealternative traje
tory. Thus, the 
osts related to the red periods of the alternative traje
tory 
annot bebigger than the 
osts related to the red periods of the original traje
tory.PSfrag repla
ements

xi(t)

Ak
1

Ak+1
1

Ak
3 Ak+1

3

rki gki rk+1
itime(a) Visualization of only the red periods of theoriginal traje
tory.

PSfrag repla
ements

xi(t)xi(t)
Ak

1Ak
1 Ak+1

1Ak+1
1

rki rk+1
i timetime rki +rk+1

i

2
rki +rk+1

i

2(b) Left: visualization of the shifted red periods of the original traje
tory, right: 2 equal red periods insteadof 2 unequal red periods.Figure 4.6: Comparing the 
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alternative traje
tory are not bigger than the 
osts of the original traje
tory.Thus, whenever we are given a traje
tory that does not satisfy the property given in this lemma,we 
an always �nd an alternative traje
tory that does satisfy this property and that works at least asgood. Hen
e, there must be an optimal traje
tory that satis�es the property given in this lemma.4.4 Shape of the Periodi
 Optimal Traje
toryUsing lemmas 4.1�4.3 we 
an �nd the following 
orollary for the simple interse
tion of two signals.Corollary 4.4 For the simple interse
tion of two signals there is always an optimal traje
tory (mini-mizing (4.1)) that has the periodi
 shape shown in Figure 4.7, whi
h 
onsists out of the following phases(these phases repeat periodi
ally):phase 1 Signal 1 is green and d1(t) = µ1 until queue 1 is empty.phase 2 Signal 1 is green and d1(t) = λ1.phase 3 perform a setup to signal 2, i.e. swit
h signal 1 to red and keep both signals red for a period equalto σ1,2phase 4 Signal 2 is green and d2(t) = µ2 until queue 2 is empty.phase 5 Signal 2 is green and d2(t) = λ2.phase 6 perform a setup to signal 1, i.e. swit
h signal 2 to red and keep both signals red for a period equalto σ2,1Be
ause all green periods of a signal have the same duration and all red periods of a signal have thesame duration, we use:
gi = gki , i = 1, 2, k ≥ 1,

ri = rki , i = 1, 2, k ≥ 1,

gλi = gλ,ki ,i = 1, 2, k ≥ 1,

gµi = gµ,ki ,i = 1, 2, k ≥ 1.Phase 2 and phase 4 are the so 
alled slow modes and may have a duration equal to zero. We 
allthis periodi
ally repeated sequen
e of 6 phases a 
y
le. On the left hand side of Figure 4.7, this 
y
leis plotted in the (x1, x2)-plane. The right hand side graphs shows the queue lengths over time, with theslopes annotated to them. The duration of a 
y
le is denoted with c and is equal to g1 + g2 + σ1,2,1.A slow mode 
an redu
e the 
ost fun
tion be
ause it in
reases the 
y
le duration c and as a 
onse-quen
e the system swit
hes less, i.e. there are less setups.The tra�
 that arrives during a red period of signal 1 
an (pre
isely) depart during gµ1 . In the sameway, the tra�
 that arrives during a red period of signal 2 
an (pre
isely) depart during gµ2 . Hen
e we
an �nd:
gµ1 =

ρ1
1− ρ1

(g2 + σ1,2,1), (4.9a)
gµ2 =

ρ2
1− ρ2

(g1 + σ1,2,1). (4.9b)44
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We use x♯

1 for the queue length of queue 1 when the green period of signal 2 is ended and we use x♯
2for the queue length of queue 2 when the green period of signal 1 ended:

x♯
1 = (g2σ1,2)λ1 (4.10a)

x♯
2 = (g1σ2,1)λ2 (4.10b)We 
all the shape (
onsisting of phases 1 until 6) shown on the left hand side of Figure 4.7 thetrun
ated bow tie 
urve. Whenever gλ1 = gλ2 = 0 we 
all this shape the pure bow tie 
urve (
onsistingof only phases 1, 3, 5 and 6). The pure bow tie 
urve is the 
urve with the shape shown in Figure4.7 that has the smallest possible 
y
le duration c. When gλ1 = gλ2 = 0 the green times g1 and g2 arepre
isely large enough to let the amount of tra�
 depart that arrives during a red period. Thus for thepure bow tie 
urve it holds that:

g1(µ1 − λ1) = r1λ1= (g2 + σ1,2,1)λ1, (4.11a)
g2(µ2 − λ2) = r2λ2= (g1 + σ1,2,1)λ2. (4.11b)From (4.11) we 
an obtain that for the pure bow tie 
urve it holds that:
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c =
σ1,2,1

1− ρ1 − ρ2
,

g1 = gµ1 = ρ1
σ1,2,1

1− ρ1 − ρ2
,

g2 = gµ2 = ρ2
σ1,2,1

1− ρ1 − ρ2
.The pure bow tie 
urve is shown in Figure 4.8.PSfrag repla
ements
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1Figure 4.8: Pure bow tie 
urve.The following expressions 
an be found for the 
oordinates of the pure bow tie 
urve:
x∗
1 = λ1

(

σ1,2 +
ρ2σ1,2,1

1− ρ1 − ρ2

)

, (4.12a)
x̂∗
1 = λ1σ1,2,1

(

1− ρ1
1− ρ1 − ρ2

)

, (4.12b)
x∗
2 = λ2

(

σ2,1 +
ρ1σ1,2,1

1− ρ1 − ρ2

)

, (4.12
)
x̂∗
2 = λ2σ1,2,1

(

1− ρ2
1− ρ1 − ρ2

)

. (4.12d)
4.5 An Optimal Traje
tory Dis
arding Restri
tions on Maxi-mum Queue Lengths, Minimum Green Times and MaximumGreen TimesIn the rest of this 
hapter we 
onsider a more spe
i�
 form of the 
ost fun
tion J : the linear 
ostfun
tion presented in (4.13).

J =
1

c

∫ c

0

[w1x1(s) + w2x2(s)]ds, (4.13)46



where, w1, w2 > 0.In this se
tion, we dis
ard the restri
tions on maximum queue lengths, the restri
tions on minimumand the restri
tions maximum green times. Thus, we dis
ard (4.5k)�(4.5m) of the behavioral equationsgiven in Se
tion 4.2.2, i.e. the maximum queue lengths are in�nite, the minimum green times are equalto zero and the maximum green times are in�nite.In [10℄, van Eekelen has proven that for this situation Theorem 4.1 holds. Without loss of generalityhe assumes that w1λ1 ≥ w2λ2.Theorem 4.1 For a simple interse
tion of two signals the periodi
 optimal traje
tory with respe
t tolinear 
osts on queue lengths (4.13), has a slow mode for at most one signal (signal 1). The slow modeo

urs if and only if w1λ1(ρ1 + ρ2)− (w1λ1 − w2λ2)(1− ρ2) < 0Proof. See appendix A.2 of [10℄Hen
e, when dis
arding behavioral equations (4.5k)�(4.5m) and we assume w.l.o.g. that w1λ1 ≥
w2λ2, the optimal steady state 
y
le has the shape shown in Figure 4.9.
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x♯
1 = λ1

(

σ1,2 +
σ1,2,1ρ2(1 + α1(1 − ρ1))

1− ρ1 − ρ2

)

, (4.14a)
x̂1 = λ1σ1,2,1

(

(1 + α1ρ2)(1 − ρ1))

1− ρ1 − ρ2

)

, (4.14b)
x♭
2 = λ2σ1,2,1

(

(1− ρ2)(1 + α1(1− ρ1))

1− ρ1 − ρ2

)

, (4.14
)
x♯
2 = λ2

(

σ2,1 +
σ1,2,1(α1(1 − ρ1)(1− ρ2) + ρ1)

1− ρ1 − ρ2

)

, (4.14d)
x̂2 = λ2σ1,2,1

(

(1− ρ2)(1 + α1(1− ρ1))

1− ρ1 − ρ2

)

. (4.14e)47



In [10℄ we 
an �nd that α1 equals:
α1 =

{

0 if w1λ1(ρ1 + ρ2)− (w1λ1 − w2λ2)(1 − ρ2) ≥ 0,positive root of (4.15) otherwise. .

[w1λ1ρ
2
2+w2λ2(1−ρ1)

2(1−ρ2)]α
2
1+2[w1λ1ρ

2
2+w2λ2(1−ρ1)(1−ρ2)]α1+[w1λ1(ρ1+ρ2)−(w1λ1−w2λ2)(1−ρ2)] = 0.(4.15)4.6 An Optimal Traje
tory Dis
arding Restri
tions on Mini-mum Green Times and Maximum Green TimesIn this se
tion we (only) dis
ard behavioral equation (4.5l) and (4.5m) given in Se
tion 4.2.2, i.e. theminimum green times are equal to zero and the maximum green times are in�nite. In se
tion 5.4 of [10℄,van Eekelen presents the e�e
ts of �nite maximum queue lengths on the periodi
 optimal traje
tory. Inthis se
tion he again assumes w.l.o.g. that w1λ1 ≥ w2λ2. We re
apitulate his results qui
kly.A traje
tory 
an only be found whenever xmax

i ≥ x̂∗
i , i = 1, 2. With x̂∗

i , i = 1, 2 as in (4.12). Inthe left hand side of Figure 4.10 the periodi
 optimal traje
tory is shown for a �nite maximum queuelength of signal 1. In the right hand side of Figure 4.10 the periodi
 optimal traje
tory is shown for a�nite maximum queue length of signal 2.The 
oordinates of the periodi
 optimal traje
tory with queue length 
onstraints are denoted withbars (¯). The original (un
onstrained) periodi
 optimal traje
tory is shown in light gray.
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x̄♯
1 = min{x♯

1, xmax
1 − λ1σ2,1, λ1

(

σ1,2 +
xmax
2

µ2−λ2

)

},
ˆ̄x1 = min{x̂1, xmax

1 , λ1

(

σ1,2,1 +
xmax
2

µ2−λ2

)

},
x̄♭
2 = min{x♭

2, xmax
1 , λ1

(

σ1,2,1 +
xmax
2

µ2−λ2

)

},
x̄♯
2 = min{x♯

2, µ2−λ2

λ1
(xmax

1 − λ1σ1,2,1)− λ2σ1,2, xmax
2 − λ2σ1,2},

ˆ̄x2 = min{x̂2, µ2−λ2

λ1
(xmax

1 − λ1σ1,2,1), xmax
2 }.With the expressions for x♯

1, x♯
2, x♭

1, x♭
2 and x̂1 as in (4.14).4.7 An Optimal Traje
tory Dis
arding Restri
tions on Mini-mum Green timesIn this se
tion we (only) dis
ard behavioral equation (4.5l) given in Se
tion 4.2.2, i.e. the minimumgreen times are equal to zero.Sin
e we 
onsider a hybrid �uid model and be
ause of the shape of the periodi
 optimal traje
toryshown in Figure 4.7, imposing a maximum green time on signal 1 is essentially the same as imposing a
onstraint on the maximum queue length of signal 2 and vi
e versa. This be
ause when signal 1 has amaximum green time gmax

1 it means that signal 2 has a maximum red time of gmax
1 + σ1,2,1. Therefore,the queue length of signal 2 
an be equal to maximally λ2(g

max
1 + σ1,2,1). When signal 2 is also subje
tto a queue length 
onstraint, i.e. its queue 
an have a maximum length equal to xmax

2 , it has to bedetermined whi
h 
onstraint is more restri
tive: the maximum green time of signal 1 or the maximumqueue length xmax
2 . For this purpose we introdu
e the virtual maximum queue lengths xvmax

1 and xvmax
2whi
h 
an be 
al
ulated via:

xvmax
2 = min{λ2(g

max
1 + σ1,2,1), x

max
2 },

xvmax
1 = min{λ1(g

max
2 + σ1,2,1), x

max
1 }.When the �rst term realizes this minimum, the maximum green time of the other signal is morerestri
tive than the maximum queue length. When the se
ond term realizes this minimum, the maximumqueue length is more restri
tive than the maximum green time of the other signal.However the reverse also holds: the maximum queue length of signal 1 
an be seen as a maximumgreen time of signal 2 and vi
e versa. With the same reasoning we 
an �nd the virtual maximum greentimes gvmax

1 and gvmax
2 , whi
h 
an be 
al
ulated using:

gvmax
1 = min{gmax

1 ,
xmax
2

λ2
− σ1,2,1}, (4.16a)

gvmax
2 = min{gmax

2 ,
xmax
1

λ1
− σ1,2,1}. (4.16b)Note that the virtual maximum green time gvmax

1 and gvmax
2 and the virtual maximum queue lengths

xvmax
1 and xvmax

2 are related a

ording to:
xvmax
1 = λ1(g

vmax
2 + σ1,2,1),

xvmax
2 = λ2(g

vmax
1 + σ1,2,1).49



When only dis
arding 
onstraints on minimum green times we 
an still use the knowledge fromse
tion 5.4 of [10℄. Instead of using maximum queue lengths xmax
1 and xmax

2 we virtual maximum queuelengths xvmax
1 and xvmax

2 .4.8 Periodi
 Optimal Traje
toryIn this se
tion we 
onsider all behavioral equations that are given in Se
tion 4.2.2. From Corollary 4.4we know that w.l.o.g. we 
an assume that optimal traje
tories are periodi
. For these periodi
 optimaltraje
tories a queue is emptied during ea
h green period. For these periodi
 traje
tories we 
an rewritethe behavioral equations in Se
tion 4.2.2.We want to minimize the linear 
ost fun
tion (4.13). From the right side of Figure 4.7 we 
an obtainthe following expression for the linear 
ost fun
tion of the simple interse
tion with two signals.
J =

1

c

∫ c

0

[w1x1(s) + w2x2(s)]ds,

=
w1(σ1,2,1 + gµ1 + g2)(σ1,2,1 + g2)λ1

2(σ1,2,1 + g1 + g2)
, (4.17)

+
w2(σ1,2,1 + gµ2 + g1)(σ1,2,1 + g1)λ2

2(σ1,2,1 + g1 + g2)
.Using (4.9) we 
an rewrite (4.17) to:

J =

λ1w1

2(1−ρ1)
(g2 + σ1,2,1)

2 + λ2w2

2(1−ρ2)
(g1 + σ1,2,1)

2

g1 + g2 + σ1,2,1
.Multiplying this obje
tive fun
tion with 2(1−ρ2)

λ2w2
results in (4.18). Note that multiplying an obje
tivewith a positive 
onstant value does not 
hange the position of the minimum, i.e. the values for g1 and

g2 that minimize the obje
tive fun
tion.
min
g1,g2

λ1w1(1−ρ2)
λ2w2(1−ρ1)

(g2 + σ1,2,1)
2 + (g1 + σ1,2,1)

2

g1 + g2 + σ1,2,1
. (4.18)This obje
tive fun
tion is subje
t to the following 
onstraints. The green time of signal i = 1, 2must be large enough for tra�
, that arrives during a red period, to depart:

g1 ≥
ρ1

1− ρ1
(σ1,2,1 + g2), (4.19a)

g2 ≥
ρ1

1− ρ1
(σ1,2,1 + g1). (4.19b)The maximum queue length of a signal must be larger than the amount of tra�
 that arrives duringa red period:

g1 ≤ xmax
2

λ2
− σ1,2,1, (4.19
)

g2 ≤ xmax
1

λ1
− σ1,2,1. (4.19d)50



The duration of a green period must be at least the minimum green time and may not ex
eed themaximum green time:
g1 ≥ gmin

1 , (4.19e)
g2 ≥ gmin

2 , (4.19f)
g1 ≤ gmax

1 , (4.19g)
g2 ≤ gmax

2 . (4.19h)4.8.1 Solution of the Optimization ProblemUsing (4.16) we 
an see that we 
an only �nd values for g1 and g2 satisfying 
onstraints (4.19) whenever:
gvmax
1 ≥ ρ1σ1,2,1

1− ρ1 − ρ2
, (4.20a)

gvmax
2 ≥ ρ2σ1,2,1

1− ρ1 − ρ2
, (4.20b)

gvmax
1 ≥ gmin

1 , (4.20
)
gvmax
2 ≥ ρ2

1− ρ2
(σ1,2,1 + gmin

1 ), (4.20d)
gvmax
2 ≥ gmin

2 , (4.20e)
gvmax
1 ≥ ρ1

1− ρ1
(σ1,2,1 + gmin

2 ). (4.20f)These inequalities make sure that the smallest possible periodi
 traje
tory is possible without vio-lating any 
onstraints. Inequalities (4.20a) and (4.20b) make sure that the pure bow tie 
urve does notex
eed the maximum queue lengths or ex
eed the maximum green times.When the pure bow tie 
urve violates the minimum green times, inequalities (4.20
),(4.20d), (4.20e),(4.20f)make sure that either the smallest periodi
 traje
tory where g1 = gmin
1 or the smallest periodi
 traje
-tory where g2 = gmin

2 is possible without violating any 
onstraints.This optimization problem 
an be solved analyti
ally (see Appendix C.1). The periodi
 optimaltraje
tory 
an have 0, 1 or 2 slow modes. For more information see Appendix C.1. In this appendix weuse the notation shown below. We assume w.l.o.g. that 0 < k ≤ 1.
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k =
w2λ2(1− ρ1)

w1λ1(1− ρ2)
,

y1 =
g1

σ1,2,1
,

y2 =
g2

σ1,2,1
,

ymin
1 =

gmin
1

σ1,2,1
,

ymin
2 =

gmin
2

σ1,2,1
,

ymax
1 =

min{gmax
1 ,

xmax
2

λ2
− σ1,2,1}

σ1,2,1
,

ymax
2 =

min{gmax
2 ,

xmax
1

λ1
− σ1,2,1

σ1,2,1
.
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Chapter 5Regulation: A Simple Interse
tion ofTwo SignalsIn the previous 
hapter we 
onsidered the traje
tory optimization problem. We showed how to deriveperiodi
 optimal traje
tories for a simple interse
tion of two signals. To obtain these desired traje
torieswe assumed deterministi
 arrivals and deterministi
 departures. However, due to for example sto
hasti
arrivals we may deviate from the desired traje
tory. The se
ond problem dis
ussed in this thesis isregulation. In this 
hapter we 
onsider the regulation problem for the simple interse
tion of two signals.First we explain the regulation problem more expli
itly in Se
tion 5.1. Subsequently, we propose apoli
y in Se
tion 5.2.5.1 Problem Des
riptionIn Polderman and Willems [24℄, the problem of regulation is des
ribed as the problem to design me
ha-nisms that keep 
ertain to be 
ontrolled variables at 
onstant values against external disturban
es thata
t on the plant that is being regulated or against 
hanges in its properties. The system that is being
ontrolled is usually referred to as the plant.One of the 
entral 
on
epts of regulation is feedba
k; some of the variables in the plant are measuredand used to determine what 
ontrol a
tions to take. A feedba
k loop is depi
ted in Figure 5.1. Somevariables are measured by sensors and send to the feedba
k 
ontroller. From these measured variablesthe 
ontroller determines what 
ontrol inputs to send to the a
tuators.In our 
ase the 
omponents depi
ted in this �gure are as follows.Plant: The interse
tion.A
tuators: The 
olor of a tra�
 light 
an 
hange.Sensors: Sensors that 
ould measure queue lengths.Exogenous-inputs Tra�
 arriving at the interse
tion.To-be-
ontrolled-output: The queue lengths.Measured-outputs: The queue lengths.Control-inputs: The signal state of ea
h of the signals.We want to �nd a poli
y to implement in the feedba
k 
ontroller. A poli
y is a set of rules that
onvert the measured outputs to the 
ontrol inputs. This poli
y should make sure that when we deviatefrom the optimal traje
tory (that follows from the traje
tory optimization problem) we again return53



PSfrag repla
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ontrolledoutputsPlantA
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k 
ontrollerFigure 5.1: Visualization of a feedba
k loop.to this optimal traje
tory. In this 
hapter we model the interse
tion using the hybrid �uid model (seese
tion 3.2) and we use the same assumptions as presented in Se
tion 4.2.3.5.2 Proposing a Poli
yIn this se
tion we propose a poli
y for the simple interse
tion with two signals. We prove that for ahybrid �uid model a traje
tory 
onverge to the periodi
 optimal traje
tory whenever this is possible.Convergen
e to the periodi
 optimal traje
tory is not always possible. The (x1, x2)-plane 
an bedivided into regions from whi
h it is impossible to 
onverge to the periodi
 optimal traje
tory when ina 
ertain mode. When entering the area annotated with 1† (see Figure 5.2a) while serving signal 1,eventually one of the 
onstraints is violated. When performing a setup to signal 2, a maximum queuelength is ex
eeded. Moreover, if we do not perform this setup, a maximum queue length is ex
eeded aswell. Similarly, whenever entering the area annotated with 2† while serving signal 2, eventually one ofthe 
onstraints is violated. If the traje
tory is on the pure bow tie 
urve in the upper right 
orner thetraje
tory stays here (if the minimum green times allow so).Further, be
ause of the restri
tions on the minimum green period duration, we may not start servingsignal 1 respe
tively signal 2 in the areas annotated with 1† respe
tively 2† (see Figure 5.2b). Hen
e,when the initial queue lengths are in the area annotated with 1† we have to start serving signal 2 andwhen the initial queue lengths are in the area annotated with 2† we have to with serving signal 1.When the initial queue lengths are in the area with both 1† and 2† , eventually a 
onstraint is violated.Assuming a hybrid �uid model, the poli
y must satisfy the restri
tions on green times and therestri
tions on maximum queue lengths. Note that in a sto
hasti
 setting it is theoreti
ally impossibleto make sure that a maximum queue length is not ex
eeded when assuming Poisson arrivals. To satisfythese restri
tions on green times and maximum queue lengths, signal i = 1, 2 may only swit
h to redwhenever:

Li
τ (t) ≥ gmin

i .Further, a signal must be swit
hed to red whenever the maximum green time is rea
hed:54
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 optimal pro
ess is not always possible.

Li
τ (t) ≥ gmax

i .Signal 1 must swit
h to red whenever otherwise the maximum queue length of signal 2 is ex
eeded(assuming a hybrid �uid model). Thus signal 1 must swit
h to red when:
x2(t) ≥ xmax

2 − λ2σ1,2.Signal 2 must swit
h to red whenever otherwise the maximum queue length of signal 1 is ex
eeded(assuming a hybrid �uid model). Thus signal 2 must swit
h to red when:
x1(t) ≥ xmax

1 − λ1σ2,1.The poli
y proposed in Proposition 5.1 satis�es these restri
tions.Proposition 5.1 A feedba
k poli
y whi
h stabilizes an interse
tion with two signals to the desiredperiodi
 optimal traje
tory if started from a feasible starting point (see Figure 5.2) is given by:
• Mode 1: Serve signal 1 at the highest possible departure rate. When (x1(t) = 0∧L1

τ (t) ≥ gmin
1 ∧x2(t) ≥

x♯
2) ∨ L1

τ (t) ≥ gmax
1 ∨ x2(t) ≥ xmax

2 − λ2σ1,2 swit
h signal 1 to red and go to Mode 2.
• Mode 2: After σ1,2 se
onds go to Mode 3.
• Mode 3: Serve signal 2 at the highest possible departure rate. When (x2(t) = 0∧L2

τ (t) ≥ gmin
2 ∧x1(t) ≥

x♯
1) ∨ L2

τ (t) ≥ gmax
2 ∨ x1(t) ≥ xmax

1 − λ1σ2,1 swit
h signal 2 to red and go to Mode 4.
• Mode 4: After σ2,1 se
onds go to Mode 1.Where x♯

1 and x♯
2 are 
al
ulated via (4.10).Proof. See Appendix 8.1. In this appendix, we a
tually prove Proposition 8.1 whi
h is proposed inSe
tion 8. In Proposition 8.1 we propose a poli
y for an interse
tion with two signal groups. For aninterse
tion with two signals this poli
y redu
es to the poli
y proposed in Proposition 5.1.55





Chapter 6Quality of the Poli
y in a Sto
hasti
Setting: A Simple Interse
tion of TwoSignalsIn Chapter 4 we derived periodi
 optimal traje
tories for a simple interse
tion of two (
on�i
ting) signalsby modeling the interse
tion with a hybrid �uid model. In Chapter 5 we proposed a (feed-ba
k) poli
y.In this 
hapter we 
onsider the third problem dis
ussed in this thesis: We address the quality of theproposed poli
y for an interse
tion with two signals in a sto
hasti
 setting. To this end, we modelthe interse
tion with the sto
hasti
 model des
ribed in Se
tion 3.1. Re
all that this sto
hasti
 modelassumes Poisson arrivals and deterministi
 departures. To obtain results for the poli
y in a sto
hasti
setting, a simulation program is made in the programming language χ3.0. The 
ode of this simulationprogram is given in Appendix B.For ea
h test 
ase we obtain the average delay δ (in se
onds) of a road user at the interse
tion andwe obtain the fra
tion of the time that the maximum queue length is ex
eeded at ea
h of the queues.A road user 
ould either be a vehi
le, a 
y
list or a pedestrian.Before simulating a test 
ase we 
al
ulate the following information about the periodi
 optimaltraje
tory (see Chapter 4.8).- The 
oordinates x♯
1 and x♯

2 
al
ulated with (4.10).- The 
y
le duration c = g1 + g2 + σ1,2,1.- The queue length at signal 1 at the beginning of a green period, whi
h is equal to λ1(g2 + σ1,2,1).- The average delay of a road user. This average delay is obtained using (4.18), where w = w1 = w2 = 1and (4.3).For ea
h test 
ase we perform at least 100 runs. We perform enough runs su
h that the 95%
on�den
e interval for the average delay of a road user is at most 1% of the average delay of a road user.For ea
h run we start serving signal 1. At the start of a run the queue length of queue 1 is taken equalto ⌈λ1(g2 + σ1,2,1)⌉ (obtained from the periodi
 optimal traje
tory) and the queue length of queue 2 iszero. Ea
h run simulates 100c se
onds, were c is the 
y
le duration of the periodi
 optimal traje
tory(see Se
tion 4.4). We 
onsider the following test 
ases.
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test 
ase 1 test 
ase 2a test 
ase 2b
µ1 = 0.5 µ1 = 0.5 µ1 = 0.5
µ2 = 0.5 µ2 = 0.5 µ2 = 0.5
λ1 = λ2 = 0.0125, 0.0250, . . . , 0.2375 λ1 = 1

15 λ1 = 1
15

λ2 = 5
15 λ2 = 5

15
σ1,2 = 2 σ1,2 = 2 σ1,2 = 2
σ2,1 = 2 σ2,1 = 2 σ2,1 = 2
gmin
1 = 4 gmin

1 = 4 gmin
1 = 4

gmin
2 = 4 gmin

2 = 4 gmin
2 = 4

gmax
1 = ∞ gmax

1 = ∞ gmax
1 = 4, 4.5, . . . , 9

gmax
2 = ∞ gmax

2 = 16, 16.5, . . . , 26 gmax
2 = ∞

xmax
1 = ∞ xmax

1 = ∞ xmax
1 = ∞

xmax
2 = ∞ xmax

2 = ∞ xmax
2 = ∞test 
ase 3a test 
ase 3b

µ1 = 0.5 µ1 = 0.5
µ2 = 0.5 µ2 = 0.5
λ1 = 1

15 λ1 = 1
15

λ2 = 5
15 λ2 = 5

15
σ1,2 = 2 σ1,2 = 2
σ2,1 = 2 σ2,1 = 2
gmin
1 = 4 gmin

1 = 4
gmin
2 = 4 gmin

2 = 4
gmax
1 = ∞ gmax

1 = ∞
gmax
2 = ∞ gmax

2 = ∞
xmax
1 = ∞ xmax

1 = 2, 3, . . . , 7
xmax
2 = 3, 4, . . . , 30 xmax

2 = ∞For test 
ases 2a, 2b, 3a and 3b it holds that ρ1 + ρ2 = 0.8. In this 
hapter we use µ = µ1 = µ2. Inse
tions 6.2�6.4 we show the results for these test 
ases6.1 Theoreti
al Comparison to Exhaustive Poli
yFor the small interse
tion with 2 signals we want to 
ompare the average delay of a road user obtainedfor our proposed poli
y to the average delay for an exhaustive poli
y. This exhaustive poli
y worksas follows. A signal i = 1, 2 is always served until it is emptied (disregarding minimum green times,maximum green times and maximum queue lengths). When queue i is emptied, signal i swit
hes to redand as soon as the setup time has elapsed the other signal swit
hes to green. Thus, for the exhaustivepoli
y there are no slow modes. Whenever both queues are empty, the exhaustive poli
y results in thefollowing swit
h behavior. Whenever a queue is empty at the moment that it may swit
h to green (thesetup time towards this signal is �nished), this signal does not swit
h to green and we immediatelystart performing a setup towards the other signal. Thus, whenever both queues are empty, 
onstantlysetups are performed.This exhaustive poli
y is analyzed in [3℄. From [3℄ we 
an obtain an expression for the average delayof a vehi
le for this exhaustive poli
y. This expression is given in (6.1). This equation assumes equalmaximum departure rates, i.e. µ = µ1 = µ2.
δ =

ρ

2µ(1− ρ)
+

σ1,2,1

2
+

σ1,2,1ρ1ρ2
ρ(1 − ρ)

+
1

µ
, (6.1)58



where
ρ = ρ1 + ρ2.We 
ompare the average delay of a road user obtained via simulation for our proposed poli
y to theaverage delay of the exhaustive poli
y obtained with (6.1).6.2 Test Case 1: E�e
t of the Arrival RatesIn this test 
ase we address the e�e
t of the arrival rates on the delay; we want to determine δ(λ) forthe proposed poli
y, where the arrival rates are varied as follows:
λ = λ1 = λ2 = 0.0125, 0.025, ..., 0.2375.As a result ρ = ρ1 + ρ2 varies as follows:

ρ = 0.05, 0.1, ..., 0.95.In Figure 6.1 the results are shown.
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Figure 6.1: The average delay of a road user δ versus λ for test 
ase 1.For this test 
ase the average delay δ(λ) goes to 2 for the proposed poli
y when λ → 0 (assumingthe sto
hasti
 model). We 
an explain this. For the proposed poli
y the signal that is green stays greenwhen both queues are empty. For λ → 0 the probability that both queues are empty at the time of anarrival is equal to 1. Sin
e the maximum green times are in�nite for this test 
ase, the probability thatthe minimum green time has elapsed at the moment of an arrival goes to 1 for λ → 0 (the inter-arrivaltime goes to in�nity for λ → 0) and the probability that no setup is being performed at the moment ofan arrival goes to 1 for λ → 0. Whenever a road user arrives at the signal that is red, the other signalswit
hes to red immediately. This road user experien
es a delay of 4 se
onds: a setup time equal to 2se
onds plus a departure time equal to 1
µ
= 2 se
onds. Whenever a road user arrives at the signal that isgreen, this road user 
an 
ross the interse
tion without any delay. Sin
e the arrival rates of both signalsare the same (for this test 
ase), the probability that an arbitrary road user arrives at signal i = 1, 259



is equal to 0.5. Hen
e, the average delay of a road user goes to 2 se
onds for λ → 0. Note that theaverage delay δ(λ) only goes to 2 for λ → 0 if a maximum green time is in�nite. When both maximumgreen times are �nite the probability that at the moment of an arrival no setup is being performed andthe minimum green time has elapsed does not go to 1 for λ → 0.Re
all that the exhaustive poli
y serves signal i = 1, 2 until it is emptied disregarding minimumgreen times. For the exhaustive poli
y the average delay δ(λ) goes to 4 for λ → 0 be
ause for theexhaustive poli
y 
onstantly a setup is performed (either σ1,2 or σ2,1) whenever both queues are empty.The probability that both queues are empty at the time of an arrival is equal to 1 for λ → 0. Whenevera road user arrives, on average it takes σ1,2,1

2 = 2 se
onds before this signal is swit
hed to green for theexhaustive poli
y (see Se
tion 6.1). After this residual setup of 2 se
onds and a departure time of 1
µ
= 2se
onds, this road user has 
rossed the interse
tion with a delay of 4 se
onds.Hen
e, the proposed poli
y works better than the exhaustive poli
y for λ → 0. Note that there arepoli
ies that result in even lower values for the average delay δ(λ) for λ → 0. For example when bothsignals are red if both queues are empty. At the moment of an arrival at signal i = 1, 2 we immediatelyswit
h this signal to green (if the other signal has been red for 2 se
onds). Assuming in�nite maximumgreen times, this poli
y results in an average delay δ(λ) of 0 se
onds for λ → 0.Further, the proposed poli
y might result in smaller delays than the exhaustive poli
y be
ause theproposed poli
y allows slow modes. A slow mode 
ould redu
e the average delay be
ause the systemswit
hes less, i.e. there are less setups.For low values of δ(λ) the average delay of the proposed poli
y is smaller for the sto
hasti
 modelthan the average delay obtained via traje
tory optimization (Se
tion 4).For larger values of λ the average delay obtained via traje
tory optimization is an underestimationof the average delay in the sto
hasti
 setting. For these larger values of λ the exhaustive poli
y results inlower values for δ(λ) than the proposed poli
y. For large values of δ(λ) the periodi
 optimal traje
toriesobtained via traje
tory optimization do not have a slow mode. However, for large values of δ(λ) westill observe slow modes for the proposed poli
y in a sto
hasti
 setting. These slow modes 
ause thedi�eren
e in δ(λ) for the proposed poli
y and the exhaustive poli
y at large values for λ. Thus, theseslow modes have a positive e�e
t for smaller values of λ and they have a negative e�e
t for larger valuesof λ.6.3 Test Case 2: E�e
t of The Maximum Green TimeIn this se
tion we address the e�e
t of the maximum green times on the delay of a road user. For test
ase 2a and test 
ase 2b the arrival rate at signal 2 is 5 times as large as the arrival rate at signal 1.We use 'low tra�
 signal' to refer to signal 1 and we use 'high tra�
 signal' to refer to signal 2.6.3.1 Test Case 2a: E�e
t of The Maximum Green Time of the High Tra�
SignalFor this test 
ase the maximum green time of signal 2 is varied between 16 se
onds and 26 se
onds. Amaximum green time of 16 se
onds is the smallest maximum green time gmax

2 satisfying (4.20) and thusthe smallest maximum green time for whi
h we 
an �nd an optimal traje
tory. In Figure 6.2 we 
ansee the results for test 
ase 2a. The result obtained for gmax
2 = 16 se
onds is not shown in this �gurebe
ause it results in instability: the queue length of queue 2 keeps in
reasing. We 
an explain thisinstability as follows. For the hybrid �uid model, during the maximum green time gmax

2 = 16 se
ondsthe tra�
 that arrives during a red period (with duration gmin
1 + σ1,2,1) 
an pre
isely depart during agreen period: 60



gmax
2 =

ρ2
1− ρ2

(gmin
1 + σ1,2,1).Due to determinism, for the hybrid �uid model the red time of signal 2 is always equal to 8 se
onds(the minimum green time of signal 1 plus the setup times). However, when in
luding sto
hasti
 arrivalsthe average red time is greater than 8 se
onds be
ause every red time is at least 8 se
onds (otherwisewe do not satisfy the minimum green time of signal 1) and the red time ex
eeds 8 se
onds wheneverat least 3 road users depart during a green period of signal 1. This larger average red time 
auses theinstability.
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Figure 6.2: The average delay of a road user δ versus gmax
2 for test 
ase 2a.In this �gure we 
an see that the relation between the maximum green time and the average delayhas the shape of a sawtooth. The proposed poli
y works better when the maximum green time is not amultiple of the inter-departure time 1

µ . This 
an be explained sin
e a new departure pro
ess is startedwhen, at the moment of a departure, the 
orresponding signal is green and its queue is not empty (seeSe
tion 3.1). Hen
e, during a maximum green time of gmax
2 , ⌈gmax

2 µ⌉ road users depart. We 
an seethe fun
tion ⌈gmax
2 µ⌉ for the di�erent values of gmax

2 in Figure 6.3. Thus, the number of departuresduring a maximum green period of 20 se
onds is the same as the number of departures during a greenperiod of 18.5 se
onds whi
h 
auses the sawtooth relation between the maximum green time and theaverage delay of a road user.In Figure 6.2 we 
an see that the global trend (disregarding the sawtooth shape) is that smallermaximum green times result in larger delays.
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Figure 6.3: The number of departures during gmax
2 .6.3.2 Test Case 2b: E�e
t of the Maximum Green Time of the Low Tra�
SignalFor test 
ase 2b the maximum green time of signal 2 is in�nite and the maximum green time of signal 1 isvaried between 4 se
onds and 9 se
onds. A maximum green time of 4 se
onds is the smallest maximumgreen time gmax

1 satisfying (4.20) and thus the smallest maximum green time for whi
h we 
an �ndan optimal traje
tory. For the optimal traje
tory we serve signal 1 for the minimum green time gmin
1(independent of gmax

1 ). In Figure 6.4 we 
an see the results.
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Figure 6.4: The average delay of a road user δ versus gmax
1 for test 
ase 2b.We again see the sawtooth relation between the maximum green time and the average delay ofa road user. At signal 1 on average more tra�
 
an depart during a minimum green time than whatarrives during a red time. As a result, the low tra�
 signal is often already emptied before the minimumgreen time is rea
hed (for all values of gmax

1 ). Hen
e, the e�e
t of 
hanging the maximum green time is(ex
ept for the sawtooth shape) limited. 62



6.4 Test Case 3: E�e
t of Maximum Queue lengthsIn this se
tion we address the e�e
t of the maximum queue lengths. For test 
ase 3a and test 
ase 3bthe arrival rate at signal 2 is 5 times as large as the arrival rate at signal 1. We use 'low tra�
 signal'to refer to signal 1 and we use 'high tra�
 signal' to refer to signal 2.6.4.1 Test Case 3a: Maximum Queue Length of the High Tra�
 SignalFor test 
ase 3a the maximum queue length of signal 1 is in�nite and we vary the maximum queuelength of signal 2 between 3 road users and 30 road users. A maximum queue length of 2 2
3 se
onds isthe smallest maximum queue length satisfying (4.20) and thus the smallest maximum queue length forwhi
h we 
an �nd an optimal traje
tory. In Figure 6.5 we 
an see the results.
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Note that in a sto
hasti
 setting we swit
h signal 1 to red at the moment that x2(t) ≥ xmax
2 −σ1,2λ2(also whenever the minimum green time is not satis�ed). Hen
e, for smaller xmax

2 a green period ofsignal 1 is sometimes shorter than the minimum green time. As a result, 
hanging the maximum queuelength of queue 2 has a limited e�e
t on the average delay of a road user. However, we 
an see that forsmaller maximum queue lengths xmax
2 the maximum queue length is ex
eeded more often.When 
omparing Figure 6.5a with Figure 6.1 we 
an also see the e�e
t of asymmetri
al arrivalrates. In Figure 6.1 we 
an see that when assuming in�nite maximum green times and in�nite queuelengths, the delay is about 12 se
onds for symmetri
al arrival rates and λ = λ1 = λ2 = 0.2 (resulting in

ρ1+ρ2 = 0.8). In Figure 6.5a we 
an see that when assuming in�nite maximum green times the averagedelay is about 9 se
onds se
onds at large values of the maximum queue length for asymmetri
al arrivalrates (and ρ1 + ρ2 = 0.8). Thus, asymmetri
al arrival rates result in smaller mean delays. We 
an seethat the average delay goes to zero for λ2

λ1
→ ∞. Assuming in�nite maximum green times, the delaygoes to zero for λ2

λ1
→ ∞ be
ause all of the road users arrive at signal 2. Hen
e, if queue 2 is emptiedon
e, it always stays empty (slow mode).Further, we 
an see that for test 
ase 3a the proposed poli
y results in a smaller average delaythan the exhaustive poli
y. For the proposed poli
y slow modes where observed at signal 2. Theseslow modes are desirable be
ause most of the tra�
 arrives at signal 2 and all tra�
 arriving duringa slow mode 
rosses the interse
tion without delay. Hen
e, the proposed poli
y results in small delays(
ompared to the exhaustive poli
y) espe
ially for asymmetri
al arrival rates.In Figure 6.5b we 
an see that the queue length is ex
eeded more often when the maximum queuelength of queue 2 is smaller. For a maximum queue length of 10 or higher the maximum queue lengthis (almost) never ex
eeded.6.4.2 Test Case 3b: Maximum Queue Length of the Low Tra�
 Tra�
SignalFor test 
ase 3b the maximum queue length of signal 2 is in�nite and the maximum green time ofsignal 1 is varied between 2 and 7. A maximum queue length of 1 1

3 se
onds is the smallest value for
xmin
1 satisfying (4.20) and thus the smallest value for xmax

1 for whi
h we 
an �nd an optimal traje
tory.In Figure 6.6 we 
an see the results.We 
an see that for smaller values of xmax
1 the average delay of a road user in
reases be
ause thehigh tra�
 signal (signal 2) has to swit
h to red before its queue is emptied. The road users that 
ouldnot 
ross the interse
tion during the green period experien
e large delays. Further, for smaller valuesof xmax

1 , the maximum queue length of queue 1 is ex
eeded more often.
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Chapter 7Traje
tory Optimization: AnInterse
tion with Two Signal GroupsIn this 
hapter we again 
onsider the traje
tory optimization problem. However, this time we 
onsiderthe traje
tory optimization for a more general interse
tion with two signal groups (instead of an in-terse
tion with two signals). In Figure 1.2 we showed an example of an interse
tion with two signalgroups. For this example one of the signal groups 
onsists out of signals 1,3,7,8,11,12,15,16,19 and 20and the other signal group 
onsists out of signals 2,4,5,6,8,10,13,14,17 and 18.In this 
hapter we assume without loss of generality that the signals in signal group 1 are numbered
1, 2, ..., N1 and that the signals in signal group 2 are numbered N1 + 1, N1 + 2, ..., N . We use G1 =
{1, 2, ..., N1} and G2 = {N1 + 1, ..., N}. First we explain the traje
tory optimization problem for thismore general interse
tion in Se
tion 7.1 and Se
tion 7.2. Subsequently, in Se
tion 7.3 we prove that we
an always �nd an optimal traje
tory satisfying some properties. Using these properties an optimizationproblem is proposed in Se
tion 7.5.7.1 Problem Des
riptionTo solve the traje
tory optimization problem we model the interse
tion with the hybrid �uid modelgiven in Se
tion 3.2. In Se
tion 7.2 we present the behavioral equations of the hybrid �uid model foran interse
tion with two (or more) signal groups. A solution of these behavioral equations is 
alled atraje
tory and 
onsists of the evolution (as fun
tion of time) of the following variables:- xi(t), i ∈ N : the queue lengths of all signals as a fun
tion of time.- mi(t), i ∈ N : the signal state of all signals as a fun
tion of time.- di(t), i ∈ N : the departure rate of all signals as a fun
tion of timeWe want to �nd a traje
tory minimizing the average weighted queue length:

J = lim sup
t→∞

1

t

∫ t

0

∑

i∈N
fi(xi(s))ds, (7.1)where fi : R+ → R+ is a weight fun
tion. Weight fun
tion fi relates the queue lengths at signal ito 
osts. We assume that the fun
tions fi are stri
tly in
reasing, i.e. larger queue lengths resultin higher 
osts. In Se
tion 7.5 we use more spe
i�
 weight fun
tions fi: the linear weight fun
tions67



fi(xi(t)) = wixi(t), i ∈ N . In Se
tion 7.1.1 we show that minimizing the linear weight fun
tion, where
w = w1 = · · · = wN , is equivalent to minimizing the average delay of an arbitrary road user at thisinterse
tion.7.1.1 Average Delay of A Road User At the Interse
tionIn this se
tion we show that minimizing the linear weight fun
tion where w = w1 = · · · = wN , isequivalent to minimizing the average delay of an arbitrary road user at this interse
tion. In this se
tionwe assume that ea
h arrival rate λi, i ∈ N is given in number of vehi
les per se
ond, number of 
y
listsper se
ond or number of pedestrians per se
ond and that ea
h queue length xi, i ∈ N is given in numberof vehi
les, number of 
y
lists or number of pedestrians. When di�erent types of tra�
 arrive at a signalit does not hold that minimizing the linear weight fun
tion where w = w1 = · · · = wN , is equivalent tominimizing the average delay of an arbitrary road user at this interse
tion.Similar to Se
tion 4.1.1, we 
an �nd that when fi(xi) = wxi, i ∈ N we 
an write (7.1) as follows:

J = wλδ, (7.2)where
δ =

∑

i∈N
δi
λi

λ
,

λ = λ1 + λ2.In this equation δ is the average delay of an arbitrary road user at the interse
tion and δi is theaverage delay of a road user at signal i.To obtain (7.2) we have used:
xi = lim sup

t→∞

1

t

∫ t

0

xi(s)ds, i ∈ N ,

δi =
xi

λi
, i ∈ N ,

λ =
∑

i∈N
λi,where, xi is the average queue length at queue i (in
luding the road user that is departing) and δiis the average delay of a road user at signal i.A fra
tion λi

λ
of the road users arrives at signal i ∈ N . Hen
e, ∑

i∈N
δi

λi

λ
is the average delay ofan arbitrary road user at the interse
tion. Note, that the optimal traje
tory does not 
hange whenmultiplying the obje
tive fun
tion (
ost fun
tion) with 1

wλ
> 0. Hen
e, minimizing the linear weightfun
tion, where w = w1 = · · · = wN results in the same optimal traje
tory as minimizing the averagedelay of an arbitrary road user at the interse
tion.7.2 Behavioral Equations of the Hybrid Fluid ModelIn this se
tion we give the behavioral equations of the hybrid �uid model. First, we introdu
e thevariables that we use in these behavioral equations in Se
tion 7.2.1. In Se
tion 7.2.2 we give thebehavioral equations of the hybrid �uid model for an interse
tion with two (or more) signal groups.68



7.2.1 Manifest Variables and Latent VariablesWe use the following manifest variables:- xi(t) ∈ R
+, i ∈ N : the queue length of queue i as a fun
tion of time. The fun
tion xi(t), i ∈ N isright-
ontinuous.- mi(t) ∈ { i , i }, i ∈ N : the signal state of signal i as a fun
tion of time. The fun
tion mi(t), i ∈ Nis right-
ontinuous.- di(t) ∈ R
+,i ∈ N : the departure rate at signal i as a fun
tion of time. The fun
tion di(t), i ∈ N ismeasurable.Further, we use the following latent variables:- Li

τ (t) ∈ R
+, i ∈ N : the time that has elapsed sin
e the last 
hange in the signal state of signal i.7.2.2 Behavioral EquationsIn this se
tion we give the behavioral equations for an interse
tion with two (or more) signal groups.In these behavioral equations we use:

zi,j = zj,i =

{

1 if signal i and j are 
on�i
ting,
0 otherwise.For an interse
tion with two signal groups, zi,j is 1 whenever signal i and signal j are partitionedin di�erent signal groups. Whenever signal i and signal j are partitioned in the same signal group itholds that zi,j is 0.The 
hange in the queue length is equal to the net in�ow (arrival rate minus departure rate):

ẋi(t) = λi − di(t), i ∈ N . (7.3a)The latent variable Li
τ (t), i ∈ N denotes a time. Hen
e, its derivative with respe
t to time is equalto one:

L̇i
τ (t) = 1, i ∈ N . (7.3b)The time that has elapsed sin
e the last 
hange in the signal state, is set to zero when the signalstate 
hanges:

Li
τ (t) = 0 if mi(t

−) 6= mi(t), i ∈ N , (7.3
)where
mi(t

−) = lim
y↑t

mi(y).Whenever a signal is red, the tra�
 from the 
orresponding queue 
annot 
ross the interse
tion:
di(t) = 0 if mi(t) = i , i ∈ N , ∀t ∈ R

+. (7.3d)When there is no tra�
 waiting at queue i ∈ N , tra�
 
an depart at a rate that is smaller than orequal to the arrival rate λi (otherwise it would result in a negative queue length xi(t)):69



di(t) ≤ λi if xi(t) = 0, i ∈ N , ∀t ∈ R
+. (7.3e)Tra�
 
annot depart at a rate that ex
eeds the maximum departure rate:

di(t) ≤ µi, i ∈ N , ∀t ∈ R
+. (7.3f)Two 
on�i
ting signals 
annot be green at the same time:

mi(t) = i if ∃j ∈ N (zi,j = 1 and mj(t) = j ), i ∈ N . (7.3g)A signal 
an only swit
h to green whenever all 
orresponding setups have been performed:
mi(t) = i if ∃j ∈ N

(

zi,j = 1 and mj(t) = j and Lj
τ (t) < σj,i

)

, i ∈ N . (7.3h)The maximum queue length 
annot be ex
eeded:
xi(t) ≤ xmax

i , i ∈ N . (7.3i)The duration of a green period must be at least the minimum green time and 
annot ex
eed themaximum green time:
mi(t) = i if T i

τ (t) < gmin
i ∧mi(t

−) = i , i ∈ N , (7.3j)
mi(t) = i if T i

τ (t) ≥ gmax
i ∧mi(t

−) = i , i ∈ N . (7.3k)A solution of these behavioral equations (the manifest variables as fun
tion of time) is 
alled atraje
tory. Note that we allow every initial 
ondition as long as it satis�es (7.3).7.2.3 AssumptionsWe assume that the arrival rate and the maximum departure rate of a signal is positive:
λi, µi > 0, i ∈ N . (7.4a)We assume that all setup times are non-negative and that the setup σ1,N,1 is stri
tly positive:
σi,j ≥ 0, i, j ∈ N , (7.4b)
σ1,N,1 > 0. (7.4
)We assume that the minimum green times are non-negative:
gmin
i ≥ 0, i ∈ N . (7.4d)We assume that for all signals the average green time and the average red time 
onverges. Thus, weassume that the following limits exist for all signals in N :
ḡi = lim

M→∞

M
∑

k=1

gki
M

,

r̄i = lim
M→∞

M
∑

k=1

rki
M

.70



We only 
onsider traje
tories where the signals are served in a �xed order. This is a desirable featurein pra
ti
e be
ause some of the vehi
les, 
y
lists and pedestrians already start to a

elerate when theyexpe
t their signal to swit
h to green. When the order in whi
h these signals are served 
hanges, theseexpe
tations may be wrong and 
an result in unsafe situations. For a �xed order for an interse
tion withtwo signal groups ea
h signal in G1 is green during the red period of the signals in G2 and ea
h signalin G2 is green during during the red period of the signals in G1. Note that be
ause we only 
onsidernon-negative setup times, ea
h signal in G1 is red whenever a signal in G2 is green and vi
e versa.For example when G1 = {1} and G1 = {2, 3}, we only 
onsider the traje
tory where signals 2 and3 are both served during ea
h red time of signal 1. In Se
tion 7.5.4, we show that another traje
tory(that does not satisfy this property) might result in a lower value for the 
ost fun
tion 7.1.Further, we assume that the setup times are related a

ording to:
σi1,i2 − σi1,l2 = σl1,i2 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (7.4e)
σi2,i1 − σi2,l1 = σl2,i1 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (7.4f)Using this assumption we 
an always swit
h signal i2 to green σi1,i2 − σi1,l2 se
onds after (if σi1,i2 −

σi1,l2 ≥ 0) or before (if σi1,i2 − σi1,l2 < 0) signal l2 swit
hes to green and we 
an always swit
h signal
i1 to green σi2,i1 − σi2,l1 se
onds after (if σi2,i1 − σi2,l1 ≥ 0) or before (if σi2,i1 − σi2,l1 < 0) signal l1swit
hes to green.Whenever a green period is extremely short or extremely long (and as a result a red period of anothersignal is extremely long), road users 
an get irritated whi
h probably results in more red negation, i.e.in more people ignoring a red light. Further, whenever a green period is extremely short or extremelylong, road users might think the tra�
 lights are malfun
tioning. From this pra
ti
al point of view it islogi
al to assume that we are given restri
tions on the maximum red times instead of a restri
tion on themaximum green times. Hen
e, we assume (7.4g) and (7.4h). Note that gmax

i1
+ σi1,i2,i1 , i1 ∈ G1, i2 ∈ G2is the maximum duration of a red period of signal i2 and that gmax

i2
+ σi1,i2,i1 , i1 ∈ G1, i2 ∈ G2 is themaximum duration of a red period of signal i1.

gmax
i1 + σi1,i2,i1 = gmax

j1 + σj1,i2,j1 , ∀i1, j1 ∈ G1, ∀i2 ∈ G2, (7.4g)
gmax
i2 + σi1,i2,i1 = gmax

j2 + σi1,j2,i1 , ∀i1 ∈ G1, ∀i2, j2 ∈ G2. (7.4h)In Figure 7.1 we 
an see an example for the 
ase where (7.4h) is not satis�ed. In this example we 
ansee that signal 2 is already �nished performing the setup σ2,1 while the setup σ3,1 has not yet �nished.Hen
e, at the moment that the setup σ2,1 has �nished, signal 1 
annot yet swit
h to green. Sin
e thepurpose of a maximum green time is to redu
e the red times of another signal, signal 2 is red withoutpurpose.Further, we assume that inequalities (7.4i)�(7.4t) are satis�ed for all i1 ∈ G1 and for all i2 ∈ G2. InSe
tion 7.5.2 we show that we 
an always �nd a periodi
 traje
tory satisfying the behavioral equations(7.3) if and only if (7.4i)�(7.4t) are satis�ed for all i1 ∈ G1 and for all i2 ∈ G2. For more informationsee Se
tion 7.5.2.
71



PSfrag repla
ementssignal 1signal 2signal 3
r1

σ1,2 gmax
2 σ2,1

σ1,3 g3 σ2,3timeFigure 7.1: Situation where gmax
2 + σ1,2,1 > gmax

3 + σ1,3,1. The dark gray re
tangles visualize when asignal is red and the light gray re
tangles visualize when a signal is green.
gmax
i1

≥ σi1,i2,i1ρi1
1− ρi1 − ρi2

, (7.4i)
gmax
i1 ≥ gmin

i1 , (7.4j)
gmax
i1 ≥ (gmin

i2 + σi1,i2,i1)
ρi1

1− ρi1
, (7.4k)

gmax
i2 ≥ σi1,i2,i1ρi2

1− ρi1 − ρi2
, (7.4l)

gmax
i2

≥ gmin
i2

, (7.4m)
gmax
i2

≥ (gmin
i1

+ σi1,i2,i1)
ρi2

1− ρi2
, (7.4n)

xmax
i1

≥ λi1 (
σi1,i2,i1ρi2

1− ρi1 − ρi2
+ σi1,i2,i1), (7.4o)

xmax
i1

≥ λi1

gmin
i1

ρi2 + σi1,i2,i1

1− ρi2
, (7.4p)

xmax
i1 ≥ λi1 (g

min
i2 + σi1,i2,i1), (7.4q)

xmax
i2 ≥ λi2 (

σi1,i2,i1ρi1
1− ρi1 − ρi2

+ σi1,i2,i1), (7.4r)
xmax
i2 ≥ λi2

gmin
i2

ρi1 + σi1,i2,i1

1− ρi1
, (7.4s)

xmax
i2

≥ λi2 (g
min
i1

+ σi1,i2,i1). (7.4t)7.3 Properties of Optimal Traje
toriesIn se
tion we prove that we 
an always �nd an optimal traje
tory(minimizing (7.1)) that satis�es a fewproperties.From Lemma 4.1 and Lemma 4.2 we know that there is always an optimal traje
tory where wealways use the highest possible departure rate during a green period of signal i ∈ N :72



di(t) =

{

µi if xi(t) > 0,
λi if xi(t) = 0.Lemma 7.1 Without loss of generality it 
an be assumed that for an optimal traje
tory in the behavior,it holds ∀k ≥ 1 that:

gki1 + σi1,i2,i1 = gkj1 + σj1,i2,j1 , ∀i1, j1 ∈ G1, ∀i2 ∈ G2, (7.5a)
gki2 + σi1,i2,i1 = gkj2 + σi1,j2,i1 , ∀i1 ∈ G1, ∀i2, j2 ∈ G2. (7.5b)Proof. In this proof we use the following notation:

c =

{

2 if c = 1,
1 if c = 2.Suppose that we are given a traje
tory that satis�es gkic +σic,ic,ic > gkjc +σjc,ic,jc , jc, ic ∈ Gc, ic ∈ Gc,

c = 1, 2. Thus, the property given in this lemma is not satis�ed. For this traje
tory signal jc swit
hesto green at time t0 + σic,jc and swit
hes to red at time tf − σjc,ic (see Figure 7.2).
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the alternative traje
tory and signal ic is red for the original traje
tory. The alternative traje
tory usesthe highest possible departure rate at the times where signal ic is green for the alternative traje
toryand signal ic is also green for the original traje
tory.Hen
e, the evolution of the queue length of queue ic is exa
tly the same for both traje
tories.As a result the alternative traje
tory satis�es the 
onstraints on queue lengths whenever the originaltraje
tory does. Further, from assumptions (10.1) and (10.2) we know that we satisfy behavioralequations (7.3g) and (7.3h). From (7.4g) and (7.4h) we know that the alternative traje
tory satis�esthe 
onstraints on green time duration whenever the original traje
tory does.Sin
e the evolution of the queue lengths is exa
tly the same for both traje
tories, both traje
toriesresult in the same 
osts (
al
ulated via (7.1)).Thus, whenever we are given a traje
tory that does not satisfy the property given in this lemma,we 
an always give an alternative traje
tory that does satisfy this property and that works at least asgood. Hen
e, there must be an optimal traje
tory that satis�es the property given in this lemma.Lemma 7.2 Without loss of generality it 
an be assumed that for an optimal traje
tory in the behavior,a queue is always emptied during its green period and green periods always take equally long, i.e. gki =
gk+1
i , ∀k ≥ 1.Proof. The proof of this lemma is shown in Appendix C.3. The proof of this lemma is very similar tothe proof of Lemma 4.3.Lemma 7.3 Without loss of generality it 
an be assumed that for an optimal traje
tory in the behavior,a signal is green as long as possible during a red period of a 
on�i
ting signal:

ri2 = gi1 + σi1,i2,i1 , ∀i1 ∈ G1, ∀i2 ∈ G2, (7.6)
ri1 = gi2 + σi1,i2,i1 , ∀i1 ∈ G1, ∀i2 ∈ G2, (7.7)where, gi respe
tively ri is the duration of all green times of signal i ∈ N and the duration of all redtimes of signal i ∈ N .Proof. In this proof we use the following notation:

c =

{

2 if c = 1,
1 if c = 2.Suppose we are given a traje
tory where the green times and red times of the di�erent signals aregiven and denoted with gi, i ∈ N and ri, i ∈ N and that this traje
tory does not satisfy the propertygiven in this lemma. We 
an prove that there is always an alternative traje
tory that does satisfy thisproperty and that results in 
osts (
al
ulated via (7.1)) that are not larger than the 
osts of the originaltraje
tory. This alternative traje
tory has the same green times as the original traje
tory. The redtimes of this alternative traje
tory are 
hosen su
h that the property given in this lemma is satis�ed.We use ralti for the red times of signal i ∈ N for the alternative traje
tory. For the alternative traje
torywe swit
h signal i1 ∈ G1 to green exa
tly σi2,i1 se
onds after we swit
h signal i2 ∈ G2 to red and weswit
h signal i2 ∈ G2 to green exa
tly σi1,i2 se
onds after we swit
h signal i1 ∈ G1 to red. Thus, weswit
h a signal to green as soon as its allowed. The alternative traje
tory is shown in Figure 7.3.Note that a red time of signal ic ∈ Gc, c = 1, 2 must satisfy ric ≥ gic + σic,ic,ic , ∀ic ∈ Gc be
auseotherwise 
onstraint (7.3g) or (7.3h) is violated. Hen
e, it holds that ralti ≤ ri, ∀i ∈ N .In Figure 7.4 we 
an see the queue length evolution of signal i for both original traje
tory andthe alternative traje
tory. In this �gure we use talt0 for the time at whi
h a red period starts for thealternative traje
tory and we use torg0 for the time at whi
h a red period starts for the original traje
tory.74
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We introdu
e the following notation:
Jalt
1,i : The average 
osts related to signal i during a red period (during the interval [talt0 , talt0 + ralti ]) ofthe alternative traje
tory.

Jorg
1,i : The average 
osts related to signal i during the interval [torg0 , torg0 +ralti ] of the original traje
tory.

Jalt
2,i : The average 
osts related to signal i during a green period (during the interval [talt0 + ralti , talt0 +

ralti + gi]) of the alternative traje
tory.
Jorg
2,i : The average 
osts related to signal i during a green period (during the interval [torg0 + ri, t

org
0 +

ri + gi]) of the original traje
tory.
Jorg
3,i : The average 
osts for signal i during during the interval [torg0 + ralti , torg0 + ri] of the originaltraje
tory.For the alternative traje
tory the average 
osts related to signal i are equal to:

Jalt
i =

ralti

ralti + gi
Jalt
1,i +

gi

ralti + gi
Jalt
2,i .We 
an see that the queue length evolution during [torg0 , torg0 + ralti ] of the original traje
tory is thesame as the queue length evolution during the interval [talt0 , talt0 + ralti ] of the alternative traje
tory .Hen
e, Jalt

1,i = Jorg
1,i . Furthermore, we 
an see from Figure 7.5 that Jalt

2,i ≤ Jorg
2,i be
ause fi is stri
tlyin
reasing. During the interval [torg0 +ralti , torg0 +ri] the queue length of signal i for the original traje
torysatis�es xi(t) ≥ λir

alt
i . For the alternative traje
tory the queue length (always) satis�es xi(t) ≤ λir

alt
i .Thus, it holds that Jalt

3,i ≥ Jalt
i be
ause fi is stri
tly in
reasing.PSfrag repla
ements
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Using this information we 
an derive that:
Jorg
i =

ralti

ri + gi
Jorg
1,i +

gi
ri + gi

Jorg
2,i +

ri − ralti

ri + gi
Jorg
2,i

=
ralti + gi
ri + gi

(

ralti

ralti + gi
Jorg
1,i +

gi

ralti + gi
Jorg
2,i

)

+
ri − ralti

ri + gi
Jorg
2,i

≥ ralti + gi
ri + gi

(

ralti

ralti + gi
Jalt
1,i +

gi

ralti + gi
Jalt
2,i

)

+
ri − ralti

ri + gi
Jalt
i

≥ ralti + gi
ri + gi

Jalt
i +

ri − ralti

ri + gi
Jalt
i

≥ Jalt
i .Hen
e, the 
osts related to ea
h signal i ∈ N are not larger for the alternative traje
tory than forthe original traje
tory.Furthermore, we 
an see that the alternative traje
tory is feasible be
ause:- Assuming (10.1) and (10.2) there is exa
tly enough time to perform the setups and thus to satisfy
onstraint (7.3g) and 
onstraint (7.3h).- For the original traje
tory the queue length of signal i ∈ N is at most λiri and for the alternativetraje
tory the queue length of signal i is at most λir

alt
i ≤ λiri. Hen
e, when the original traje
torysatis�es the 
onstraints on maximum queue lengths the alternative traje
tory does as well be
ausethe queue length of signal ic in
reases with the duration of a red period.- both traje
tories have the same green times. Hen
e, when the original traje
tory satis�es the 
on-straints on maximum queue lengths the alternative traje
tory does as well.

7.4 Shape of the Periodi
 Optimal Traje
toryUsing lemmas 4.1, 4.2, 7.1, 7.2 and 7.3 we 
an �nd the following 
orollary for the interse
tion with twosignal groups.Corollary 7.4 For an interse
tion with two signal groups and assumptions given in Se
tion 7.2.3 we
an without loss of generality assume that an optimal traje
tory (minimizing (7.1)) has the periodi
shape shown in the (xi1 , xi2)-plane, i1 ∈ G1,i2 ∈ G2 that is shown in Figure 7.6. This periodi
 shape inthe (xi1 , xi2)-plane 
onsists of the following phases (these phases repeat periodi
ally):phase 1 Signal i1 is green and di1(t) = µi1 until queue i1 is empty.phase 2 Signal 1 is green and di1(t) = λi1 .phase 3 perform a setup to signal i2, i.e. swit
h signal i2 to red and keep both signals red for a periodequal to σi1,i2phase 4 Signal i2 is green and di2(t) = µi2 until queue i2 is empty.phase 5 Signal i2 is green and di2(t) = λi2 .phase 6 perform a setup to signal i1, i.e. swit
h signal i2 to red and keep both signals red for a periodequal to σi2,i1 77



Sin
e all green periods of a signal have the same duration and all red periods of a signal have thesame duration, we use:
gi = gki , i ∈ N , k ≥ 1,

ri = rki , i ∈ N , k ≥ 1,

gλi = gλ,ki ,i ∈ N , k ≥ 1,

gµi = gµ,ki ,i ∈ N , k ≥ 1. (7.8)Step 2 and phase 4 are the so 
alled slow modes and may have a duration equal to zero. We 
all thisperiodi
ally repeated sequen
e a 
y
le. On the left hand side of Figure 4.7, this 
y
le is plotted in the
(xi1 , xi2)-plane. The right hand side graphs show the queue lengths over time, with the slopes annotatedto them. The duration of a 
y
le is denoted with c and is equal to gi1 + gi2 + σi1,i2,i1 .The green times are related a

ording to:

gi1 + σi1,i2,i1 = gj1 + σj1,i2,j1 , ∀i1, j1 ∈ G1, ∀i2 ∈ G2, (7.9a)
gi2 + σi1,i2,i1 = gj2 + σi1,j2,i1 , ∀i1 ∈ G1, ∀i2, j2 ∈ G2. (7.9b)PSfrag repla
ements
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The tra�
 that arrives during a red period of signal i ∈ N 
an (pre
isely) depart during gµi . Hen
ewe 
an �nd:
gµi1 =

ρi1
1− ρi1

(gi2 + σi1,i2,i1), ii1 ∈ Gi1 , ii2 ∈ Gi2 , (7.10a)
gµi2 =

ρi2
1− ρi2

(gi1 + σi1,i2,i1), ii1 ∈ Gi1 , ii2 ∈ Gi2 . (7.10b)7.5 Periodi
 Optimal Traje
toryFrom Corollary 7.4 we know that w.l.o.g. we 
an assume that optimal traje
tories are periodi
. Forthese periodi
 optimal traje
tories a queue is emptied during ea
h green period. Using these propertieswe 
an rewrite the behavioral equations (7.3). In Se
tion 7.5.1 we give the rewritten form of thesebehavioral equations. In Se
tion 7.5.3 we elaborate on the solutions of this optimization problem.7.5.1 Optimization ProblemWe want to minimize the linear 
ost fun
tion. From now on we use a more spe
i�
 form of the 
ostfun
tion J : the linear 
ost fun
tion shown in (7.11).
J =

1

c

∫ c

0

∑

i∈N
wixi(s)ds. (7.11)From the right side of Figure 7.6 and using (7.9) we 
an obtain the following expression for thelinear 
ost fun
tion for an interse
tion with two signal groups.

J =
1

c

∫ c

0

∑

i∈N
wixi(s)ds,

=
∑

i∈G1

wi(σi,N,i + gN + gµi )(σi,N,i + gN)λi

2(σ1,N,1 + g1 + gN)
,

+
∑

i∈G2

wi(σ1,i,1 + gN + gµi )(σ1,i,1 + g1)λi

2(σ1,N,1 + g1 + gN )
. (7.12)Re
all that by de�nition signal 1 is element of signal group 1 and signal N is element of signal group2. Using (7.10) we 
an obtain:

min
g1,gN

∑

i∈G1

ki(σi,N,i + gN)2 +
∑

i∈G2

ki(σi,1,i + g1)
2

g1 + gN + σ1,N,1
, (7.13)where

βi =
λiwi

2(1− ρi)
, i ∈ N .79



The green time of a signal must be large enough for the tra�
, that arrives during a red period,to depart. Otherwise, we would not get the periodi
 optimal traje
tory from Corollary 7.4 be
ause aqueue length goes to in�nity.
gi ≥

ρi
1− ρi

ri, ∀i ∈ N . (7.14a)The maximum queue length of a signal must be larger than the amount of tra�
 that arrives duringa red period:
ri ≤

xmax
i

λi
, ∀i ∈ N . (7.14b)Ea
h green time must ex
eed the minimum green time:

gi ≥ gmin
i , ∀i ∈ N . (7.14
)Ea
h green time may not ex
eed the maximum green time:

gi ≥ gmax
i , ∀i ∈ N . (7.14d)Using the relations between green times given in (7.9) we 
an rewrite (7.14) to:

g1 ≥ max
i∈G1

ρigN + σi,N,i

1− ρi
− σ1,N,1, (7.15a)

gN ≥ max
i∈G2

ρig1 + σ1,i,1

1− ρi
− σ1,N,1, (7.15b)

g1 ≤ min
i∈G2

xmax
i

λi
− σ1,i,1, (7.15
)

gN ≤ min
i∈G1

xmax
i

λi
− σi,N,i, (7.15d)

g1 ≥ max
i∈G1

gmin
i + σi,N,i − σ1,N,1, (7.15e)

gN ≥ max
i∈G2

gmin
i + σ1,i,1 − σ1,N,1, (7.15f)

g1 ≤ gmax
1 , (7.15g)

gN ≤ gmax
N . (7.15h)We want to �nd values for g1 and gN that satisfy 
onstraints (7.15) and minimize the linear 
ostfun
tion (7.13). From these values for g1 and gN we 
an derive the green times of all other signals via(7.9).7.5.2 Existen
e of a SolutionA solution to the optimization problem with 
onstraints (7.15) is only possible if we 
an �nd values for

gi1 , ∀i1 ∈ G1 and gi2 , ∀i2 ∈ G2 satisfying inequalities (7.14). We 
an �nd values for gi1 , ∀i1 ∈ G1 and
gi2 , ∀i2 ∈ G2 satisfying inequalities (7.14) if and only if the following inequalities are satis�ed for allsignals i1 ∈ G1 and for all signals i2 ∈ G2: 80



gmax
i1

≥ σi1,i2,i1ρi1
1− ρi1 − ρi2

, (7.16a)
gmax
i1 ≥ gmin

i1 , (7.16b)
gmax
i1 ≥ (gmin

i2 + σi1,i2,i1)
ρi1

1− ρi1
, (7.16
)

gmax
i2 ≥ σi1,i2,i1ρi2

1− ρi1 − ρi2
, (7.16d)

gmax
i2

≥ gmin
i2

, (7.16e)
gmax
i2

≥ (gmin
i1

+ σi1,i2,i1)
ρi2

1− ρi2
, (7.16f)

xmax
i1

≥ λi1 (
σi1,i2,i1ρi2

1− ρi1 − ρi2
+ σi1,i2,i1), (7.16g)

xmax
i1

≥ λi1

gmin
i1

ρi2 + σi1,i2,i1

1− ρi2
, (7.16h)

xmax
i1 ≥ λi1 (g

min
i2 + σi1,i2,i1), (7.16i)

xmax
i2 ≥ λi2 (

σi1,i2,i1ρi1
1− ρi1 − ρi2

+ σi1,i2,i1), (7.16j)
xmax
i2

≥ λi2

gmin
i2

ρi1 + σi1,i2,i1

1− ρi1
, (7.16k)

xmax
i2

≥ λi2 (g
min
i1

+ σi1,i2,i1). (7.16l)The inequalities in (7.16) 
an be interpreted as follows. Whenever, a periodi
 traje
tory satis�es
gi1 =

σi1,i2,i1ρi1

1−ρi1−ρi2
and gi2 =

σi1,i2,i1ρi2

1−ρi1−ρi2
(and we let tra�
 depart at the maximum departure rate) weget a pure bow tie 
urve in the (i1, i2)−plane (see Figure 7.7). The green times gi1 =

σi1,i2,i1ρi1

1−ρi1−ρi2
and

gi2 =
σi1,i2,i1ρi2

1−ρi1−ρi2
are the smallest green times for whi
h all tra�
 that arrives during a 
y
le at signal i1and signal i2 
an depart during a 
y
le.The inequalities (8.1h),(8.1k),(8.1n) and (8.1q) make sure that this pure bow tie 
urve in the (i1, i2)-plane does not violate the maximum green times gmax

i1
and gmax

i2
and it does not violate the maximumqueue lengths xmax

i1
and xmax

i2
.However, a pure bow tie 
urve in the (i1, i2)-plane might violate a 
onstraint on the minimum greentime duration. The inequalities (8.1i),(8.1l),(8.1o) and (8.1r) make sure that there exists a periodi
traje
tory where gi1 = gmin

i1
, su
h that the maximum green times gmax

i1
and gmax

i2
and the maximumqueue lengths xmax

i1
and xmax

i2
are not violated. Similarly, inequalities (8.1j),(8.1m),(8.1p) and (8.1s)make sure that the maximum green times gmax

i1
and gmax

i2
and the maximum queue lengths xmax

i1
and

xmax
i2

are not violated.7.5.3 SolutionIn this se
tion we present the solution to the optimization problem for two 
ases. First we 
onsider aninterse
tion where G1 = {1}, G2 = {2, 3} and σ1,2,1 = σ1,3,1. Subsequently we 
onsider an interse
tionwhere G1 = {1}, G2 = {2, 3} and σ1,2,1 6= σ1,3,1.
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i1Figure 7.7: Pure bow tie 
urve in the (i1, i2)−planeEqual Setup TimesIn this se
tion we 
onsider an interse
tion where G1 = {1}, G2 = {2, 3} and σ1,2,1 = σ1,3,1. From (7.9)we know that in this 
ase g2 = g3. For this interse
tions the obje
tive fun
tion (7.13) redu
es to:

J =
1

c

∫ c

0

∑

i∈N
wixi(s)ds =

β1(σ1,3,1 + g3) + (β2 + β3)(σ1,3,1 + g1)
2

σ1,3,1 + g1 + g3
, (7.17)where

βi =
λiwi

2(1− ρi)
, i ∈ N .Further, the 
onstraints (7.15) redu
e to:

g1 ≥ ρ1
1− ρ1

(σ1,3,1 + g3),

g3 ≥
max
i=2,3

ρi

1− max
i=2,3

ρi
(σ1,3,1 + g1),

g1 ≤ min
i=2,3

xi

λi
− σ1,3,1,

g3 ≤ x1

λ1
− σ1,3,1,

g1 ≥ gmin
1 ,

g3 ≥ min{gmin
2 , gmin

3 },
g1 ≤ gmax

1 ,

g3 ≤ gmax
3 . 82



This optimization problem 
an be solved analyti
ally (see Appendix C.1). The periodi
 optimaltraje
tory 
an have 0, 1 or 2 slow modes. For more information see Appendix C.1. The optimizationproblem with obje
tive fun
tion (7.17) and 
onstraints (7.18) is related to the optimization problem inC.1 as follows.Whenever (β2 + β3) ≤ β1, the two optimization problems are related a

ording to:
k =

(β2 + β3)

β1
,

y1 =
g1

σ1,3,1
,

y2 =
g3

σ1,3,1
,

ymin
1 =

gmin
1

σ1,3,1
,

ymin
2 =

max{gmin
2 , gmin

3 }
σ1,3,1

,

ymax
1 =

min{gmax
1 , min

i=2,3

xmax
i

λi
− σ1,3,1}

σ1,3,1
,

ymax
2 =

min{gmax
2 ,

xmax
1

λ1
− σ1,3,1}

σ1,3,1
,

α1 = ρ1,

α2 = max
i=2,3

ρi.Whenever (β2 + β3) ≥ β1, the two optimization problems are related a

ording to:
k =

β1

(β2 + β3)
,

y1 =
g3

σ1,3,1
,

y2 =
g1

σ1,3,1
,

ymin
1 =

max{gmin
2 , gmin

3 }
σ1,3,1

,

ymin
2 =

gmin
1

σ1,3,1
,

ymax
1 =

min{gmax
2 ,

xmax
1

λ1
− σ1,3,1}

σ1,3,1
,

ymax
2 =

min{gmax
1 , min

i=2,3

xmax
i

λi
− σ1,3,1}

σ1,3,1
,

α1 = max
i=2,3

ρi,

α2 = ρ1. 83



Generalization: using the assumptions in Se
tion 7.2.3, the analyti
al solution in Appendix C.1 
anbe used for any interse
tion with two 
on�i
t groups where:
σ1,N,1 = σi1,N,i1 ,∀i1 ∈ G1,

σ1,N,1 = σi2,1,i2 , ∀i2 ∈ G2.For this 
lass of interse
tions we 
an �nd the following expressions for the optimization problem inAppendix C.1. Without loss of generality we assume that 0 < k ≤ 1.
k =

∑

i∈G2

βi

∑

i∈G1

βi
,

y1 =
g1

σ1,N,1
,

y2 =
gN

σ1,N,1
,

ymin
1 =

max
i∈G1

gmin
i

σ1,N,1
,

ymin
2 =

max
i∈G2

gmin
i

σ1,N,1
,

ymax
1 =

min{gmax
1 ,min

i∈G2

xi

λi
− σ1,N,1}

σ1,N,1
,

ymax
2 =

min{gmax
N ,min

i∈G1

xmax
i

λi
− σ1,N,1}

σ1,N,1
,

α1 = max
i∈G1

ρi,

α2 = max
i∈G2

ρi.Unequal Setup TimesIn this se
tion we 
onsider an interse
tion where G1 = {1}, G2 = {2, 3} and σ1,2,1 6= σ1,3,1. From (7.9)we know that g2 + σ1,2,1 = g3 + σ1,3,1. For this interse
tion the obje
tive fun
tion (7.13) redu
es to:
J =

1

c

∫ c

0

∑

i∈N
wixi(s)ds =

β1(σ1,3,1 + g3)
2 + β2(σ1,2,1 + g1)

2 + β3(σ1,3,1 + g1)
2

σ1,3,1 + g1 + g3
, (7.19)where

βi =
λiwi

2(1− ρi)
, i ∈ N .Further, the 
onstraints (7.15) redu
e to (7.20). Note that (7.20b) and (7.20
) both follow from(7.15d). 84



g1 ≥ ρ1
1− ρ1

(σ1,3,1 + g3), (7.20a)
g3 ≥ ρ3

1− ρ3
(σ1,3,1 + g1), (7.20b)

g3 ≥ ρ2g1 + σ1,2,1

1− ρ2
− σ1,3,1, (7.20
)

g1 ≤ min
i=2,3

xi

λi
− σ1,i,1, (7.20d)

g3 ≤ x1

λ1
− σ1,3,1, (7.20e)

g1 ≥ gmin
1 , (7.20f)

g3 ≥ min{gmin
2 + σ1,2,1 − σ1,3,1, g

min
3 }, (7.20g)

g1 ≤ gmax
1 , (7.20h)

g3 ≤ gmax
3 . (7.20i)Assuming (with loss of generality) that β1 ≥ (β2+β3) and assuming w.l.o.g. that σ1,3,1 ≥ σ1,2,1 thisoptimization problem is solved analyti
ally (see Appendix C.2). The periodi
 optimal traje
tory 
anhave 0, 1 or 2 slow modes. For more information see Appendix C.2. The optimization problem withobje
tive fun
tion (7.19) and 
onstraints (7.20) is related to the optimization problem in Appendix C.2as follows.

k1 =
β2

β1
,

k2 =
β3

β1
,

k3 =
σ1,2,1

σ1,3,1
,

y1 =
g1

σ1,3,1
,

y2 =
g3

σ1,3,1
,

ymin
1 =

gmin
1

σ1,3,1

ymin
2 =

max
i=2,3

gmin
i + σ1,i,1

σ1,3,1
− 1,

ymax
1 =

min{gmax
1 , min

i=2,3

xi

λi
+ σ1,i,1 − σ1,3,1}

σ1,3,1
,

ymax
2 =

min{gmax
N ,

xmax
1

λ1
− σ1,3,1}

σ1,3,1
,

α1 = ρ1,

α2 = ρ2,

α3 = ρ3. 85



Generalization: using the assumptions in Se
tion 7.2.3, the analyti
al solution in Appendix C.2 
anbe used for the 
lass of interse
tions satisfying the following properties:- All signals i1 ∈ G1 have the same setup time σi1,N,i1 , i.e. σ1,N,1 = σi1,N,i1, ∀i1 ∈ G1.- Ea
h signal i ∈ G2 
an be partitioned into one of two sets B1 or B2. All signals i ∈ B1 have the samesetup time σ1,i,1 > 0 whi
h we denote with σB1 . All signals i ∈ B2 have the same setup time
σ1,i,1 > 0 whi
h we denote with σB2 .- ∑

i∈G1

βi ≥
∑

i∈G2

βi.For this 
lass of interse
tions we 
an �nd the following expressions for the optimization problem inAppendix C.2. Without loss of generality we assume that 0 < k3 ≤ 1 and w.l.o.g. we assume thatsignal N is partitioned in B2, i.e. N ∈ B2.
k1 =

∑

i∈B1

βi

∑

i∈G1

βi
,

k2 =

∑

i∈B2

βi

∑

i∈G1

βi
,

k3 =
σB1

σB2

, (7.21)
y1 =

g1
σ1,N,1

,

y2 =
gN

σ1,N,1
,

ymin
1 =

max
i∈G1

gmin
i + σi,N,i

σ1,N,1
− 1,

ymin
2 =

max
i∈G2

gmin
i + σ1,i,1

σ1,N,1
− 1,

ymax
1 =

min{gmax
1 ,min

i∈G2

xi

λi
+ σ1,i,1 − σ1,N,1}

σ1,3,1
,

ymax
2 =

min{gmax
N ,min

i∈G1

xi

λi
+ σi,N,i − σ1,N,1}

σ1,3,1
,

α1 = max
i∈G1

ρi,

α2 = max
i∈B1

ρi,

α3 = max
i∈B2

ρi.7.5.4 Fixed Order and OptimalityIn this 
hapter we have only 
onsidered signals where we serve the signals in a �xed order; we alternatebetween serving all signals in G1 and serving all signals in G2. In pra
ti
e, often signals are servedin a �xed order. Some of the vehi
les, 
y
lists and pedestrians already start to a

elerate when they86



expe
t their signal to swit
h to green. When the order in whi
h these signals are served 
hanges, theseexpe
tations are likely to be wrong and 
an result in unsafe situations.Using an example we show that traje
tories that do not serve signals in a �xed order might resultsin a lower value for the 
ost fun
tion (7.1).Example 7.5.1 Consider an interse
tion with two signal groups: G1 = {1} and G2 = {2, 3}. We aregiven the following information about the interse
tion.
λ1 = 0.3 vehi
les per se
ond, λ2 = 0.1 vehi
les per se
ond, λ3 = 0.001 vehi
les per se
ond
µ1 = 0.5 vehi
les per se
ond, µ2 = 0.5 vehi
les per se
ond, µ3 = 0.5 vehi
les per se
ond,
ρ1 = 0.6 ρ2 = 0.2, ρ3 = 0.002,
σ1,2 = 2.5 se
onds, σ2,1 = 2.5 se
onds,
σ1,3 = 20 se
onds, σ3,1 = 20 se
onds.We do not impose restri
tions on minimum green times, maximum green times and maximum queuelengths. We 
onsider the linear weight fun
tion in (7.11) where w1 = w2 = w3 = 1. Thus, we like tominimize the average delay of a road user at the interse
tion (see Se
tion 7.1.1).For a �xed order, signal 2 and signal 3 are both served during every red period of signal 1. The greentimes of the optimal traje
tory with a �xed order 
an be obtained by solving the optimization problemwith obje
tive fun
tion (7.20) and 
onstraints (7.19). We 
an obtain the following green times:

g1 = 63.6275 se
onds,
g2 = 35.2077 se
onds,
g3 = 0.2077 se
onds.From these green times we 
an 
al
ulate the average delay of a vehi
le via (7.19) and (7.2), whi
his J = 21.7587 se
onds. This periodi
 traje
tory is shown in Figure 7.8a.However, in Figure 7.8b we show a traje
tory where signal 2 is served twi
e as often as signal 3.The green times shown in this �gure are:
g1 = 61 se
onds,
g12 = 16.5 se
onds,
g22 = 35.5 se
onds,
g3 = 0.5 se
onds. (7.22)This traje
tory redu
es the value for the average delay of a vehi
le to 18.294 se
onds. This traje
toryworks better for this example be
ause the setup time σ1,3,1 is large. As a result whenever signal 3 isserved, signal 1 has to wait very long until it is served again. Further, the arrival rate at signal 3 isvery small. As a result, it is better to sometimes skip serving signal 3.
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Chapter 8Regulation: An Interse
tion with TwoSignal GroupsIn the previous 
hapter we 
onsidered the traje
tory optimization problem. We showed how to de-rive periodi
 optimal traje
tories for an interse
tion with two signal groups. To obtain these desiredtraje
tories we assumed deterministi
 arrivals and deterministi
 departures. However, due to for ex-ample sto
hasti
 arrivals we may deviate from the desired traje
tory. The se
ond problem dis
ussedin this thesis is regulation. In this 
hapter we 
onsider the regulation problem for an interse
tionwith two signal groups: signal group 1 and signal group 2. We assume without loss of generality thatthe signals in signal group 1 are numbered 1, 2, ..., N1 and the signals in signal group 2 are numbered
N1 + 1, N1 + 2, ..., N . We use G1 = {1, 2, ..., N1} and G2 = {N1 + 1, ..., N}. The problem des
ription ofthe regulation problem is given in Se
tion 5.1. In this 
hapter we use 'desired traje
tory' to refer to thetraje
tory obtained via traje
tory optimization.8.1 AssumptionsWe assume that the arrival rate and the maximum departure rate of a signal is positive:

λi, µi > 0, i ∈ N . (8.1a)We assume that all setup times are non-negative and that the setup σ1,N,1 is stri
tly positive:
σi,j ≥ 0, i, j ∈ N , (8.1b)
σ1,N,1 > 0. (8.1
)Further, we assume that the setup times are related a

ording to:

σi1,i2 − σi1,l2 = σl1,i2 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (8.1d)
σi2,i1 − σi2,l1 = σl2,i1 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (8.1e)Furthermore, we assume that the maximum green times are related a

ording to (8.1f) and (8.1g).See Se
tion 7.2.3 for more information about this assumption.

gmax
i1

+ σi1,i2,i1 = gmax
j1

+ σj1,i2,j1 , ∀i1, j1 ∈ G1, ∀i2 ∈ G2, (8.1f)
gmax
i2 + σi1,i2,i1 = gmax

j2 + σi1,j2,i1 , ∀i1 ∈ G1, ∀i2, j2 ∈ G2. (8.1g)89



Furthermore, we assume that (8.1h)�(8.1s) are satis�ed. The inequalities (8.1h)�(8.1s) are the stri
tform of (7.16). For more information about these assumptions see Se
tion 7.5.2.
gmax
i1 >

σi1,i2,i1ρi1
1− ρi1 − ρi2

, (8.1h)
gmax
i1

> gmin
i1

, (8.1i)
gmax
i1

> (gmin
i2

+ σi1,i2,i1)
ρi1

1− ρi1
, (8.1j)

gmax
i2

>
σi1,i2,i1ρi2

1− ρi1 − ρi2
, (8.1k)

gmax
i2 > gmin

i2 , (8.1l)
gmax
i2 > (gmin

i1 + σi1,i2,i1)
ρi2

1− ρi2
, (8.1m)

xmax
i1 > λi1 (

σi1,i2,i1ρi2
1− ρi1 − ρi2

+ σi1,i2,i1), (8.1n)
xmax
i1

> λi1

gmin
i1

ρi2 + σi1,i2,i1

1− ρi2
, (8.1o)

xmax
i1 > λi1 (g

min
i2 + σi1,i2,i1), (8.1p)

xmax
i2 > λi2 (

σi1,i2,i1ρi1
1− ρi1 − ρi2

+ σi1,i2,i1), (8.1q)
xmax
i2 > λi2

gmin
i2

ρi1 + σi1,i2,i1

1− ρi1
, (8.1r)

xmax
i2

> λi2 (g
min
i1

+ σi1,i2,i1). (8.1s)Further we assume that a desired traje
tory (the traje
tory that we want to 
onverge to), satis�es theperiodi
 shape from Corollary 7.4.8.2 Convergen
eBefore proposing the poli
y we show that 
onvergen
e to the desired traje
tory is not always possible.The (xi1 , xi2)-plane, i1 ∈ G1, i2 ∈ G2 
an be divided into regions from whi
h it is impossible to
onverge to the periodi
 optimal traje
tory when in a 
ertain mode. When entering the area annotatedwith i1† (see Figure 8.1a) while serving signal i1, eventually one of the 
onstraints is violated. Whenperforming a setup to signal 2, a maximum queue length is ex
eeded. Moreover, if we do not performthis setup, a maximum queue length is ex
eeded as well. Similarly, whenever entering the area annotatedwith i2† while serving signal i2, eventually one of the 
onstraints is violated. If the traje
tory is onthe pure bow tie 
urve in the upper right 
orner the traje
tory stays here (if the minimum green timesallow so).Further, be
ause of restri
tions on the minimum green period duration, we may not start servingsignal i1 respe
tively signal i2 in the areas annotated with i1† respe
tively i2† (see Figure 8.1b).Hen
e, when the initial queue lengths are in the area annotated with i1† we have to start servingsignal group 2 and when the initial queue lengths are in the area annotated with i2† we have towith serving signal group 1. When the initial queue lengths are in the area with both i1† and i2† ,eventually a 
onstraint is violated. 90
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e to the periodi
 optimal pro
ess is not always possible.8.3 Proposing a Poli
yIn this se
tion we propose a poli
y that makes sure that a traje
tory 
onverges to the desired periodi
traje
tory. First we introdu
e some notation.Just like the desired traje
tory, the poli
y swit
hes signal i2 ∈ G2 to green σi1,i2 se
onds after signal

i1 ∈ G1 swit
hed to red and the poli
y swit
hes signal i2 ∈ G1 to green σi2,i1 se
onds after signal i2 ∈ G2swit
hed to red.Without loss of generality we assume that the signals in signal group 1 are numbered su
h that:
σ1,N ≥ σ2,N ≥ · · · ≥ σN1,Nand that the signals in signal group 2 are numbered su
h that:

σN1+1,1 ≥ σN1+2,1 ≥ · · · ≥ σN,1.For this order, signal 1 is the �rst signal in G1 to swit
h to red (see Figure 8.2). Further, signal
i1 ∈ G1 swit
hes to red σ1,N − σi1,N se
onds after signal 1 has swit
hed to red and signal i2 ∈ G2swit
hes to green σ1,i2 se
onds after signal 1 swit
hed to red. In the same way, signal N1+1 is the �rstsignal in G2 to swit
h to red. Signal i2 ∈ G2 swit
hes to red σN1+1,1 − σi2,1 se
onds after signal N1 + 1has swit
hed to red and signal i1 ∈ G1 swit
hes to green σN1+1,i1 se
onds after signal N1 + 1 swit
hedto red.We want to derive a rule that de�nes when to swit
h signal 1 to red and when to swit
h signal
N1+1 to red. From these two swit
h a
tions, we 
an derive when to swit
h ea
h of the signals to greenand red.For the poli
y that we propose we use x♯

i1
for the queue length of queue i1 ∈ G1 at the moment thatsignal 1 swit
hes to red for the desired traje
tory. We use x♯

i2
for the queue length of queue i2 ∈ G2 atthe moment that signal N1 + 1 swit
hes to red for the desired traje
tory. We 
an obtain the followingexpressions for x♯

i1
and x♯

i2
: 91
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e in whi
h signals in G1 swit
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x♯
i1

= (ri1 − σi1,N )λi1 , (8.2a)
x♯
i1

= (ri2 − σi2,1)λi2 . (8.2b)where ri, i ∈ N is the red time of signal i for the desired traje
tory. Furthermore, we use:
ir,f1 = 1,

ir,f2 = N1 + 1.Thus ir,fc , c = 1, 2 refers to the signal in the set Gc that is swit
hed to red �rst. We use ig,f1 to referto the signal in the set G1 that swit
hes to green �rst:
ig,f1 = argmin

i1∈G1

σN,i1 . (8.3)We use ig,f2 to refer to the signal in the set G2 that is swit
hes to green �rst:
ig,f2 = argmin

i2∈G2

σ1,i2 . (8.4)Further we use σres
i1

for the residual time that signal i1 ∈ G1 has to be red for at the moment thatsignal ig,f1 swit
hes to green:
σres
i1 = σi2,i1 − σi2,i

g,f
1

, i2 ∈ G2. (8.5)We use σres
i2

for the residual time that signal i2 ∈ G2 has to be red for at the moment that signal
ig,f2 swit
hes to green:

σres
i2

= σi1,i2 − σi1,i
g,f
2

, i1 ∈ G1. (8.6)We use τi for the time that has elapsed sin
e the last mode 
hange at signal i ∈ N .92



8.3.1 Overview of the Poli
yFirst we give a short overview of the poli
y. In Se
tion 8.3.2 we give a formal expression to determinewhen to swit
h signal 1 to red and when to swit
h signal N1 + 1 to red.We want to serve the signals in the set Gc, c = 1, 2 long enough to satisfy the following 3 
onditions:1.1 all queues ic, ic ∈ Gc are (expe
ted to be) emptied during their green period (assuming a hybrid�uid model).1.2 all signals are served for at least the minimum green time.1.3 the queue length of at least one of the queues ic ∈ Gc satis�es xic ≥ x♯
ic
, whre c = { 1 if 
=2,2 if 
=1. .Whenever 
onditions 1.1�1.3 are satis�ed we swit
h signal 1 (if c = 1) or signal N1 + 1 (if c = 2) tored.It might not be possible to serve the signals in the set Gc long enough to satisfy 
onditions 1.1�1.3.We might have to stop earlier be
ause of 
ondition 2 or 
ondition 3:2 The maximum green time of signal 1 (if c = 1) or the maximum green time of signal N1+1 (if c = 2)is rea
hed. From (8.1f) we know that when signal 1 is served for the maximum green time then allsignals in G1 are served for the maximum green time and from (8.1g) we know that when signal

N1 + 1 is served for the maximum green time then all signals in G2 are served for the maximumgreen time.3 queue ic ∈ Gc has rea
hed a queue length of xmax
ic

− λicσ1,ic (if c = 1) or a queue length of xmax
ic

−
λicσN1+1,ic (if c = 2). In this 
ase queue ic is swit
hed to green when its queue length rea
hes
xmax
ic

(assuming a hybrid �uid model).8.3.2 Swit
hing the Signals 1 and N1 + 1 to RedIn this se
tions we give formal expressions for when the 
onditions, introdu
ed in the previous se
tion,are satis�ed.Formal expression for 
ondition 1.1 Condition 1.1 is satis�ed when all queues ic, ic ∈ Gc are(expe
ted to be) emptied during their green period (assuming a hybrid �uid model).When signal ig,fc ∈ Gc, c = 1, 2 swit
hes to red at time t, signal ic ∈ Gc is still red for max{σres
ic

−
τ
ig,fc

(t), 0} = (σres
ic

− τ
ig,fc

(t))+ se
onds (see Figure 8.3). When (σres
ic

− τ(t))+ is positive, this meansthat the setup towards signal ic is not �nished yet. During this residual part of the setup, tra�
 arrivesat signal ic at arrival rate λic .Sin
e signal ic swit
hes to red σ
i
r,f
c ,i

g,f
c

− σ
ic,i

g,f
c

se
onds after signal ir,fc swit
hes to red, signal
ic ∈ Gc is still green for a duration of σir,fc ,ig,fc

− σic,i
g,f
c

− (σres
ic

− τig,fc
(t))+ if signal ir,fc swit
hes to redat time t.Hen
e, 
ondition 1.1 is satis�ed when:

∀i2 ∈ G2

(

xi2 (t) ≤ (σ
ir,fc ,ig,fc

− σ
ic,i

g,f
c

)(µic − λic)− (σres
ic

− τ
ig,fc

(t))+µic

)

. (8.7)
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t that signal ic swit
hes to green σres

ic
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onds after signal ig,fc swit
hed to green (seeFigure 8.4) and using the fa
t that signal ic swit
hes to red σir,fc ,ig,fc

− σic,i
f
c
se
onds after signal ir,fcswit
hes to red we 
an �nd that 
ondition 1.2 is satis�ed when τig,fc

(t) ≥ max
ic∈Gc

(gmin
ic

+ σres
ic

+ σic,i
g,f
c

−
σir,fc ,ig,fc
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xic ≥ x♯
ic

).Formal expression for 
ondition 2 Condition 2 is satis�ed whenever the maximum green time ofsignal 1 (if c = 1) or the maximum green time of signal N1 + 1 (if c = 2) is rea
hed.The green period of signal ir,fc starts σres
ir,fc

se
onds after signal ig,fc is swit
hed to green. Using (8.1f)and (8.1g) we 
an see that 
ondition 2 is satis�ed whenever τig,fc
(t) ≥ gmax

ir,fc

+ σres
ir,fc

.Formal expression for 
ondition 3 Condition 3 is satis�ed when ∃ic ∈ Gc

(

xic(t) ≥ xmax
ic

− σir,fc ,ic
λic

)94



Thus, we swit
h the signal ir,fc to red when serving signal group c = 1, 2 if the following expressionis true:
(t1.1 ∧ t1.2 ∧ t1.3) ∨ t2 ∨ t3,where
t1.1 = ∀i2 ∈ G2

(

xi2(t) ≤ (σir,fc ,ig,fc
− σic ,i

g,f
c

)(µic − λic)− (σres
ic − τig,fc

(t))+µic

)

,

t1.2 = τig,fc
(t) ≥ max

ic∈Gc

(gmin
ic + σres

ic + σic,i
g,f
c

− σir,fc ,ig,fc
),

t1.3 = ∃ic ∈ Gc

(

xic ≥ x♯
ic

)

,

t2 = τ
ig,fc

(t) ≥ gmax
ir,fc

+ σres
ir,fc

,

t3 = ∃ic ∈ Gc

(

xic(t) ≥ xmax
ic

− σir,fc ,ic
λic

)

.Proposition 8.1 A feedba
k poli
y whi
h stabilizes an interse
tion with two signal groups to the desiredperiodi
 traje
tory if started from a feasible starting point (for whi
h we avoid the areas in Figure 8.1from whi
h no 
onvergen
e is possible) is given by:
• Mode 1: Serve signal i1 ∈ G1 at the highest possible rate if signal i1 is green. Swit
h signal i1 ∈ G1to green if τ

i
g,f
1

≥ σres
i1

. If (8.8) results in the boolean 'true' for c = 1 then swit
h signal 1 to redand go to Mode 2.
• Mode 2: Swit
h signal i1 to red if τ1 ≥ σ1,N − σi1,N . If τ1 ≥ σ1,ig,f2

then swit
h signal ig,f2 to greenand go to Mode 3.
• Mode 3: Serve signal i2 ∈ G2 at the highest possible rate if signal i2 is green. Swit
h signal i2 ∈ G2 togreen if τig,f2

≥ σres
i2

. If (8.8) results in the boolean 'true' for c = 2 then swit
h signal N1 + 1 tored and go to Mode 4.
• Mode 2: Swit
h signal i2 to red if τN1+1 ≥ σN1+1,1 − σi2,1. If τN1+1 ≥ σN1+1,ig,f1

then swit
h signal
ig,f1 to green and go to Mode 1.Proof. Below we give a sket
h of the proof. See Appendix D for the entire proof of this proposition.We distinguish 5 di�erent reasons why we swit
h signal ir,fc , c = 1, 2 to red: swit
h.1a, swit
h.1b,swit
h.2, swit
h.3a and swit
h.3b (see Appendix D).We 
onsider an in�nite sequen
e of reasons why we swit
h the signals in the set G1 from green tored and why we swit
h the signals in the set G2 from green to red. Below we 
an see an example ofsu
h an in�nite sequen
e. We use sl for the lth swit
h reason. When we start serving the signals in theset G1 then the swit
h reasons s2l+1, l = 0, 1, 2, . . . ,∞ refer to why we swit
h signal 1 from green to redand all swit
h reasons s2l, l = 1, 2, 3, . . . ,∞ refer to why we swit
hed the signal N1 + 1 from green tored.

s1 → s2 → s3 → · · · = switch.3a → switch.3a → switch.3a → switch.3a → switch.3a → · · · →
switch.2 → switch.3a → switch.2 → switch.3a → · · · → switch.1a → switch.1a → switch.1a → . . .We 
an prove that after some (�nite) time only switch.1a o

urs or only switch.1b o

urs. Whi
hof these two depends on the 
hara
teristi
s of the desired traje
tory. We prove that whenever one of95



these two swit
h reasons (either switch.1a or switch.1b) o

urs until in�nity we 
onverge to the desiredtraje
tory.Below we show an overview of how to prove that eventually (in �nite time) only switch.1a o

ursor only switch.1b o

urs. We 
onsider 
ombinations of 2 subsequent swit
h reasons (sl → sl+1), l > 1(for example (sl → sl+1) = (switch.3a → switch.3a), (sl → sl+1) = (switch.2 → switch.3a) et
.). Weuse Ci = 1, . . . , nc to refer to a 
ertain 
ombination of swit
h reasons. We use Ci, i = 1, . . . , ns to referto a set of 
ombinations of swit
h reasons. These sets satisfy:
Ci 6= ∅,
i=nc
⋃

i=1

Ci = C,

Ci ∩ Cj = ∅, i = 1, . . . , ns, j = 1, . . . , ns, i 6= j,where
Cns−1 = {(switch.1a → switch1a)},
Cns

= {(switch.1b → switch1b)},
C = {Ci : i = 1, . . . , nc} .Thus, none of the sets Ci, i = 1, . . . , ns is empty and ea
h 
ombination Ci = 1, . . . , nc is partitionedin exa
tly one of the set Ci, i = 1, . . . , ns. Note, that in total there are 5 × 5 = 25 
ombinations of 2subsequent swit
h reasons possible be
ause there are 5 di�erent swit
h reasons (switch.1a, switch.1b,

switch.2, switch.3a and switch.3b). However, we do not use all 
ombinations, i.e. nc < 25. We have
hosen the nc 
ombinations su
h that for every (feasible) in�nite sequen
e of swit
h reasons, ea
h ofthose swit
h reasons sl, l > 1 makes a 
ombination Ci, i = 1, . . . , nc with either the previous swit
hreason, the next swit
h reason or both, i.e. ∀l > 1 : (sl−1 → sl) ∈ C ∨ (sl → sl+1) ∈ C. Thus, everyswit
h reason is part of a 
ombination Ci, i = 1, . . . , nc.First of all, we 
an prove that whenever sl, l ≥ lstart (where lstart is a �nite integer) is part ofa 
ombination that is in Ci, 1 < i ≤ ns (with either sl−1 or sl+1) then sl+1 
annot be part of a
ombination that is in the set Cj , 1 ≤ j < i (with either sl or sl+2). Note that this means that whenevera 
ombination in the set (sl−1, sl) = Ci, 2 < i ≤ n, l ≥ lstart has o

urred then a 
ombination in the set
Cj , 1 ≤ j < i 
an never o

ur again. Furthermore, we 
an prove that only a �nite number of subsequentswit
h reasons sl 
an be part of a 
ombination in the set Ci, 1 ≤ i ≤ ns − 2 (with either sl−1 or sl+1).Hen
e, eventually only 
ombinations in the sets Cns−1 or Cns


an o

ur. As previously mentioned foran in�nite sequen
e of switch.1a swit
h reasons or an in�nite sequen
e of switch.1b swit
h reasons we
an show 
onvergen
e to the desired signal.
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Chapter 9Quality of the Poli
y in a Sto
hasti
Setting: An Interse
tion With TwoSignal GroupsIn Chapter 7 we derived periodi
 optimal traje
tories for an interse
tion with two signal groups bymodeling the interse
tion with a hybrid �uid model. In Chapter 8 we proposed a (feed-ba
k) poli
y.In this 
hapter we 
onsider the third problem dis
ussed in this thesis; we address the quality of theproposed poli
y for an interse
tion with two signal groups in a sto
hasti
 setting. To this end, we modelthe interse
tion with the sto
hasti
 model des
ribed in Se
tion 3.1. Re
all that this sto
hasti
 modelassumes Poisson arrivals and deterministi
 departures. To obtain results for the poli
y in a sto
hasti
setting a simulation program is made in the programming language χ3.0. The 
ode of this simulationprogram is given in Appendix B. For ea
h test 
ase we obtain the average delay δ (in se
onds) of aroad user at the interse
tion and we obtain the fra
tion of the time that the maximum queue length isex
eeded at ea
h of the queues. A road user 
ould either be a vehi
le, a 
y
list or a pedestrian.Before simulating a test 
ase we 
al
ulate the following information about the periodi
 optimaltraje
tory (see Chapter 4).- The 
oordinates x♯
i1
, i1 ∈ G1 x♯

i2
, i2 ∈ G2 
al
ulated with (8.2).- The 
y
le duration c = g1 + gN + σ1,N,1.- The queue lengths of the signals i1 ∈ G1 at the beginning of a green period, whi
h is equal to

λi1(gN + σi1,N,i1), i1 ∈ G1.- The average delay of a road user. This average delay is obtained using (7.12), where w = w1 = · · · =
wN = 1 and (7.2).For ea
h test 
ase we perform at least 100 runs. We perform enough runs su
h that the 95%
on�den
e interval for the average delay of a road user is at most 1% of the average delay of a roaduser. For ea
h run we start with the situation where all signals in signal group 1 are green. At the startof a run the queue length of queue i1 ∈ G1 is taken equal to ⌈λi1 (gN + σi1,N,i1)⌉ (obtained from theperiodi
 optimal traje
tory). At the start of a run the queue length of queue i2 ∈ G2 is zero. Ea
h runsimulates 100c se
onds, were c is the 
y
le duration of the periodi
 optimal traje
tory (see Se
tion 7.4).We 
onsider the following test 
ases.
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test 
ase 1a test 
ase 1b test 
ase 1

λ1 = λ2 = λ3 = λ4 = 0.0125, 0.0250, . . . , 0.2375 λ1 = λ2 = 0.4

1+f λ1 = λ3 = 0.2

λ3 = λ4 = 0.4f
1+f

λ2 = λ4 = 0.2
f

f = 1, 1.2, ..., 4 f = 1, 1.2, ..., 4
gmax
1 = gmax

2 = ∞ gmax
1 = gmax

2 = ∞ gmax
1 = gmax

2 = ∞
gmax
3 = gmax

4 = ∞ gmax
3 = gmax

4 = ∞ gmax
3 = gmax

4 = ∞
xmax
1 = xmax

2 = ∞ xmax
1 = xmax

2 = ∞ xmax
1 = xmax

2 = ∞
xmax
3 = xmax

4 = ∞ xmax
3 = xmax

4 = ∞ xmax
3 = xmax

4 = ∞test 
ase 2a test 
ase 2b
λ1 = λ3 = 1

15 λ1 = λ3 = 1
15

λ2 = λ4 = 5
15 λ2 = λ4 = 5

15
gmax
1 = gmax

3 = ∞ gmax
1 = gmax

3 = 4, 4.5, . . . , 9
gmax
2 = gmax

3 = 16, 16.5, . . . , 26 gmax
2 = gmax

4 = ∞
xmax
1 = xmax

3 = ∞ xmax
1 = xmax

3 = ∞
xmax
2 = xmax

4 = ∞ xmax
2 = xmax

4 = ∞test 
ase 3a test 
ase 3b
λ1 = λ3 = 1

15 λ1 = λ3 = 1
15

λ2 = λ4 = 5
15 λ2 = λ4 = 5

15
gmax
1 = gmax

3 = ∞ gmax
1 = gmax

3 = ∞
gmax
2 = gmax

4 = ∞ gmax
2 = gmax

4 = ∞
xmax
1 = xmax

3 = ∞ xmax
1 = xmax

3 = 2, 3, . . . , 7
xmax
2 = xmax

4 = 3, 4, . . . , 30 xmax
2 = xmax

4 = ∞For all these test 
ases it holds that:
G1 = {1, 2},
G2 = {3, 4},
µ1 = µ2 = µ3 = µ4 = 0.5,

σ1,3 = σ1,4 = σ2,3 = σ2,4 = σ3,1 = σ3,2 = σ4,1 = σ4,2 = 2

gmin
1 = gmin

2 = gmin
3 = gmin

4For test 
ases 1b, 1
, 2a, 2b, 3a and 3b it holds that max{ρ1, ρ2} + max{ρ3, ρ4} = 0.8. In this
hapter we use µ = µ1 = µ2. In se
tions 9.1�9.3 we show the results for these test 
ases. In Se
tion6 we 
ompared our proposed poli
y to an exhaustive poli
y. We do not 
ompare our proposed poli
yto an exhaustive poli
y in this se
tion be
ause (6.1) 
onsiders interse
tions where 1 signal is green at atime.9.1 Test Case 1: E�e
t of the Arrival RatesIn this se
tion we address the e�e
t of the arrival rate on the average delay of a road user. The resultsfor the di�erent test 
ases are shown in se
tions 9.1.1�9.1.3.9.1.1 Test Case 1a: E�e
t of In
reasing Arrival RatesIn this test 
ase we address the e�e
t of in
reasing the arrival rates on the delay; we want to determine
δ(λ) for the proposed poli
y, where the arrival rates are varied as follows:98



λ = λ1 = λ2 = λ3 = λ4 = 0.0125, 0.025, ..., 0.2375.As a result ρ = max{ρ1, ρ2}+max{ρ3, ρ4} varies as follows:
ρ = 0.05, 0.1, ..., 0.95.In Figure 9.1 the results are shown.
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Figure 9.1: The average delay of a road user δ versus λ for test 
ase 1a.The results shown in this �gure are very similar to the results shown in Figure 6.1. Espe
iallyfor λ ≤ 0.15 the delays obtained for an interse
tion of 4 signals are 
lose to the delays obtained foran interse
tion of 2 signals. As seen in Se
tion 6.2 we 
an again observe that δ(λ) goes to 2 for theproposed poli
y when λ → 0 (assuming the sto
hasti
 model). However, for larger arrival rates we
an see that the di�eren
e in delays obtained for an interse
tion with 4 signals and obtained for aninterse
tion with 2 signals gets larger. The delays are larger for an interse
tion with 4 signals be
ausefor this interse
tion it takes longer to satisfy 
ondition 1.2 given in Se
tion 8.3.1, i.e. it takes longerbefore all queues in the same signal group are emptied.9.1.2 Test Case 1b: E�e
t of Asymmetri
al Arrival Rates Between SignalGroupFor this test 
ase the arrival rates are varied as follows:
λ1 = λ2 =

0.4

1 + f
,

λ3 = λ4 =
0.4f

1 + f
,

f = 1, 1.2, ..., 4.The results are shown in Figure 9.2. In this �gure we 
an see that larger di�eren
es in arrival rates(and the same value for ρ) result in smaller delays. When the di�eren
es in arrival rates between signalgroups is larger, a larger proportion of the road users arrives at signals from signal group 2. As a result,more road users 
an bene�t from a slow mode at a signal in signal group 2. We 
an see that the averagedelay even goes to zero for max{λ1,λ2}
max{λ3,λ4} → ∞ when assuming in�nite maximum green times and in�nite99
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λ1
→ ∞ be
ause all of the road users arrive atsignals in signal group 2. Hen
e, signals in signal group 2 
an always be green. As a result, if queue

i2 ∈ G2 is emptied on
e, it always stays empty (slow mode) and ea
h of the road users arriving duringa slow mode experien
es a delay of zero se
onds.9.1.3 Test Case 1
: E�e
t of Asymmetri
al Arrival Rates in a Signal GroupFor this test 
ase the arrival rates are varied as follows:
λ1 = λ3 = 0.2

λ2 = λ4 =
0.2

f

f = 1, 1.2, ..., 4
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The results are shown in Figure 9.3. When f in
reases the arrival rates at signal 2 and 4 de
rease.Hen
e, for f → ∞ all tra�
 arrives at signals 1 and 3 and the interse
tion with 4 signals is equivalentto an interse
tion with 2 signals. Thus, we 
an 
on
lude that for an interse
tion with two signal groupsthe average delay of a road user in
reasing for an in
reasing number of signals in ea
h of the signalgroup.9.2 Test Case 2: E�e
t of The Maximum Green TimeIn this se
tion we address the e�e
t of the maximum green times on the delay of a road user. For test
ase 2a and test 
ase 2b the arrival rates at the signals in signal group 2 are 5 times as large as thearrival rates at the signals in signal group 1. We use 'low tra�
 signals' to refer to the signals in signalgroup 1 and we use 'high tra�
 signals' to refer to signals in signal group 2.9.2.1 Test Case 2a: E�e
t of The Maximum Green Time of the High Tra�
SignalsFor this test 
ase the maximum green time of the signals in signal group 2 are varied between 16 se
ondsand 26 se
onds:
gmax
3 = gmax

4 = 16, 16.5, ..., 26. (9.1)A maximum green time of 16 se
onds is the smallest maximum green time gmax
2 satisfying (4.20)and thus the smallest maximum green time for whi
h we 
an �nd an optimal traje
tory. However, forthe same reason as explained in Se
tion 6.3 a maximum green time gmax

3 = gmax
4 = 16 se
onds, doesnot result in stability; the queue lengths of queue 3 and queue 4 keep in
reasing.
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Figure 9.4: The average delay of a road user δ versus gmax
3 = gmax

4 for test 
ase 2a.Just like in Figure 6.2 we 
an see the sawtooth shape fun
tion of the average delay of a road user asfun
tion of the maximum green time gmax
2 . In Figure 9.4 we 
an see that the global trend (disregardingthe sawtooth shape) is that smaller maximum green times result in larger delays. This global trend ismore obvious for the interse
tion of 4 signals (Figure 9.4) than it was for the interse
tion of two signals(Figure 6.2). 101



9.2.2 Test Case 2b: E�e
t of the Maximum Green Time of the Low Tra�
SignalsFor test 
ase 2b the maximum green time of the signals in signal group 1 are varied between 4 se
ondsand 9 se
onds:
gmax
1 = gmax

2 = 4, 4.5, ..., 9.A maximum green time of 4 se
onds is the smallest maximum green time satisfying (4.20) and thus thesmallest maximum green time for whi
h we 
an �nd an optimal traje
tory. For the optimal traje
torywe serve the signals in signal group 1 for the minimum green time of 4 se
onds (independent of gmax
1and gmax

2 ). In Figure 9.5 we 
an see the results.
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Figure 9.5: The average delay of a road user δ versus gmax
1 = gmax

2 for test 
ase 2b.We again see the sawtooth relation between the maximum green time and the average delay of aroad user. The global trend (disregarding the sawtooth shape) is that smaller maximum green timesresult in larger delays.9.3 Test Case 3: E�e
t of Maximum Queue lengthsIn this se
tion we address the e�e
t of the maximum queue lengths on the average delay of a road user.For test 
ase 3a and test 
ase 3b the arrival rates of the signals in signal group 2 are 5 times as largeas the arrival rates of the signals in signal group 2. We use 'low tra�
 signals' to refer to the signals insignal group 1 and we use 'high tra�
 signals' to refer to the signals in signal group 2.9.3.1 Test Case 3a: Maximum Queue Length of the High Tra�
 SignalsFor test 
ase 3a the maximum queue lengths of the signals in signal group 2 are varied between between3 road users and 30 road users:
xmax
3 = xmax

4 = 3, 4, ..., 30.102



A maximum queue length of 2 2
3 se
onds is the smallest maximum green time satisfying (4.20) andthus the smallest maximum green time for whi
h we 
an �nd an optimal traje
tory. In Figure 9.6 we
an see the average delay of a road user as fun
tion of the maximum queue lengths of signal 3 andsignal 4.
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Figure 9.6: The average delay of a road user δ versus xmax
3 = xmax

4 for test 
ase 3a.We 
an see that the average delay of a road user is about 9 se
onds ex
ept when the maximumqueue length is 
lose to 3. In Figure 9.7 we 
an see that the fra
tion of the time that the maximumqueue length (of signals 3 and 4) is ex
eeded, in
reases for de
reasing maximum queue length. In this�gure we 
an see that the variation in the results obtained for the fra
tion of over�ow is quite largesin
e the fra
tion of over�ow should be the same for queue 3 and for queue 4 (be
ause both signals havethe same 
hara
teristi
s).
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xmax
1 = xmax

2 = 2, 3, ..., 11.In Figure 9.8 we 
an see that the average delay of a road user is about 9 se
onds ex
ept when themaximum queue length is 
lose to 2.
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Chapter 10Con
lusions and Re
ommendations forFurther Resear
hIn this 
hapter we state the most important 
on
lusions of this master thesis, thereafter we state ourre
ommendations for further resear
h10.1 Con
lusionsIn this master thesis we have 
onsidered the following three problems for interse
tions with two 
on�i
tgroups.1 Traje
tory optimization: �nding an optimal traje
tory minimizing the average weighted queue lengthat an interse
tion.2 Regulation: �nding a set of rules (a poli
y) that de�nes when to swit
h the state of a tra�
 light.3 Addressing the quality of the proposed poli
y in a sto
hasti
 setting.We state our most important 
on
lusions for these three problems in se
tions 10.1.1�10.1.3.10.1.1 Traje
tory optimizationTo solve the traje
tory optimization problem we modeled interse
tions with a hybrid �uid model. Thishybrid �uid model assumes deterministi
 arrivals and departures.For an interse
tion with two signal groups and using assumptions (7.2.3) we derived that we 
anw.l.o.g. assume that an optimal traje
tory, minimizing the average weighted queue length at an inter-se
tion, satis�es the following properties:- always the highest possible departure rate is used during a green period of signal i ∈ N :
di(t) =

{

µi if xi(t) > 0,
λi if xi(t) = 0.- a queue is always emptied during its green period- green periods always take equally long 105



- a signal is green as long as possible during a red period of a 
on�i
ting signal:
ri2 = gi1 + σi1,i2,i1 , ∀i1 ∈ G1, ∀i2 ∈ G2,

ri1 = gi2 + σi1,i2,i1 , ∀i1 ∈ G1, ∀i2 ∈ G2,where, gi respe
tively ri is the duration of all green times of signal i ∈ N and the duration of allred times of signal i ∈ N .Using these properties, we proposed an optimization problem whi
h we 
ould solve (analyti
ally)for two 
lasses of interse
tions (see Se
tion 7.5.3).10.1.2 RegulationA poli
y is proposed for an interse
tion with two signal groups. For this poli
y we try to serve thesignals in a signal group long enough to satisfy 
onditions 1.1�1.31.1 all queues in this signal group are (expe
ted to be) emptied during their green period (assuming ahybrid �uid model).1.2 all signals are served for at least the minimum green time.1.3 the queue length of a signal i in the other signal group satis�es xi(t) ≥ x♯
i .It might not be possible to serve the signals in the set long enough to satisfy 
onditions 1.1�1.3.We might have to swit
h earlier be
ause otherwise a maximum green time or a maximum queue length(assuming a hybrid �uid model) is ex
eeded.We have proven that when the interse
tion is modeled with a hybrid �uid model, traje
tories 
onvergeto the desired traje
tory (derived with the traje
tory optimization problem) if started from a feasiblestarting point.10.1.3 Addressing the Quality of the proposed poli
yWe have tested the proposed poli
y on several test 
ases. For these test 
ases we varied the arrival rates,maximum green times and maximum queue lengths. For interse
tions with two 
on�i
ting signals theproposed poli
y is 
ompared to an exhaustive poli
y. The proposed poli
y works better than theexhaustive poli
y for smaller arrival rates. For large arrival rates the exhaustive poli
y works better.Further, for an interse
tion with two signals the proposed poli
y works better than than the exhaus-tive poli
y if most of the tra�
 arrives at one of the signals (asymmetri
al arrival rates). In this 
aseslow modes at the high tra�
 signal are desirable be
ause all tra�
 arriving during a slow mode 
rossesthe interse
tion without delay.For the proposed poli
y, a signal 
ould have slow modes in a sto
hasti
 environment even if thissignal does not have any slow modes for the desired traje
tory (derived with the traje
tory optimizationproblem).10.2 Re
ommendations for Further Resear
hHere we state our re
ommendations for further resear
h on the topi
s treated in this thesis.
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10.2.1 Comparison of proposed poli
y to existing poli
iesIn this thesis the proposed poli
y is only 
ompared to the exhaustive poli
y for an interse
tion of twosignals (see Se
tion 6). To address the quality of the proposed poli
y, this proposed poli
y 
an be
ompared to other existing poli
ies. Further, the proposed poli
y has to be tested for interse
tions withmore than 4 signals.We 
an 
ompare the proposed poli
y to the poli
y proposed in Newell and Osuna [22℄ for an inter-se
tion of two two-way streets. In [22℄ it is proposed to swit
h both signals in a sign group to red atthe moment that both queues are 
leared. Further, we 
an 
ompare the proposed poli
y to the poli
yproposed in Haijema and van der Wal [12℄. In [12℄ the de
ision when to swit
h and whi
h signals toserve next is modeled as a Markovian de
ision pro
ess. Furthermore, the poli
y 
an be 
ompared to a�xed 
y
le tra�
 light 
ontrol.10.2.2 Improving our Poli
yIt 
an o

ur that the poli
y proposed in this thesis does not satisfy the restri
tion on minimum greentime duration in a sto
hasti
 setting. In a sto
hasti
 setting the proposed poli
y might swit
h a signalto red before the minimum green time has elapsed whenever the queue of a 
on�i
ting signal is 
loseto its maximum queue length (see Se
tion 6). For safety reasons, the poli
y should always satisfy theseminimum green times. When 
hanging (8.8) to the following equation we always satisfy the restri
tionson green times:
(t1.1 ∧ t1.2 ∧ t1.3) ∨ t2 ∨ (t3 ∧ t1.2),

t1.1, t1.2, t1.3, t2 and t3 remain as de�ned in 8.8For the hybrid �uid model we only 
onsidered situations for whi
h none of the 
onstraints wereviolated. Hen
e, Chapter 5 and Chapter 8 are still valid for this altered poli
y. However, the out
omeof test 
ases 3a and 3b in Chapter 6 and Chapter 9 will be di�erent for this altered poli
y.Furthermore, we observed that a signal 
ould have a slow mode in a sto
hasti
 setting if it does nothave a slow mode for the desired traje
tory (for more information see Se
tion 6). The 
ause is that weswit
h a signal only to red when a 
on�i
ting signal i satis�es xi(t) ≥ x♯
i . We 
ould adjust the poli
yby adjusting the de�nition of x♯

i1
, i1 ∈ G1 and x♯

i2
, i2 ∈ G2:

x♯
i1
=

{

(ri1 − σi1,N)λi1 if ∀i1 ∈ G1

(

gλi1 > 0
),

0 if ∃i1 ∈ G1

(

gλi1 = 0
).

x♯
i2
=

{

(ri2 − σi2,1)λi2 if ∀i2 ∈ G2

(

gλi2 > 0
),

0 if ∃i2 ∈ G2

(

gλi2 = 0
).Note that this new de�nition for x♯

i , i ∈ N di�ers from the de�nition used in this thesis only whena signal in the same signal group has no slow mode for the desired traje
tory (derived via traje
toryoptimization).For these new de�nitions the proof of Proposition 8.1 is not entirely valid anymore and has to beadjusted.10.2.3 Setup TimesIn this thesis we assumed Non-negative setup times:107



σi1,i2 ≥ 0, i1 ∈ G1, i2 ∈ G2,

σi2,i1 ≥ 0, i1 ∈ G1, i2 ∈ G2,For further resear
h, we might drop this assumption. The proofs of Lemma 4.1 and Lemma 4.2 arestill valid when dropping the assumption of positive setup times. The proofs of lemmas 7.1�7.3 needsome (minor) modi�
ations. Further, the shape of the optimal traje
tory given in Corollary 7.4 doesnot hold anymore be
ause for negative green times two 
on�i
ting signals 
an be green at the sametime.The poli
y that is proposed in Se
tion 8 swit
hes a signal to green only if all 
on�i
ting signals arered. If a setup time is negative, two 
on�i
ting signals 
an be green at the same time. Hen
e, a newpoli
y must be proposed.Further, in this thesis we assumed that:
σi1,i2 − σi1,l2 = σl1,i2 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (10.1)
σi2,i1 − σi2,l1 = σl2,i1 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (10.2)This assumption was needed in the proof of Lemma 7.1. Hen
e, when dropping this assumptionLemma 7.1 is not valid anymore. Lemma 7.2 is still valid. However, when dropping assumptions (10.1)and (10.2), we have to formally prove that the alternative traje
tory satis�es behavioral equations (7.3g)and (7.3h).10.2.4 Multiple Signal GroupsIn this thesis we have 
onsidered interse
tions with two signal groups. In pra
ti
e, often more signalgroups are needed. When 
onsidering more than two signal groups lemmas 7.1�7.3 have to be adjusted.Furthermore, the order in whi
h these signal groups are served has to be determined and a new poli
yhas to be derived for the 
ase of more than two signal groups.10.2.5 Networks of Interse
tionsIn this thesis we 
onsidered isolated interse
tions; the arrival rates where assumed to be 
onstant. Fora network of interse
tions these arrival rates are not 
onstant and so 
alled platoons 
an arise. A�rst step towards deriving optimal traje
tories for a network of interse
tions is to 
onsider an isolatedinterse
tion with pie
ewise 
onstant arrivals. A possible starting point might be the resear
h done byvan Eekelen in [10℄. In Se
tion 5.8 of [10℄, an interse
tion with two 
on�i
ting signal with pie
ewise
onstant arrivals is 
onsidered. In Se
tion 5.8 of [10℄ no 
onstraints on green times and maximum queuelengths are 
onsidered.
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Appendix ATable of Symbols (Used in χ3.0Simulation CodeA.1 TypesIn this se
tion we give the newly de�ned types used in the χ simulation program.Type De�nitionTra�
light The type 'tra�
light' 
ontains information about a 
ertain tra�
light.Tra�
light.mu Maximum departure rate of this tra�
 light.Tra�
light.lambda Arrival rate of this tra�
 light.Tra�
light.tif Amount of time between the moment that this tra�
 lightswit
hes to red and the moment that the �rst 
on�i
ting tra�
light swit
hes to greenTra�
light.t� Amount of time between the moment that the �rst tra�
 light inthe same signal group swit
hes to green and the moment that thistra�
 light swit
hes to green.Tra�
light.Xsharp Value for x♯
i for this tra�
 light.Tra�
light.Xmax The maximum queue length of this tra�
light.Tra�
light.gmin Minimum green time of this tra�
 light.Tra�
light.gmax Maximum green time of this tra�
 light.Tra�
light.ArrivalTime List of arrival times of the road users waiting at this tra�
 light.IntervalType An interval 
onsists out of a start time and an end time.IntervalType.StartTime Start time of an interval.IntervalType.EndTime End time of an interval.Output1Type Type used to store information that is written to the output �le'output1.txt'Output1Type.AvgDelay The average delay of a road user at the interse
tionOutput1Type.Over�ow List of the fra
tion of the time that the maximum queue length isex
eeded for ea
h of the tra�
 lights.
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Output2Type Type used to store information that is written to the output �le'output2.txt'. This information 
an be used to visualize the greenperiods, red periods and slow modes of ea
h tra�
 lights. Fur-thermore, it 
an be used to plot the queue length at ea
h of thetra�
 lights over time.Output2Type.Green Intervals of green periods for ea
h of the tra�
 lights.Output2Type.Red Intervals of red periods for ea
h of the tra�
 lights.Output2Type.Slowmode Intervals of green periods for ea
h of the tra�
 lights.Output2Type.X List with queue lengths for ea
h of the tra�
 lights. This list 
anbe used to plot the queue length as fun
tion of time for ea
h tra�
light (together with Output2Type.Time).Output2Type.Time List with times for the tra�
 lights. This list 
an be used to plotthe queue length as fun
tion of time for ea
h tra�
 light (togetherwith Output2Type.X).tlControlInfoType This type 
ontains the input that the poli
y needs and the outputthat the poli
y returns.tlControlInfoType.SetServed The index (either 0 for signal group 1 and 1 for signal group 2) ofthe signal group that is 
urrently served.tlControlInfoType.SetNotServed The index (either 0 for signal group 1 and 1 for signal group 2) ofthe signal group that is 
urrently not served.tlControlInfoType.tlServedFirst This integer refers to the tra�
 light in the set 'SetServed' that(always) swit
hes to green �rst (of all tra�
 lights in the set 'Set-Served').tlControlInfoType.tlSwit
hedFirst This integer refers to the tra�
 light in the set 'SetServed' that(always) swit
hes to red �rst (of all tra�
 lights in the set 'Set-Served').tlControlInfoType.ToLS Time of the most re
ent time that the tra�
 light tlServedFirstswit
hed from red to green or that the tra�
 light tlSwit
hedFirstswit
hed from green to red.tlControlInfoType.Swit
hed Time of the most re
ent time that the tra�
 light tlServedFirstswit
hed from red to green or that the tra�
 light tlSwit
hedFirstswit
hed from green to red.tlControlInfoType.Swit
hed This boolean is true whenever the the signal tlSwit
hedFirst isred.tlControlInfoType.Green List with the state of ea
h of the tra�
 lights: True whenever atra�
 light is green and False whenever a tra�
 light is red.
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A.2 SymbolsIn this se
tion we give the most important symbols used in the χ simulation program.Symbol De�nitionAvgDelayHFM The average delay of a road user obtained via traje
tory optimization. Thisvariable is read from an input �le.SimDelay The average delay of a road user obtained for a single run.ListSimDelay List of average delays obtained for di�erent runs of a test 
ase.SimFra
Over�ow List with the fra
tion of over�ow (fra
tion of time that a queue length is ex-
eeded) for ea
h of the tra�
 lights for a single run.ListSimFra
Over�ow List of the variables 'SimFra
OverFlow' obtained for di�erent runs of a test
ase.SimDuration The duration that is simulated during a run.StartSimTime The simulated time keeps in
reasing for a 
hi simulation. StartSimTime is theduration that is simulation when a run start. This variable is used to determinethe simulated time sin
e the start of a run.FirstRun Only during the �rst run of a test 
ase we write information to output2.txt.FirstRun is a boolean that is true whenever it is the �rst run of a test 
ase.G G[0℄ 
ontains the indi
es of the signals in signal group 1 and G[1℄ 
ontains theindi
es of the signals in signal group 2.N = Number of tra�
 lights at the interse
tion.NumOfDepartures Number of road users that have 
rossed the interse
tion.DepPro
Started This variable is true whenever a departure pro
ess is started.
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Appendix B
χ 3.0 Simulation Code1 # This simulation 
onsiders a traffi
 interse
tion with two signal groups where thetraffi
 light 
ontrol is subje
t to:2 # - maximum and minimum green times3 # - maximum queue lengths . This is a soft 
onstraint ; a queue 
ould ex
eed themaximum queue length but we try to avoid it.4 # We keep tra
k of the fra
tion of the time that this maximum queue length isex
eeded .5 # - Clearan
e /setup times . When traffi
 light i and traffi
 light j are 
onfli
ting (may not be green at the same time) then traffi
6 # light i must be red for a 
ertain amount of time before traffi
 light j may turngreen (and vi
e versa ).78 # In this simulation we try to follow periodi
 behavior using a poli
y9 # a poli
y is a set of rules that spe
ify when to swit
h traffi
 lights from green tored and from red to green.10111213 ########################################################14 ################### Defining types ######################15 ########################################################1617 type traffi
light = tuple(list real ArrivalTime ; real mu; real lambda ; real tif ; realtfi ; real Xsharp ; real Xmax; real gmin; real gmax);1819 type IntervalType = tuple(list real StartTime ; list real EndTime );2021 type Output1Type = tuple (real AvgDelay ; list real Fra
Overflow);2223 type Output2Type = tuple (list IntervalType Green; list IntervalType Red; listIntervalType Slowmode ; list list int X; list list real Time);2425 type tlControlInfoType = tuple (int SetServed ; int SetNotServed; int tlServedFirst; inttlSwit
hedFirst; real ToLS; bool Swit
hed ; list bool Green );2627 ########################################################28 ####################### Model ##########################29 ########################################################3031 model interse
tion():32 # Variable de
laration33 real stddev ; 113



34 real SimDelay ;35 real AvgDelayHFM ;36 real StartSimTime;37 real SimDuration ;38 real real_temp ;39 real Width95IntSimDelay = 0.0;40 real AvgSimDelay = 0.0;41 list real ListSimDelay;42 list real SimFra
Overflow;43 list list real ListSimFra
Overflow;4445 int NumberOfRuns = 0;46 int NumberOfTest
ases;47 int id;48 int N;49 list(2) set int G;5051 bool FirstRun ;5253 traffi
light tl_temp ;54 list traffi
light tl;5556 
han real 
han_Delay ;57 
han list real 
han_Overflow;58 
han int a_temp , d_temp ;59 list 
han int a,d;60 
han void t;6162 file InputFile ,Output1File , Output2File ;6364 # Opening input and output files65 InputFile = open("input.txt ","r");66 Output1File = open("Output1 .txt ","w");67 Output2File = open("Output2 .txt ","w");6869 # Read the number of test 
ases70 NumberOfTest
ases = read(InputFile ,int );7172 for k in range(NumberOfTest
ases):7374 # emptying some lists for the new test 
ase75 a = a[1:1℄;76 d = d[1:1℄;77 SimFra
Overflow = SimFra
Overflow [1:1℄;78 ListSimFra
Overflow = ListSimFra
Overflow [1:1℄;79 ListSimDelay = ListSimDelay[1:1℄;8081 # resetting some variables for the new test
ase82 Width95IntSimDelay = 0.0;83 AvgSimDelay = 0.0;8485 # read all inputs for this test
ase from the input file.86 (id , AvgDelayHFM , SimDuration , N, G, tl) = ReadInput (InputFile );8788 # write some of the information to outputfiles89 write (Output1File , "%s \t", id);90 write (Output1File , "%s \t", AvgDelayHFM );91 write (Output1File , "%s \t", N);92 write (Output2File , "%s \t", id);93 write (Output2File , "%s \t", N);94 114



95 # Making sure that lists have the right size96 for i in range (N):97 a = a + [a_temp ℄;98 d = d + [d_temp ℄;99 SimFra
Overflow = SimFra
Overflow + [ real_temp ℄;100 end ;101102 FirstRun = true;103 NumberOfRuns = 0;104105106 while Width95IntSimDelay >= 0.01* AvgSimDelay or NumberOfRuns < 100:107108 StartSimTime = time; # The time at whi
h we start a run .109 # We start a run110 start buffer (StartSimTime , SimDuration , tl, G, FirstRun , 
han_Delay ,
han_Overflow , a, d, t, Output1File , Output2File );111112 # We obtain the results of this run via 
hannels113 
han_Delay ?SimDelay ;114 
han_Overflow?SimFra
Overflow;115116 # add the obtained results of this run to arrays that 
ontain the results for allruns of this test
ase117 ListSimDelay = ListSimDelay + [ SimDelay ℄;118 ListSimFra
Overflow = ListSimFra
Overflow + [ SimFra
Overflow℄;119120 # From all runs of this test
ase obtain the average delay of a vehi
le at theinterse
tion.121 AvgSimDelay = mean( ListSimDelay);122 # From all runs of this test
ase obtain the width of the 95% 
onfiden
e intervalof the average delay .123 stddev = StdDev ( ListSimDelay);124 Width95IntSimDelay = 2*1.960* stddev /size(ListSimDelay);125126 FirstRun = false ; # We already performed at leatst one run127 NumberOfRuns = NumberOfRuns + 1; # The number of runs is in
reased with one .128129 # writing information to the s
reen130 write ("Simulating 
ase %s \n", k+1);131 write ("Number of runs %s \n", NumberOfRuns);132 write ("average Delay %s \n", AvgSimDelay );133 write ("width of 95- 
onfiden
e interval %s \n", Width95IntSimDelay);134 end135136 # write information obtained for a test
ase to the file Output1File137 write (Output1File ,"%s\t",size(ListSimDelay));138 for i in range (size(ListSimDelay)):139 write (Output1File ,"%s\t",ListSimDelay[i℄);140 end141 for i in range (N):142 for j in range (size(ListSimFra
Overflow)):143 write(Output1File ,"%s\t",ListSimFra
Overflow[j℄[i℄);144 end145 end146 write (Output1File ,"\n");147 end ;148 end149150 ########################################################151 ###################### Pro
esses #######################115



152 ########################################################153154 pro
 buffer (real StartSimTime; real SimDuration ; list traffi
light tl; list set int G;bool FirstRun ; 
han! real 
han_Delay ; 
han! list real 
han_Overflow; list 
han? inta,d; 
han void t; file Output1File ; file Output2File ):155156 # Variable de
laration157 int N = size(tl);158 int k;159 int NumOfDepartures = 0;160 list (N) list int list_int_temp;161162 real deltaT = 0.001; # We sample the feedba
k of the 
ontroller every deltaT se
onds .163 list(N) real real_temp ;164 list (N) list real list_real_temp;165166 list(N) bool DepPro
Started;167 list(N) bool PreviousGreen;168 list(N) bool SlowmodeStarted;169 list(N) bool bool_temp ;170171 Output1Type Output1 ;172 Output2Type Output2 ;173174 tlControlInfoType tlControlInfo;175176 list(N) IntervalType interval_temp;177178179 # making lists the right size180 tlControlInfo.Green = bool_temp ;181 Output1 .Fra
Overflow = real_temp ;182183 Output2 .Green = interval_temp;184 Output2 .Red = interval_temp;185 Output2 .Slowmode = interval_temp;186187 Output2 .X = list_int_temp;188 Output2 .Time = list_real_temp;189190 # Initialization:191 (tlControlInfo , Output2 , SlowmodeStarted) = Initialization(G, FirstRun ,tl, Output2 ,SlowmodeStarted , tlControlInfo);192 # We start with the situation where all traffi
 lights in set 1 (G[0℄) are green andall traffi
 lights in set 2 (G[1℄) are red193194 # Starting departure pro
esses for the traffi
 lights that are green and whose queuesare non -empty.195 # When a traffi
 light is green and its queue is empty then traffi
 
an immediately
ross the interse
tion (without delay ).196 for i in G[0℄:197 if size(tl[i℄. ArrivalTime )> 0:198 start departure (tl[i℄.mu,i,d);199 DepPro
Started[i℄ = true;200 else:201 DepPro
Started[i℄ = false;202 end203 end ;204 for i in G[1℄: # All traffi
 lights in set 2 (G[1℄) are red . Traffi
 
annot departand we start a red period205 DepPro
Started[i℄ = false ; 116



206 end ;207208 # Start arrival pro
esses for all traffi
 lights209 for i in range(N):210 start arrival (tl[i℄.lambda ,i,a);211 end212213 # Start the timer pro
ess . This pro
ess sends a signal every deltaT se
onds .214 start timerpro
ess(deltaT ,t);215216217 while (time - StartSimTime) < SimDuration :218 sele
t219 # Sampling the Controller de
ision whenever we re
eive a void from 
hannel t.220 t?: PreviousGreen = tlControlInfo.Green;221 tlControlInfo = Cal
GreenTls(tl,G,time -StartSimTime ,tlControlInfo);222 if FirstRun : # Some information we will only gather during the first run of atest
ase223 (Output2 , SlowmodeStarted) = UpdateOutput2(PreviousGreen , tlControlInfo.Green, Output2 , tl, time - StartSimTime);224 end225226 # If a traffi
 light is green and its queue is not empty then we start adeparture pro
ess (if it was not already started )227 for i in G[ tlControlInfo.SetServed ℄:228 if tlControlInfo.Green[i℄ and not DepPro
Started[i℄ and size(tl[i℄.ArrivalTime ) >0:229 start departure (tl[i℄.mu,i,d);230 DepPro
Started[i℄ = true;231 end232 end ;233234 # We again start the timerpro
ess235 start timerpro
ess(deltaT ,t);236 alt237 unwind j in range (N):238 a[j℄?k: # If we re
eive a signal via 
hannel a[j℄ then a vehi
le arrives attraffi
 light j239 start arrival (tl[k℄.lambda ,k,a); # We again start a new arrival pro
ess240241 # The arrived vehi
le is only added to the queue when the queue is not empty242 # or the traffi
 light is red . We assume that a vehi
le arriving when243 # the queue is empty and the traffi
 light is green 
an immediately244 # 
ross the interse
tion.245 if size(tl[k℄. ArrivalTime ) >0 or not tlControlInfo.Green[k℄:246 Output1 .Fra
Overflow[k℄ = UpdateFra
Overflow (( time - StartSimTime), Output2.Time[k℄[-1℄, Output1 .Fra
Overflow[k℄, size(tl[k℄. ArrivalTime ), tl[k℄.Xmax);247 if FirstRun : # Some information we will only gather during the first runof a test 
ase248 Output2 .X[k℄ = Output2 .X[k℄ + [size(tl[k℄. ArrivalTime )℄;249 Output2 .Time[k℄ = Output2 .Time[k℄ + [time - StartSimTime℄;250 end251 tl[k℄. ArrivalTime = tl[k℄. ArrivalTime + [time - StartSimTime℄; # Store thetime of arrival252 Output2 .X[k℄ = Output2 .X[k℄ + [size(tl[k℄. ArrivalTime )℄; # Update thequeue length253 Output2 .Time[k℄ = Output2 .Time[k℄ + [time - StartSimTime℄; # Update thetime of the last 
hange in queue length254 elif size(tl[k℄. ArrivalTime ) == 0 and tlControlInfo.Green [k℄: # If avehi
le arrived when the traffi
 light was green117



255 # and the queue was empty then this vehi
leexperien
ed no delay256 NumOfDepartures = NumOfDepartures + 1;257 Output1 .AvgDelay = UpdateAvgDelay(NumOfDepartures , Output1 .AvgDelay , 0.0);258 end259 end260 alt261 unwind l in range (N):262 d[l℄?k: # If we re
eive a signal via 
hannel d[j℄ then a vehi
le has justdeparted at traffi
 light j263 # Update the average delay264 NumOfDepartures = NumOfDepartures + 1;265 Output1 .AvgDelay = UpdateAvgDelay(NumOfDepartures , Output1 .AvgDelay , (time -StartSimTime - tl[k℄. ArrivalTime [0℄));266 Output1 .Fra
Overflow[k℄ = UpdateFra
Overflow (( time - StartSimTime), Output2 .Time[k℄[-1℄, Output1 .Fra
Overflow[k℄, size(tl[k℄. ArrivalTime ), tl[k℄. Xmax);267268 if FirstRun : # Some information we will only gather during the first run ofa test
ase269 Output2 .X[k℄ = Output2 .X[k℄ + [size(tl[k℄. ArrivalTime )℄;270 Output2 .Time[k℄ = Output2 .Time[k℄ + [time - StartSimTime℄;271 end272 tl[k℄. ArrivalTime = tl[k℄. ArrivalTime [1:℄; # Erase the first elementof the array 'ArrivalTime '273 # (the vehi
le that 
orresponds to the erasedelement has just departed ).274 Output2 .X[k℄ = Output2 .X[k℄ + [size(tl[k℄. ArrivalTime )℄; # Update the queuelength275 Output2 .Time[k℄ = Output2 .Time[k℄ + [time - StartSimTime℄; # Update the timeof the last 
hange in queue length276 if tlControlInfo.Green[k℄ and size(tl[k℄. ArrivalTime ) >0: # Again start adeparture pro
ess whenever the traffi
 light is green and277 # the queue length is non -zero278 start departure (tl[k℄.mu,k,d);279 DepPro
Started[k℄ = true;280 else:281 DepPro
Started[k℄ = false;282 end283 if FirstRun : # Some information we will only gather during the first run ofa test 
ase284 if size(tl[k℄. ArrivalTime ) == 0 and tlControlInfo.Green [k℄ and notSlowmodeStarted[k℄: # If the queue length is zero and the traffi
 light285 # is green then a slow modestarts (if it was notalready started ).286 SlowmodeStarted[k℄ = true;287 Output2 . Slowmode [k℄. StartTime = Output2 .Slowmode [k℄. StartTime + [time -StartSimTime℄;288 end289 end290 end291 end ;292 end ;293294295 # let all started departure pro
esses finish :296 for i in range(N):297 while DepPro
Started[i℄: # for some reason it does not work with an if loop298 d[i℄?k;299 DepPro
Started[i℄ = false; 118



300 end301 end302303 # let all started arrival pro
esses finish :304 for i in range(N):305 a[i℄?k;306 end307 # let the timer pro
ess finish :308 t?;309310 if FirstRun :311 Output2 = Write2Output2File(Output2File , Output2 , tl, time - StartSimTime); # Thisfun
tion writes information to the file 'Output2File '.312 # We re
eived 'Output2 ' from the fun
tion . However 'Output2 ' has not 
hanged . Afun
tion must always return something .313 end314315 
han_Delay !Output1 .AvgDelay ;316 
han_Overflow!Output1 .Fra
Overflow;317 end318319 # The timerpro
ess sends a void signal after deltaT se
onds320 pro
 timerpro
ess(real deltaT ; 
han! void t):321 delay deltaT ;322 t!323 end324325 # The pro
ess 'arrival ' sends a interger i over 
hanel a[i℄ after exponentiallydistributed amount of time has elapsed .326 # When su
h a signal is send this means that a vehi
le has arrived at traffi
 light 'i'.327 pro
 arrival (real lambda ; int i; list 
han! int a):328 dist real interarrivaltimedist = exponential (1/ lambda );329 real interarrivaltime;330331 interarrivaltime = sample (interarrivaltimedist);332 delay interarrivaltime;333 a[i℄!i;334 end335336 # The pro
ess 'departure ' sends a integer i over 
hannel a[i℄ after 1/mu se
onds haselapsed .337 # When su
h a signal is send this means that a vehi
le has departed at traffi
 light 'i'.338 pro
 departure (real mu; int i; list 
han! int d):339 delay 1/mu;340 d[i℄!i;341 end342343 ########################################################344 ###################### Fun
tions #######################345 ########################################################346347 fun
 tuple(int id; real AvgDelayHFM ; real SimDuration ; int N; list(2) set int G; listtraffi
light tl) ReadInput (file InputFile ):348349 # Variable de
laration350 real AvgDelayHFM ;351 real SimDuration ;352353 int X0_temp ; 119



354 int id;355 int N, N1, N2;356 list int X0;357 list(2) set int G;358359 traffi
light tl_temp ;360 list traffi
light tl;361362 # Read the id of the test 
ase363 id = read(InputFile , int );364365 # Read the average delay for this test 
ase that was obtained via the Hybrid FluidModel (
al
ulated with matlab )366 AvgDelayHFM = read(InputFile , real);367368 # Read the simulation time of a single run369 SimDuration = read(InputFile , real);370371 # Read the number of traffi
 lights in set 1 (N1) and the number of traffi
 lights inset 2 (N2)372 N1 = read(InputFile , int );373 N2 = read(InputFile , int );374 N = N1+N2;375376 # The first N1 traffi
 lights (0,..., N1) are in set 1 (G[0℄)377 for i in range(N1):378 G[0℄ = G[0℄ + {i};379 end ;380381 # The other traffi
 lights (N1+1,...,N) are in set 2 (G[1℄)382 for i in range(N1 ,N):383 G[1℄ = G[1℄ + {i};384 end385386 # Making sure that lists have the right size387 for i in range(N):388 tl = tl + [tl_temp ℄;389 X0 = X0 + [X0_temp ℄;390 end ;391392 # Reading the initial queue lengths393 for i in range(N):394 X0[i℄ = read(InputFile , int );395 end396397 # At the start there are already X0[i℄ vehi
les waiting in front of traffi
 light i.We assume these vehi
les have arrived at time 0.0.398 for i in range(N):399 for j in range (X0[i℄):400 tl[i℄. ArrivalTime = tl[i℄. ArrivalTime + [0.0℄;401 end402 end403404 # Reading the maximum departure rates405 for i in range(N):406 tl[i℄.mu = read(InputFile , real);407 end408409 # Reading the arrival rates410 for i in range(N):411 tl[i℄. lambda = read(InputFile , real); 120



412 end413414 # tl[i℄.tif : Always when traffi
 light i has been red for tl[i℄.tif se
onds , thefirst traffi
 light in the other set is swit
hed to green .415 for i in range(N):416 tl[i℄. tif = read(InputFile , real);417 end418419 # tl[i℄.tfi : traffi
 light i is swit
hed to green tl[i℄.tfi se
onds after the firsttraffi
 light in the same set is swit
hed to green.420 for i in range(N):421 tl[i℄. tfi = read(InputFile , real);422 end423424 # Xsharp (X^{#}) is needed for the 
ontroller . See ??????? for more information aboutXsharp425 for i in range(N):426 tl[i℄. Xsharp = read(InputFile , real);427 end428429 # Reading the maximum queue lengths430 for i in range(N):431 tl[i℄. Xmax = read(InputFile , real);432 end433434 # Reading the minimum green times435 for i in range(N):436 tl[i℄. gmin = read(InputFile , real);437 end438439 # Reading the minimum green times440 for i in range(N):441 tl[i℄. gmax = read(InputFile , real);442 end ;443444 return (id , AvgDelayHFM , SimDuration , N, G, tl)445 end446447 fun
 tuple(tlControlInfoType tlControlInfo; Output2Type Output2 ; list boolSlowmodeStarted) Initialization(list(2) set int G; bool FirstRun ; list traffi
lighttl; Output2Type Output2 ; list bool SlowmodeStarted; tlControlInfoTypetlControlInfo):448449 tlControlInfo. Swit
hed = false ; # We start with the situation where all traffi
 lightin group 1 are green .450 tlControlInfo.ToLS = 0.0;451 tlControlInfo. SetServed = 0; # We start serving set 1 (G[0℄)452 tlControlInfo. SetNotServed = 1;453454 for i in G[0℄:455 tlControlInfo.Green[i℄ = true; # the traffi
 lights in set 1 (G[0℄) are swit
hed togreen456 end457458 for i in G[1℄:459 tlControlInfo.Green[i℄ = false; # the traffi
 lights in set 2 (G[1℄) are swit
hedto red460 end461462 # Cal
ulating the traffi
 lights in the set 1 (G[0℄) that is the first traffi
 light(in the set 1) to swit
h to green . 121



463 tlControlInfo. tlServedFirst = Cal
ServedFirst(G[0℄, tl);464 # Cal
ulating the traffi
 light in the set 1 (G[0℄) that is the first traffi
 light (in the set 1) to swit
h to red465 tlControlInfo. tlSwit
hedFirst = Cal
ServedFirst(G[0℄, tl);466467 for i in range(size(tl)):468 Output2 .X[i℄ = Output2 .X[i℄ + [size(tl[i℄. ArrivalTime )℄; # The initial queu length469 Output2 .Time[i℄ = Output2 .Time[i℄ + [0.0℄; # The initial time470 end471472 # Initialization of all other information in Output2 .473 if FirstRun :474 (Output2 , SlowmodeStarted) = InitializationOutput2Info (G, tl , Output2 ,SlowmodeStarted);475 end476477 return (tlControlInfo , Output2 , SlowmodeStarted)478 end479480 fun
 tuple(Output2Type Output2 ; list bool SlowmodeStarted) InitializationOutput2Info (list(2) set int G; list traffi
light tl; Output2Type Output2 ; list boolSlowmodeStarted):481482 # We start with the situation where all traffi
 lights in set 1 (G[0℄) are green andall traffi
 lights in set 2 (G[1℄) are red483 for i in G[0℄:484 Output2 .Green[i℄. StartTime = Output2 .Green [i℄. StartTime + [0.0℄; # All traffi
lights in set 1 start a green period .485 if size(tl[i℄. ArrivalTime )> 0: # If the queue (in set 1) is not empty at the startthen we start the departure pro
ess486 SlowmodeStarted[i℄ = false ;487 else: # If the queue (in set 1) is empty at the start then this is the start of aslowmode488 SlowmodeStarted[i℄ = true;489 Output2 .Slowmode [i℄. StartTime = Output2 . Slowmode [i℄. StartTime + [0.0℄;490 end491 end ;492 for i in G[1℄: # All traffi
 lights in set 2 (G[1℄) are red . Traffi
 
annot departand we start a red period493 SlowmodeStarted[i℄ = false ;494 Output2 .Red[i℄. StartTime = Output2 .Red[i℄. StartTime + [0.0℄;495 end496497 return (Output2 , SlowmodeStarted)498 end499500 fun
 tuple(Output2Type Output2 ; list bool SlowmodeStarted) UpdateOutput2(list boolPreviousGreen; list bool Green ; Output2Type Output2 ; list traffi
light tl; realCurrentTime ):501502 # Variable de
laration503 int N = size(Green);504 list(N) bool SlowmodeStarted;505506 for i in range(N):507 if PreviousGreen[i℄ and not Green [i℄: # If a traffi
 light was green and is now redthen this is the end of a green period and the start of a red period .508 Output2 .Red[i℄. StartTime = Output2 .Red[i℄. StartTime + [ CurrentTime ℄;509 Output2 .Green[i℄. EndTime = Output2 .Green [i℄. EndTime + [ CurrentTime ℄;122



510 if size(Output2 . Slowmode [i℄. StartTime ) > size(Output2 .Slowmode [i℄. EndTime ): #When a slowmode started during the previous green time , the slowmode is ended.511 Output2 . Slowmode [i℄. EndTime = Output2 . Slowmode [i℄. EndTime + [CurrentTime ℄;512 SlowmodeStarted[i℄ = false;513 end514 elif not PreviousGreen[i℄ and Green[i℄: # If a traffi
 light was red and is nowgreen then this is the end of a red period and the start of a green period .515 Output2 .Green[i℄. StartTime = Output2 .Green[i℄. StartTime + [CurrentTime ℄;516 Output2 .Red[i℄. EndTime = Output2 .Red[i℄. EndTime + [CurrentTime ℄;517 if size(tl[i℄. ArrivalTime )== 0 and not SlowmodeStarted[i℄: # If a traffi
 lightis empty at the beginning of its green period , a slowmode is started .518 SlowmodeStarted[i℄ = true;519 Output2 . Slowmode [i℄. StartTime = Output2 .Slowmode [i℄. StartTime + [ CurrentTime ℄;520 end521 end522 end523524 return (Output2 , SlowmodeStarted)525 end526527 fun
 Output2Type Write2Output2File(file Output2File ; Output2Type Output2 ; listtraffi
light tl; real CurrentTime ):528529 int N = size(tl); # Number of traffi
 lights530531 for i in range(N):532 Output2 .X[i℄ = Output2 .X[i℄ + [size(tl[i℄. ArrivalTime )℄;533 Output2 .Time[i℄ = Output2 .Time[i℄ + [CurrentTime ℄;534 end535536 # for all traffi
 lights we first write the number of green periods of the traffi
light to the file 'Output2File '.537 # Herafter we write all the start times of these green periods to the file 'Output2 'followed by all the end times of these green periods538 for i in range(N):539 if size(Output2 .Green[i℄. StartTime ) > size(Output2 .Green[i℄. EndTime ): # A greenperiod is not finished yet540 Output2 .Green[i℄. EndTime = Output2 .Green [i℄. EndTime + [ CurrentTime ℄;541 end542 write (Output2File , "%s \t", size(Output2 .Green[i℄. StartTime ));543 for j in range (size(Output2 .Green [i℄. StartTime )):544 write (Output2File , "%s \t", Output2 .Green[i℄. StartTime [j℄);545 end546 for j in range (size(Output2 .Green [i℄. StartTime )):547 write (Output2File , "%s \t", Output2 .Green[i℄. EndTime [j℄);548 end549 end ;550551 # for all traffi
 lights we first write the number of red periods of this traffi
light to the file 'Output2File '.552 # Herafter we write all the start times of these red periods to the file followed byall the end times of these red periods to the file 'Output2File '.553 for i in range(N):554 if size(Output2 .Red[i℄. StartTime ) > size(Output2 .Red[i℄. EndTime ): # A green periodis not finished yet555 Output2 .Red[i℄. EndTime = Output2 .Red[i℄. EndTime + [CurrentTime ℄;556 end557 write (Output2File , "%s \t", size(Output2 .Red[i℄. StartTime ));558 for j in range (size(Output2 .Red[i℄. StartTime )):559 write (Output2File , "%s \t", Output2 .Red[i℄. StartTime [j℄);123



560 end561 for j in range (size(Output2 .Red[i℄. StartTime )):562 write (Output2File , "%s \t", Output2 .Red[i℄. EndTime [j℄);563 end564 end565566 # for all traffi
 lights we first write the number of slowmodes of this traffi
 lightto the file 'Output2File '.567 # Herafter we write all the start times of these slowmodes to the file followed byall the end times of these slowmodes to the file 'Output2File '.568 for i in range(N):569 if size(Output2 .Slowmode [i℄. StartTime ) > size(Output2 .Slowmode [i℄. EndTime ): # Aslowmode is not finished yet570 Output2 .Slowmode [i℄. EndTime = Output2 .Slowmode [i℄. EndTime + [ CurrentTime ℄;571 end572 write (Output2File , "%s \t", size(Output2 .Slowmode [i℄. StartTime ));573 for j in range (size(Output2 .Slowmode [i℄. StartTime )):574 write (Output2File , "%s \t", Output2 .Slowmode [i℄. StartTime [j℄);575 end576 for j in range (size(Output2 .Slowmode [i℄. StartTime )):577 write (Output2File , "%s \t", Output2 .Slowmode [i℄. EndTime [j℄);578 end579 end580581 # For all traffi
 lights write the queue lengths to the file 'Output2File ' andhereafter write the times 
orresponding to these queue lengths to the file 'Output2File '582 for i in range(N):583 write (Output2File , "%s \t", size(Output2 .X[i℄));584 for j in range (size(Output2 .X[i℄)):585 write (Output2File , "%s \t", Output2 .X[i℄[j℄);586 end587 for j in range (size(Output2 .X[i℄)):588 write (Output2File , "%s \t", Output2 .Time[i℄[j℄);589 end590 end591592 # Go to a new line for the next test
ase .593 write(Output2File , "\n");594595 return Output2596 end597598 # Cal
ulate the traffi
 light in the set G that is swit
hed to green first (of thetraffi
 lights in the set G).599 # The traffi
 light that satisfies tf[i℄.tfi = 0.0 is the first traffi
 light in theset G to swit
h to green .600 # This be
ause tl[i℄.tfi se
onds after the first traffi
 light has swit
hed to greentraffi
 light i swit
hes to green .601 fun
 int Cal
ServedFirst(set int G; list traffi
light tl):602 int tlServedFirst;603604 for i in G:605 if tl[i℄. tfi == 0.0:606 tlServedFirst=i;607 end608 end ;609610 return tlServedFirst611 end612 124



613 # Cal
ulate the traffi
 light in the set G that is swit
hed to red first (of thetraffi
 lights in the set G).614 # The traffi
 light in the set G that has the largest value for tf[i℄.tif is the firsttraffi
 light in the set G to swit
h to red .615 # This be
ause tl[i℄.tif se
onds after traffi
 light i has swit
hed to red the firsttraffi
 light in the other set is swit
hed to green .616 fun
 int Cal
Swit
hedFirst(set int G; list traffi
light tl):617 int tlSwit
hedFirst;618 real Maxtif = 0.0;619620 for i in G:621 if tl[i℄. tif >= Maxtif :622 tlSwit
hedFirst=i;623 Maxtif = tl[i℄.tif;624 end625 end ;626627 return tlSwit
hedFirst628 end629630 # This fun
tion 
ontrols whi
h of the traffi
 lights are green and whi
h of the traffi
lights are red631 fun
 tlControlInfoType Cal
GreenTls(list traffi
light tl; list set int G; real Ctime;tlControlInfoType tlControlInfo):632633 if tlControlInfo. Swit
hed : # In this 
ase we already swit
hed the 'tlSwit
hedFirst'to red .634 if (Ctime - tlControlInfo.ToLS) >= tl[tlControlInfo.tlSwit
hedFirst℄.tif : # tl[tlControlInfo.tlSwit
hedFirst℄.tif se
onds after we swit
hed the traffi
light 'tlSwit
hedFirs' to red a traffi
light in the other set is swit
hed to green.635 tlControlInfo.SetServed , tlControlInfo.SetNotServed = tlControlInfo.SetNotServed ,tlControlInfo.SetServed ; # We 
hange the set that is 
urrently served636 tlControlInfo.tlSwit
hedFirst = Cal
Swit
hedFirst(G[ tlControlInfo.SetServed ℄, tl); # We 
al
ulate the traffi
 light (in the set that is 
urrentlyserved ) that was swit
hed to green the first (of the traffi
lights in the setthat is 
urrently served ).637 tlControlInfo.tlServedFirst = Cal
ServedFirst(G[tlControlInfo.SetServed ℄, tl);# We 
al
ulate the traffi
 light (in the set that is 
urrentlyserved ) that will be swit
hed to red the first (of the traffi
lights in theset that is 
urrently served ).638 tlControlInfo.ToLS = Ctime; # The last time that the traffi
 light 'tlSwit
hedFirst' was swit
hed to red or the traffi
 light 'tlServedFirst' wasswit
hed to green .639 tlControlInfo.Swit
hed = false ; # We have not yet swit
hed the traffi
 light 'tlSwit
hedFirst' to red .640 end641 else: # If we have not yet swit
hed the traffi
 light 'tlSwit
hedFirst' to red weevaluate whether we should swit
h the traffi
 light 'tlSwit
hedFirst' to red .642 tlControlInfo.Swit
hed = swit
h (tl , G, tlControlInfo.SetServed , tlControlInfo.SetNotServed , tlControlInfo.tlServedFirst , tlControlInfo.tlSwit
hedFirst , Ctime- tlControlInfo.ToLS);643 if tlControlInfo.Swit
hed : # If we swit
h the first traffi
 light in the setSetServed to red , we 
hange ToLS (Time of Last swit
h ) ot the 
urrent time.644 tlControlInfo.ToLS = Ctime; # The last time that the traffi
 light 'tlSwit
hedFirst' was swit
hed to red or the traffi
 light 'tlServedFirst' wasswit
hed to green .645 end646 end ;647648 for i in G[tlControlInfo.SetNotServed℄: # Whenever a set is not served all thetraffi
 lights in this set are red . 125



649 tlControlInfo.Green[i℄ = false;650 end651652 for i in G[tlControlInfo.SetServed ℄:653 if tlControlInfo.Swit
hed : # (tl[tlControlInfo. tlSwit
hedFirst℄.tif - tl[i℄.tif )se
onds after 'tlSwit
hedFirst' swit
hed to red , traffi
light i swit
hes to red654 if (Ctime - tlControlInfo.ToLS) < (tl[tlControlInfo. tlSwit
hedFirst℄.tif - tl[i℄.tif ):655 tlControlInfo.Green[i℄ = true;656 else:657 tlControlInfo.Green[i℄ = false ;658 end659 else: # tl[i℄.tfi se
onds after 'tlServedFirst' swit
hed to green , traffi
light iswit
hes to green . During the first green time of set 1 (when tlControlInfo.ToLS = 0.0) all traffi
 lights in set 1 are green .660 if (Ctime - tlControlInfo.ToLS) >= tl[i℄.tfi or tlControlInfo.ToLS <= 0.00001:661 tlControlInfo.Green[i℄ = true;662 else:663 tlControlInfo.Green[i℄ = false ;664 end665 end666 end ;667668 return tlControlInfo669 end670671 # With this fun
tion we evaluate whether we should swit
h the traffi
 light 'tlSwit
hedFirst' to red if we have not yet swit
hed the traffi
 light 'tlSwit
hedFirst' to red .672 # For more information about when we swit
h the traffi
 light 'tlSwit
hedFirst to redsee ??????673 fun
 bool swit
h (list traffi
light tl; list set int G; int SetServed ; int SetNotServed;int tlServedFirst; int tlSwit
hedFirst; real tstar):674 bool b13 = false ;675676 # tstar is the time that has elapsed sin
e the traffi
 light 'tlServedFirst' wasswit
hed to green.677 # If the maximum green time is ex
eeded then we swit
h the traffi
 light 'tlSwit
hedFirst' to red .678 if tstar >= (tl[ tlSwit
hedFirst℄.gmax + tl[ tlSwit
hedFirst℄.tfi):679 return true680 end681682 # We swit
h the traffi
 light to red (that must be swit
hed first) if otherwise aqueue would ex
eed its maximum queue length (for a hybrid fluid model ).683 # If we swit
h 'tlSwit
hedFirst' to red then traffi
 light j (in the set that is notserved ) will be green (tl[tlSwit
hedFirst℄.tif + tl[j℄.tfi ) se
onds684 for j in G[SetNotServed℄:685 if size(tl[j℄. ArrivalTime ) >= tl[j℄. Xmax - (tl[ tlSwit
hedFirst℄.tif + tl[j℄.tfi)*tl[j℄. lambda :686 return true687 end688 end689690 # We also swit
h the traffi
 light 'tlSwit
hedFirst' to red whenever 
onditions 1.1,1.2 and 1.3 are satisfied691692 # Is 
ondition 1.3 satisfied ?693 for j in G[SetNotServed℄:694 if size(tl[j℄. ArrivalTime ) >= tl[j℄. Xsharp and b13 == false :695 b13 = true; 126



696 end697 end698699 # If 
ondition 1.3 is not satisfied and 
ondition 2 and 3 are both not satisfied thenwe do not swit
h traffi
 light 'tlSwit
hedFirst' to red700 if b13 == false :701 return false702 end703704 # Condition 1.1 is satisfied whenever all traffi
 lights j in the set 'SetServed 'satisfy size(tl[j℄. ArrivalTime ) <= ((tl[tlSwit
hedFirst℄.tif - tl[j℄.tif )*(tl[j℄.mu - tl[j℄.lambda ) - max ((tl[j℄.tfi -tstar ) ,0.0) )705 # Condition 1.2 is satisfied whenever all traffi
 lights j in the set 'SetServed 'satisfy tstar > (tl[j℄.gmin + tl[j℄.tfi + tl[j℄.tif - tl[ tlSwit
hedFirst℄.tif ).706 for j in G[SetServed ℄:707 if size(tl[j℄. ArrivalTime ) > ((tl[ tlSwit
hedFirst℄.tif - tl[j℄.tif)*(tl[j℄.mu - tl[j℄. lambda ) - max ((tl[j℄.tfi -tstar) ,0.0)) or tstar < (tl[j℄.gmin + tl[j℄.tfi +tl[j℄.tif - tl[tlSwit
hedFirst℄. tif):708 # If 
ondition 1.1 or 1.2 is not satisfied and 
ondition 2 and 3 are both notsatisfied then we do not swit
h traffi
 light 'tlSwit
hedFirst' to red709 return false710 end711 end712713 # if 
ondition 1.1, 1.2 and 1.3 are all satisfied then we swit
h traffi
 light 'tlSwit
hedFirst' to red714 return true715 end716717 # This Fun
tion updates the average delay whenever a vehi
le has departed .718 # About the input of this fun
tion :719 # - NumOfDepartures is the number of Departures at the interse
tion (in
luding thevehi
le that has just departed )720 # - AvgDelay is the average delay of the vehi
les (ex
luding the vehi
le that has justdeparted )721 fun
 real UpdateAvgDelay(int NumOfDepartures; real AvgDelay ; real Delay):722 AvgDelay = (NumOfDepartures -1)/ NumOfDepartures* AvgDelay + 1/ NumOfDepartures*Delay; #updating average delay723724 return AvgDelay725 end726727728 # This Fun
tion updates the fra
tion of time that a queue ex
eeded its maximum queuelength .729 fun
 real UpdateFra
Overflow(real CurrentTime ; real TimeOfPreviousChange; realFra
Overflow; int X; real Xmax):730 if X > Xmax:731 Fra
Overflow = (CurrentTime -TimeOfPreviousChange )/CurrentTime *Fra
Overflow +TimeOfPreviousChange /CurrentTime # updating fra
tion of overflow732 else:733 Fra
Overflow = (CurrentTime -TimeOfPreviousChange )/CurrentTime *Fra
Overflow734 end735736 return Fra
Overflow737 end738739 # Fun
tion 
al
ulating x squared740 fun
 real Square (real x):741 return x*x742 end 127



743744 # Cal
ulating the average of a list745 fun
 real mean(list real xs):746 real sum;747 for x in xs:748 sum = sum + x;749 end ;750751 return sum / size(xs)752 end753754 # Cal
ulating the standard deviation of the elements inside a list.755 fun
 real StdDev (list real xs):756 real avgx;757 real sum;758 avgx = mean(xs);759 for x in xs:760 sum = sum + Square (x - avgx);761 end762763 return sqrt (1/( size(xs) -1)*sum)764 end
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Appendix CProofs (Traje
tory Optimization)C.1 Analyti
al Solution Optimization Problem 1In this se
tion we �nd an analyti
 solution for the optimization problem posed in Se
tion 4.8. Weassume that we 
an �nd a solution to this optimization problem. Below we show the obje
tive fun
tionand the inequality 
onstraints of the optimization problem:Obje
tive:
J(y1, y2) =

k(y2 + 1)2 + (y1 + 1)2

1 + y1 + y2
. (C.1a)Constraints:

b1 : y1 ≥ ρ1
1− ρ1

(1 + y2), (C.1b)
b2 : y2 ≥ ρ2

1− ρ2
(1 + y1), (C.1
)

b3 : ymin
1 ≤ y1, (C.1d)

b4 : ymin
2 ≤ y2, (C.1e)

b5 : y1 ≤ ymax
1 , (C.1f)

b6 : y2 ≤ ymax
2 , (C.1g)where

0 < k ≤ 1,

ymin
i ,≥ 0 i = 1, 2,

0 < ρi < 1, i = 1, 2,

ρ1 + ρ2 < 1,

σ1,2,1 > 0.Un
onstrained optimization problem First we 
onsider the un
onstrained problem. By takingthe derivative of (C.1a) with respe
t to y1 and y2 and setting them to zero we obtain two stationary129



points:
(y1, y2) = (−1,−1) ,

(y1, y2) =

(

k − 1

k + 1
,
1− k

k + 1

)

.

(y1, y2) = (−1,−1) is a lo
al maximum and (y1, y2) =
(

k−1
k+1 ,

1−k
k+1

) is a lo
al minimum. In FigureC.1 we have shown some level sets for di�erent values of k. As 
an be seen in these plots, the level setsare ellipsis. The shape of these ellipses depends on the value of k. Note that the s
ales on the axes ofthese �gures di�er.

(a) Level sets for k = 0.01 (b) Level sets for k = 0.1

(
) Level sets for k = 0.5 (d) Level sets for k = 1Figure C.1: Level sets for di�erent values of k.Both stationary points (the lo
al maximum as the lo
al minimum) 
annot be positioned in thefeasible area of the 
onstrained optimization problem. As a result, one of the 
onstraints b1 until b6must be a
tive, i.e. the 
onstrained minimizer is positioned on a boundary of the feasible area.130



Feasible area In Figure C.2 we 
an see all 
onstraints of the optimization problem. In this �gure allboundaries of the 
onstraints are positioned in the feasible area.PSfrag repla
ements
y2

y1(0, 0)

ymin
2

ymin
1

b2 b3 b6

b5

b1

b4

ymax
2

ymax
1

feasible area
Figure C.2: Feasible area of the optimization problem.Upper bounds We 
an derive ∂J

∂y1
+ ∂J

∂y2
= 2(y2+ky1+(k+1)y1y2)

(1+y1+y2)2
whi
h is greater than zero for y1 >

0 ∧ y2 > 0. Hen
e, on the boundary of 
onstraint b5 and b6 and in the feasible area we 
an alwaysde
rease the linear 
ost fun
tion J by moving towards the y1 − axis or y2 − axis. As a 
onsequen
e,the global 
onstrained minimum 
an only be positioned on a boundary of 
onstraint b1, b2, b3 or b4.Un
onstrained minimum on a lineLemma C.1 On the line y2 = ay1 + by1 were a, b ∈ R
+, the linear 
ost fun
tion J has two stationarypoints: a lo
al (un
onstrained) minimum and a lo
al (un
onstrained) maximum. The y1-position of thelo
al minimum 
ould be non-negative. The y1-position of the lo
al maximum 
ould not. The position ofthe lo
al (un
onstrained) minimum on the line y2 = ay1 + by1 is:

yunc,min
1 =

−(1 + b)

1 + a
+

√

(a− b)2 + (1 + b)2k

(1 + a)
√

(1 + a2k)
.Proof. In Figure C.7 we give an overview of what we are about to prove. In this �gure we 
an see thefollowing:- A lo
al (un
onstrained) maximum at y1 = root1 = −(1+b)

1+a
−

√
((a−b)2+(1+b)2k)

(1+a)
√

(1+a2k)
< 0.- An asymptote at −(1+b)

1+a
< 0.- A lo
al (un
onstrained) minimum at y1 = root2 = −(1+b)

1+a
+

√
((a−b)2+(1+b)2k)

(1+a)
√

(1+a2k)
.
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PSfrag repla
ements
y2

root1
−(1+b)
1+a

< 0

root2

y1Figure C.3: Overview of this proof.Using y2 = ay1 + b and (C.1a) we obtain the following equation for J :
J =

tC + ty1y1 + ty2
1
y21

nC + ny1y1
, (C.2)where

tC = 1 + (1 + b)2k > 0,

ty1 = 2 + 2a(1 + b)k > 0,

ty2
1
= 1 + a2k > 0,

nC = 1 + b > 0,

ny1 = 1 + a > 0.Note that |J | goes to in�nity for y1 → −(1+b)
1+a < 0, i.e. there is an asymptote at y1 = −(1+b)

1+a < 0.When taking the derivative with respe
t to y1 we obtain:
dJ

dy1
=

nCty1 − tCny1 + 2nCty2
1
y1 + ny1ty2

1
y21

(nC + ny1y1)
2

. (C.3)We 
an �nd the y1-position of the stationary points of (C.2) by setting the denominator of (C.3)equal to zero. By using the ab
-equation and after some rewriting we 
an �nd expressions for the 2stationary points: root1 and root2. 132



root1 =
−(1 + b)

1 + a
−
√

(a− b)2 + (1 + b)2k

(1 + a)
√

(1 + a2k)
< 0,

root2 =
−(1 + b)

1 + a
+

√

(a− b)2 + (1 + b)2k

(1 + a)
√

(1 + a2k)
.Note that these roots are real (not imaginary) sin
e (a− b)2 + (1+ b)2k > 0. We 
an see that root1is smaller than the asymptote. The other stationary point root2 is larger than the asymptote.We 
an easily see that root1 is a maximum and root2 is a minimum be
ause the obje
tive fun
tionin (C.2) goes to ∞ for y1 → ∞ and the obje
tive fun
tion in (C.2) goes to −∞ for y1 → −∞.Hen
e, the root yunc,min

1 that 
orresponds to the un
onstrained minimum on the line y2 = ay1 + bis equal to:
yunc,min
1 =

−(1 + b)

1 + a
+

√

(a− b)2 + (1 + b)2k

(1 + a)
√
1 + a2k

. (C.4)Similarly to the proof of Lemma C.1 we 
an �nd that on the line y1 = ay2 + b, where a, b ∈ R
+,the linear 
ost fun
tion J has two stationary points: a lo
al (un
onstrained) minimum and a lo
al(un
onstrained) maximum. The y2-position of the lo
al minimum 
ould be non-negative. The y1-position of the lo
al maximum 
ould not. The position of the lo
al (un
onstrained) minimum on theline y1 = ay2 + b is:

yunc,min
2 = − (1 + b)

1 + a
+

√

(1 + b)2 + (a− b)2k

(1 + a)
√
a2 + k

. (C.5)Using (C.15) and (C.5) we 
an �nd the un
onstrained minima on the boundaries of the 
onstraints
b1 until b4. By writing the boundaries of these 
onstraint in the form y1 = ay2 + b, a, b ∈ R+ or
y2 = ay1 + b, a, b ∈ R+ we have obtained the following expressions for ybi(k) =

(

ybi
1
(k), ybi

2
(k)
),

i = 1, ..., 4, whi
h is the (y1, y2)−position of the minimum on the boundary of 
onstraint bi:
yb1(k) =

(

ρ1
√

k(1− ρ1)2 + ρ21
,−1 +

1− ρ1
√

k(1− ρ1)2 + ρ21

)

,

yb2(k) =

(

−1 +

√
k(1 − ρ2)

√

(1− ρ2)2 + kρ22
,

√
kρ2

√

(1 − ρ2)2 + kρ22

)

,

yb3(k) =

(

ymin
1 ,−(1 + ymin

1 ) +

√

(ymin
1 )2k + (1 + ymin

1 )2√
k

)

,

yb4(k) =

(

−(1 + ymin
2 ) +

√

(ymin
2 )2 + (1 + ymin

2 )2k, ymin
2

)

. (C.6)We 
an see that yb2
1
(k) = −1 +

√
k(1−ρ2)√

(1−ρ2)2+kρ2
2

< 0. Thus, the un
onstrained minimum on theboundary of 
onstraint b2 
annot be positioned in the feasible area.As a result, the 
onstrained global minimizer of the optimization problem with obje
tive (C.1a) and
onstraints (C.1b) until (C.1g) is positioned on the boundary of 
onstraint b1, b3 or b4.133



Monotoni
ity For now we are going to 
onsider the optimization problem with only 
onstraints b1,b3and b4, i.e. for the moment we forget about 
onstraints b2, b5 and b6 (see Figure C.4). Note that thethree lines 
an interse
t in di�erent ways.PSfrag repla
ements
y2

y1
(0, 0)

ymin
2

ymin
1

b3 b1

b4

feasible area
Figure C.4: Whenever we 
onsider only 
onstraints b1,b3 and b4 and we in
rease k, the position of the
onstraint minimizer follows the arrows annotated to the boundaries of the 3 
onstraints.Lemma C.2 When we 
onsider the 
onstrained problem with the obje
tive shown in (C.1a) and 
on-straints b1, b3 and b4, the position of the 
onstrained minimum follows the arrows annotated to theboundaries in Figure C.4 when in
reasing k.Proof. We 
an easily see that the derivatives ∂yb1

1

∂k
, ∂yb3

2

∂k
and ∂yb4

1

∂k
are a

ording to the arrows in FigureC.4:We 
an easily see that the derivatives ∂yb1

1

∂k
, ∂yb3

2

∂k
and ∂yb4

1

∂k
are a

ording to the arrows in FigureC.4:

∂yb1
1

∂k
= − (1 − ρ1)

2ρ1
2(k(1− ρ1)2 + ρ21)

1.5
< 0,

∂yb3
2

∂k
= − (1− ymin

1 )2

2k1.5
√

(1 + ymin
1 )2 + (ymin

1 )2k
< 0,

∂yb4
1

∂k
=

(1 − ymin
2 )2

2
√

k(1 + ymin
2 )2 + (ymin

2 )2
> 0.From now on we use ki,j , i, j = 1, ..., 6 for the value of k for whi
h ybi is positioned at the interse
tionof the boundary of 
onstraint bi and the boundaries of 
onstraint bj.We 
an derive:
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k1,3 =
ρ21(1 − ymin2

1 )

(1 − ρ1)2ymin2

1

,

k1,4 =
1

(1 + ymin
2 )2

− ρ21
(1− ρ1)2

,

k3,1 =
ρ21(1 + ymin

1 )2

(1 − ρ21)y
min2

1

,

k3,4 =
(1 + ymin

1 )2

(1 + ymin
2 )(1 + ymin

2 + 2ymin
1 )

,

k4,1 =
1

(1 − ρ1)2
− ymin2

2

(1 + ymin
2 )2

,

k4,3 =
(1 + ymin

1 )(1 + ymin
1 + 2ymin

2 )

(1 + ymin
2 )2

.We have to show that:- k4,3 ≥ k3,4 when the interse
tion between the boundary of b4 and the boundary of b3 is positioned inthe feasible area.- k4,1 ≥ k1,4 when the interse
tion between the boundary of b4 and the boundary of b1 is positioned inthe feasible area.- k3,1 ≥ k1,3 when the interse
tion between the boundary of b3 and the boundary of b1 is positioned inthe feasible area.We 
an see that always k4,3 ≥ k3,4 be
ause 1 + ymin
1 ≤ 1 + ymin

1 + 2ymin
2 (hen
e the numerator of

k4,3 is larger than the nominator of k3,4) and 1 + ymin
2 ≤ 1 + ymin

2 + 2ymin
1 (hen
e the denominatorof k4,3 is smaller than the denominator of k3,4). It also holds that k4,1 ≥ k1,4 be
ause we 
an derive

k4,1 − k1,4 =
2(ρ1+ymin

2 )(1+ρ1y
min
2 )

(1−ρ1)2(1+ymin
2 )2

> 0. We 
an derive that the y2-position of the interse
tion betweenthe boundary of b3 and the boundary is non-negative for ymin
1 ≥ ρ1

1−ρ1
. When using ymin

1 ≥ ρ1

1−ρ1
we
an �nd k3,1 − k1,3 =

(ymin
1 −ρ1)ρ

2
1(1+ymin

1 )

(1−ρ1)2(1+ρ1)ymin2
1

≥ ρ4
1(1+ymin

1 )

(1−ρ1)2(1+ρ1)ymin2
1

≥ 0. Hen
e, it holds that k3,1 ≥ k1,3when the interse
tion between the boundary of b3 and the boundary of b1 is positioned in the feasiblearea.Thus, when we 
onsider the 
onstrained problem with the obje
tive shown in (C.1a) and 
onstraints
b1, b3 and b4, the position of the 
onstrained minimum follows the arrows annotated to the boundarieswhen in
reasing k.Lets again 
onsider the optimization problem with 
onstraints b1 until b6. We know that the 
on-strained minimum is positioned on the boundary of b1, b3 or b4. We 
an obtain expressions for the
onstraint minimum on ea
h of these lines. We use kmin

i for the smallest value for k su
h that the un-
onstrained minimum ybi(k) is positioned in the feasible area. We use kmax
i for the largest value for ksu
h that the un
onstrained minimum ybi(k) is positioned in the feasible area. Whenever the boundaryof 
onstraint bi is not positioned in the feasible area (and hen
e there is no 
onstrained minimum onthis boundary) it holds that kmin

i > kmax
i . Before we give the expressions for kmin

i , i = 1, 3, 4 and kmax
i ,we give the relevant expressions for ki,j : 135



k1,2 =
(1 − ρ2)(1− ρ2 − 2ρ1)

(1− ρ1)2
,

k1,3 =
ρ21(1− ymin2

1 )

(1 − ρ1)2ymin2

1

,

k1,4 =
1

(1 + ymin
2 )2

− ρ21
(1− ρ1)2

,

k1,5 =
1

(1 + ymax
2 )2

− ρ21
(1− ρ1)2

,

k1,6 =
ρ21(1− ymax2

1 )

(1 − ρ1)2ymax2

1

,

k3,1 =
ρ21(1 + ymin

1 )2

(1 − ρ21)y
min2

1

,

k3,2 =
(1− ρ2)

2(1 + ymin
1 )2

(1 + ymin
1 )2 − (1− ρ2)2ymin2

1

,

k3,4 =
(1 + ymin

1 )2

(1 + ymin
2 )(1 + ymin

2 + 2ymin
1 )

,

k3,5 =
(1 + ymin

1 )2

(1 + ymax
2 )(1 + ymax

2 + 2ymin
1 )

,

k4,1 =
1

(1 − ρ1)2
− ymin2

2

(1 + ymin
2 )2

,

k4,2 =
(1− ρ22)y

min2

2

ρ22(1 + ymin
2 )2

,

k4,3 =
(1 + ymin

1 )(1 + ymin
1 + 2ymin

2 )

(1 + ymin
2 )2

,

k4,6 =
(1 + ymax

1 )(1 + ymax
1 + 2ymin

2 )

(1 + ymin
2 )2

.We found the following expressions for the 
onstrained minima on the boundaries of 
onstraints b1,
b3 and b4.Constrained minimum on the boundary of b1:

yb1(kmin
1 ) if k ≤ kmin

1 ≤ kmax
1 ,

yb1(k) if kmin
1 ≤ k ≤ kmax

1 ,

yb1(kmax
1 ) if kmin

1 ≤ kmax
1 ≤ k,where

kmin
1 =max{k1,5, k1,6},

kmax
1 =min{k1,2, k1,3, k1,4}.136



Constrained minimum on the boundary of b3:
yb3(kmin

3 ) if k ≤ kmin
3 ≤ kmax

3 ,

yb3(k) if kmin
3 ≤ k ≤ kmax

3 ,

yb3(kmax
3 ) if kmin

3 ≤ kmax
3 ≤ k,where

kmin
3 =max{k3,1, k3,5},

kmax
3 =min{k3,2, k3,4}.Constrained minimum on the boundary of b4:

yb4(kmin
4 ) if k ≤ kmin

4 ≤ kmax
4 ,

yb4(k) if kmin
4 ≤ k ≤ kmax

4 ,

yb4(kmax
4 ) if kmin

4 ≤ kmax
4 ≤ k,where

kmin
4 =max{k4,1, k4,3},

kmax
4 =min{k4,2, k4,6}.Solution Using Lemma C.2 we 
an �nd the analyti
al solution (shown below) for the position of the
onstrained minimizer (ycon,min

1 , ycon,min
2

).
(

y
con,min
1 , y

con,min
2

)

=



























































yb1(kmin
1 ) if k ≤ kmin

1 ≤ kmax
1 ,

yb1(k) else if kmin
1 < k < kmax

1 ,

yb1(kmax
1 ) else if kmax

3 < kmin
3 ∨ kmax

4 < kmin
4 ,

yb1(kmin
3 ) else if k ≤ kmin

3 ≤ kmax
3 ,

yb1(k) else if kmin
3 < k < kmax

3 ,

yb1(kmax
3 ) else if kmax

4 < kmin
4 ,

yb1(kmin
4 ) else if k ≤ kmin

4 ≤ kmax
4 ,

yb1(k) else if kmin
4 < k < kmax

4 ,

yb1(kmax
4 ) otherwise.where

y
b1(k) =

(

ρ1
√

k(1− ρ1)2 + ρ21
,−1 +

1− ρ1
√

k(1− ρ1)2 + ρ21

)

,

y
b3(k) =

(

y
min
1 ,−(1 + y

min
1 ) +

√

(ymin
1 )2k + (1 + ymin

1 )2√
k

)

,

y
b4(k) =

(

−(1 + y
min
2 ) +

√

(ymin
2 )2 + (1 + ymin

2 )2k, ymin
2

)

,

k
min
1 = max{k1,5, k1,6},

k
max
1 = min{k1,2, k1,3, k1,4},137



k
min
3 = max{k3,1, k3,5},

k
max
3 = min{k3,2, k3,4},
k
min
4 = max{k4,1, k4,3},

k
max
4 = min{k4,2, k4,6},

k1,2 =
(1− ρ2)(1− ρ2 − 2ρ1)

(1− ρ1)2
,

k1,3 =
ρ21(1− ymin2

1 )

(1− ρ1)2ymin2

1

,

k1,4 =
1

(1 + ymin
2 )2

− ρ21
(1− ρ1)2

,

k1,5 =
1

(1 + ymax
2 )2

− ρ21
(1− ρ1)2

,

k1,6 =
ρ21(1− ymax2

1 )

(1− ρ1)2ymax2

1

,

k3,1 =
ρ21(1 + ymin

1 )2

(1− ρ21)y
min2

1

,

k3,2 =
(1− ρ2)

2(1 + ymin
1 )2

(1 + ymin
1 )2 − (1− ρ2)2ymin2

1

,

k3,4 =
(1 + ymin

1 )2

(1 + ymin
2 )(1 + ymin

2 + 2ymin
1 )

,

k3,5 =
(1 + ymin

1 )2

(1 + ymax
2 )(1 + ymax

2 + 2ymin
1 )

,

k4,1 =
1

(1− ρ1)2
− ymin2

2

(1 + ymin
2 )2

,

k4,2 =
(1− ρ22)y

min2

2

ρ22(1 + ymin
2 )2

,

k4,3 =
(1 + ymin

1 )(1 + ymin
1 + 2ymin

2 )

(1 + ymin
2 )2

,

k4,6 =
(1 + ymax

1 )(1 + ymax
1 + 2ymin

2 )

(1 + ymin
2 )2

.C.2 Analyti
al Solution Optimization Problem 2In this se
tion we �nd an analyti
 solution for the optimization problem posed in Se
tion 7.5.3. Beforeyou read this se
tion we advi
e you to read Se
tion C.1 �rst. In Se
tion C.1 we �nd the analyti
alsolution of a more simple optimization. However, �nding the analyti
al solution is very similar for bothoptimization problems. Below we show the obje
tive fun
tion and the inequality 
onstraints of theoptimization problem. We assume that we 
an �nd a solution to this optimization problem.
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J(y1, y2) =
(1 + y2)

2 + k1(1 + y1)
2 + k2(k3 + y1)

2

1 + y1 + y2
, (C.7)

b1 : y2 ≥ α2

1− α2
(1 + y1),

b2 : y2 ≥ α3y1 + k3
1− α3

− 1,

b3 : y1 ≥ α1

1− α1
(1 + y2),

b4 : ymin
1 ≤ y1,

b5 : ymin
2 ≤ y2,

b6 : y1 ≤ ymax
1 ,

b7 : y2 ≤ ymax
2 ,where

0 < k1 + k2 ≤ 1,

0 < k3, k1, k2 ≤ 1,

ymin
i ≥ 0, i = 1, 2,

αi > 0, i = 1, 2, 3,

α1 + α2 < 1,

α1 + α3 < 1. (C.8)Un
onstrained optimization problem First we 
onsider the un
onstrained problem. By takingthe derivative of (C.7) with respe
t to y1 and y2 and setting them to zero we obtain two stationarypoints:
(y1, y2) =

(

−1−
√

(k1 + k2)(k1(1 + k2(1− k3)2) + k2k2
3)√

k1 + k2(k1 + k2k3)
,
−1− k2(1− k3)−

√

(k1 + k2)(k1(1 + k2(1− k3)2) + k2k2
3)

1 + k1 + k2

)

,(C.9a)
(y1, y2) =

(

−1 +

√

(k1 + k2)(k1(1 + k2(1− k3)2) + k2k2
3)√

k1 + k2(k1 + k2k3)
,
−1− k2(1− k3) +

√

(k1 + k2)(k1(1 + k2(1− k3)2) + k2k2
3)

1 + k1 + k2

)

.(C.9b)The 
oordinate in (C.9a) is a lo
al maximum. It is positioned outside the feasible area sin
e bothits y1-
oordinate and its y2-
oordinate are negative. The 
oordinate in (C.9b) is a lo
al minimum. Thispoint is positioned outside the feasible area be
ause for this 
oordinate it holds that y1 + y2 ≤ 0. Weproof this below:
y1 + y2 =

−√
k1 + k2 +

√

k1(1 + k2(1− k3)2) + k2k23√
k1 + k2

.139



Thus, y1 + y2 ≤ 0 if k1 + k2 ≥ k1(1 + k2(1 − k3)
2) + k2k

2
3 . Below we prove that this is indeed the
ase:

k1 + k2 ≥ k1(1 + k2(1− k3)
2) + k2k

2
3 ,

k2 ≥ k1k2(1− k3)
2 + k2k

2
3 ,

1 ≥ k1(1− k3)
2 + k23 .Thus, both stationary points (the lo
al maximum as the lo
al minimum) 
annot be positioned inthe feasible area of the 
onstrained optimization problem. As a result, one of the 
onstraints b1 until

b7 must be a
tive, i.e. the 
onstrained minimizer is positioned on a boundary of the feasible area.Feasible area In Figure C.5 we 
an see all 
onstraints of the optimization problem. In this �gure allboundaries of the 
onstraints are positioned in the feasible area. However, this does not have to be the
ase. PSfrag repla
ements
y2

y1(0, 0)

ymin
2

ymin
1

b4 b3 b6

b7

b1

b5

ymax
2

ymax
1

feasible area b2

Figure C.5: Feasible area of the optimization problem.Writing the boundaries of the 
onstraints bi, i = 1, 2, 3 in the form y2 = aiy1 + bi gives us:
a1 =

α2

1− α2
> 0,

a2 =
α3

1− α3
> 0,

a3 =
1− α1

α1
> 0. (C.10)Lemma C.3 The boundary of 
onstraint b2, i.e. the line y2 = α3y1+k3

1−α3
− 1, 
ould be positioned in thefeasible area only if α3 ≥ α2. In this 
ase it holds that a3 ≥ a2.Proof. When we write the 
onstraints bi, i = 1, 2 in the form y2 = aiy1 + bi we get:
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a1 =
α2

1− α2
,

a2 =
α3

1− α3
,

b1 =
α2

1− α2
,

b2 =
k3

1− α3
− 1.When α3 < α2 it holds that b1 − b2 = 1

1−α2
− k3

1−α3
< 0. In this 
ase it holds that a2 > a1 and theboundary of 
onstraint b2 
annot be positioned in the feasible area. This situation is shown in FigureC.6.Hen
e, boundary of 
onstraint b2, i.e. the line y2 = α3y1+k3

1−α3
− 1, 
ould be positioned in the feasiblearea only if α3 ≥ α2. In this 
ase it holds that a3 ≥ a2.

PSfrag repla
ements
y1

y2

b1

b2

a1

a2

1

1

Figure C.6: The boundary of 
onstraint b2 
ould only be positioned in the feasible area whenever
α2 > α1.Upper bounds We 
an derive:

∂J

∂y1
+

∂J

∂y2
=

2y1 + k2(k3 + y1)(y2 + (1− k3)) + (k1 + (k1 + 1)y1)y2
(1 + y1 + y2)2

.We 
an see that ∂J
∂y1

+ ∂J
∂y2

> 0 if y1 > 0 ∧ y2 ≥ 0. Hen
e, on the boundary of 
onstraint b6 and
b7 and in the feasible area we 
an always de
rease the linear 
ost fun
tion J by moving towards the
y1 − axis or y2 − axis. As a 
onsequen
e, the global 
onstrained minimum 
an only be positioned on aboundary of 
onstraint b1, b2, b3, b4 or b5.Un
onstrained minimum on a line 141



Lemma C.4 On the line y2 = ay1 + by1 were a, b ∈ R
+, the linear 
ost fun
tion J has two stationarypoints: a lo
al (un
onstrained) minimum and a lo
al (un
onstrained) maximum. The y1-position of thelo
al minimum 
ould be non-negative. The y1-position of the lo
al maximum 
ould not. The position ofthe lo
al (un
onstrained) minimum on the line y2 = ay1 + by1 is:

yunc,min
1 = − (1 + b)

1 + a
+

√

(1 + b)2 + k1(a− b)2 + k2((1 + a)k3 − (1 + b))2

(1 + a)
√
a2 + k1 + k2

. (C.11)Proof. In Figure C.7 we give an overview of what we are about to prove. In this �gure we 
an see thefollowing:- A lo
al (un
onstrained) maximum at y1 = root1 = − (1+b)
1+a −

√
(1+b)2+k1(a−b)2+k2((1+a)k3−(1+b))2

(1+a)
√
a2+k1+k2

< 0.- An asymptote at −(1+b)
1+a

< 0.- A lo
al (un
onstrained) minimum at y1 = root2 = − (1+b)
1+a

+

√
(1+b)2+k1(a−b)2+k2((1+a)k3−(1+b))2

(1+a)
√
a2+k1+k2

.

PSfrag repla
ements
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root1
−(1+b)
1+a

< 0

root2

y1Figure C.7: Overview of this proof.Using y2 = ay1 + b and (C.1a) we obtain the following equation for J :
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J =
tC + ty1y1 + ty2

1
y21

nC + ny1y1
, (C.12)

tC = (1 + b)2 + k2k
2
3 ,

ty1 = 2(a(1 + b) + k1 + k2k3),

ty2
1
= a2 + k1 + k2,

nC = 1 + b,

ny1 = 1 + a. (C.13)Note that |J | goes to in�nity for y1 → −(1+b)
1+a < 0, i.e. there is an asymptote at y1 = −(1+b)

1+a < 0.When taking the derivative with respe
t to y1 we obtain:
dJ

dy1
=

nCty1 − tCny1 + 2nCty2
1
y1 + ny1ty2

1
y21

nC + ny1y1
. (C.14)We 
an �nd the y1-position of the stationary points of (C.12) by setting the denominator of (C.14)equal to zero. By using the ab
-equation and after some rewriting we 
an �nd expressions for the twostationary points: root1 and root2.

root1 = − (1 + b)

1 + a
−
√

(1 + b)2 + k1(a− b)2 + k2((1 + a)k3 − (1 + b))2

(1 + a)
√
a2 + k1 + k2

< 0,

root2 = − (1 + b)

1 + a
+

√

(1 + b)2 + k1(a− b)2 + k2((1 + a)k3 − (1 + b))2

(1 + a)
√
a2 + k1 + k2

.Note that these roots are real (not imaginary) sin
e (1+b)2+k1(a−b)2+k2((1+a)k3−(1+b))2 > 0.We 
an see that root1 is smaller than the asymptote. The other stationary point root2 is larger thanthe asymptote.We 
an easily see that root1 is a maximum and root2 is a minimum be
ause the obje
tive fun
tionin (C.12) goes to ∞ for y1 → ∞ and the obje
tive fun
tion in (C.12) goes to −∞ for y1 → −∞.Hen
e, the root yunc,min
1 that 
orresponds to the un
onstrained minimum on the line y2 = ay1 + bis equal to:
− (1 + b)

1 + a
+

√

(1 + b)2 + k1(a− b)2 + k2((1 + a)k3 − (1 + b))2

(1 + a)
√
a2 + k1 + k2

. (C.15)Similarly to the proof of Lemma C.1 we 
an �nd that on the line y1 = ay2 + b, where a, b ∈ R
+,the linear 
ost fun
tion J has two stationary points: a lo
al (un
onstrained) minimum and a lo
al(un
onstrained) maximum. The y2-position of the lo
al minimum 
ould be non-negative. The y1-position of the lo
al maximum 
ould not. The position of the lo
al (un
onstrained) minimum on theline y1 = ay2 + b is:

yun
, min
2 = − (1 + b)

1 + a
+

√

k1(1 + b)2 + k2((k3 − 1)(1 + a) + (1 + b))2 + (a− b)2

(1 + a)
√

1 + a2(k1 + k2)
. (C.16)143



Using (C.11) and (C.16) we 
an �nd the un
onstrained minima on the boundaries of the 
onstraints
b1 until b4. By writing the boundaries of these 
onstraint in the form y1 = ay2 + b, a, b ∈ R

+ or
y2 = ay1 + b, a, b ∈ R

+ we have obtained the following expressions for ybi(k1) =
(

ybi
1
(k1), y

bi
2
(k1)

),
i = 1, ..., 5, whi
h is the (y1, y2)−position of the minimum on the boundary of 
onstraint bi:

yb1(k1) =

(

−1 +
(1− α2)

√

1 + k2(1− k3)2
√

(k1 + k2)(1 − α2)2 + α2
2

,
α2

√

1 + k2(1− k3)2
√

(k1 + k2)(1 − α2)2 + α2
2

)

, (C.17a)
yb2(k1) =

(

−k3 +
(1 − α3)

√

k1(1− k3)2 + k23
√

(k1 + k2)(1 − α3)2 + α2
3

,−(1− k3) +
α3

√

k1(1− k3)2 + k23
√

(k1 + k2)(1 − α3)2 + α2
3

)

, (C.17b)
yb3(k1) =

(

√

k1 + k2k23α1
√

(k1 + k2)α2
1 + (1− α1)2

,−1 +

√

k1 + k2k23(1 − α1)
√

(k1 + k2)α2
1 + (1− α1)2

)

, (C.17
)
yb4(k1) =

(

ymin
1 ,−(1 + ymin

1 ) +
√

(ymin
1 )2 + k1(1 + ymin

1 )2 + k2(ymin
1 + k3)2

)

, (C.17d)
yb5(k1) =

(

−(1 + ymin
2 ) +

√

(1 + ymin
2 )2 + k1(ymin

2 )2 + k2(1 + ymin
2 − k3)2√

k1 + k2
, ymin

2

)

. (C.17e)We 
an see that yb3
2
(k1) ≤ 0 be
ause√k1 + k2k23(1−α1) ≤ (1−α1) and√(k1 + k2)α2

1 + (1− α1)2 ≥
(1− α1). Hen
e at least one of the boundaries bi i = 1, 2, 4, 5 must be a
tive.Monotoni
ity For now we are going to 
onsider the optimization problem with only 
onstraints
bi,i = 1, 2, 4, 5, i.e. for the moment we forget about 
onstraints b3, b6 and b7 (see Figure C.8). Notethat the three lines 
an interse
t in di�erent ways.PSfrag repla
ements
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ymin
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ymin
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Figure C.8: Whenever we 
onsider only 
onstraints b1,b2,b4 and b5 and we in
rease k1 (in the range
[0, 1]), the position of the 
onstraint minimizer follows the arrows annotated to the boundaries.Theorem C.1 When we 
onsider the 
onstrained problem with the obje
tive shown in (C.7) and 
on-straints bi, i = 1, 2, 4, 5 the arrows annotated to the boundaries of 
onstraints bi , i = 1, 2, 4, 5 shown inFigure C.8 visualize the dire
tion in whi
h the 
onstrained minimum moves when in
reasing k1 (in therange [0, 1]). 144



Proof. Before we prove Theorem C.1 we �rst prove some lemma's.Lemma C.5 The 
onstraint minimum ybi(k1), i = 1, 4, 5 moves in the dire
tion shown in Figure C.8when in
reasing k1.Proof. We 
an derive:
∂yb1

1

∂k1
= − (1− α2)

2
√

1 + k2(1 − k3)2

2((k1 + k2)(1− α2
2) + α2

2)
1.5

< 0,

∂yb4
2

∂k1
=

(1 + ymin
1 )2

2
√

(ymin
1 )2 + k1(1 + ymin

1 )2 + k2(k3 + ymin
1 )2

> 0,

∂yb5
1

∂k1
= − k2(1 − k3)(1 − k3 + 2ymin

2 ) + (1 + ymin
2 )2

2(k1 + k2)1.5
√

k1ymin2

2 + (1 + ymin
2 )2 + k2(1− k3 + ymin

2 )2
< 0.Thus, the derivatives ∂yb1

1

∂k1
, ∂yb4

2

∂k1
and ∂yb5

1

∂k1
are a

ordan
e with the arrows in Figure C.8.Lemma C.6 When yb2

1
(k1) ≥ 0 and yb2

2
(k1) ≥ 0 then it must hold that k3 > α3.Proof. Lets assume that yb2

1
(k1) ≥ 0 ∧ yb2

2
(k1) ≥ 0 is also possible when k3 ≤ α3. First we derive thatif yb2

1
(k1) ≥ 0 ∧ yb2

2
(k1) ≥ 0 was possible when k3 ≤ α3 then it must hold that k3 < 1 − α3. Hereafterwe derive that when k3 ≤ α3 and k3 ≤ 1 − α3 it holds that yb2

2
< 0. Hen
e, yb2

1
(k1) ≥ 0 ∧ yb2

2
(k1) ≥ 0
ould not o

ur when k3 ≤ α3. In 
ase yb2

1
(k1) ≥ 0 ∧ yb2

2
(k1) ≥ 0 it must hold that:

yb2
1

+ yb2
1

= −1 +

√

k1(1 − k3)2 + k23
√

(k1 + k2)(1 − α3)2 + (1 − α1)2
≥ 1. (C.18)(C.19)This be
ause otherwise either yb2

1
is negative, yb2

2
is negative or both are negative and the un
on-strained minimum yb2(k1) 
ould not be positioned in the feasible area. Lets use:

q =

√

k1(1− k3)2 + k23
√

(k1 + k2)(1− α3)2 + α2
1

. (C.20)We 
an derive that:
∂q

∂k2
= − (1 − α3)

2
√

k1(1− k3)2 + k23
2(a23 + (1− a3)2(k1 + k2))1.5

< 0.Hen
e, it holds that:
√

k1(1− k3)2 + k23
√

k1(1− α3)2 + α2
1

< q.For k2 = 0 we 
an derive: 145



∂q

∂k1
=

(1− k3)
2α2

3 − (1− α3)
2k23

2(k1(1− α3)2 + a23)
1.5
√

k1(1 − k3)2 + k23
.We know ∂q

∂k1
≥ 0 be
ause k3 ≤ α3. Hen
e it holds that:

√

(1− k3)2 + k23
√

(1 − α3)2 + α2
1

≥
√

k1(1 − k3)2 + k23
√

k1(1− α3)2 + α2
1

> q.Hen
e, when q ≥ 1 it must hold that:
(1− k3)

2 + k23 > (1− α3)
2 + α2

1. (C.21)In Figure (C.9) we 
an see the fun
tion f(x) = (1 + x)2 + x2 for 0 ≤ x ≤ 1. We 
an see that thisfun
tion is symmetri
 around the line x = 0.5. Both x′, 0 ≤ x′ ≤ 1 and 1− x′ result in the same value
f(x′). From this �gure we 
an easily see that when k3 ≤ α3 and α3 ≥ 0.5 then f(k3) > f(α3) 
ouldonly hold if k3 < 1 − α3. Hen
e, when k3 ≤ α3, (C.18) 
ould only be satis�ed when it also holds that
k3 < 1− α3 (for the 
ase where α3 < 0.5 it also holds that k3 < 1− α3 be
ause k3 ≤ α3).PSfrag repla
ements
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onstrained minimum yb2(k1) is positioned in the feasible then itmust hold that k3 < 1− α3. Lets distinguish the two situations below:situation 1 k3 ≤ α3 < 1− α3. In this situation it holds that α3 ≤ 0.5.situation 2 k3 < 1− α3 ≤ α3. In this situation it holds that α3 > 0.5.For both situations we 
an show that the y2 
oordinate of the un
onstrained minimum yb2(k1) isnegative. As a result the un
onstrained minimum yb2(k1) 
ould not be positioned in the feasible areawhen k3 ≤ α3.Situation 1 From (C.17b) we 
an obtain that:
∂yb2

2

∂k3
= 1− α3

α2
3 + (1− α3)2k2

k1(1 − k3)− k3
√

k2(1− k3)2 + k23
> 0.Hen
e, we 
an derive:
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yb2
2

=− (1− k3) +
α3

√

k1(1− k3)2 + k23
√

(k1 + k2)(1− α3)2 + α2
3

,

yb2
2

≤− (1− α3) +
α3

√

k1(1− α3)2 + α2
3

√

(k1 + k2)(1− α3)2 + α2
3

,

yb2
2

≤− 1 + α3(1 +

√

k1(1− α3)2 + α2
3

√

(k1 + k2)(1− α3)2 + α2
3

),

yb2
2

<− 1 + 2α3,

yb2
2

<0.In the �rst step we used k3 = α3. Hen
e, in situation 1 the un
onstrained minimum yb2(k1) 
ouldnot be positioned in the feasible area.Situation 2 In situation 2 we 
an derive:
yb2
2

=− (1 − k3) +
α3

√

k1(1 − k3)2 + k23
√

(k1 + k2)(1− α3)2 + α2
3

,

yb2
2

≤− α3 +
α3

√

k1α2
3 + (1− α3)2

√

(k1 + k2)(1− α3)2 + α2
3

,

yb2
2

≤α3(

√

k1α2
3 + (1 − α3)2

√

(k1 + k2)(1 − α3)2 + α2
3

− 1).Using k2(1 − α3)
2 ≥ 0 and 1 − α3 < α3 we 
an derive that √

k1α2
3+(1−α3)2√

(k1+k2)(1−α3)2+α2
3

< 1. Hen
e, insituation 2 it holds that yb2
2

< 0 and the un
onstrained minimum yb2(k1) 
ould not be positioned in thefeasible area.Lemma C.7 When the un
onstrained minimum yb2(k1) is in the feasible area, it moves in the dire
tionshown in Figure C.8 when in
reasing k1 (in the range [0, 1]).Proof. In this lemma we prove that ∂yb2
1

∂k1
< 0 whenever the un
onstrained minimum yb2 is positionedin the feasible area.We do so by proving that ∂yb2

1

∂k1
≥ 0 
ould only o

ur if yb2

1
+ yb2

2
< 0. If yb2

1
+ yb2

2
< 0 then the

y1-
oordinate or the y2-
oordinate of yb2 is negative (and thus yb2 is positioned outside the feasiblearea).We 
an derive the following expression for ∂yb2
1

∂k1
:

k2(1− α3)
2(1− k3)

2 − (k3 − α3)(α3(1 − k3) + k3(1 − α3))

2(1− α3)((k1 + k3)(1 − α3)2 + α2
3)

1.5
√

k23 + k1(1− k3)2
.
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We 
an see that:
∂yb2

1

∂k1
< 0 if k2 < h,

∂yb2
1

∂k1
= 0 if k2 = h,

∂yb2
1

∂k1
> 0 if k2 > h,where

h =
(k3 − α3)(α3(1− k3) + k3(1 − α3))

(1− k3)2(1− α3)2
.From Lemma C.6 we know that yb2

1
> 0 ∧ yb2

1
> 0 is only possible when k3 > α3. Hen
e, it holdsthat h > 0. When h > 1 it holds that ∂yb2

1

∂k1
< 0 be
ause k2 ≤ 1. We still have to proof that ∂yb2

1

∂k1
< 0for h < 0 ≤ 1. We do so by proving that 0 < h ≤ 1 and k2 ≥ h is not possible.We 
an derive the following:

∂(yb2
1

+ yb2
2
)

∂k2
= −

√

k1(1− k3)2 + k23(1− α3)
2

((k1 + k2)(1 − α3)2 + α2
3)

1.5
< 0.Therefore, when 0 < h ≤ 1 and k2 ≥ h it holds:

yb2
1

+ yb2
1

= −1 +

√

k1(1− k3)2 + k23
√

(k1 + k2)(1 − α3)2 + (1− α1)2

≤ −1 +
1− k3
1− α3

< 0.We used k2 = h whi
h is the smallest value for k2 satisfying 0 < h ≤ 1 and k2 ≥ h. When 0 < h ≤ 1and k2 ≥ h this value for k2 results is the largest value for yb2
1

+ yb2
1

sin
e ∂(yb2
1

+yb2
2

)

∂k2
< 0. In the laststep we used k3 > α3.Thus, when the un
onstrained minimum yb2(k1) is in the feasible area it holds that ∂yb2

1

∂k1
< 0. Thus,the un
onstrained minimum yb2(k1) it moves in the dire
tion shown in Figure C.8 when in
reasing k1(in the range [0, 1]).From now on we use yi=j =

(

yi=j
1 , yi=j

2

) for the 
oordinate of the interse
tion of the boundary of
onstraint bi and the boundaries of 
onstraint bj . Further we use ki,j , i, j = 1, ..., 7 for the value of k1for whi
h ybi is positioned at yi=j .Lemma C.8 Whenever the 
oordinate y1=2 is positioned in the feasible area and 0 ≤ k2,1 ≤ 1, it holdsthat k1,2 ≥ k2,1.Proof. We 
an obtain y1,2 =
(

(1−α3)−k3(1−α2)
α3−α2

, (1−k3)α2

α3−α2

). From y2,32 ≥ 0 we 
an obtain that α2 ≤ α3and from y2,31 ≥ 0 we 
an obtain that k3 ≤ (1−α3)
1−α2

.148



Furthermore, we know from Lemma C.6 that if yb2
1
(k1) ≥ 0 ∧ yb2

2
(k1) ≥ 0 then it must hold that

k3 > α3. Hen
e, we know that when y1=2 is positioned in the feasible area then 0 ≤ k2,1 ≤ 1 holds onlywhen k3 > α3.Thus, we have to prove that k1,2 − k2,1 ≥ 0 whenever α2 ≤ α3 ≤ k3 ≤ (1−α3)
1−α2

. Note that this alsomeans that α3 ≤ 1
2−α2

. We 
an derive that:
k1,2 = −k2(1− α3)(1 − k3)

2((1− α2) + (α3 − α2)) + α2
2(1− k3)

2 − (α3 − α2)
2

(1− α2)2(1− k3)2
,

k2,1 = −k2(1− k3)
2(1− α3)

2 + (α3 − k3α2)((1 − k3)α3 − k3(α3 − α2))

(1− k3)2(1− α2)((1 − α3)− (α3 − α2))
.We 
an derive:

k1,2 − k2,1 =
2(α3 − α2)

2(1− α3)

(1− α2)2((1 − α3)− (α3 − α2))
k2,

+
2(α3 − α2)(α3 − k3α2)((1 − k3)− (α3 − α2))

(1− k3)2(1− α2)2((1 − α3)− (α3 − α2))
≥ 0.We 
an see that k2,31 − k3,21 ≥ 0 by using α3 ≥ α2 and be
ause:

(1− α3)− (α3 − α2) ≥ (1− k3)− (α3 − α2) ≥
α2(α3 − α2)

1− α2
≥ 0.We shortly elaborate on the result of Lemma C.8. Lets 
onsider the optimization problem withobje
tive fun
tion (C.7) and we want to �nd the 
onstrained minimum on the boundary of either b1 oron the boundary of b2 (see Figure C.10). Thus, we want to solve the following optimization problem:Obje
tive fun
tion:

J(y1, y2) =
(1 + y2)

2 + k1(1 + y1)
2 + k2(k3 + y1)

2

1 + y1 + y2
.Constraint:

y2 ≥ α2

1− α2
(1 + y1),

y2 ≥ α3y1 + k3
1− α3

− 1,

y2 =
α2

1− α2
(1 + y1) ∨ y2 =

α3y1 + k3
1− α3

− 1.For 0 ≤ k1 ≤ 1 it holds that the 
onstraint minimum is positioned on the line y2 = α3y1+k3

1−α3
− 1 (theboundary of 
onstraint b2) if k1 < k2,1 for k2,1 ≤ k1 ≤ k1,2 the 
onstrained minimum is positioned onthe interse
tion of the two lines and for k1 > k1,2 the 
onstrained minimum is positioned on the line

y2 = α2

1−α2
(1+ y1) (the boundary of 
onstraint b1). Thus, when in
reasing k1 the 
onstrained minimummoves along the arrows (see Figure C.10).Lemma C.9 Whenever the 
oordinate y1=5 is positioned in the feasible area, it holds that k5,1 ≥ k1,5.149



PSfrag repla
ements
y2
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y1,2
b1

feasible area
b2

Figure C.10: The 
onstrained minimum moves is on the boundary of b2 for k1 < k2,1. For k2,1 ≤ k1 ≤
k1,2 the 
onstrained minimum is positioned on the interse
tion of the two boundaries and for k1 > k1,2the 
onstrained minimum is positioned on the boundary of b1.Proof. We 
an obtain y1,5 =

(

−1 + 1−α2

α2
ymin
2 , ymin

2

), whi
h 
ould only be positioned in the feasiblearea if ymin
2 ≥ α2

1−α2
.

k5,11 =
α2((1 + ymin

2 )2 + k2(1− k3 + ymin
2 )2)− k2y

min2

2

(1− α2
2)y

min2

2

,

k1,51 =
(1 + k2(1− k3)

2)α2
2 − (k2(1− α2)

2 + α2
2)y

min2

2

(1− α2)2ymin2

2

.Using ymin
2 ≥ α2

1−α2
we 
an �nd:

k5,11 − k1,51 =
2α2

2(y
min
2 (1 + k2(1 − k3) + (1− α2)y

min
2 )− α2(1 + k2(1− k3)(1− k3 + ymin

2 ))

(1 − α2)2(1 + α2)(ymin
2 )2

≥ 2α2
2(y

min
2 (1 + k2(1 − k3) + (1− α2)y

min
2 )− ymin

2 (1− α2)(1 + k2(1− k3)(1 − k3 + ymin
2 )))

(1− α2)2(1 + α2)(ymin
2 )2

≥ 2α2
2y

min
2 (ymin

2 (1− α2)(1− k2(1− k3)) + α2(1 + k2(1 − k3)
2) + k2(1− k3)k3)

(1− α2)2(1 + α2)(ymin
2 )2

≥ 0.Lemma C.10 Whenever the 
oordinate y1=4 is positioned in the feasible area, it holds that k4,1 ≥ k1,4.We 
an obtain:
k1,41 = − α2

2

(1− α2)2
− 1− k2(2− k3 − ymin

1 )(k3 + ymin
1 )

(1 + ymin
1 )2

,

k4,11 =
1− k2(1 − α2)

2(k3 + ymin
1 )2 + ymin

1 (2 + (2− α2)α2y
min
1 )

(1− α2)2(1 + ymin
1 )2

. (C.22)we 
an obtain:
k4,11 − k1,41 =

2(α2 + ymin
1 (1 + α2) + k2(1 − k2)(1 − α2)

2(k3 + ymin
1 ))(1 + α2y

min
1 )

(1− α2)2(1 + ymin
1 )2

≥ 0.150



Lemma C.11 Whenever the 
oordinate y2=5 is positioned in the feasible area and 0 ≤ k2,5 ≤ 1, itholds that k5,2 ≥ k2,5.From Lemma C.6 we know that the minimum on the boundary of b2 
an only be positioned in thefeasible area whenever k3 ≥ α3. We 
an obtain y5,2 =
(

−k3+(1−α3)(1+ymin
2 )

α3
, ymin

2

), whi
h 
ould only bepositioned in the feasible area whenever k3 ≤ (1 + α3)(1 + ymin
2 ).Thus, we have to prove that k5,2 − k2,5 ≥ 0 whenever α3 ≥ α3 ≥ (1 + α3)(1 + ymin

2 ). Note that thisalso means that α3 ≤ 1
2−α2

. We 
an derive that α3 ≤ 1+ymin
2

2+ymin
2

:
k3,41 = − (1− α3)

2(1− k3 + ymin
2 )2

(1− k3 + (1 − α3)ymin
2 )(−k3(1− α3)− α3(1− k3) + (1 + ymin

2 )(1 − α3))
k2

+− α2
3(1− 2k3 + ymin

2 )(1 + ymin
2 )

(1− k3 + (1− α3)ymin
2 )(−k3(1− α3)− α3(1− k3) + (1 + ymin

2 )(1− α3))
,

k4,31 = − (1− α2
3)(1− k3 + ymin

2 )2

(1− k3 + (1 − α3)ymin
2 )(1− k3 + (1 + α3)ymin

2 )
≤ 0k2

α2
3(1 + ymin

2 )2

(1− k3 + (1− α3)ymin
2 )(1 − k3 + (1 + α3)ymin

2 )
.We 
an prove k5,21 − k2,51 ≥ 0 by using:

1− k3 − α3 + ymin
2 ≥ 1− 2α3 + ymin

2 ≥ 1− 2(1 + ymin
2 )

(2 + ymin
2 )

+ ymin
2 ≥ ymin

2 (1 + ymin
2 )

2 + ymin
2

≥ 0.and using:
1− k3 + (1− α3)y

min
2 ≥ (1 − k3)(1 − α3)− α3(1− k3) + (1− α3)y

min
2

≥ −k3(1 − α3)− α3(1− k3) + (1− α3)(1 + ymin
2 )

≥ −(1− α3)
2(1 + ymin

2 )− α3(1− α3)3) + (1− α3)(1 + ymin
2 )

≥ α3(1− α3)y
min
2 ≥ 0.we 
an �nd:

k5,21 − k2,51 =

(

(1− α3)
2(1− k3 + ymin

2 )2

(1− k3 + (1− α3)ymin
2 )(−k3(1− α3)− α3(1− k3) + (1 + ymin

2 )(1− α3))

− (1− α2
3)(1 − k3 + ymin

2 )2

(1− k3 + (1− α3)ymin
2 )(1 − k3 + (1 + α3)ymin

2 )
k2

)

k2

+
2α2

3(1− k3 + ymin
2 )(1− k3 − α3 + ymin

2 )(1 + ymin
2 )

(1− k3 + (1− α3)ymin
2 )(1 − k3 + (1 + α3)ymin

2 )(−k3(1 − α3)− α3(1− k3) + (1 + ymin
2 )(1 − α3))

≥ 0.Lemma C.12 Whenever the 
oordinate y2=4 is positioned in the feasible area 0 ≤ k2,4 ≤ 1, it holdsthat k4,2 ≥ k2,4. 151



From Lemma C.6 we know that the minimum on the boundary of b2 
an only be positioned in thefeasible area whenever k3 ≥ α3. We 
an obtain y2,4 =
(

ymin
1 ,

α3(1+ymin
1 )−(1−k3)
1−α3

), whi
h 
ould only bepositioned in the feasible area for k3 ≥ 1− α3(1 + ymin
1 ).Thus, we have to prove that k4,21 − k2,41 ≥ 0 whenever α3 ≤ k3 ∧ 1− α3(1 + ymin

1 ) ≤ 0.
k2,41 = − (k3 + ymin

1 )2

(1 + ymin
1 )(−1 + 2k3 + ymin

1 )
k2 −

(k3 + α3y
min
1 )(α3y

min
1 − k3(1− 2α3))

(1 − α3)2(1 + ymin
1 )(−1 + 2k3 + ymin

1 )
,

k4,21 = − (k3 + ymin
1 )2

(1 + ymin
1 )2

+
(k3 + (2− α3)y

min
1 )(k3 + α3y

min
1 )

(1 − α3)2(1 + ymin
1 )(−1 + 2k3 + ymin

1 )
.Using:

−1 + α3 + k3 + ymin
1 ≥ −1 + 2α3 + ymin

1

≥ (1 − α3)y
min
1 ≥ 0.we 
an �nd that:

k4,21 − k2,41 =
2(1− k3)(k3 + ymin

1 )2

(1 + ymin
1 )2(1 + 2k3 + ymin

1 )
k2

+
2(k3 + ymin

1 )(−1 + k3 + α3 + ymin
1 )(k3 + α3y

min
1 )

(1− α3)2(1 + ymin
1 )2(−1 + 2k3 + ymin

1 )
≥ 0.Lemma C.13 Whenever the 
oordinate y4=5 is positioned in the feasible area, it holds that k4,2 ≥ k2,4.We 
an �nd:

k4,51 =
−k2(k3 + ymin

1 )2 + (1 + ymin
2 )(1 + 2ymin

1 + ymin
2 )

(1 + ymin
1 )2

,

k5,41 =
k2(k3 + ymin

1 )(k3 − 2(1 + ymin
2 )− ymin

1 ) + (1 + ymin
2 )2

(1 + ymin
1 )(1 + ymin

1 + 2ymin
2 )

.From these expressions for k4,51 and k5,41 we 
an derive:
k4,51 − k5,41 =

2(1 + ymin
1 + ymin

2 )(k2(1− k3)(k3 + ymin
1 ) + (1 + ymin

2 )(ymin
1 + ymin

2 ))

(1 + ymin
1 )(1 + ymin

1 + 2ymin
2 )

. ≥ 0Combining Lemma C.5 until Lemma C.13 we 
an see that the arrows annotated to the boundariesof 
onstraints bi , i = 1, 2, 4, 5 shown in Figure C.8 visualize the dire
tion in whi
h the 
onstrainedminimum moves when in
reasing k1 (in the range [0, 1]) when we 
onsider the 
onstrained problem withthe obje
tive shown in (C.7) and 
onstraints bi, i = 1, 2, 4, 5.Lets again 
onsider the optimization problem with 
onstraints b1 until b7. We know that the 
on-strained minimum is positioned on the boundary of b1, b2 ,b4 or b5. We 
an obtain expressions forthe 
onstraint minimum on ea
h of these lines. We use kmin
i for the smallest value for k su
h that theun
onstrained minimum ybi(k) is positioned in the feasible area. We use kmax

i for the largest value for k152



su
h that the un
onstrained minimum ybi(k) is positioned in the feasible area. Whenever the boundaryof 
onstraint bi is not positioned in the feasible area (and hen
e there is no 
onstrained minimum onthis boundary) it holds that kmin
i > kmax

i . Below we give the expressions for kmin
i , i = 1, 2, 4, 5 and

kmax
i . Note that in these expressions zmin

i , i = 1, 2, 4, 5 and zmax
i , i = 1, 2, 4, 5 a
tually refer to positionswhere bi interse
ts with another boundary. From the expressions for zmin

i and zmax
i we 
an 
al
ulate

kmin
i . Re
all that for α3 ≤ α2 the boundary of b3 is always positioned below the boundary of b2. Thus,the boundary of α3 ≤ α2 is not positioned in the feasible area.Constrained minimum on the boundary of b1:

yb2(kmin
1 ) if k1 ≤ kmin

1 ≤ kmax
1 ,

yb2(k1) if kmin
1 ≤ k1 ≤ kmax

1 ,

yb2(kmax
1 ) if kmin

1 ≤ kmax
1 ≤ k1,where

ki1 =− α2
2

(1− α2)2
+

1− k2(2− k3 + zi1)(k3 + zi1)

(1 + zi1)
2

, i ∈ {min,max},

zmin
1 =

{

min{ymax
1 , 1−α2

α2
ymax
2 − 1, 1−k3(1−α2)−α3

α3−α2
} if α3 > α2,

min{ymax
1 , 1−α2

α2
ymax
2 − 1} if α3 ≤ α2,

zmax
1 =max{ymin

1 ,
1− α2

α2
ymin
2 − 1,

α1

1− α1 − α2
}.Constrained minimum on the boundary of b2:

yb1(kmin
2 ) if k1 ≤ kmin

2 ≤ kmax
2 ,

yb1(k1) if kmin
2 ≤ k1 ≤ kmax

2 ,

yb1(kmax
2 ) if kmin

2 ≤ kmax
2 ≤ k1,where

ki2 =

{

k2
3(1−α3)

2−(zi
2+k3)

2(k2(1−α3)
2+α2

3)

(1+zi
2)(−1+zi

2+2k3)(1−α3)2
if α3 > α2,

−∞ if α3 ≤ α2, i ∈ {min,max},

zmin
2 =min{ymax

1 ,
−k3 + (1− α3)(1 + ymax

2 )

α3
},

zmax
2 =max{ymin

1 ,
−k3 + (1− α3)(1 + ymin

2 )

α3
,

k3α1

1− α1 − α3
,
1− k3(1− α2)− α3

α3 − α2
}.Constrained minimum on the boundary of b4:

yb4(kmin
4 ) if k1 ≤ kmin

4 ≤ kmax
4 ,

yb4(k1) if kmin
4 ≤ k1 ≤ kmax

4 ,

yb4(kmax
4 ) if kmin

4 ≤ kmax
4 ≤ k1, 153



where
ki4 =

−k2(k3 + ymin
1 )2 + (1 + zi4)(1 + 2ymin

1 + zi4)

(1 + ymin
1 )2

, i ∈ {min,max},

zmin
4 =min{ymin

2 ,
ρ2

1− ρ2
(1 + ymin

1 ),
ρ3y

min
1 + k3
1− ρ3

− 1},

zmax
4 =max{ymax

2 ,−1 +
1− ρ1
ρ1

ymin
1 }.Constrained minimum on the boundary of b5:

yb5(kmin
5 ) if k1 ≤ kmin

5 ≤ kmax
5 ,

yb5(k1) if kmin
5 ≤ k1 ≤ kmax

5 ,

yb5(kmax
5 ) if kmin

5 ≤ kmax
5 ≤ k1,where

ki5 =
(1 + ymin

2 )2 + k2(k3 − 2(1 + ymin
2 )− zi5)(k3 + zi5)

(1 + zi5)(1 + 2ymin
2 + zi5)

, i ∈ {min,max},

zmin
5 =min{ymax

1 ,
1− α2

α2
ymin
2 − 1,

−k3 + (1 − α3)(1 + ymin
2 )

α3
},

zmax
5 =max{ymin

1 ,
α1

1− α1
(1 + ymin

2 )}. (C.23)Using Lemma C.2 we 
an �nd an analyti
al solution for the position of the 
onstrained minimizer
(

ycon,min
1 , ycon,min

2

):
(

ycon,min
1 , ycon,min

2

)

=



















































































yb2(kmin
2 ) if k1 ≤ kmin

2 ≤ kmax
2 ,

yb2(k1) else if kmin
2 < k1 < kmax

2 ,
yb2(kmax

2 ) else if kmax
1 < kmin

1 ∧ kmax
5 < kmin

5 ∧ kmax
4 < kmin

4 ,

yb1(kmin
1 ) else if k1 ≤ kmin

1 ≤ kmax
1 ,

yb1(k1) else if kmin
1 < k1 < kmax

1 ,
yb1(kmax

1 ) else if kmax
5 < kmin

5 ∧ kmax
4 < kmin

4 ,
yb5(kmin

5 ) else if k1 ≤ kmin
5 ≤ kmax

5 ,

yb5(k1) else if kmin
5 < k1 < kmax

5 ,
yb5(kmax

5 ) else if kmax
4 < kmin

4 ,
yb4(kmin

4 ) else if k1 ≤ kmin
4 ≤ kmax

4 ,
yb4(k1) else if kmin

4 < k1 < kmax
4 ,

yb4(kmax
4 ) otherwise.where

yb1(k1) =

(

−1 +
(1− α2)

√

1 + k2(1− k3)2
√

(k1 + k2)(1− α2)2 + α2
2

,
α2

√

1 + k2(1− k3)2
√

(k1 + k2)(1− α2)2 + α2
2

)
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yb2(k1) =

(

−k3 +
(1− α3)

√

k1(1 − k3)2 + k23
√

(k1 + k2)(1− α3)2 + α2
3

,−(1− k3) +
α3

√

k1(1− k3)2 + k23
√

(k1 + k2)(1− α3)2 + α2
3

)

,

yb4(k1) =

(

ymin
1 ,−(1 + ymin

1 ) +
√

(ymin
1 )2 + k1(1 + ymin

1 )2 + k2(ymin
1 + k3)2

)

,

yb5(k1) =

(

−(1 + ymin
2 ) +

√

(1 + ymin
2 )2 + k1(ymin

2 )2 + k2(1 + ymin
2 − k3)2√

k1 + k2
, ymin

2

)

,

ki1 = − α2
2

(1 − α2)2
+

1− k2(2 − k3 + zi1)(k3 + zi1)

(1 + zi1)
2

, i ∈ {min,max},

zmin
1 =

{

min{ymax
1 , 1−α2

α2
ymax
2 − 1, 1−k3(1−α2)−α3

α3−α2
} if α3 > α2

min{ymax
1 , 1−α2

α2
ymax
2 − 1} if α3 ≤ α2

,

zmax
1 = max{ymin

1 ,
1− α2

α2
ymin
2 − 1,

α1

1− α1 − α2
}

ki2 =

{

k2
3(1−α3)

2−(zi
2+k3)

2(k2(1−α3)
2+α2

3)

(1+zi
2)(−1+zi

2+2k3)(1−α3)2
if α3 > α2

−∞ if α3 ≤ α2

, i ∈ {min,max},

zmin
2 = min{ymax

1 ,
−k3 + (1 − α3)(1 + ymax

2 )

α3
},

zmax
2 = max{ymin

1 ,
−k3 + (1 − α3)(1 + ymin

2 )

α3
,

k3α1

1− α1 − α3
,
1− k3(1 − α2)− α3

α3 − α2
},

ki4 =
−k2(k3 + ymin

1 )2 + (1 + zi4)(1 + 2ymin
1 + zi4)

(1 + ymin
1 )2

, i ∈ {min,max},

zmin
4 = min{ymin

2 ,
ρ2

1− ρ2
(1 + ymin

1 ),
ρ3y

min
1 + k3
1− ρ3

− 1},

zmax
4 = max{ymax

2 ,−1 +
1− ρ1
ρ1

ymin
1 },

ki5 =
(1 + ymin

2 )2 + k2(k3 − 2(1 + ymin
2 )− zi5)(k3 + zi5)

(1 + zi5)(1 + 2ymin
2 + zi5)

, i ∈ {min,max},

zmin
5 = min{ymax

1 ,
1− α2

α2
ymin
2 − 1,

−k3 + (1− α3)(1 + ymin
2 )

α3
},

zmax
5 = max{ymin

1 ,
α1

1− α1
(1 + ymin

2 )}.C.3 Proof of Lemma 7.2Below we give the proof of Lemma 7.2. This lemma is given on page 74.Proof. Lets 
onsider a traje
tory de�ned on the time interval [0,∞) where a queue is not emptied atleast on
e or where the duration of the green periods is not always the same for a signal. Lets 
all thistraje
tory the 'original traje
tory'. In Figure C.11a we 
an see an example of the original traje
tory.
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We introdu
e the following notation for the average duration of gki , rki , gλ,ki and gµ,ki :
ḡi = lim

M→∞

M
∑

k=1

gki
M

, i ∈ N , (C.24a)
r̄i = lim

M→∞

M
∑

k=1

rki
M

, i ∈ N , (C.24b)
ḡλi = lim

M→∞

M
∑

k=1

gλ,ki

M
,i ∈ N , (C.24
)

ḡµi = lim
M→∞

M
∑

k=1

gµ,ki

M
,i ∈ N . (C.24d)(C.24e)We 
an propose an alternative traje
tory where a queue is always emptied during a green period andwhere the green time of a signal is always the same (see Figure C.11b). For this alternative traje
torywe take the green times and red times of signal i ∈ N equal to respe
tively ḡi and r̄i. We serve signal

i1 ∈ G1 during the red period of the signals in G2 and we serve i2 ∈ G2 during the red period of thesignals in G1.We 
an show that the 
osts J related to this alternative traje
tory are not greater than the 
ostsrelated to the original traje
tory.First we prove that the limits in (C.24) exist. We assume that the limits lim
M→∞

M
∑

k=1

gk
i

M , i ∈ N existand that the limits lim
M→∞

M
∑

k=1

rki
M
, i ∈ N exist (see Se
tion 7.2.3).Whenever signal i ∈ N satis�es λir̄i 6= (µi − λi)ḡ

µ
i for the original traje
tory, this means that thequeue length of queue i would go to ∞ or −∞ be
ause:

lim
t→∞

xi(t) = lim
M→∞

M
∑

k=1

(λir
k
i − (µi − λi)g

µ,k
i ) = lim

M→∞
M, (λir̄i − (µi − λi)ḡ

µ
i ).Note that we have used that ea
h green time of signal i is �nite. A queue length must be a non-negative number and therefore a traje
tory where a queue length goes to −∞ is not feasible. Further,whenever a queue length goes to ∞, the 
osts 
al
ulated with (7.1) are in�nite. Hen
e, it must holdthat:

λir̄i = (µi − λi)ḡ
µ
i , i = 1, 2. (C.25)Thus, the amount of tra�
 that arrives during a red period of signal i ∈ N is equal to λir̄i and we
an let this amount of tra�
 depart during a period equal to exa
tly ḡµi . As a result, from ḡi = ḡµi + ḡλiwe 
an obtain that for the alternative poli
y the length of the slow mode is equal to ḡλi during ea
hgreen period. From (C.25) we 
an see that ḡµi exists (be
ause r̄i exists) and from ḡi = ḡµi + ḡλi we knowthat ḡλi exists. Hen
e, ḡi, r̄i, ḡλi and ḡµi all exist.Also note that the alternative traje
tory is always feasible. First of all, the green periods of thealternative traje
tory (with duration ḡi) always take longer than the shortest green period of the original156



traje
tory. Se
ond of all, the green periods of the alternative traje
tory (with duration ḡi) always takeshorter than the longest green period of the original traje
tory. Furthermore, the maximum queuelength are less for the alternative traje
tory than for original traje
tory. As a result, whenever theoriginal traje
tory satis�es (7.3d) until (7.3k), the alternative traje
tory does as well.Now we prove that the 
osts related to the alternative traje
tory are not bigger than the 
osts of theoriginal traje
tory. We use bgµ,k
i

, k ≥ 1 and brki , k ≥ 1 for the time at whi
h the green period gki startsrespe
tively the time at whi
h the red period rki starts. Further, we use egµ,k
i

, k ≥ 1 for the time atwhi
h queue i is emptied during gki and we use erki , k ≥ 1 for the time at whi
h rki ends. We distinguishthree di�erent areas (see Figure C.11): Ak
1 ,k ≥ 1, Ak

2 , k ≥ 1 and Ak
3 , k ≥ 1.

Ak
1 =

∫ e
g
µ,k
i

b
g
µ,k
i

(xi(t)− xi(bgµ,k
i

))dt, k ≥ 1,

Ak
2 =

∫ e
rk
i

b
rk
i

(xi(t)− xi(erki ))dt, k ≥ 1,

Ak
3 = xi(bgµ,k

i
)(egµ,k

i
− bgµ,k

i
) + xi(erki )(erki − brki ), k ≥ 1.In Figure C.11, Ak

1 is visualized in dark gray, Ak
2 is visualized in medium gray and Ak

3 is visualizedin light gray.
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On the left side of Figure C.12b we 
an see Ak
1 and Ak+1

1 plotted for the shifted original traje
tory.Without loss of generality we 
an assume that the �rst red period rki is longer than the se
ond redperiod rk+1
i for two adja
ent red periods. When we take both green times equal to rki +rk+1

i

2 we get theareas Ak
1 and Ak+1

1 as 
an be seen on the right side of Figure C.12b. We 
an see that the dark gray areasare the same and that the medium gray areas di�er (the di�eren
e is the light gray area). Sin
e fi isstri
tly in
reasing, taking the red time of two adja
ent red periods equal to ea
h other 
annot in
reasethe 
osts related to the red periods of signal i. Hen
e, taking all red periods equal to ea
h other 
annotin
rease the 
osts related to the red periods of signal i. Note, that the 
osts, of this shifted traje
torywhere all red periods are equal to ea
h other, are exa
tly the 
osts made during the red periods of thealternative traje
tory. Thus, the 
osts related to the red periods of the alternative traje
tory 
annot bebigger than the 
osts related to the red periods of the original traje
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alternative traje
tory are not bigger than the 
osts of the original traje
tory.Thus, whenever we are given a traje
tory that does not satisfy the property given in this lemma,we 
an always give an alternative traje
tory that does satisfy this property and that works at least asgood. Hen
e, there must be an optimal traje
tory that satis�es the property given in this lemma.
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Appendix DProof of Proposition 8.1 (Regulation)Below we give the proof of Proposition 8.1. This proposition is given on page 95. Before reading thisproof we advi
e you to read the overview of this proof given on page 8.1.In this overview we used �ve di�erent reasons to swit
h signal ir,fc ,c = 1, 2 to red: switch.1a,
switch.1b, switch.2, switch.3a and switch.3b. In Se
tion D.1 we elaborate on these di�erent reasons toswit
h a signal from green to red. In Se
tion D.2 we present some notation and de�nitions used in theproof of Proposition 8.1. All lemmas used in this proof are shown in Se
tion D.4.D.1 Di�erent reasons to swit
hIn this se
tion we show 5 di�erent reasons to swit
h a signal to red.Re
all that τi is used for the time that has elapsed sin
e the last mode 
hange of signal i ∈ N .When signal ig,fc is green, we use τC

ig,fc

for the smallest value of τ
ig,fc

for whi
h 
ondition C ∈
{1.1, 1.2, 1.3, 2, 3} is satis�ed during this green time. See Se
tion 8.3.1 and Se
tion 8.3.2 for moreinformation about these 
onditions. Further we use τ1

ig,fc

for the smallest value of τig,fc
for whi
h
onditions 1.1, 1.2 and 1.3 are all satis�ed:

τ1
ig,fc

= max{τ1.1
ig,fc

, τ1.2
ig,fc

, τ1.3
ig,fc

}.We swit
h the signals in the set Gc for the following reasons:
switch.1 We swit
h be
ause of the reason switch.1 whenever we swit
h signal τr,fic

to red when τ1
ig,fc

≤
τ2
ig,fc

∧ τ1
ig,fc

≤ τ3
ig,fc

. We split switch.1 into switch.1a and switch.1b:
switch.1a We swit
h be
ause of the reason switch.1a whenever we swit
h signal τr,fic

to red when
τ1
ig,fc

≤ τ2
ig,fc

∧ τ1
ig,fc

≤ τ3
ig,fc

and ∃ic ∈ Gc

(

xic (t) > x♯
ic

).
switch.1b We swit
h be
ause of the reason switch.1b whenever we swit
h signal τr,fic

to red when
τ1
ig,fc

≤ τ2
ig,fc

∧ τ1
ig,fc

≤ τ3
ig,fc

and ∀ic ∈ Gc

(

xic (t) ≤ x♯
ic

).
switch.2 We swit
h be
ause of the reason switch.2 whenever we swit
h signal τr,fic

to red when τ2
ig,fc

<

τ1
ig,fc

∧τ2
ig,fc

≤ τ3
ig,fc

. Thus, we swit
h be
ause otherwise the maximum green time would be ex
eeded.
switch.3 We swit
h be
ause of the reason switch.3whenever τ3

ig,fc

< τ1
ig,fc

∧τ3
ig,fc

< τ2
ig,fc

. Thus, we swit
hbe
ause otherwise a queue would over�ow. We split switch.3 into switch.3a and switch.3b:161



switch.3a We swit
h be
ause of the reason switch.3a whenever we swit
h signal τr,fic
to red when

τ3
ig,fc

< τ1
ig,fc

∧ τ3
ig,fc

< τ2
ig,fc

and the queue(s) that would over�ow �rst if we do not swit
h,was (where) not emptied during its (their) previous green time. In Figure D.1 we show thesituation where we swit
h signal 1 to red be
ause of the reason switch.3a. The queue ofsignal i2 ∈ G2 would over�ow if we did not swit
h signal 1 to red. We 
an see that duringthe previous green time of signal i2, queue i2 was not emptied.
switch.3b We swit
h be
ause of the reason switch.3a whenever we swit
h signal τr,fic

to red when
τ3
ig,fc

< τ1
ig,fc

∧ τ3
ig,fc

< τ2
ig,fc

and a queue that would over�ow �rst if we did not swit
h, wasemptied during its previous green time. In Figure D.2 we show the situation where we swit
hsignal 1 to red be
ause of the reason switch.3b. The queue of signal i2 ∈ G2 would over�owif we did not swit
h the signal 1 to red. We 
an see that during the previous green time ofsignal i2, queue i2 was emptied (points 2 and 3 
ould also overlap).PSfrag repla
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Figure D.2: Visualization of the swit
h reason switch.3b.D.2 Notation and de�nitionsIn this se
tion we introdu
e some notations and de�nitions.D.2.1 Referring to Signals and SetsWith i1 and l1 we refer to two di�erent signals in the signal group G1:
i1 ∈ G1, l1 ∈ G1, i1 6= l1.With i2 and l2 we refer to two di�erent signals in the signal group G2:
i2 ∈ G2, l2 ∈ G2, i2 6= l2.Further we use:

c = 1, 2,

c =

{ 1 if 
=2,2 if 
=1.Using c and c we are able to express to 
ases at on
e: the 
ase where c = 1 and c = 2 and the 
asewhere c = 2 and c = 1.Further, we use ikc to refer to a signal in the set Gc whi
h queue length is equal to xmax
ic

at the startof gkic . Queue ic is a
tive whenever a queue ic rea
hes its maximum queue length.D.2.2 Green times and Red timesWe use gki , i ∈ N to refer to the kth green time of signal i ∈ N . We assume without loss of generalitythat we start serving the signals in signal group 1. Further we use ri for the red period of signal i that
omes between the kth and (k + 1)th green period of signal i:163



rki1 = gki2 + σi1,i2,i1 , i1 ∈ G1, i2 ∈ G2, (D.1a)
rki2 = gk+1

i1
+ σi1,i2,i1 , i1 ∈ G1, i2 ∈ G2. (D.1b)From D.1 we 
an obtain that the green periods are related a

ording to:

gki1 + σi1,i2,i1 = gki1 + σl1,i2,l1 i1, l1 ∈ G1, i2 ∈ G2, (D.2a)
gki2 + σi1,i2,i1 = gkl2 + σi1,l2,i1 i1 ∈ G1, i2, l2 ∈ G2. (D.2b)When using c and c we use that gf(k)ic


omes between gkic and gk+1
ic

. We 
an �nd:
f(k) =

{ k if 
=1,k+1 if 
=2.Further, we split up gki , i ∈ N in gµ,ki and gλ,ki . We use gλ,ki for the length of the slow mode atsignal i during the kth green period of signal i and we use gµ,ki for the length of the interval during the
kth green period of signal i during whi
h the queue of signal i is not empty.Further, we use gpbti1,i2

to refer to the green time of signal i1 of the pure bow tie 
urve in the
(i1, i2)-plane and we use gpbti2,i1

to refer to the green time of signal i2 of the pure bow tie 
urve in the
(i1, i2)-plane:

gpbti1,i2
=

σi1,i2,i1ρ1
1− ρi1 − ρi2

, (D.3a)
gpbti2,i1

=
σi1,i2,i1ρ2

1− ρi1 − ρi2
. (D.3b)Further we use:

gpbti1
= max

i2∈G2

gpbti1,i2
, (D.4a)

gpbti2
= max

i1∈G1

gpbti2,i1
. (D.4b)(D.4
)From Lemma D.17 we know that the queues in the set Sc are the only queues in Gc that 
ould gofrom empty to their maximum queue lengths without ex
eeding a maximum queue length and that aqueue is ∈ Sc 
an only go from empty to its maximum queue length whenever all queues in the set Scgo from empty to their maximum queue lengths.It must hold that rkis ≤ xmax

is

λis
, is ∈ Sc, ∀k ≥ 1 be
ause otherwise the maximum queue length ofqueue is (and the maximum queue lengths of all other signals in the set Gc) would be ex
eeded. Hen
e,using (D.1) we 
an see that the green time of signal ic 
annot be larger than xmax

is

λis
− σic,is,ic , is ∈ Sc.Hen
e, we 
an �nd that: 164



gkic ≤ g̃max
ic , ic ∈ Gc, (D.5a)

rkic ≤ r̃max
ic

, ic ∈ Gc, (D.5b)where
g̃max
ic = min{gmax

ic ,
xmax
is

λis

− σic,is,ic}, ic ∈ Gc, is ∈ Sc, (D.5
)
r̃max
ic

= min{gmax
ic

,
xmax
is

λis

− σic,is,ic}+ σic,ic,ic , ic ∈ Gc, ic ∈ Gc, is ∈ Sc. (D.5d)Note that gkic = g̃max
ic

= gmax
ic

whenever skc = switch.2 and that gkic = g̃max
ic

=
ximax

s

λis
− σic,is,icwhenever skc = switch.3b. Further, note that:

r̃max
ic

= g̃max
ic

+ σic,ic,ic , ∀ic ∈ Gc, ∀ic ∈ Gc. (D.6)D.2.3 De�nition of Cy
le 1 and Cy
le 2In this se
tion we introdu
e two di�erent 
y
les. Cy
le 1 starts when signal ig,f1 swit
hes to green andends when signal ig,f1 swit
hes to green. Cy
le 2 starts when signal ig,f2 swit
hes to green and ends whensignal ig,f2 swit
hes to green.We 
an distinguish the following phases for the kth 
y
le 1.phase 1 �nish the setup σi2,i1 , whi
h still has a duration of σres
i1phase 2 perform gki1 .phase 3 perform the setup σi1,i2phase 4 perform gki2phase 5 Perform the setup σi2,i1 until the signal ig,f1 swit
hes to green, whi
h has a duration of σ

i2,i
g,f
1
.We 
an distinguish the following phases for the kth 
y
le 2.phase 1 �nish the setup σi1,i2 , whi
h still has a duration of σres

i2phase 2 perform gki2 .phase 3 perform the setup σi2,i1phase 4 perform gk+1
i2phase 5 Perform the setup σi1,i2 until the signal ig,f2 swit
hes to green, whi
h has a duration of σ

i1,i
g,f
2
.We use xk

1,ic for the queue length at queue ic ∈ Gc at the beginning of the kth 
y
le 1. Similarly,we use xk
2,ic

for the queue length at queue ic ∈ Gc at the beginning of the kth 
y
le 2. We 
an �nd thefollowing expressions:
∆xk+1

1,i1
= xk+1

1,i1
− xk

1,i1 = (gki2 + σi1,i2,i1)λi1 − gµ,ki1
(µi1 − λi1 ), (D.7a)

∆xk+1
1,i2

= xk+1
1,i2

− xk
1,i2 = (gki1 + σi1,i2,i1)λi2 − gµ,ki2

(µi2 − λi2 ), (D.7b)
∆xk+1

2,i1
= xk+1

2,i1
− xk

2,i1 = (gki2 + σi1,i2,i1)λi1 − gµ,k+1
i1

(µi1 − λi1 ), (D.7
)
∆xk+1

2,i2
= xk+1

2,i2
− xk

2,i2 = (gk+1
i1

+ σi1,i2,i1)λi2 − gµ,ki2
(µi2 − λi2 ). (D.7d)165
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an derive:
xk+1
1,i1

= xk
2,i1 + (σres

i2
+ gki2 + σi2,i

g,f
1

)λi1 , (D.8a)
xk
2,i2 = xk

1,i2 + (σres
i1

+ gki1 + σ
i1,i

g,f
2

)λi2 . (D.8b)D.2.4 MappingsInstead of using the a
tual evolution of the queue length we often use mappings from the queue lengthsat the beginning of a 
y
le (either 
y
le 1 or 
y
le 2) to the queue lengths at the end of this 
y
le.In the previous se
tion we showed the phases that we distinguish for the kth 
y
le 1. For themapping from (xk−1
1,i1

, xk−1
1,i2

), i1 ∈ G1 , i2 ∈ G2 k > 0 to (xk
1,i1

, xk
1,i2

) we 
hange the order of the phases tothe following order: phase 2, phase 1, phase 3, phase 5, phase 4 (see Figure D.3). Note that 
hangingthe order of these phases does not 
hange the queue length at the end of a 
y
le.In Figure D.3 we show the mapping from (

xk−1
1,i1

, xk−1
1,i2

), i1 ∈ G1 , i2 ∈ G2 k ≥ 1 to (xk
1,i1

, xk
1,i2

). Thea
tual queue length 
an range from zero to the maximum queue length. Hen
e, for this mapping thefeasible range of xi1 is equal to:
[

−tfi1λi1 , x
max
i1

− tfi1λi1

]

=
[

x̃min
1,i1 , x̃

max
1,i1

]

.For this mapping the feasible range of xi2 is equal to:
[

σi2,i
f
1
λi2 , x

max
i2

+ σi2,i
f
1
λi2

]

=
[

x̃min
1,i2 , x̃

max
1,i2

]

.. In the previous se
tion we showed the phases that we distinguish for the kth 
y
le 2. For themapping from (

xk−1
2,i1

, xk−1
2,i2

), i1 ∈ G1 , i2 ∈ G2 k > 0 to (xk
2,i1

, xk
2,i2

) we 
hange the order of the phasesto the following order: phase 2, phase 1, phase 3, phase 5, phase 4 (see Figure D.4).166
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2
λi1 , x

max
i1

+ σi1,i
f
2
λi1

]

=
[

x̃min
2,i1 , x̃

max
2,i1

]

.and for this mapping the feasible range of xi2 is equal to:
[

−tfi2λi2 , x
max
i2 − tfi2λi2

]

=
[

x̃min
2,i2 , x̃

max
2,i2

]

.Using some of the introdu
ed notation we 
an summarize (D.8) in one equation:
x
f(k)
c,ic

= xk
c,ic

+ r
f(k)−1
ic

λic + x̃min
c,ic

− x̃min
c,ic

. (D.9)Also note, that queue ic ∈ Gc is full at the beginning of gkic i� xk
c,ic

= x̃max
c,ic

and that queue ic ∈ Gcis empty at the end of gkic i� x
f(k)
c,ic

= x̃min
c,ic

.In Figure D.5a we show the mapping of the pure bow-tie 
urve. In Figure D.5b we 
an see the 
asewhere the green time of signal ic ex
eeds gpbtic,ic
and the green time of signal ic ex
eeds gpbtic,ic

and bothsignals do not have a slow mode during these green times.D.3 Proof of the Poli
yIn this se
tion we prove poli
y proposed in Se
tion 8.1 makes sure that a traje
tory 
onverges to thedesired traje
tory. We use skc for the reason why we stopped the kth green period of the signals in theset Gc.We want to prove that every swit
h reason skc , k > 1 is part of a 
ombination in the set Ci,
i = 1, . . . , nc. Further, we want to prove that when skc , k ≥ nC1 +1 (where nC1 is a �nite integer) is partof a 
ombination in the set Ci, i = 1, . . . , ns then s

f(k)
c 
annot be part of a 
ombination Cj , 1 ≤ j < i.We explain later what the exa
t de�nition of nC1 is. Further, we want to prove that only a �nite numberof adja
ent swit
h reasons 
an be part of a 
ombination in the set Ci, 1 ≤ i ≤ ns − 2 (either with theprevious or the next swit
h reason). 167
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ombinationsthat we 
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Combination skc → s
f(k)
c ∆ In the set

C1 switch.1a → switch.1a - C11
C2 switch.1a → switch.1b - C12

switch.1a → switch.3a - not possible 1
C3 switch.1a → switch.3b - C10
C4 switch.1b → switch.1b - C12
C5 switch.2 → switch.1a - C9
C6 switch.2 → switch.1b - C12
C7 switch.2 → switch.2 max

ic∈Gc

∆xk+1
c,ic

≤ 0 ∧ max
ic∈Gc

∆xk+1
c,ic

≤ 0 C7
C8 switch.2 → switch.2 max

ic∈Gc

∆xk+1
c,ic

> 0 ∨ max
ic∈Gc

∆xk+1
c,ic

> 0 C2
C9 switch.2 → switch.3a max

ic∈Gc

∆xk+1
c,ic

≤ 0 C8
switch.2 → switch.3a max

ic∈Gc

∆xk+1
c,ic

> 0 not possible 2
C10 switch.2 → switch.3b max

ic∈Gc

∆xk+1
c,ic

≤ 0 C6
C11 switch.2 → switch.3b max

ic∈Gc

∆xk+1
c,ic

> 0 C4
C12 switch.3a → switch.1b - C12
C13 switch.3a → switch.3a - C1
C14 switch.3a → switch.3b max

ic∈Gc

∆xk+1
c,ic

< 0 C3
C15 switch.3a → switch.3b max

ic∈Gc

∆xk+1
c,ic

≤ 0 C4
C16 switch.3b → switch.1b - C12

switch.3b → switch.3b max
ic∈Gc

∆xk+1
c,ic

< 0 ∨ max
ic∈Gc

∆xk+1
c,ic

< 0 not possible 3
C17 switch.3b → switch.3b max

ic∈Gc

∆xk+1
c,ic

= 0 ∧ max
ic∈Gc

∆xk+1
c,ic

= 0 C5
C18 switch.3b → switch.3b max

ic∈Gc

∆xk+1
c,ic

> 0 C4
C19 switch.3b → switch.3b max

ic∈Gc

∆xk+1
c,ic

> 0 C41 From Lemma D.1 we know that this 
ombination is not possible.2 Whenever gkic
is stopped for the reason switch.2 and g

f(k)
ic

is stopped for the reason of switch.3a then max
ic∈Gc

∆x
k+1

c,i
k+1
c

≥ 0(be
ause a queue in the set Gc has rea
hed its maximum queue length at the start of g
k+1
ic

), gk

i
k+1
c

= gmax

i
k+1
c

> g
pbt

i
k+1
c

(be
auseof inequalities (8.1h) and (8.1k)) and g
µ,k

i
k+1
c

= gk

i
k+1
c

(be
ause otherwise we stopped be
ause of switch.3b instead of switch.3a).Now we 
an see from Lemma D.18 that when skc → s
f(k)
c

= switch.2 → switch.3a then it holds that max
ic∈Gc

∆xk
c,ic

≤ 0.3 Whenever gkic
is stopped for the reason switch.3b and g

f(k)
ic

is stopped for the reason switch.3b then max
ic∈Gc

∆x
k+1
c,ic

< 0 ∨

max
ic∈Gc

∆x
k+1
c,ic

< 0 
annot o

ur. First of all, there is a queue in the set ic ∈ Gc that has a maximum queue length at thestart of g
k+1
ic

. Hen
e, ∆x
k+1

c,i
k+1
c

≥ 0. Furthermore, be
ause we stop gkic
for the reason switch.3b, there is at least one signal

ic that is emptied during g
f(k)−1
ic

. This signal satis�es xk
c,ic

= x̃min
c,ic

. In general it must hold that xk
c,ic

≥ x̃min
c,ic

, ic ∈ Gc,
k ≥ 1 (xk

c,ic
< x̃min

c,ic
implies a negative queue length). Hen
e it holds that the signal that satis�es xk

c,ic
= x̃min

c,ic
also satis�es

∆x
k+1
c,ic

≥ 0. Therefore max
ic∈Gc

∆x
k+1
c,ic

≥ 0.Table D.1: The 
ombinations that we 
onsider and how we partition these 
ombinations into sets.
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skc → s
f(k)
c1 switch.1a → switch.1a2 switch.1a → switch.1b3 switch.1a → switch.3a4 switch.1a → switch.3b5 switch.1b → switch.1b6 switch.2 → switch.1a7 switch.2 → switch.1b8 switch.2 → switch.29 switch.2 → switch.3a10 switch.2 → switch.3b11 switch.3a → switch.1b12 switch.3a → switch.3a13 switch.3a → switch.3b14 switch.3b → switch.1b15 switch.3b → switch.3bTable D.2: We 
onsider all 
ombinations of two subsequent swit
h reasons shown in this table.
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ase s
f(k)−1
c

→ skc → s
f(k)
c


omment1 ︷ ︸︸ ︷

switch.1b → switch.1b → switch.1b
︸ ︷︷ ︸2 ︷ ︸︸ ︷

∗ → switch.1b → switch.1b
︸ ︷︷ ︸3 ∗ →

︷ ︸︸ ︷

∗ → switch.1b4 ︷ ︸︸ ︷

switch.1a → switch.1a → switch.1a
︸ ︷︷ ︸5 ︷ ︸︸ ︷

switch.1a → switch.1a → switch.26 ︷ ︸︸ ︷

switch.1a → switch.1a → switch.3a
︸ ︷︷ ︸7 ︷ ︸︸ ︷

switch.1a → switch.1a → switch.3b
︸ ︷︷ ︸8 switch.1a → switch.2 → switch.1a
︸ ︷︷ ︸9 switch.1a → switch.2 → switch.2
︸ ︷︷ ︸10 switch.1a → switch.2 → switch.3a
︸ ︷︷ ︸11 switch.1a → switch.2 → switch.3b
︸ ︷︷ ︸12 ︷ ︸︸ ︷

switch.1a → switch.3a → switch.1a13 ︷ ︸︸ ︷

switch.1a → switch.3a → switch.214 ︷ ︸︸ ︷

switch.1a → switch.3a → switch.3a
︸ ︷︷ ︸15 ︷ ︸︸ ︷

switch.1a → switch.3a → switch.3b
︸ ︷︷ ︸16 ︷ ︸︸ ︷

switch.1a → switch.3b → switch.1a17 ︷ ︸︸ ︷

switch.1a → switch.3b → switch.218 ︷ ︸︸ ︷

switch.1a → switch.3b → switch.3a19 ︷ ︸︸ ︷

switch.1a → switch.3b → switch.3b
︸ ︷︷ ︸20 ︷ ︸︸ ︷

switch.2 → switch.1a → switch.1a
︸ ︷︷ ︸21 ︷ ︸︸ ︷

switch.2 → switch.1a → switch.222 ︷ ︸︸ ︷

switch.2 → switch.1a → switch.3a
︸ ︷︷ ︸23 ︷ ︸︸ ︷

switch.2 → switch.1a → switch.3b
︸ ︷︷ ︸24 ︷ ︸︸ ︷

switch.2 → switch.2 → switch.1a25 ︷ ︸︸ ︷

switch.2 → switch.2 → switch.2
︸ ︷︷ ︸26 ︷ ︸︸ ︷

switch.2 → switch.2 → switch.3a27 ︷ ︸︸ ︷

switch.2 → switch.2 → switch.3b28 ︷ ︸︸ ︷

switch.2 → switch.3a → switch.1a29 ︷ ︸︸ ︷

switch.2 → switch.3a → switch.230 ︷ ︸︸ ︷

switch.2 → switch.3a → switch.3a
︸ ︷︷ ︸31 ︷ ︸︸ ︷

switch.2 → switch.3a → switch.3b
︸ ︷︷ ︸32 ︷ ︸︸ ︷

switch.2 → switch.3b → switch.1aTable D.3: All possible 
ombinations of 3 subsequent swit
h reasons. When skc → s
f(k)
c is in TableD.1 this is visualized with bra
es. * means that this swit
h reason 
an be either one of the �ve swit
hreasons ex
ept for swit
h.1b. Note that for 
ase 3, sf(k)−1

c → skc 
ould also be a 
ombination from TableD.1. 171




ase s
f(k)−1
c

→ skc → s
f(k)
c


omment33 ︷ ︸︸ ︷

switch.2 → switch.3b → switch.234 ︷ ︸︸ ︷

switch.2 → switch.3b → switch.3a35 ︷ ︸︸ ︷

switch.2 → switch.3b → switch.3b
︸ ︷︷ ︸36 switch.3a → switch.1a → switch.1a
︸ ︷︷ ︸37 switch.3a → switch.1a → switch.2 for more information see footnote 138 switch.3a → switch.1a → switch.3a
︸ ︷︷ ︸39 switch.3a → switch.1a → switch.3b
︸ ︷︷ ︸40 switch.3a → switch.2 → switch.1a
︸ ︷︷ ︸41 switch.3a → switch.2 → switch.2
︸ ︷︷ ︸42 switch.3a → switch.2 → switch.3a
︸ ︷︷ ︸43 switch.3a → switch.2 → switch.3b
︸ ︷︷ ︸44 ︷ ︸︸ ︷

switch.3a → switch.3a → switch.1a45 ︷ ︸︸ ︷

switch.3a → switch.3a → switch.246 ︷ ︸︸ ︷

switch.3a → switch.3a → switch.3a
︸ ︷︷ ︸47 ︷ ︸︸ ︷

switch.3a → switch.3a → switch.3b
︸ ︷︷ ︸48 ︷ ︸︸ ︷

switch.3a → switch.3b → switch.1a49 ︷ ︸︸ ︷

switch.3a → switch.3b → switch.250 ︷ ︸︸ ︷

switch.3a → switch.3b → switch.3a
︸ ︷︷ ︸51 ︷ ︸︸ ︷

switch.3a → switch.3b → switch.3b
︸ ︷︷ ︸52 switch.3b → switch.1a → switch.1a
︸ ︷︷ ︸53 switch.3b → switch.1a → switch.2 not possible. See footnote 254 switch.3b → switch.1a → switch.3a
︸ ︷︷ ︸55 switch.3b → switch.1a → switch.3b
︸ ︷︷ ︸56 switch.3b → switch.2 → switch.1a
︸ ︷︷ ︸57 switch.3b → switch.2 → switch.2
︸ ︷︷ ︸58 switch.3b → switch.2 → switch.3a
︸ ︷︷ ︸59 switch.3b → switch.2 → switch.3b
︸ ︷︷ ︸60 switch.3b → switch.3a → switch.1a not possible. See footnote 361 switch.3b → switch.3a → switch.2 not possible. See footnote 262 switch.3b → switch.3a → switch.3a
︸ ︷︷ ︸63 switch.3b → switch.3a → switch.3b
︸ ︷︷ ︸64 ︷ ︸︸ ︷

switch.3b → switch.3b → switch.1a65 ︷ ︸︸ ︷

switch.3b → switch.3b → switch.266 ︷ ︸︸ ︷

switch.3b → switch.3b → switch.3a67 ︷ ︸︸ ︷

switch.3b → switch.3b → switch.3b
︸ ︷︷ ︸1 In Figure D.5 we show the 
ase where s

f(k)−1
c

→ skc → s
f(k)
c

= switch.3a → switch.1a → switch.2. We use
ikc to refer to the queue that is full at the start of gkic

. From s
f(k)−1
c

→ skc = switch.3a → switch1a we knowthat we 
ould always empty queue ikc during a green time of g̃max
ic

(be
ause we where able to empty queue ikcduring gkic
). Furthermore, from s

f(k)−1
c

= switch.3a, we know that queue ikc was not emptied during g
k−1
ic

.Therefore sk−1
c = switch.1a, sk−1

c = switch.1b are not possible (if k > 1). Further, sk−1
c = switch.2 and

sk−1
c = switch.3b are not possible if k > 1 be
ause we 
ould always empty queue ikc during a green time of

g̃max
ic

. Hen
e, it must hold that sk−1
c = switch.3a.2 From Lemma D.2 we know that this sequen
e of swit
h reasons 
annot o

ur.3 From Lemma D.3 we know that this sequen
e of swit
h reasons 
annot o

ur.Table D.3: All possible 
ombinations of 3 subsequent swit
h reasons. When skc → s

f(k)
c is in Table D.1this is visualized with an bra
es. * means that this swit
h reason 
an be either one of the �ve swit
hreasons (ex
ept for swit
h.1b). Note that for 
ase 3, sf(k)−1

c → skc 
ould also be a 
ombination fromTable D.1. 172



We 
an prove that 
ases 53, 60 and 61 
annot o

ur (see the footnotes of Table D.3). For 
ase 37 we
an prove that when this 
ombination of three subsequent swit
h reasons o

urs then sk−1
c = switch.3aif k > 1 (see the �rst footnote of Table D.1). Thus, if 
ase 37 o

urs and k > 1 then s

f(k)−1
c ispart of a 
ombination in the set C1. Further, sf(k)c is part of a 
ombination Cj , j = 8, 9, . . . , 17 (seeTable D.1). Hen
e, sf(k)c is part of a 
ombination in the set Ci, i = 2, 3, 4, 5, 6, 7, 9, 11. Whenever

s
f(k)−1
c → skc → s

f(k)
c = switch.3a → switch.1a → switch.2 o

urs then we de�ne skc to be part of a
ombination in the set C2 (however a

ording to Table D.1 it is not). Be
ause of this de�nition, it stillholds that every swit
h reason skc , k > 1 is part of a 
ombination Ci, i = 1, 2, . . . , 25.The �rst problem is that we have to prove that when skc , k ≥ nC1 + 1 is part of a 
ombination inthe set Ci, i = 1, . . . , ns then s

f(k)
c 
annot be part of a 
ombination in the setCj, 1 ≤ j < i. Note thatthis holds for s

f(k)−1
c → skc → s

f(k)
c = switch.3a → switch.1a → switch.2 (
ase 37). We use nC1 forthe smallest number k > 0 su
h that sk1 is not part of a 
ombination in the set C1. We 
an prove (seeSe
tion D.3.1) that nC1 is �nite and that sk2 , k ≥ nC1 and sk1 , k ≥ nC1 
annot be part of a 
ombinationin the set C1 anymore.The se
ond problem is that we have to prove that only a �nite sequen
e of swit
h reasons skc 
an bepart of a 
ombination in the set Ci, 1 ≤ i ≤ ns − 2.In se
tions D.3.1-D.3.12 we 
onsider these two problems for the sets C1 until C12.D.3.1 skc is part of a 
ombination in the set C1For the set C1 we have to show that an in�nite number of adja
ent swit
h reasons skc that are all partof a 
ombination in the set C1 is not possible.In this se
tion we assume an in�nite sequen
e s11 → s

f(1)
2 → s21 → s

f(2)
2 → · · · = switch.3a →

switch.3a → switch.3a → switch.3a → . . . . We prove that gkic < gk+1
ic

, ∀k > 0 ∀ic ∈ G1 ∪G2. Hen
e, anin�nite sequen
e skc → s
f(k)
c → · · · = switch.3a → switch.3a → . . . is not possible be
ause eventuallythe green times are too big for switch.3a to o

ur.In
reasing green timesWe show that gki1 < gk+1

i1
, ∀i1 ∈ G1, ∀k > 0 and that gki2 < gk+1

i2
, ∀i2 ∈ G2, ∀k > 0 by distinguishing thefollowing two situations:situation 1 g

f(k)

i
f(k)+1
c

> gpbt
i
f(k)+1
c

,ik+1
c

.situation 2 g
f(k)

i
f(k)+1
c

≤ gpbt
i
f(k)+1
c ,ik+1

c

.We prove that in situation 1 it holds that gkic < gk+1
ic

, ∀ic ∈ Gc and that in situation 2 it holds that
gkic < gk+1

ic
, ∀ic ∈ Gc. Hen
e, it follows that gki1 < gk+1

i1
, ∀i1 ∈ G1, ∀k > 0 and that gki2 < gk+1

i2
, ∀i2 ∈ G2,

∀k > 0.We have visualized situation 1 and situation 2 in Figure D.6.
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(b) Situation 2Figure D.6: Situation 1 and situation 2We 
an distinguish the following se
tions:1 between point 1 and point 2, gk
ik+1
c

is performed.2 between point 2 and point 3,the setup σ
i
f(k)+1
c

,ik+1
c ,i
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c

is performed.174



3 between point 3 and point 4, gf(k)
i
f(k)+1
c

is performed.4 between point 4 and point 5, gk+1

ik+1
c

is performed.Using (D.7a) and (D.7d) we 
an �nd that in situation 1 point 1 is positioned above point 4 be
ause
g
f(k)

i
f(k)+1
c

> gpbt
i
f(k)+1
c

,ik+1
c

(see de�nition of situation 1), gµ,f(k)
i
f(k)+1
c

= g
f(k)

i
f(k)+1
c

(queue i
f(k)+1
c is not emptiedduring g

f(k)

i
f(k)+1
c

sin
e sk+1
c = switch.3a) and ∆xk+1

c,ik+1
c

≥ 0 (be
ause queue ik+1
c is full at the start of

gk+1

ik+1
c

). Further, point 2 
annot be positioned above point 5 (otherwise the maximum queue 
apa
itywould be ex
eeded). Hen
e, gk
ik+1
c

< gk+1

ik+1
c

. The green periods are related a

ording to D.2. Hen
e,
gk
ik+1
c

< gk
ik+1
c

also means gkic < gk+1
ic

, ∀ic ∈ Gc.In situation 2, it holds that g
f(k)

i
f(k)+1
c

≤ gpbt
i
f(k)+1
c ,ik+1

c

whi
h 
ould happen only if gk
ik+1
c

≤ gpbt
ik+1
c ,i

f(k)+1
c(Between the points 2,3 and 6 we shows the mapping of the pure bow-tie 
urve). We 
an see this using(D.7a) and (D.7b), gf(k)

i
f(k)+1
c

≤ gpbt
i
f(k)+1
c ,ik+1

c

(see de�nition of situation 2), gµ,f(k)
i
f(k)+1
c

= g
f(k)

i
f(k)+1
c

(queue if(k)+1
cis not emptied during gf(k)

i
f(k)+1
c

sin
e sk+1
c = switch.3a) and∆xk+1

c,ik+1
c

≥ 0 (be
ause queue ik+1
c is full at thestart of gk+1

ik+1
c

). Thus, it holds that gk
ik+1
c

≤ gpbt
ik+1
c ,i

f(k)+1
c

. However, it must hold that gk+1

ik+1
c

> gpbt
ik+1
c ,i

f(k)+1
cbe
ause otherwise no 
onvergen
e is possible (see Se
tion 8.2). Hen
e, gk

ik+1
c

< gk+1

ik+1
c

. The green periodsare related a

ording to D.2. Hen
e, gk
ik+1
c

< gk
ik+1
c

also means gkic < gk+1
ic

, ∀ic ∈ Gc.Hen
e, we know that gki1 < gk+1
i1

, ∀i1 ∈ G1, ∀k > 0 and that gki2 < gk+1
i2

, ∀i2 ∈ G2, ∀k > 0.Now we know that for an in�nite sequen
e skc → s
f(k)
c → · · · = switch.3a → switch.3a → . . . thegreen times keep in
reasing. We want to show that eventually the green times are too large for switch.3ato o

ur. However, when the green times of all signals in
rease, it 
an be the 
ase that these green times
onverge to an asymptote. For example the series 1, 1+ 1
2 , 1+

1
2 +

1
4 , 1+

1
2 +

1
4 +

1
8 , 1+

1
2 +

1
4 +

1
8 +

1
16 , . . . .is in
reasing. However, this series has an asymptote at 2.We want to ex
lude that the green times 
onverges to an asymptote. To this end we �rst show thatfor ea
h set G1 and G2, the queue that is a
tive 
an only 
hange �nitely many times, i.e. the queue thatrea
hes its maximum queue length 
an only 
hange �nitely many times. Hereafter, we prove that whenthe queue that is a
tive does not 
hange anymore for both sets (see Figure D.7) then ∆gk+1

ic
= gk+1

ic
−gkic ,

∀ic ∈ Gc in
reases for in
reasing gkic . As a result we 
annot 
onverge to a asymptote.The Bu�er That is A
tive in Gc Can Only Change a Finite Number of TimesNow we show when the a
tive queue in the set Gc 
an 
hange. When, xk
c,ic

= x̃max
c,ic

∧ xk
c,jc

< x̃max
c,jc

,
ic ∈ Gc, jc ∈ Gc and xk+1

c,ic
< x̃max

c,ic
∧ xk+1

c,jc
= x̃max

c,jc
, ic, jc ∈ Gc (the queue that is a
tive 
hanges from icto jc), then it must hold that ∆xk+1

c,ic
< 0 and ∆xk+1

c,jc
> 0. Hen
e, using gµ,kic

≤ gkic , gµ,kjc
= gkjc (be
auseif jc be
omes a
tive when gµ,kjc

< gkjc then the signals would swit
h for the reason switch.3b and notfor the reason switch.3a), (D.7a), (D.7d) we 
an �nd that for an in�nite sequen
e of switch.3a swit
hreasons the a
tive bu�er 
an 
hange from ic to jc whenever we satisfy the following stri
t inequalities:
(g

f(k)
ic

+ σic,ic,ic)λic < gkic(µic − λic), (D.10a)
(g

f(k)
ic

+ σjc,ic,jc)λjc > gkjc(µjc − λjc). (D.10b)175



Using (D.2) we 
an see that we 
an �nd a value for gf(k)ic
that satis�es the inequalities in (D.10) ifand only if:

g
f(k)
ic

aic,jc − bic,jc > 0, (D.11)where
aic,jc =

ρjc
1− ρjc

− ρic
1− ρic

,

bic,jc =
σic,ic,ic

1− ρic
− σjc,ic,jc

1− ρj2
.Thus whenever signal ic is a
tive then jc 
an be
ome a
tive if (and only if) the inequality in (D.11) issatis�ed. We 
an represent whi
h signals 
ould be
ome a
tive using a transition system. This transitionsystem has the states 1, 2, . . . , Nc, where Nc is the number of signals in the set Gc. The state representswhi
h of the queues is a
tive. The transitions between these states represent whi
h signals 
ould be
omea
tive. We 
ould make a transition from state ic to the state jc whenever the inequality (D.11) holds.Note that the following holds:

aic,jc = −ajc,ic , (D.12a)
bic,jc = −bjc,ic . (D.12b)Hen
e, it holds that whenever gf(k)ic

aic,jc − bic,jc > 0 then g
f(k)
ic

ajc,ic − bjc,ic < 0. Thus whenever atransition from ic to jc is possible then a transition jc to ic is not possibleWe distinguish two di�erent transitions.type 1 we make a transition from the state ic to the state jc and aic,jc ≥ 0.type 2 we make a transition from the state ic to the state jc and aic,jc < 0.First we 
onsider the �rst type of transitions. Be
ause g
f(k)
ic

in
reases for in
reasing k and be
ause
aj2,i2 = −aj2,i2 , we 
an see that whenever we make a type 1 transition from ic to jc, from that momenton it holds that gf(k)ic

ajc,ic − bjc,ic < 0. Hen
e, we 
annot make a dire
t transition from state jc to thestate ic anymore.Lets 
onsider an indire
t path from the state jc to the state ic via the path l1 → l2 → · · · → lnwhere l1 = j2 and ln = i2. Thus, from the state jc we make a transition to the state l2 and from thestate l2 we make a transition to the state l3 et
etera. Using (D.12) we 
an derive:
g
f(k)
ic

ajc,ic − bjc,ic =

m=n
∑

m=1

(g
f(k)
ic

alm,lm+1 − blm,lm+1) < 0. (D.13)Hen
e, ∃m : g
f(k)
ic

alm,lm+1 − blm,lm+1 < 0 and thus every path from jc to ic 
ontains a transitionthat is not possible. In 
on
lusion whenever we make a type 1 transition out of the state ic, we 
annever rea
h the state ic again. In other words, the signal ic 
an never be
ome a
tive anymore (when
onsidering the in�nite sequen
e skc → s
f(k)
c → · · · = switch.3a → switch.3a → . . . ).A type 2 transition from the state ic to the state jc is only possible whenever bic,jc < 0, i.e. when

σj2,ic,jc

1−ρjc
>

σic,ic,ic

1−ρic
. Thus, when there are Nreachable rea
hable states then we 
an make maximally

Nreachable − 1 type 2 transitions in a row. 176



Thus, we 
an make maximally Nreachable−1 type 2 transitions in a row (and then the next transitionhas to be a type 1 transition). Whenever we make a type 1 transition out of a state we 
an never rea
hthis state again (number of rea
hable states de
reases with at least one). Hen
e, we 
annot make morethan Nc
∑

i=1

i = Nc(Nc+1)
2 transitions (and thus the a
tive queue in the set Gc 
annot 
hange more than

Nc(Nc+1)
2 times), whi
h is �nite when we assume Nc is �nite.The Green Times Cannot Converge to a AsymptoteNow we prove that when the queue that is a
tive does not 
hange anymore for both sets (see FigureD.7) then ∆gk+1

ic
= gk+1

ic
− gkic , ∀ic ∈ Gc k > 0 in
reases for in
reasing gkic . Lets assume queue ikc ∈ Gcis the a
tive queue in Gc and assume that queue i

f(k)
c ∈ Gc is the a
tive queue in Gc andWe 
an distinguish the following se
tions:1 between point 1 and point 2, gk

ikc
is performed.2 between point 2 and point 3,the setup σ

i
f(k)
c ,ikc ,i

f(k)
c

is performed.3 between point 3 and point 4, gf(k)
i
f(k)
c

is performed.4 between point 4 and point 5, gk+1
ikc

is performed.PSfrag repla
ements x̃max

c,i
f(k)
c

x̃max

c,i
f(k)
c

− λ
i
f(k)
c

σ
i
f(k)
c

,ikc ,i
f(k)
c

x
i
f(k)
c

x̃min

c,i
f(k)
c x̃min

c,ikc
xikc x̃max

c,ikc

1

2

3

4

5

∆xk+1

c,i
f(k)
c

Figure D.7: when the queue that is a
tive does not 
hange anymore for both setsUsing ∆xk+1
c,ikc

= 0 we 
an derive ∆xk+1

c,i
f(k)
c

= gk+1
ikc

1−ρ
ikc

−ρ
i
f(k)
c

ρ
ikc

µ
i
f(k)
c

+ σ
ikc i

f(k)
c

ikc
µ
i
f(k)
c

. It is easy to seethat ∆gk+1
ikc

=
∆xk+1

c,i
f(k)
c

λ
i
f(k)
c

= gk+1
ikc

1−ρ
ikc

−ρ
i
f(k)
c

ρ
ikc

ρ
i
f(k)
c

+
σ
ikc i

f(k)
c

ikc

ρ
i
f(k)
c

.The green periods are related a

ording to D.2. As a result the green periods 
annot 
onverge to aasymptote. 177



Eventually sk = switch.3a is not possible be
ause eventually we satisfy eventually the green periodis long enough to empty all queues (with a �nite maximum queue 
apa
ity) during their green period(and therefore no queue in set G2 
an be a
tive anymore):
∀i1 ∈ G1

(

xmax
i1

= ∞∨ gki1 >
xmax
i1

µi1 − λi1

)

.Hen
e, an in�nite sequen
e skc → s
f(k)
c → · · · = switch.3a → switch.3a → . . . is not possible.Thus, nC1 (whi
h is the smallest number for k su
h that sk1 is not element of a 
ombination in the set

C1) is �nite. From Lemma D.4 and Lemma D.1 we know that whenever skc is not part of a 
ombinationin the set C1 then s
f(k)
c 
annot be part of a 
ombination in the set C1. Hen
e, skc , k ≥ nC1 
annot be partof a 
ombination in the set C1. Thus for ∀k ≥ nC1 two subsequent swit
h reasons skc → s

f(k)
c 
annot beboth equal to switch.3a.D.3.2 skc is part of a 
ombination in the set C2In this se
tion we 
onsider the 
ase where skc is part of a 
ombination in the set C2.Finite Sequen
e Using Lemma D.14 we 
an see that we 
annot have an in�nite sequen
e of swit
hreasons skc where ea
h swit
h reason is part of a 
ombination in the set C2.Restri
ting Combinations We 
an prove that when skc is part of a 
ombination in the set C2 =

{C14}, then s
f(k)
c 
annot be part of a 
ombination in the set C1.

s
f(k)
c 
annot be part of Be
ause:a 
ombination in the set:
C1 If sf(k)c is part of a 
ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. From Lemma D.4 we know that skc → s

f(k)
c →

sk+1
c = switch.2 → switch.3a → switch.3a is not possible.D.3.3 skc is part of a 
ombination in the set C3In this se
tion we 
onsider the 
ase where skc is part of a 
ombination in the set C3 = {C14}Finite Sequen
e From Lemma D.20 we know that whenever skc → s

f(k)
c → sk+1

c → s
f(k)+1
c =

switch.3a → switch.3b → switch.3a → switch.3b then it holds that max
ic∈Gc

∆xk+2
c,ic

= xk+2
c,ic

− xk+1
c,ic

≥ 0.Hen
e, a maximum of 2 subsequent swit
h reasons 
an be part of a 
ombination in the set C3 = {C14}.Restri
ting Combinations We 
an prove that when skc is part of a 
ombination in the set C3 =

{C14}, i.e. s
f(k)−1
c → skc = switch.3a → switch.3b or skc → s

f(k)
c = switch.3a → switch.3b then s

f(k)
c
annot be part of a 
ombination in the set Ci, i < 3.
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s
f(k)
c 
annot be part of Be
ause:a 
ombination in the set:
C1 If sf(k)c is part of a 
ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. From Lemma D.4 we know that skc → s

f(k)
c →

sk+1
c = switch.2 → switch.3a → switch.3a is not possible.

C2 From Lemma D.2 we know that sf(k)c 
annot be part of a 
ombinationin the set C2 = {C8}.D.3.4 skc is part of a 
ombination in the set C4In this se
tion we 
onsider the 
ase where skc is part of a 
ombination in the set C4 = {C11, C15, C18, C19}.Finite Sequen
e Lets assume that an in�nite sequen
e of swit
h reasons exists where ea
h swit
hreason is part of a 
ombination in the set C4.From Lemma D.2 we know that 
ombination C11 
an only o

ur in this in�nite sequen
e if the
ombinations C18 and C19 do not o

ur in this in�nite sequen
e. Further, from Lemma D.14 we knowthat an in�nite sequen
e of swit
h reasons where ea
h swit
h reason is part of C11 is not possible andthat an in�nite sequen
e of swit
h reasons where ea
h swit
h reason is part of either C18 or C19 is notpossible. Hen
e, eventually for an in�nite sequen
e of swit
h reasons that are all part of a 
ombinationin the set G4, the 
ombination C15 must o

ur. From Lemma D.5 we know that whenever 
ombination
C15 o

urs (after another 
ombination in the set C4) then 
ombination C11, C18 and C19 
an nevero

ur again.Hen
e, if an in�nite sequen
e of swit
h reasons where ea
h swit
h reason is part of a 
ombinationin the set C4 is possible then an in�nite sequen
e of the 
ombination C15 must be possible:

skc → s
f(k)
c → sk+1

c → s
f(k)+1
c → · · · = switch.3a → switch.3b → switch.3a → switch.3b → . . .From Lemma D.20 we know that for this in�nite sequen
e it holds that ∃ic ∈ Gc : ∆xh+1

c,ic
≥

0 ∧ g
µ,f(h)
ic

= g
f(h)
ic

∧ g
f(h)
ic

> gpbtic
for all h > k.Using Lemma D.19 we 
an see that ea
h queue ic ∈ Gc either goes empty, i.e. the queue lengthis zero at the end of ghic , h ≥ k or its queue length de
reases minimally ∆c(g

h
ic
) > 0. Note that

∆c(g
h
ic
) = ∆c(g

h+1
ic

), h ≥ k be
ause ghic = gh+1
ic

= g̃max
ic

, h ≥ k. As a result, for an in�nite sequen
eof swit
h reasons that are all part of 
ombination C15, the queues in the set Gc are eventually emptied(and we swit
h be
ause of the reason switch.1a or switch.1b). Hen
e, an in�nite sequen
e sequen
e ofswit
h reasons that are all part of 
ombination C15 is not possible.Restri
ting Combinations We 
an prove that when skc is part of a 
ombination in the set C4 then
s
f(k)
c 
annot be part of a 
ombination in the setCi, i < 4.
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s
f(k)
c 
annot be part of Be
ause:a 
ombination in the set:
C1 If sf(k)c is part of a 
ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a is needed. However, from Lemma D.4 we know that
skc → s

f(k)
c → sk+1

c = switch.3b → switch.3a → switch.3a is not possi-ble.
C2 From Lemma D.2 we know that sf(k)c 
annot be part of a 
ombinationin the set C2.
C3 From Lemma D.20 we know that sf(k)c 
annot be part of a 
ombinationin the set C3.D.3.5 skc is part of a 
ombination in the set C5In this se
tion we 
onsider the 
ase where skc is part of a 
ombination in the set C5 = {C17}.Finite Sequen
e From Lemma D.15 we know that an in�nite sequen
e is not possible.Restri
ting Combinations We 
an prove that when skc is part of a 
ombination in the set C5 then

s
f(k)
c 
annot be part of a 
ombination in the set Ci, i < 5.

s
f(k)
c 
annot be part of Be
ause:a 
ombination in the set:
C1 if s

f(k)
c is part of a 
ombination in the set C1 then it must holdthat s

f(k)
c = switch.3a. However, from Lemma D.4 we know that

s
f(k)−1
c → skc → s

f(k)
c → sk+1

c = switch.3b → switch.3a → switch.3a isnot possible.
C2 From Lemma D.2 we know that sf(k)c 
annot be part of a 
ombinationin the set C2.
C3 From Lemma D.20 we know that sf(k)c 
annot be part of a 
ombinationin the set C3.
C4 We 
an prove that when skc is part of a 
ombination in the set C5 then

s
f(k)
c 
annot be part of 
ombination C11,C15,C18 and C19. From LemmaD.2 we know that sf(k)c 
annot be part of 
ombination C11. From LemmaD.20 we know that s

f(k)
c 
annot be part of 
ombination C15 and fromLemma D.21 we know that sf(k)c 
annot be part of 
ombination C18 or

C19.D.3.6 skc is part of a 
ombination in the set C6In this se
tion we 
onsider the 
ase where skc is part of a 
ombination in the set C6 = {C10}.Finite Sequen
e From Lemma D.15 we know that an in�nite sequen
e of swit
h reasons, where ea
hswit
h reason is part of 
ombination C10 is not possible.
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Restri
ting Combinations We 
an prove that when skc is part of a 
ombination in the set C6 then
s
f(k)
c 
annot be part of 
ombination Ci, i < 6.

s
f(k)
c 
annot be part of Be
ause:a 
ombination in the set:
C1 If sf(k)c is part of a 
ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. However, from Lemma D.4 we know that skc →
s
f(k)
c → sk+1

c = switch.3b → switch.3a → switch.3a is not possible.
C2 From Lemma D.2 we know that sf(k)c 
annot be part of a 
ombinationin the set C2.
C3 From Lemma D.20 we know thatsf(k)c 
annot be part of a 
ombinationin the set C3.
C4 We 
an prove that when skc is part of a 
ombination in the set C6 then

s
f(k)
c 
annot be part of 
ombination C11,C15,C18 and C19. From LemmaD.15 we know that s

f(k)
c 
annot be part of 
ombination C11. FromLemma D.9 we know that sf(k)c 
annot be part of 
ombination C18 and
ombination C15 be
ause and from Lemma D.2 we know that sf(k)c 
an-not be part of 
ombination C18 and 
ombination C19.

C5 From Lemma D.2 we know that sf(k)c 
annot be part of a 
ombinationin the set C5.D.3.7 skc is part of a 
ombination in the set C7In this se
tion we 
onsider the 
ase where skc is part of a 
ombination in the set C7 = {C7}.Finite Sequen
e From Lemma D.15 we know that an in�nite sequen
e of swit
h reasons where ea
hswit
h reason is part of 
ombination C7 is not possible.Restri
ting Combinations We 
an prove that when skc is part of a 
ombination in the set C7 then
s
f(k)
c 
annot be part of a 
ombination in the set Ci, i < 8.

s
f(k)
c 
annot be part of Be
ause:a 
ombination in the set:
C1 If sf(k)c is part of a 
ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. However, from Lemma D.4 we know that skc →
s
f(k)
c → sk+1

c = switch.2 → switch.3a → switch.3a is not possible.
C2 From Lemma D.15 and Lemma D.21 we know that sf(k)c 
annot be partof a 
ombination in the set C2.
C3, C4, C5, C6 From LemmaD.2 we know that sf(k)c 
annot be part of a 
ombination inthese set.D.3.8 skc is part of a 
ombination in the set C8In this se
tion we 
onsider the 
ase where skc is part of a 
ombination in the set C8 = {C9}.
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Finite Sequen
e Lets assume that an in�nite sequen
e of swit
h reasons where ea
h swit
h reasonis part of a 
ombination in the set C8 = {C9} exists:
skc → s

f(k)
c → sk+1

c → s
f(k)+1
c → · · · = switch.2 → switch.3a → switch.2 → switch.3a → . . . , (D.14)where max

ic∈Gc

xh+1
c,ic

≤ 0, ∀h ≥ k.Sin
e, we stop ghic h ≥ k for the reason switch.3a, the signal ic that rea
hes its maximum queue (atthe start of gh+1
ic

, h ≥ k) satis�es gµ,hic
= ghic , ∆xh+1

c,ic
≥ 0 (be
ause ∆xk+1

c,ic
< 0 would imply a queuelength that ex
eeds the maximum queue length) and gkic > gpbtic

(be
ause of inequalities (8.1h), (8.1k)).Hen
e, using Lemma D.18 we 
an see that ea
h queue ic ∈ Gc either goes empty, i.e. the queuelength is zero at the end of gf(h)ic
, h ≥ k or its queue length de
reases minimally ∆c(g

h
ic
) > 0. Notethat ghic = gh+1

ic
= gmax

ic
, ∀h ≥ k. Hen
e, eventually all queues ic ∈ Gc are emptied (and we do not stopserving the signals in the set Gc for the reason switch.3a but for the reason switch.1a or switch.1b).Thus, an in�nite sequen
e where ea
h swit
h reason is part of 
ombination C9 is not possible.Restri
ting Combinations We 
an prove that when skc is part of a 
ombination in the set C8 then

s
f(k)
c 
annot be part of a 
ombination in the set Ci, i < 8.

s
f(k)
c 
annot be part of Be
ause:a 
ombination in the set:
C1 If sf(k)c is part of a 
ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. However, from Lemma D.4 we know that skc →
s
f(k)
c → sk+1

c = switch.2 → switch.3a → switch.3a is not possible.
C2 From Lemma D.5 we know that sf(k)c 
annot be part of a 
ombinationin the set C2.
C3 From Lemma D.2 we know that the sequen
e s

f(k)−1
c → skc → s

f(k)
c =

switch.2 → switch.3a → switch.3b and the sequen
e skc → s
f(k)
c →

sk+1
c = switch.2 → switch.3a → switch.3b are not possible. FromLemma D.4 we know that the sequen
e sf(k)−1

c → skc → s
f(k)
c → sk+1

c =
switch.2 → switch.3a → switch.3a → switch.3b is not possible.

C4 We 
an prove that when skc is part of 
ombination C10 then s
f(k)
c 
annotbe part of a 
ombination in C4 = {C11, C15, C18, C19}. From Lemma D.5we know that sf(k)c 
annot be part of a 
ombination C11. Further, sf(k)c
annot be part of 
ombination C15 for the same reason why s
f(k)
c 
annotbe part of a 
ombination in the set C3. From Lemma D.2 we know that

s
f(k)
c 
annot be part of a 
ombination C18 or C19.

C5 From Lemma D.2 we know thatsf(k)c 
annot be part of a 
ombination inthe set C5.
C6, C7 From Lemma D.5 we know that sf(k)c 
annot be part of a 
ombinationin the set C6 or a 
ombination in the set C7.D.3.9 skc is part of a 
ombination in the set C9In this se
tion we 
onsider the 
ase where skc is part of a 
ombination in the set C9 = {C5}.182



Finite Sequen
e From Lemma D.16 we know that an in�nite sequen
e where ea
h swit
h reason ispart of a 
ombination in the set C9 is not possible.Restri
ting Combinations We 
an prove that when skc is part of a 
ombination in the set C9 then
s
f(k)
c 
annot be part of a 
ombination in the set Ci, i < 9.

s
f(k)
c 
annot be part of Be
ause:a 
ombination in the set:
C1 If sf(k)c is part of a 
ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. However, from Lemma D.4 we know that skc →
s
f(k)
c → sk+1

c = switch.3b → switch.3a → switch.3a is not possible.
C2 From Lemma D.7 we know that sf(k)c 
annot be part of a 
ombinationin the set C2.
C3 From Lemma D.1 we know that sf(k)c 
annot be part of a 
ombinationin the set C2.
C4 We 
an prove that when skc is part of 
ombination C10 then s

f(k)
c 
annotbe part of a 
ombination in C4 = {C11, C15, C18, C19}. From Lemma D.7we know that sf(k)c 
annot be part of a 
ombination C11. From LemmaD.1 we know that sf(k)c 
annot be part of a 
ombination C15 and fromLemma D.7 we know that sf(k)c 
annot be part of a 
ombination C18 or

C19.
C5 From Lemma D.7 we know that sf(k)c 
annot be part of a 
ombinationin the set C5.
C6 From Lemma D.2 and Lemma D.10 we know thatsf(k)c 
annot be partof a 
ombination in the set C3 ∈ C6. Further, from Lemma D.7 we knowthat sf(k)c 
annot be part of a 
ombination in the set C10 ∈ C6.
C7 From Lemma D.7 we know that sf(k)c 
annot be part of a 
ombinationin the set C7.D.3.10 skc is part of a 
ombination in the set C10In this se
tion we 
onsider the 
ase where skc is part of a 
ombination in the set C10 = {C6}.Finite Sequen
e From Lemma D.16 we know that an in�nite sequen
e of swit
h reasons, where ea
hswit
h reason is part of 
ombination C6 is not possible.Restri
ting Combinations From Lemma D.7 we know that when skc is part of a 
ombination in theset C10 then s

f(k)
c 
annot be part of a 
ombination Ci, i < 10 whenever k ≥ nC1 .D.3.11 skc is part of a 
ombination in the set C11In this se
tion we 
onsider the 
ase where skc is part of a 
ombination in the set C11 = {C1}.Assume an in�nite sequen
e where ea
h swit
h reason is part of a 
ombination in the set C11:

skc → s
f(k)
c → sk+1

c → s
f(k)+1
c → · · · = switch.1a → switch.1a → switch.1a → switch.1a → . . .183



From Lemma D.22 we know that:
g
f(h)
ic

> gpbtic
, ∀ic ∈ Gc, ∀h ≥ k,

ghic > gpbtic
, ∀ic ∈ Gc, ∀h > k.Further, we know from Lemma D.11 that:

∆g
f(h)+1
ic

= g
f(h)+1
ic

− g
f(h)
ic

≤ max
lc∈Gc,lc∈Gc

ρlc(1 − ρlc − ρlc)

1− ρlc
(gpbtlc,lc

− g
f(h)
lc

) < 0, ∀h ≥ k,

∆gh+1
ic

= gh+1
ic

− ghic ≤ max
lc∈Gc,lc∈Gc

ρlc(1 − ρlc − ρlc)

1− ρlc
(gpbtlc,lc

− ghlc) < 0, ∀h > k.From these two lemmas we 
an see that for k → ∞ the green times (note that the green times ofthe signals in the set G1 are related to ea
h other and that the green times of the signals in the set G2are related to ea
h other) 
onverge to the smallest green times that satisfy gki1 ≥ gpbti1
, ∀i1 ∈ G1 andsatisfy gki2 ≥ gpbti2

, ∀i2 ∈ G2. Note that for k → ∞, the green times 
onverge to the smallest green andred times that satisfy the inequalities in (7.14a). Hen
e, the green times 
onverge to green times thatare smaller than (or equal to) the green times of the traje
tory that we want to follow (for an in�nitesequen
e of swit
h reasons equal to switch.1a).When the green time gkic is smaller than the green times for the desired traje
tory then we swit
hfor the reason switch.1b (see se
tion D.1). If the green times that we 
onverge to are equal to the greentimes of the desired traje
tory we 
onverge to the desired traje
tory.Note that we only have an in�nite sequen
e where ea
h swit
h reason is part of a 
ombination inthe set C11 whenever the green times of the desired traje
tory are the green times that we 
onverge to.Restri
ting Combinations When skc is part of 
ombination C11 then s
f(k)
c 
annot be part of 
om-bination Ci, i < 11 be
ause of Lemma D.12 and Lemma D.1.D.3.12 skc is part of a 
ombination in the set C12In this se
tion we 
onsider the 
ase where skc is part of a 
ombination in the set C12.From Lemma D.23 we know that whenever skc = switch.1b then we follow the desired traje
toryfrom the start of the k + 1th 
y
le c. Whenever skc = switch.1b it holds that:

skc = switch.1b, ∀h ≥ k, (D.15)
s
f(h)
c = switch.1b, ∀h ≥ k. (D.16)D.4 LemmasIn this se
tion we show the di�erent lemmas that we use in the proof of the poli
y.
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D.4.1 Lemmas Ex
luding Sequen
es of Swit
h ReasonsLemma D.1 The sequen
e skc → s
f(k)
c = switch.1a → switch.3a is not possible.Proof. Whenever s

f(k)
c = switch.3a then there is a queue ic ∈ Gc that was not emptied during

gkic (see Se
tion D.1 for the de�nition of the swit
h reason switch.3a). However, when skc = switch.1athis means that all signals in the set Gc are emptied during their green time gkic . Hen
e, the sequen
e
skc → s

f(k)
c = switch.1a → switch.3a is not possible.Lemma D.2 skc = switch.3b 
an o

ur i� shc 6= switch.2, ∀h ≥ 1.Proof. From Lemma D.17 we know that whenever a queue in the set Gc goes from empty to themaximum queue length then all queues in the set Sc will go from empty to the maximum queue length.When skc = switch.3b then this means that a queue goes from empty to the maximum queue lengthbefore the maximum green time is rea
hed, i.e. ximax

s

λis
− σic,is,ic < gmax

ic
, ic ∈ Gc, is ∈ Sc (see thede�nitions of switch.2 and switch.3b in Se
tion D.1). Moreover, when skc = switch.2 this means that aqueue 
annot go from empty to the maximum queue length before the maximum green time is rea
hed,i.e. ximax

s

λis
−σic,is,ic ≥ gmax

ic
, ic ∈ Gc, is ∈ Sc. Hen
e skc = switch.3b 
an o

ur i� shc 6= switch.2, ∀h ≥ 1.Lemma D.3 The sequen
es skc → s

f(k)
c → sk+1

c = switch.3b → switch.3a → switch.1a and skc →
s
f(k)
c → sk+1

c = switch.2 → switch.3a → switch.1a are not possible.Proof. The visualization of this proof 
an be seen in Figure D.8a. In this Figure ic ∈ Gc is thesignal that 
auses s
f(k)
c = switch.3a, i.e. the queue that is full at the beginning of gk+1

ic
. The signal

ic ∈ Gc 
ould refer to any signal in the set Gc.PSfrag repla
ements
x̃max
c,ic

x̃max
c,ic

− λicσic,ic,ic

xic

x̃min
c,ic
x̃min
c,ic

xic x̃max
c,ic

1
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4

5

(a) Visualization of Lemma D.3In this �gure we 
an see the following se
tions:1 Between point 1 and point 2, gkic = g̃max
ic

is performed.2 between point 2 and point 3, the setup σic,ic,ic is performed.3 between point 3 and point 4, gf(k)ic
is performed.185



4 Between point 4 and point 5, gk+1
ic

is performed.We were not able empty queue ic during gkic = g̃max
ic

(sin
e s
f(k)
c = switch.3a) and the queue lengthat the beginning of gk+1

ic

annot be less than the queue length at the beginning of gkic (queue ic is fullat the beginning of gk+1

ic
). Hen
e, we 
annot empty queue ic during gk+1

ic
≤ g̃max

ic
. Thus, the sequen
es

skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.3a → switch.1a and skc → s

f(k)
c → sk+1

c →
s
f(k)+1
c = switch.2 → switch.3a → switch.1a are not possible.Lemma D.4 skc → s

f(k)
c → sk+1

c = switch.2 → switch.3a → switch.3a and skc → s
f(k)
c → sk+1

c =
switch.3b → switch.3a → switch.3a are not possibleProof. We 
an see the 
ase where skc → s

f(k)
c = switch.2 → switch.3a or skc → s

f(k)
c = switch.3b →

switch.3a in Figure D.8. We use ik+1
c for a signal that has a queue length that is equal to the maximumqueue length at the beginning of gk+1
ic

(whi
h exists be
ause s
f(k)
c = switch.3a). We use ic for a signal(
ould be any sign) in the set Gc.PSfrag repla
ements
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− λik+1
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Figure D.8: Visualization of Lemma D.4We 
an distinguish the following se
tions in this �gure:1 between point 1 and point 2, gk
ik+1
c

is performed.2 between point 2 and point 3, gf(k)ic
is performed.3 between point 3 and point 4, the setup σic,i

k+1
c ,ic

is performed.4 between point 4 and point 5, gk+1

ik+1
c

is performed.Be
ause ∆xk+1

c,ik+1
c

≥ 0 (be
ause queue ik+1
c is full at the beginning of gk+1

ik+1
c

), gµ,k
ik+1
c

= gk
ik+1
c

(be
ausebu�er ik+1
c was not emptied during gk

ik+1
c

sin
e skc = switch.3a) and gk
ik+1
c

> gpbt
ik+1
c

(be
ause of theinequalities in (8.1h), (8.1k), (8.1n) and (8.1q)) we 
an use Lemma D.18. From Lemma D.18 it followsthat ea
h queue ic ∈ Gc either empties, i.e. the queue length is zero at the end of its green time g
f(k)
ic

,or its queue length de
reases minimally ∆c(g
k
ic
) > 0 during the kth 
y
le c.186



As a result, for ea
h signal ic ∈ Gc it holds that the queue length at the start of gk+1

ik+1
c

is not largerthan the queue length at the start of gk
ik+1
c

. Further, be
ause it holds that gk+1

ik+1
c

≤ g̃max
ic

(be
ause ofinequality (D.5a)) and gk
ik+1
c

= g̃max
ic

(see the de�nition of g̃max
ic

in Se
tion D.2) the queue length of queue
ic 
annot be larger at the end of gk+1

ik+1
c

than it was at the end of gk
ik+1
c

. As a result skc → s
f(k)
c → sk+1

c =

switch.2 → switch.3a → switch.3a and skc → s
f(k)
c → sk+1

c = switch.3b → switch.3a → switch.3a arenot possible.Lemma D.5 If skc → s
f(k)
c = switch.2 → switch.3a or skc → s

f(k)
c = switch.3b → switch.3a then

s
f(k)+1
c = switch.3b is not possible and s

f(k)+1
c = switch.2 is not possible.Proof. The proof of this lemma is shown in Figure D.9aPSfrag repla
ements
x̃max
c,ic

xic

x̃min
c,ic

x̃min
c,ik+1

c

xik+1
c x̃max

c,ik+1
c

1
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3
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5
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7(a) Visualization of Lemma D.5In this �gure we use ik+1
c ∈ Gc to refer to a signal in the set Gc whi
h queue is full at the start of

gk+1
ic

(whi
h exists be
ause s
f(k)
c = switch.3a) and ic ∈ Gc 
ould refer to any signal in the set Gc. Inthis �gure we 
an see the following se
tions:1 Between point 1 and point 2, gkic = g̃max

ic
is performed.2 between point 2 and point 3, the setup σic,i

k+1
c ,ic

is performed.3 between point 3 and point 4, gf(k)ic
is performed.4 Between point 4 and point 5, gk+1

ik+1
c

= g̃max
ic

is performed.5 between point 5 and point 6, the setup σic,i
k+1
c ,ic

is performed.6 between point 6 and point 7, gf(k)+1
ic

is performed.First of all point 1 
annot be positioned on the right side of point 4 (be
ause queue ik+1
c is fullat the beginning of gk+1

ic
and otherwise the maximum queue length would be ex
eeded). Further, itholds that gkic ≥ gk+1

ic
(be
ause gkic = g̃max

ic
). As a result point 2 
annot be positioned on the right ofpoint 5. Hen
e, it follows that gf(k)+1

ic
≤ g

f(k)
ic

, ∀ic ∈ Gc (be
ause otherwise queue ic would over�ow).It holds that g
f(k)
ic

< g̃max
ic

(sin
e s
f(k)
c = switch.3a). Hen
e, gf(k)+1

ic
≤ g

f(k)
ic

< g̃max
ic

. As a result,
s
f(k)+1
c = switch.3b is not possible and s

f(k)+1
c = switch.2 is not possible.187



Lemma D.6 The following sequen
es are not possible:1 skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.1a → switch.2 → switch.22 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.1a → switch.2 → switch.3b3 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.1a → switch.3b → switch.24 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.1a → switch.3b → switch.3bProof. Whenever skc = switch.2 this means that at the start of gf(k)ic

the queue length of queue
ic ∈ Gc satis�es xic (t) ≥ (g̃max

ic
+ σic ,ic,ic)λic be
ause (g̃max

ic
+ σic,ic,ic)λic is the amount of tra�
 thatarrived during the red period. During g

f(k)
ic

all queues ic ∈ Gc are emptied (be
ause sf(k)c = switch.1a).At the beginning of gf(k)+1
ic

the queue length of a queue ic ∈ Gc is exa
tly xic(t) = (g̃max
ic

+ σic,ic,ic)λic(whi
h is less than or equal to the queue level at the start of gf(k)ic
). Hen
e, we 
an also empty all queuesin the set Gic during g

f(k)+1
ic

before we have to stop for the reason switch.2 or for the reason switch.3b.Lemma D.7 The following sequen
es are not possible if k ≥ nC1 + 11 skc → s
f(k)
c → sk+1

c = switch.1a → switch.2 → switch.3b2 skc → s
f(k)
c → sk+1

c = switch.1a → switch.3b → switch.3b3 skc → s
f(k)
c → sk+1

c = switch.1a → switch.2 → switch.24 skc → s
f(k)
c → sk+1

c = switch.1a → switch.3b → switch.25 skc → s
f(k)
c → sk+1

c = switch.1a → switch.2 → switch.3a6 skc → s
f(k)
c → sk+1

c = switch.1a → switch.3b → switch.3aProof. First of all we are going to proof that if the sequen
e 1,2,3,4,5 or 6 exists then it musthold that sf(k)−1
c = switch.2 if sf(k)c = switch.2 and it must hold that sf(k)−1

c = switch.3b if sf(k)c =
switch.3b.From Lemma D.2 we know that s

f(k)−1
c = switch.3b 
annot o

ur if sf(k)c = switch.2 and that

s
f(k)−1
c = switch.2 
annot o

ur if sf(k)c = switch.3b.From Lemma D.12 we know that it is not possible that s

f(k)−1
c = switch.1a and from LemmaD.23 we know that s

f(k)−1
c = switch.1b is not possible. Further, we also look at sk−1

c to proof that
s
f(k)−1
c = switch.3a is not possible. In the table below we show why s

f(k)−1
c = switch.3a is not possible.

sk−1
c → s

f(k)−1
c equal to not possible when skc → s

f(k)
c → sk+1

c is sequen
e 1,2,3,4,5 or 6 be
ause
switch.1a → switch.3a Lemma D.1
switch.1b → switch.3a Lemma D.23
switch.2 → switch.3a Lemma D.3
switch.3a → switch.3a sk−1

c 
annot be part of a 
ombinationin the set C1 whenever k ≥ nC1 + 1
switch.3b → switch.3a Lemma D.3Hen
e, if a sequen
e 1,2,3,4,5 or 6 exists then it must hold that sf(k)c = switch.2 if sf(k)+1

c = switch.2and that s
f(k)
c = switch.3b if sf(k)+1

c = switch.3b. From Lemma D.6 we 
an now see that sequen
es1,2,3 and 4 are not possible. From Lemma D.8 it follows that sequen
es 5 and 6 are not possible.188



Lemma D.8 The following sequen
es are not possible:1 skcs
k−1
c → s

f(k)
c → sk+1

c = switch.2 → switch.1a → switch.2 → switch.3a2 skcs
k−1
c → s

f(k)
c → sk+1

c = switch.3b → switch.1a → switch.3b → switch.3aProof. Assume sk+1
c = switch.3a. We use i

f(k)+1
c to refer to the queue that is fulll at the end of

gk+1
ic

see Figure D.9a. It holds that queue i
f(k)+1
c is not emptied during g

f(k)
ic

(be
ause we otherwise
sk+1
c = switch.3b). We know from inequalities (8.1h), (8.1k), (8.1n) and (8.1q) that gf(k)

i
f(k)+1
c

> gpbt
i
f(k)+1
c

.In Figure D.9a we 
an see that any queue ic is emptied before queue i
f(k)+1
c is full.Furthermore, using inequalities (8.1j), (8.1m), (8.1p) and (8.1p) and using (D.7a) and (D.7d)) andusing g

µ,f(k)

i
f(k)+1
c

= g
f(k)

i
f(k)+1
c

we 
an derive that the minimum green times of the signals in Gc are satis�edbefore sk+1
c = switch.3a o

urs.Furthermore, we know that we satisfy 
ondition 1.3 (see Se
tion 8.3.1) before sk+1

c = switch.3ao

urs (otherwise a maximum queue length is ex
eeded for the desired traje
tory). Hen
e, we swit
hfor the reason sk+1
c = switch.1a or sk+1

c = switch.1b before we have to swit
h for the reason sk+1
c =

switch.3a.PSfrag repla
ements x̃max
c,ic

x̃max
c,ic − λicσi

f(k)+1
c

,ic,i
f(k)+1
c

xic

x̃min
c,ic
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c,i
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c

x
i
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c
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c,i
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c
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∆x
f(k)+1
c,ic(a) Situation 1

Lemma D.9 The sequen
e skc → s
f(k)
c → sk+1

c = switch.2 → switch3b → switch.3a where max
ic∈Gc

∆xk+1
c,ic

≤
0 is not possible.Proof. Be
ause of swit
h reason skc = switch.2 and be
ause of (8.1f) and (8.1g) it holds that:

gkic = gmax
ic , ∀ic ∈ Gc.When max

ic∈Gc

∆xk+1
c,ic

≤ 0, the queue length of every signal ic ∈ Gc 
annot be greater at the start of
gk+1
ic

than it was at the start of gkic . When we performed the maximum green time gkic = gmax
ic

, no189



maximum queue lengths where ex
eeded. Hen
e, when performing a green time gk+1
ic

≤ gmax
ic

againno queue lengths would be ex
eeded and therefore sk+1
c 
annot be equal to switch.3a (we rea
h themaximum green time before we have to swit
h for the reason sk+1

c = switch.3a).Lemma D.10 The following sequen
es are not possible:sequen
e 1 skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.1a → switch.1a → switch.3bsequen
e 2 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.1a → switch.1a → switch.2sequen
e 3 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.1a → switch.1a → switch.3bsequen
e 4 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.1a → switch.1a → switch.2Proof. Lets assume sequen
e 1,2,3 or 4 are possible. In these 
ases it holds that gkic = g̃max

ic
,

∀ic ∈ Gc. Hen
e, the queue length of queue ic ∈ Gc is at least (g̃max
ic

+ σic,ic,ic)λic = r̃max
ic

λic at thebeginning of gf(k)ic
. The queue length at the beginning of gf(k)+1

ic
is at most (g̃max

ic
+σic,ic,ic)λic (be
auseall queues in the set Gc where empty at the end of gf(k)ic

and gk+1
ic

≤ g̃max
ic

).Be
ause we 
ould empty all queues ic ∈ Gc during g
f(k)
ic

≤ g̃max
ic

we are also able to empty all queues
ic ∈ Gc during g

f(k)+1
ic

≤ g
f(k)
ic

≤ g̃max
ic

. However, sf(k)+1
c = switch.2 or sf(k)+1

c = switch.3b 
an onlyo

ur if we are not able to empty all queues during g
f(k)+1
ic

≤ g̃max
ic

(see Se
tion D.1 for the de�nitionsof the swit
h reasons switch.2 and switch.3b).Lemma D.11 Whenever, sf(k)−1
c → skc → s

f(k)
c → sk+1

c = switch.1a → switch.1a → switch.1a →
switch.1a then it holds that ∆gk+1

ic
= gk+1

ic
− gkic ≤ max

lc∈Gc,lc∈Gc

ρlc
(1−ρlc−ρlc

)

1−ρlc
(gpbtlc,lc

− g
f(k)
lc

) < 0, ∀ic ∈ GcThe sequen
e s
f(k)−1
c → skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.1a → switch.1a → switch.1a →

switch.1a → switch.3b and the sequen
e s
f(k)−1
c → skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.1a →

switch.1a → switch.1a → switch.1a → switch.2 are not possible.Proof. In Figure D.9a we 
an see the situation where sf(k)−1
c → skc → s

f(k)
c → sk+1

c = switch.1a →
switch.1a → switch.1a → switch.1a. We use ic∗ ∈ Gc for the signal that satis�es gµ,f(k)i∗c

= g
f(k)
i∗c

and
i∗c ∈ Gc for the signal that satis�es gµ,k+1

i∗c
= gk+1

i∗c
(From Lemma D.22 we know these signals exists).In this �gure we 
an see the following se
tions:1 Between point 1 and point 2, the setup σi∗

c
,i∗c ,i

∗
c
.2 between point 2 and point 3, gki∗c is performed.3 between point 3 and point 4, gf(k)i∗c

is performed.4 Between point 4 and point 5, the setup σi∗
c
,i∗c ,i

∗
c
.5 between point 5 and point 6, gk+1

i∗c
is performed.Using g

µ,f(k)
i∗
c

= g
f(k)
i∗
c

and gµ,k+1
i∗c

= gk+1
i∗c

and (D.7) we 
an �nd that:
∆x

f(k)+1
c,i∗c

=
µi∗c

(1 − ρi∗c − ρi∗c )

1− ρi∗c
(gpbti∗c ,i

∗
c
− g

f(k)
i∗c

).From lemma D.22 we know that: 190
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ements x̃max
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x̃max
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c(a) Visualization of Lemma D.11

g
f(k)
ic

> gpbtic
, ∀ic ∈ Gc.From (D.4) we know:

gpbtic
≥ gpbtic,ic

, ∀ic ∈ Gc, ∀ic ∈ Gc.Hen
e, it holds that:
∆x

f(k)+1
c,i∗c

=
µi∗

c
(1− ρi∗c − ρi∗

c
)

1− ρi∗c
(gpbti∗c ,i

∗
c
− g

f(k)
i∗c

) < 0.Note that ∆gk+1
i∗c

= gk+1
i∗c

− gki∗c =
∆x

f(k)+1

c,i∗
c

λi∗
c

and thus:
∆gk+1

i∗c
=

ρi∗
c
(1− ρi∗c − ρi∗

c
)

1− ρi∗c
(gpbti∗

c
,i∗c

− g
f(k)
i∗
c

) < 0.The green times are related via (D.2). Therefore, it also holds that:
∆gk+1

ic
= gk+1

ic
− gkic =

ρi∗
c
(1 − ρi∗c − ρi∗

c
)

1− ρi∗c
(gpbti∗c ,i

∗
c
− g

f(k)
i∗c

) < 0, ∀ic ∈ Gc.As a result we 
an �nd that:
∆gk+1

ic
= gk+1

ic
−gkic =

ρi∗
c
(1− ρi∗c − ρi∗

c
)

1− ρi∗c
(gpbti∗

c
,i∗c
−g

f(k)
i∗
c

) ≤ max
lc∈Gc,lc∈Gc

ρlc(1− ρlc − ρlc)

1− ρlc
(gpbtlc,lc

−g
f(k)
lc

) < 0, ∀ic ∈ Gc.(D.17)191



s
f(k)−2
c → sk−1

c → s
f(k)−1
c → skc → s

f(k)
c → sk+1

c is impossible be
ause
∗ → switch.1a → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.11
∗ → switch.2 → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.13
switch.1a → switch.3a → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.1
switch.2 → switch.3a → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.3
switch.3a → switch.3a → switch.1a → switch.1a → switch.1a → switch.2 skc 
annot be part of a 
ombinationin the set C1 whenever k ≥ nC1 + 1
switch.3b → switch.3a → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.3
∗ → switch.3b → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.13
∗ → ∗ → switch.2 → switch.1a → switch.1a → switch.2 Lemma D.10
∗ → switch.1a → switch.3a → switch.1a → switch.1a → switch.2 Lemma D.1
∗ → switch.2 → switch.3a → switch.1a → switch.1a → switch.2 Lemma D.3
∗ → switch.3a → switch.3a → switch.1a → switch.1a → switch.2 skc 
annot be part of a 
ombinationin the set C1 whenever k ≥ nC1 + 1
∗ → switch.3b → switch.3a → switch.1a → switch.1a → switch.2 Lemma D.3
∗ → ∗ → switch.3b → switch.1a → switch.1a → switch.2 Lemma D.10Table D.4: In this table we show that all sequen
es sf(k)−2

c → sk−1
c → s

f(k)−1
c → skc → s

f(k)
c → sk+1

c ,where skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.2 are not possible. We do not 
onsiderthe sequen
es where sf(k)−2
c , sk−1

c or sf(k)−1
c is equal to switch.1b. * means that this swit
h reason 
anbe either one of the �ve swit
h reasons (ex
ept for switch.1b)The queue length of queue ic ∈ Gc equals (gkic + σic,ic,ic)λic at the beginning of gf(k)ic

and equals
(gk+1

ic
+σic,ic,ic)λic < (gkic +σic,ic,ic)λic at the beginning of gf(k)+1

ic
. For all signals ic ∈ Gc an amount of

(gkic + σic,ic,ic)λic tra�
 
ould depart during g
f(k)
ic

≤ g̃max
ic

. Hen
e, an amount of (gk+1
ic

+ σic,ic,ic)λic <

(gkic + σic,ic,ic)λic 
ould depart during g
f(k)+1
ic

< g̃max
ic

.Thus, the sequen
e s
f(k)−1
c → skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.1a → switch.1a →

switch.1a → switch.1a → switch.3b and the sequen
e s
f(k)−1
c → skc → s

f(k)
c → sk+1

c → s
f(k)+1
c =

switch.1a → switch.1a → switch.1a → switch.1a → switch.2 are not possible be
ause during g
f(k)+1
icwe swit
h be
ause of the reason switch.1a or switch.1b before we have to swit
h be
ause of the reason

switch.2 or switch.3b.Lemma D.12 The sequen
es skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.2 and skc →
s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.3b are not possible for k ≥ nC1 + 1 (in Se
tion D.3we explain the de�nition of nC1 + 1)Proof. We �rst prove that the sequen
e skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.2is not possible by also looking at s
f(k)−2
c , sk−1

c and s
f(k)−1
c . We prove that all sequen
es s

f(k)−2
c →

sk−1
c → s

f(k)−1
c → skc → s

f(k)
c → sk+1

c , where skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.2are not possible if k ≥ nC1 + 1.First of all, whenever s
f(k)−2
c , sk−1

c or s
f(k)−1
c is equal to switch.1b then skc → s

f(k)
c → sk+1

c =
switch.1a → switch.1a → switch.2 is not possible be
ause of Lemma D.23. All other possible sequen
esare shown in the Table D.4. 192



s
f(k)−2
c → sk−1

c → s
f(k)−1
c → skc → s

f(k)
c → sk+1

c is not possible be
ause
∗ → switch.1a → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.11
∗ → switch.2 → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.13
switch.1a → switch.3a → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.1
switch.2 → switch.3a → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.3
switch.3a → switch.3a → switch.1a → switch.1a → switch.1a → switch.3b skc 
annot be part of a 
ombinationin the set C1 whenever k ≥ nC1 + 1
switch.3b → switch.3a → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.3
∗ → switch.3b → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.13
∗ → ∗ → switch.2 → switch.1a → switch.1a → switch.3b Lemma D.10
∗ → switch.1a → switch.3a → switch.1a → switch.1a → switch.3b Lemma D.1
∗ → switch.2 → switch.3a → switch.1a → switch.1a → switch.3b Lemma D.3
∗ → switch.3a → switch.3a → switch.1a → switch.1a → switch.3b skc 
annot be part of a 
ombinationin the set C1 whenever k ≥ nC1 + 1
∗ → switch.3b → switch.3a → switch.1a → switch.1a → switch.3b Lemma D.3
∗ → ∗ → switch.3b → switch.1a → switch.1a → switch.3b Lemma D.10Table D.5: In this table we show that all sequen
es sf(k)−2

c → sk−1
c → s

f(k)−1
c → skc → s

f(k)
c → sk+1

c ,where skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.3b are not possible. We do not 
onsiderthe sequen
es where sf(k)−2
c , sk−1

c or sf(k)−1
c is equal to switch.1b. * means that this swit
h reason 
anbe either one of the �ve swit
h reasons (ex
ept for switch.1b)In the same way we 
an prove that the sequen
e skc → s

f(k)
c → sk+1

c = switch.1a → switch.1a →
switch.3b is not possible for k ≥ nC1 + 1. We prove that all sequen
es s

f(k)−2
c → sk−1

c → s
f(k)−1
c →

skc → s
f(k)
c → sk+1

c , where skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.3b are not possible if
k ≥ nC1 + 1.First of all, whenever s

f(k)−2
c , sk−1

c or s
f(k)−1
c is equal to switch.1b then skc → s

f(k)
c → sk+1

c =
switch.1a → switch.1a → switch.3b is not possible be
ause of Lemma D.23.All other possible sequen
es are shown in the Table D.5.Lemma D.13 The following sequen
es are not possible:1 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c → sk+2

c = switch.2 → switch.1a → switch.1a → switch.1a →
switch.22 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c → sk+2

c = switch.3b → switch.1a → switch.1a → switch.1a →
switch.3bProof. The queue length of a queue ic ∈ Gc at the start of gf(k)ic

is at least (g̃max
ic

+ σic,ic,ic)λic .The queue length of a queue ic ∈ Gc at the start of gf(k)+1
ic

is equal to (gk+1
ic

+ σic,ic,ic)λic ≤ (g̃max
ic

+

σic,ic,ic)λic . Be
ause we 
ould empty ea
h queue ic ∈ Gc during g
f(k)
ic

we are also able to empty ea
hqueue during g
f(k)+1
ic

≤ g
f(k)
ic

.Further, the queue length at queue ic ∈ Gc is at least (gf(k)ic
+ σic,ic,ic)λic at the beginning of gk+1

ic
.The queue length at queue ic ∈ Gc is equal to (g

f(k)+1
ic

+ σic,ic,ic)λic ≤ (g
f(k)
ic

+ σic,ic,ic)λic at the193



beginning of gk+2
ic

. Thus at ea
h queue ic ∈ Gc the queue length at the beginning of gk+2
ic

is less than(or equal to) the queue length at the beginning of gk+1
ic

. We 
ould empty queue ic during a green time
gk+1
ic

≤ g̃max
ic

. Hen
e, we are also able to empty queue ic during a green time gkic ≤ gk+1
ic

≤ g̃max
ic

.However, sk+2
c = switch.2 or sk+2

c = switch.3b 
an only o

ur if we are not able to empty all queuesduring gkic ≤ g̃max
ic

(see D.1 for the de�nitions of the swit
h reasons switch.2 and switch.3b).D.4.2 Lemmas Ex
luding In�nite Sequen
es of Swit
h ReasonsLemma D.14 The following in�nite sequen
es are not possible:sequen
e 1 An in�nite sequen
e of swit
h reasons skc → s
f(k)
c → skc → s

f(k)+1
c → . . . , k > 1 whereea
h stop reason is part of 
ombination C8.sequen
e 2 An in�nite sequen
e of swit
h reasons skc → s

f(k)
c → skc → s

f(k)+1
c → . . . , k > 1 whereea
h stop reason is part of 
ombination C11.sequen
e 3 An in�nite sequen
e of swit
h reasons skc → s

f(k)
c → skc → s

f(k)+1
c → . . . , k > 1 whereea
h stop reason is part of 
ombination C18 or part of 
ombination C19.Proof. First of all, we know that ghic > gpbtic

, ∀ic ∈ Gc, ∀h ≥ k and that gf(h)ic
> gpbtic

, ∀h ≥ k from(8.1h), (8.1k), (8.1n) and (8.1q).We distinguish the following two types of 
ombinations:type 1 
ombination shc → s
f(h)
c and max

ic∈Gc

∆xh+1
c,ic

> 0, h ≥ k.type 2 
ombination shc → s
f(h)
c and max

ic∈Gc

∆xh+1
c,ic

> 0, h ≥ k.This proof goes as follows. If an in�nite sequen
e of swit
h reasons (sequen
e 1, 2 or 3) is possiblethen we 
an prove that either an in�nite sequen
e of swit
h reasons, where all swit
h reasons are partof a type 1 
ombination must be possible or an in�nite sequen
e of swit
h reasons, where all swit
hreasons are part of a type 2 
ombination must be possible. We 
an prove that both are not possible.Hen
e, we know that sequen
e 1, sequen
e 2 and sequen
e 3 
annot o

ur.Lets assume in�nite sequen
es 1,2 and 3 are possible. From (D.7b) and (D.7
) we 
an easily see(see also Figure D.9) that whenever ∃ic ∈ Gc, h ≥ k
(

∆xh+1
c,ic

> 0
) for su
h an in�nite sequen
e (in�nitesequen
es 1,2 or 3) then it holds that the same queue ic ∈ Gc satis�es ∆xh+1

c,ic
= ∆xh+2

c,ic
> 0, h ≥ kbe
ause gµ,hic

= ghic = gµ,h+1
ic

= gh+1
ic

and ghic = gh+1
ic

. Hen
e, when we are given an in�nite sequen
e(either, sequen
e 1, sequen
e 2 or sequen
e 3) where shc , h ≥ k and s
f(h)
c form a type 1 
ombination thenthe swit
h reason sh+z

c , z ∈ N (N is the set of non-negative integers) and the swit
h reason s
f(h)+z
cform a type 1 
ombination.In Figure D.9, ic 
ould refer to any signal in the set Gc and ic ∈ Gc is a signal that satis�es∆xh+1

c,ic
> 0.In Figure D.9 we 
an distinguish the following se
tions:1 between point 1 and point 2, ghic is performed.2 between point 2 and point 3,the setup σic,ic,ic is performed.3 between point 3 and point 4, gf(h)ic

is performed.4 between point 4 and point 5, gh+1
ic

is performed.5 between point 5 and point 6,the setup σic,ic,ic is performed.6 between point 6 and point 7, gf(h)+1
ic

is performed.194
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Figure D.9: Whenever ∃ic ∈ Gc, h ≥ k
(

∆xh+1
c,ic

> 0
) for in�nite sequen
es 1,2 and 3 then it holds thatthe same queue ic ∈ Gc satis�es ∆xh+1

c,ic
= ∆xh+2

c,ic
> 0, h ≥ kHen
e, whenever for in�nite sequen
es 1,2 and 3 a swit
h reason is part of a type 1 
ombinationthen this in�nite sequen
e 
ontains an in�nite sequen
e of swit
h reasons that are all part of a type 1
ombination. On the other hand, whenever for in�nite sequen
es 1,2 and 3 no swit
h reason is part ofa type 1 
ombination then this in�nite sequen
e is an in�nite sequen
e of swit
h reasons that are allpart of a type 2 
ombination.We 
an show that an in�nite sequen
e of swit
h reasons that are all part of a type 1 
ombination isnot possible and that an in�nite sequen
e of swit
h reasons that are all part of a type 2 
ombination isnot possibleFor an in�nite sequen
e of swit
h reasons that are all part of a type 1 
ombination we 
an use LemmaD.19. Using Lemma D.19 we 
an see that ea
h queue ic ∈ Gc either empties, i.e. the queue length isequal to zero at the end of its green time, or its queue length de
reases minimally ∆c(g

f(h)
ic

) > 0, h ≥ k.Note that ∆c(g
f(h)+1
ic

) = ∆c(g
f(h)
ic

), h ≥ k sin
e gf(h)ic
= g

f(h)+1
ic

. As a result, for an in�nite sequen
e ofswit
h reasons that are part of a type 1 
ombination, the queues in the set Gc are eventually all empty(and we swit
h for the reason switch.1a or switch.1b). Whenever we swit
h for the reason switch.1aor switch.1b this swit
h reason 
annot be part of a 
ombination C8, C11, C18 or C19. Thus, an in�nitesequen
e where ea
h swit
h reason is part of type 1 
ombination is not possible.Now we 
onsider an in�nite sequen
e of swit
h reasons that are all part of a type 2 
ombination.We 
an derive:
xh+1
c,ic

= xh
c,ic

− gµ,hic
(µic − λic ) + r̃max

ic
λic ,where

gµ,hic
= min{g̃max

ic
,
xh
c,ic

− x̃min
c,ic

µic − λic

}.Here gµ,hic
(µic − λic) is the net amount of tra�
 that is pro
essed during the green period ghic and

(σic,ic,ic + gmax
ic

)λic is the amount of tra�
 that arrives during a red period. Note that whenever
gµ,hic

=
xh
c,ic

−x̃min
c,ic

µic−λic
then bu�er ic is emptied during ghic .We 
an distinguish two types of signals: 195



type 1 a signal that satis�es ic ∈ Gc satis�es g̃max
ic

≥ ρic r̃
max
ic

1−ρictype 2 a signal that satis�es ic ∈ Gc satis�es g̃max
ic

<
ρic r̃

max
ic

1−ρicA signal of type 1 satis�es:
∆xh+1

c,ic
= −gµ,hic

(µic − λic) + r̃max
ic

λic ≤ −gmax
ic

(µic − λic) + r̃max
ic

λic ≤ 0. (D.18)Hen
e a type 1 signal ic ∈ Gc 
ould never satisfy ∆xh+1
c,ic

> 0. Hen
e, if an in�nite sequen
e of swit
hreasons that are all part of a type 2 
ombination, is possible then it must hold that there is a signal oftype 2.for a type 2 signal we 
an �nd:
∆x

h+1
c,ic

= r̃
max
ic

λic
− g̃

max
ic

(µic
− λic

) > 0 if g̃
max
ic

≤
xh
c,ic

− x̃min
c,ic

µic
− λic

,

∆x
h+1
c,ic

= −x
h
c,ic

+ x̃
min
c,ic

+ r̃
max
ic

λic
> 0 if g̃

max
ic

>
xh
c,ic

− x̃min
c,ic

µic
− λic

∧ x
h
c,ic

< x̃
min
c,ic

+ r̃
max
ic

λic
,

∆x
h+1
c,ic

= x
h
c,ic

− x̃
min
c,ic

+ (σic,ic,ic
+ g

max
ic

)λic
≥ 0 if g̃

max
ic

>
xh
c,ic

− x̃min
c,ic

µic
− λic

∧ x
h
c,ic

≥ x̃
min
c,ic

+ r̃
max
ic

λicNote that g̃max
ic

>
xh
c,ic

−x̃min
c,ic

µic−λic
∧ xh

c,ic
≥ x̃min

c,ic
+ r̃max

ic
λic 
annot be satis�ed be
ause when we �ll in

xh
c,ic

≥ x̃min
c,ic

+ r̃max
ic

λic into g̃max
ic

>
xh
c,ic

−x̃min
c,ic

µic−λic
the result is g̃max

ic
>

ρic r̃
max
ic

1−ρic
. However, a signal of type2 satis�es (by de�nition) g̃max

ic
<

ρic r̃
max
ic

1−ρic
.Note that whenever a type 1 signal satis�es xh

c,ic
< x̃min

c,ic
+ r̃max

ic
λic then it holds that xh+1

c,ic
>

x̃min
c,ic

+ r̃max
ic

λic . Further, when a type 3 signal satis�es xh+1
c,ic

> x̃min
c,ic

+ r̃max
ic

λic then g̃max
ic

= gµ,hic
. Thus,a (type 1) signal ic ∈ Gc satis�es ∆xh+1

c,ic
> 0, ∀h > k and gµ,hic

= g̃max
ic

= ghic , ∀h > k.In the beginning of the proof we showed that ghic > gpbtic
, ∀h ≥ k. Hen
e, we 
an use Lemma D.18.From Lemma D.18 it follows that ea
h queue ic ∈ Gc either empties, i.e. the queue length is zero atthe end of its green time g

f(h)
ic

, h > k, or its queue length de
reases minimally ∆c(g
h
ic
) during the hth
y
le c. Note that ghic = gh+1

ic
= g̃max

ic
, ∀h ≥ k. Hen
e, eventually all queues ic ∈ Gc are emptied (andwe stop serving the signals in Gc for the reason switch.1a or switch.1b). Whenever we swit
h for thereason switch.1a or switch.1b this swit
h reason 
annot be part of a 
ombination C8, C11, C18 or C19.Thus, an in�nite sequen
e of swit
h reasons where ea
h swit
h reason is part of type 2 
ombination isnot possible.Lemma D.15 The following sequen
es are not possible:sequen
e 1 An in�nite sequen
e of stop reasons skc → s

f(k)
c → skc → s

f(k)+1
c → · · · = switch.2 →

switch.2 → switch.2 → switch.2 → . . . , where max
ic∈Gc

∆xk+1
c,ic

≤ 0 ∧ max
ic∈Gc

∆xk+1
c,ic

≤ 0 (note that skcand s
f(k)
c form 
ombination C7).sequen
e 2 An in�nite sequen
e of stop reasons skc → s

f(k)
c → skc → s

f(k)+1
c → · · · = switch.2 →

switch.3b → switch.2 → switch.3b → . . . , where max
ic∈Gc

∆xk+1
c,ic

≤ 0 (note that skc and s
f(k)
c form
ombination C11).sequen
e 3 An in�nite sequen
e of stop reasons skc → s

f(k)
c → skc → s

f(k)+1
c → · · · = switch.3b →

switch.3b → switch.3b → switch.3b → . . . , where max
ic∈Gc

∆xk+1
c,ic

= 0 ∧ max
ic∈Gc

∆xk+1
c,ic

= 0 (note that
skc and s

f(k)
c form 
ombination C17). 196



Further, we know that:1 When skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.2 → switch.2 → switch.2, where

max
ic∈Gc

∆xk+1
c,ic

≤ 0 ∧ max
ic∈Gc

∆xk+1
c,ic

≤ 0 then it holds that max
ic∈Gc

∆xk+2
c,ic

≤ 0 ∧ max
ic∈Gc

∆xk+2
c,ic

≤ 0.2 When skc → s
f(k)
c → skc → s

f(k)+1
c = switch.2 → switch.3b → switch.2 → switch.3b, where

max
ic∈Gc

∆xk+1
c,ic

≤ 0 then it holds that max
ic∈Gc

∆xk+2
c,ic

≤ 03 When skc → s
f(k)
c → skc → s

f(k)+1
c = switch.3b → switch.3b → switch.3b → switch.3b, where

max
ic∈Gc

∆xk+1
c,ic

= 0 ∧ max
ic∈Gc

∆xk+1
c,ic

= 0 then it holds that max
ic∈Gc

∆xk+1
c,ic

= 0 ∧ max
ic∈Gc

∆xk+2
c,ic

= 0.Proof. Lets assume in�nite sequen
e 1,2 and 3 are possible. For all these sequen
es it holds that:
ghic = g̃max

ic ,∀ic ∈ Gc, ∀h ≥ k, (D.19)
g
f(h)
ic

= g̃max
ic

,∀ic ∈ Gc, ∀h ≥ k. (D.20)Using (D.7a) and (D.7d) we 
an �nd that the queue length xh+1
c,ic

, h ≥ k 
an be 
al
ulated a

ordingto the following equation (when assuming in�nite sequen
e 1, 2 or 3):
xh+1
c,ic

= xh
c,ic

− gµ,hic
(µic − λic ) + r̃max

ic
λic ,where

gµ,hic
= min{g̃max

ic
,
xh
c,ic

− x̃min
c,ic

µic − λic

}.Note that a signal ic ∈ Gc is emptied whenever gµ,hic
=

xh
c,ic

−x̃min
c,ic

µic−λic
. In the proof of Lemma D.14 wehave shown that when g̃max

ic
<

r̃max
ic

ρic

1−ρic
then ∃h ≥ k

(

∆xh+1
c,ic

= r̃max
ic

λic − g̃max
ic

(µic − λic) > 0
). Hen
e,sequen
e 1 and sequen
e 3 
an only o

ur if all signals ic ∈ Gc satisfy g̃max

ic
≥ r̃max

ic
ρic

1−ρic
.When a signal ic ∈ Gc satis�es g̃max

ic
≥ r̃max

ic
ρic

1−ρic
then we 
an �nd:

∆x
h+1
c,ic

= −x
h
c,ic

+ x̃
min
c,ic

+ r̃
max
ic

λic
> 0 if g̃

max
ic

>
xh
c,ic

− x̃min
c,ic

µic
− λic

∧ x
h
c,ic

< x̃
min
c,ic

+ r̃
max
ic

λic
,

∆x
h+1
c,ic

= −x
h
c,ic

+ x̃
min
c,ic

+ r̃
max
ic

λic
< 0 if g̃

max
ic

>
xh
c,ic

− x̃min
c,ic

µic
− λic

∧ x
h
c,ic

> x̃
min
c,ic

+ (σic,ic,ic
+ g

max
ic

)λic
,

∆x
h+1
c,ic

= −x
h
c,ic

+ x̃
min
c,ic

+ r̃
max
ic

λic
= 0 if g̃

max
ic

>
xh
c,ic

− x̃min
c,ic

µic
− λic

∧ x
h
c,ic

= x̃
min
c,ic

+ (σic,ic,ic
+ g

max
ic

)λic
,

∆x
h+1
c,ic

= r̃
max
ic

λic
− g̃

max
ic

(µic
− λic

) < 0 if r̃max
ic

ρic

1 − ρic

< g̃
max
ic

≤
xh
c,ic

− x̃min
c,ic

µic
− λic

,

∆x
h+1
c,ic

= r̃
max
ic

λic
− g̃

max
ic

(µic
− λic

) = 0 if r̃max
ic

ρic

1 − ρic

= g̃
max
ic

≤
xh
c,ic

− x̃min
c,ic

µic
− λic

. (D.21)Note the following things: 197



1 Whenever ∆xh+1
c,ic

≤ 0 then ∆xh+2
c,ic

≤ 0. Hen
e, it also holds that whenever max
ic∈Gc

∆xh+1
c,ic

≤ 0 then
max
ic∈Gc

∆xh+2
c,ic

≤ 0.2 Whenever ∆xh+1
c,ic

= 0 then ∆xh+2
c,ic

= 0. Hen
e, it also holds that whenever max
ic∈Gc

∆xh+1
c,ic

= 0 then
max
ic∈Gc

∆xh+2
c,ic

= 0.3 Whenever a queue ic ∈ Gc that satis�es g̃max
ic

>
r̃max
ic

ρic

1−ρic
is emptied during its green time ghic then it isemptied during al subsequent green times, i.e. when g̃max

ic
≥ xh

c,ic
−x̃min

c,ic

µic−λic
then g̃max

ic
≥ xh+1

c,ic
−x̃min

c,ic

µic−λic
.4 All queues ic ∈ Gc that satisfy g̃max

ic
>

r̃max
ic

ρic

1−ρic
are emptied eventually (in �nite time); if xh

c,ic
>

g̃max
ic

(µic − λic)− r̃max
ic

λic then ∆xh+1
c,ic

= r̃max
ic

λic − g̃max
ic

(µic − λic) < 0 and if xh
c,ic

≤ g̃max
ic

(µic −
λic)− r̃max

ic
λic then the queue is emptied (and it is emptied during all its subsequent green times).5 It 
ould be that a queue ic ∈ Gc is never emptied if g̃max

ic
≥ r̃max

ic
ρic

1−ρic
(re
all that for sequen
e 1 andsequen
e 3 it 
annot hold that g̃max

ic
>

r̃max
ic

ρic

1−ρic
)Using (D.7a) and (D.7d) we 
an �nd that the queue length xh+1

c,ic
, h ≥ k 
an be 
al
ulated a

ordingto the following equation (when assuming in�nite sequen
e 1, 2 or 3):

xh+1
c,ic

= xh
c,ic

+ r̃max
ic

λic − g
µ,f(h)
ic

(µic − λic), (D.22)where
g
µ,f(h)
ic

= min{g̃max
ic

,
x
f(h)
c,ic

− x̃min
c,ic

µic − λic

}.When g
µ,f(h)
ic

=
xh
c,ic

−x̃min
c,ic

µic
−λic

then queue ic ∈ Gc will be emptied during g
f(h)
ic

.Using (D.9) we 
an �nd rewrite (D.22) to:
xh+1
c,ic

= max{xh
c,ic

+ r̃max
ic

λic − g̃max
ic

(µic − λic), x̃
min
c,ic

}. (D.23)Note that when g̃max
ic

<
r̃max
ic

ρic

1−ρic

then it holds that xh
c,ic

+ r̃max
ic

λic > x̃min
c,ic

be
ause xh
c,ic

≥ x̃min
c,ic(xh

c,ic
< x̃min

c,ic
implies a negative queue length) and r̃max

ic
λic − g̃max

ic
(µic − λic) > 0.As a result it follows that ∆xh+1

c,ic
= r̃max

ic
λic − gµ,hic

(µic − λic) = r̃max
ic

λic − g̃max
ic

(µic − λic) > 0.Hen
e, sequen
e 1, sequen
e 2 and sequen
e 3 
an only o

ur if all signals ic ∈ Gc satisfy g̃max
ic

≥ r̃max
ic

ρic

1−ρic

.Further, we should note that xh
c,ic

< x̃min
c,ic

is not possible sin
e it implies that queue ic had a negativequeue length.For a signal for whi
h it holds that g̃max
ic

≥ r̃max
ic

ρic

1−ρic

, we 
an �nd that:
∆x

h+1
c,ic

= 0 if x
h
c,ic

= x̃
min
c,ic

,

∆x
h+1
c,ic

= 0 if g̃
max
ic

=
r̃max
ic

ρic

1 − ρic

,

∆x
h+1
c,ic

< 0 if x
h
c,ic

> x̃
min
c,ic

∧ g̃
max
ic

>

r̃max
ic

ρic

1 − ρic

.Note the following things: 198



1 Whenever ∆xh+1
c,ic

≤ 0 then ∆xh+2
c,ic

≤ 0. Hen
e, it also holds that whenever max
ic∈Gc

∆xh+1
c,ic

≤ 0 then
max
ic∈Gc

∆xh+2
c,ic

≤ 0.2 Whenever ∆xh+1
c,ic

= 0 then ∆xh+2
c,ic

= 0. Hen
e, it also holds that whenever max
ic∈Gc

∆xh+1
c,ic

= 0 then
max
ic∈Gc

∆xh+2
c,ic

= 0.3 Whenever queue ic ∈ Gc is emptied during its green time gf(h)ic
it will be emptied during al subsequentgreen times, i.e. if xh

c,ic
= x̃min

c,ic
then xh+1

c,ic
= x̃min

c,ic
.4 All queues ic ∈ Gc that satisfy g̃max

ic
>

r̃max
ic

ρic

1−ρic

will be emptied eventually (in �nite time); if xh
c,ic

>

g̃max
ic

(µic − λic)− r̃max
ic

λic then ∆xh+1
c,ic

= r̃max
ic

λic − g̃max
ic

(µic − λic) < 0 and if xh
c,ic

≤ g̃max
ic

(µic −
λic)− r̃max

ic
λic then the queue is emptied (and it will be emptied during all its subsequent greentimes).5 It 
ould be that whenever a queue ic ∈ Gc satis�es g̃max

ic
=

r̃max
ic

ρic

1−ρic

that this queue will never beemptied.Now we know that:1 Whenever max
ic∈Gc

∆xh+1
c,ic

≤ 0 ∧ max
ic∈Gc

∆xh+1
c,ic

≤ 0 then max
ic∈Gc

∆xh+2
c,ic

≤ 0 ∧ max
ic∈Gc

∆xh+2
c,ic

≤ 0. As a result,(for in�nite sequen
e 1) ea
h swit
h reason shc , h ≥ k forms a 
ombination C7 with swit
h reason
s
f(h)
c .2 Whenever max

ic∈Gc

∆xh+1
c,ic

≤ 0 then max
ic∈Gc

∆xh+2
c,ic

≤ 0 . As a result, (for in�nite sequen
e 2) ea
h swit
hreason shc , h ≥ k forms a 
ombination C10 with swit
h reason s
f(h)
c .3 Whenever max

ic∈Gc

∆xh+1
c,ic

= 0 ∧ max
ic∈Gc

∆xh+1
c,ic

= 0 then max
ic∈Gc

∆xh+2
c,ic

= 0 ∧ max
ic∈Gc

∆xh+2
c,ic

= 0. As a result(for in�nite sequen
e 3) ea
h swit
h reason shc , h ≥ k forms a 
ombination C17 with swit
h reason
s
f(h)
c .First lets 
onsider sequen
e 1 and sequen
e 3. Re
all that when (g̃max

ic
=

r̃max
ic

ρic

1−ρic

) then it is possiblethat queue ic ∈ Gc is never emptied. In the same way when ∃ic ∈ Gc

(

g̃max
ic

=
r̃max
ic

ρic

1−ρic

) then it is possiblethat this queue is never emptied.However, using (D.6) we 
an �nd that ∃ic ∈ Gc : g̃
max
ic

≥ r̃max
ic

ρic

1−ρic
and ∃ic ∈ Gc : g̃

max
ic

=
r̃max
ic

ρic

1−ρic


anonly hold whenever ∃ic ∈ Gc, ic ∈ Gc : g̃max
ic

=
σic,ic,icρic

1−ρic−ρic

. However, this does not hold be
ause of theinequalities (8.1h), (8.1k), (8.1n) and (8.1q). Hen
e, either all queues in the set Gc empty in a �nitetime or all queues in the set Gc empty in a �nite time. In this 
ase we do stop be
ause of the reason
switch.1a or switch.1b. Hen
e, sequen
e 1 and sequen
e 3 are not possible.Now lets 
onsider sequen
e 2. Re
all that when ∃ic ∈ Gc : g̃max

ic
≥ r̃max

ic
ρic

1−ρic
then it is possible thatthis queue is never emptied. In the same way when ∃ic ∈ Gc : g̃max

ic
=

r̃max
ic

ρic

1−ρic

then it is possible thatthis queue is never emptied.However, using (D.6) we 
an �nd that ∃ic ∈ Gc : g̃
max
ic

≥ r̃max
ic

ρic

1−ρic
and ∃ic ∈ Gc : g̃

max
ic

=
r̃max
ic

ρic

1−ρic


anonly hold whenever ∃ic ∈ Gc, ic ∈ Gc : g̃max
ic

≤ σic,ic,icρic

1−ρic−ρic

. However, this does not hold be
ause of theinequalities (8.1h), (8.1k), (8.1n) and (8.1q). Hen
e, either all queues in the set Gc empty in a �nite199



time or all queues in the set Gc empty in a �nite time. In this 
ase we do stop be
ause of the reason
switch.1a or switch.1b. Hen
e, sequen
e 2 is not possible.Lemma D.16 The following in�nite sequen
es are not possible:sequen
e 1 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c → · · · = switch.1a → switch.3b → switch.1a → switch.3b →

. . .sequen
e 2 skc → s
f(k)
c → sk+1

c → s
f(k)+1
c → · · · = switch.1a → switch.2 → switch.1a → switch.2 → . . .Proof. For sequen
e 1 and sequen
e 2 it holds that every queue ic ∈ Gc is empty at the end of itsgreen time ghic , h ≥ k. The green period gh+1

ic
, ic ∈ Gc starts r̃max

ic
se
onds after the end of ghic . However,the green period gh+1

ic
starts σres

ic
se
onds after the start of the h+ 1th 
y
le c. Therefore, the h+ 1th
y
le c starts r̃max

ic
− σres

ic
after the end of ghic . During this time the queue length in
reases with rate

λic . Hen
e, it holds that:
xh
c,ic

= (r̃max
ic

− σres
ic

)λic , ic ∈ Gc, h > k. (D.24)Hen
e, it holds that:
∆xh+1

c,ic
= 0, , ic ∈ Gc, h > k. (D.25)We distinguish the following three reasons for shc = switch.1a, h > k (either shc = switch.1a or

shc = switch.1b):reason 1 shc = switch.1 and τ1
ir,fc

= τ1.1
ir,fc

, i.e. we swit
h immediately at the moment that all queues(in the set that is served) are expe
ted to empty.reason 2 shc = switch.1 and τ1
ir,fc

= τ1.2
ir,fc

, i.e. we use green times are exa
tly large enough to satisfy all
onstraints on minimum green times.Note that if τ1
i
r,f
c

= τ1.3
i
r,f
c

we swit
h for the reason switch.1b.Note that for the se
ond reason, there is a signal ic ∈ Gc where r̃max
ic

λic of tra�
 
ould not departduring a green time that is exa
tly large enough to satisfy all 
onstraints on minimum green times.Hen
e, when swit
h reason shc , h > k o

urs for the se
ond reason then shc , ∀h > k o

urs for the se
ondreason as well(for sequen
e 1 and 2). Hen
e, when sequen
e 1 or 2 is possible then either an in�nitesequen
e where we swit
h shc , ∀h > k for the �rst reason must be possible or an in�nite sequen
e wherewe swit
h shc , ∀h > k for the se
ond reason. We are going to show that both are not possible must bepossible.First we 
onsider an in�nite sequen
e where we swit
h shc , ∀h > k for the �rst reason. At thebeginning of this proof we have shown that ∆xh+1
c,ic

= 0, ∀ic ∈ Gc, ∀h > k. Further, in this 
ase
∃ic ∈ Gc : gµ,hic

= ghic , h > k, i.e. there is a signal that we swit
h to red exa
tly at the moment thatits queue is emptied. Further, it holds that gf(h)ic
> gpbtic

, ∀ic ∈ Gc, ∀h > k (be
ause of the inequalities(8.1h), (8.1k), (8.1n) and (8.1q)).Using (D.7a) and (D.7d), g
f(h)
ic

> gpbtic
, ∀ic ∈ Gc, ∀h > k, ∆xh+1

c,ic
= 0, ∀ic ∈ Gc, ∀h > k and

∃ic ∈ Gc : g
µ,h
ic

= ghic we 
an �nd that ∃ic ∈ Gc : ∆xh+1
c,ic

≥ 0 ∧ gµ,hic
= ghic ∧ ghic > gpbtic

, ∀h > k.200



Hen
e, we 
an use lemma D.18 to see that for an in�nite sequen
e where we swit
h shc , ∀h > k forthe �rst reason, either queue ic goes empty during g
f(h)
ic

= g̃max
ic

, h > k, i.e. the queue length is zero atthe end of gf(h)ic
or its queue length de
reases minimally ∆c(g

h
ic
) > 0. (note that ghic = gh+1

ic
, ∀h > k).Hen
e, eventually all queues ic ∈ Gc are emptied (and we no longer stop serving the signals in theset Gc be
ause of the reason switch.3b or switch.2 but be
ause of the reason switch.1a or switch.1b).Thus, an in�nite sequen
e where we swit
h shc , ∀h > k for the �rst reason is not possible.Now we 
onsider an in�nite sequen
e where we swit
h shc , ∀h > k for the se
ond reason. Using theinequalities (8.1j), (8.1m), (8.1p) and (8.1p) we 
an see that ea
h signal ic ∈ Gc 
an pro
ess less tra�
during its (maximum possible) green time than what arrives during its (minimum possible) red time.Hen
e, eventually all queues ic ∈ Gc are emptied (and we no longer stop serving the signals in the set Gcbe
ause of the reason switch.3b or switch.2 but be
ause of the reason switch.1a or switch.1b). Thus,an in�nite sequen
e where we swit
h shc , ∀h > k for the se
ond reason is not possible.D.4.3 Other LemmasLemma D.17 Whenever a queue length of signal ic ∈ Gc goes from empty to full during rkic then itmust hold that ic ∈ Sc, Sc = {ic ∈ Gc :

xmax
ic

λic
−σic,ic,ic = min

lc∈Gc

xmax
lc

λlc
−σlc,ic,lc} and that all queue lengthsof the signals in the set lc ∈ Sc go from empty to full during their red period rklc .Proof. Queue ic ∈ Gc goes from empty to the maximum queue length during rkic whenever rkic =

xmax
ic

λic
. Using (D.1) we 
an �nd that queue ic ∈ Gc goes from empty to the maximum queue lengthduring rkic whenever:

g
f(k)
ic

=
xmax
ic

λic

− σic,ic,ic . (D.26)Hen
e, a green time of signal ic 
an be at most min
lc∈Gc

xmax
ic

λic
− σic,ic,ic se
onds, be
ause otherwisea maximum queue length would be ex
eeded. Only the queue(s) argmin

lc∈Gc

xmax
ic

λic
− σic,ic,ic 
an go fromempty to full during its (their) red period(s) be
ause the other queues need a longer green period gkicto go from empty to the maximum queue length and this is not possible.Whenever a queue ic ∈ Gc goes from empty to the maximum queue length during rki1 , this meansthat gkic = min

lc∈Gc

xmax
ic

λic
− σic,ic,ic . This must mean that all queues lc ∈ Sc go from empty to theirmaximum queue lengths during rklc be
ause when a queue in this set was not empty at the beginningof rklc its maximum queue length would be ex
eeded when gkic = min

lc∈Gc

xmax
ic

λic
− σic,ic,ic and if a queue

lc ∈ Sc was empty at the start of rklc it goes from empty to the maximum queue length when gkic =

min
lc∈Gc

xmax
ic

λic
− σic,ic,ic .Lemma D.18 Whenever ∃ic ∈ Gc : ∆xk+1

c,ic
≥ 0 ∧ gµ,kic

= gkic ∧ gkic > gpbtic
then it holds that:1 All signals ic ∈ Gc that satisfy xk

c,ic
< ∆c(g

k
ic
) are empty at the end of the kth 
y
le c. It holds that

∆c(g
k
ic
) > 0. 201



2 All queues ic ∈ Gc that are not empty at the end of the kth 
y
le c, have a queue length (at the endof the kth 
y
le c) that is at least ∆c(g
k
ic
) > 0 lower than the queue length at the beginning of the

kth 
y
le c.where ∆c(g
k
ic
) = (gkic − gpbtic,ic

)
(1−ρic−ρic

)µic

1−ρic
> 0.Proof. Using ∆xk+1

c,ic
≥ 0, gµ,kic

= gkic and (D.7a) until (D.7d) we 
an �nd that:
∆xk+1

c,ic
≤ −∆c(g

k
ic
) if gµ,mic

= g
f(k)
ic

. (D.27)From this equation it follows that if ∃ic ∈ Gc : ∆xk+1
c,ic

≥ 0 ∧ gµ,kic
= gkic ∧ gkic > gpbtic

then signal
ic ∈ Gc must have a slowmode, i.e. gµ,mic

< g
f(k)
ic

, whenever xk
c,ic

< ∆c(g
k
ic
). This be
ause otherwise itwould result in an infeasible negative queue length. As a result queue ic empties during g

f(k)
ic

whenever
xk
c,ic

< ∆c(g
k
ic
).Further, note that whenever xk+1

c,ic
> 0, i.e. queue ic ∈ Gc is not emptied during g

f(k)
ic

, then it holdsthat gµ,mic
= g

f(k)
ic

. Thus, whenever a queue is not empty at the end of the kth 
y
le c then the queuelength is at least ∆c(g
k
ic
) > 0 lower than at the beginning of the kth 
y
le c.Lemma D.19 Whenever ∃ic ∈ Gc : ∆xk+1

c,ic
≥ 0 ∧ g

µ,f(k)
ic

= g
f(k)
ic

∧ g
f(k)
ic

> gpbtic
then it holds that:1 All signals ic ∈ Gc that satisfy xk

c,ic
< λic(g

f(k)
ic

+σic,ic,ic )+∆c(g
f(k)
ic

) are empty at the end of the kth
y
le c. It holds that ∆c(g
f(k)
ic

) > 0.2 All queues ic ∈ Gc that are not empty at the end of the kth 
y
le c, have a queue length (at the endof the kth 
y
le c) that is at least ∆c(g
f(k)
ic

) > 0 lower than the queue length at the beginning ofthe kth 
y
le c.where ∆c(g
f(k)
ic

) = (g
f(k)
ic

− gpbtic,ic
)
(1−ρic−ρic

)µic

1−ρic

> 0.Proof. First of all, note that when ∆xk+1
c,ic

> 0, it holds that g
µ,f(k)
ic

= g
f(k)
ic

, i.e. g
f(k)
ic


ould nothave a slowmode. This be
ause queue ic is not emptied during g
f(k)
ic

.Further, it must hold that xk+1
c,ic

≥ λic(g
f(k)
ic

+ σic,ic,ic ). This be
ause, at the end of the kth 
y
le c,signal ic is red for (gf(k)ic
+ σic,ic,ic ).Using (D.7a) until (D.7d), ∆xk+1

c,ic
≥ 0 and g

µ,f(k)
ic

= g
f(k)
ic

, we 
an �nd that:
∆xk+1

c,ic
≤ −∆c(g

f(k)
ic

) if gµ,f(k)ic
= g

f(k)
ic

. (D.28)The minimum queue length during the kth 
y
le c (at the end of gkic)is equal to xk
c,ic

+ ∆xk+1
c,ic

−
λic(g

f(k)
ic

+σic,ic,ic ). Hen
e, we 
an obtain from (D.28) that signal ic ∈ Gc has a slowmode, i.e. gµ,kic
< gkic ,if ∃ic ∈ Gc : ∆xk+1

c,ic
≥ 0 ∧ g

µ,f(k)
ic

= g
f(k)
ic

∧ g
f(k)
ic

> gpbtic
and xk

c,ic
< λic(g

f(k)
ic

+ σic,ic,ic ) + ∆c(g
f(k)
ic

).This be
ause, if signal ic ∈ Gc does not have a slowmode it would result in an infeasible negative queuelength. This means that queue ic empties gf(k)ic
when xk

c,ic
< λic(g

f(k)
ic

+ σic,ic,ic ) + ∆c(g
f(k)
ic

).Further, whenever xk+1
c,ic

> λic(g
f(k)
ic

+σic,ic,ic ), i.e. the queue ic ∈ Gc is not emptied during gkic , thenit holds that gµ,kic
= gkic . Thus, whenever a queue is not empty at the end of the kth 
y
le c then thequeue length is at least ∆c(g

f(k)
ic

) > 0 lower than at the beginning of the kth 
y
le c.202



Lemma D.20 Whenever s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.3a → switch.3b then it willhold that max

ic∈Gc

∆xk+2
c,ic

≥ 0.Whenever s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.3a → switch.3b then it holds that ∃ic ∈

Gc : ∆xk+2
c,ic

≥ 0 ∧ g
µ,f(k)+1
ic

= g
f(k)+1
ic

∧ g
f(k)+1
ic

> gpbtic
.Proof. Lets 
onsider the queue i

f(k)+1
c (the queue that has a maximum queue length at the startof its green time g

f(k)+1
c ).Be
ause s

f(k)
c = s

f(k)+1
c = switch.3b it holds that g

f(k)

i
f(k)+1
c

− g
f(k)

i
f(k)+1
c

= g
f(k)+1

i
f(k)+1
c

= g̃max

i
f(k)+1
c

. We aregoing to show that ∆xk+2

c,i
f(k)+1
c

= xk+2

c,i
f(k)+1
c

− xk+1

c,i
f(k)+1
c

≥ 0 and thus that it holds that max
ic∈Gc

∆xk+2
c,ic

≥ 0.We know that queue i
f(k)+1
c was not emptied during g

f(k)

i
f(k)+1
c

(be
ause sk+1
c = switch.3a) and thusit holds that g

µ,f(k)

i
f(k)+1
c

= g
f(k)

i
f(k)+1
c

. It also holds that g
µ,f(k)+1

i
f(k)+1
c

= g
f(k)+1

i
f(k)+1
c

(be
ause we 
ould not emptyqueue i
f(k)+1
c during g

f(k)

i
f(k)+1
c

and be
ause queue i
f(k)+1
c is full at the start of gf(k)+1

i
f(k)+1
c

). Further, we
an see that xk+1

c,i
f(k)+1
c

≤ xmax

i
f(k)+1
c

− g̃max

i
f(k)+1
c

(µ
i
f(k)+1
c

− λ
i
f(k)+1
c

) + σ
i
f(k)+1
c

,ig,fc
λ
i
f(k)+1
c

and that xk+2

i
f(k)+1
c

=

xmax

i
f(k)+1
c

− g̃max

i
f(k)+1
c

(µ
i
f(k)+1
c

− λ
i
f(k)+1
c

) + σ
i
f(k)+1
c ,ig,fc

λ
i
f(k)+1
c

(sin
e queue i
f(k)+1
c is full at the start of

g
f(k)+1

i
f(k)+1
c

). Hen
e, ∆xk+2

c,i
f(k)+1
c

= xk+2

c,i
f(k)+1
c

− xk+1

c,i
f(k)+1
c

≥ 0.During this proof we have already shown that ∆xk+2

c,i
f(k)+1
c

≥ 0 ∧ g
µ,f(k)+1

i
f(k)+1
c

= g
f(k)+1

i
f(k)+1
c

∧ g
f(k)+1

i
f(k)+1
c

>

gpbt
i
f(k)+1
c

.Lemma D.21 Whenever skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.2 → switch.2 →

switch.2 and max
ic∈Gc

∆xk+1
c,ic

≤ 0∧max
ic∈Gc

∆xk+1
c,ic

≤ 0 then it holds that max
ic∈Gc

∆x
f(k)+1
c,ic

≤ 0∧max
ic∈Gc

∆x
f(k)+1
c,ic

≤
0. Whenever skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.3b → switch.3b → switch3b and

max
ic∈Gc

∆xk+1
c,ic

= 0 ∧ max
ic∈Gc

∆xk+1
c,ic

= 0 then it holds that max
ic∈Gc

∆x
f(k)+1
c,ic

= 0 ∧ max
ic∈Gc

∆x
f(k)+1
c,ic

= 0.Proof.Note that in this 
ase:
gkic = g̃max

ic , ∀ic ∈ Gc,

gk+1
ic

= g̃max
ic , ∀ic ∈ Gc,

g
f(k)
ic

= g̃max
ic

, ∀ic ∈ Gc,

g
f(k)+1
ic

= g̃max
ic , ∀ic ∈ Gc.First we prove that max

ic∈Gc

∆x
f(k)+1
c,ic

≤ 0 if max
ic∈Gc

∆xk+1
c,ic

≤ 0 and that max
ic∈Gc

∆x
f(k)+1
c,ic

= 0 if max
ic∈Gc

∆xk+1
c,ic

=

0 (when skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.2 → switch.2 → switch.2 or skc → s

f(k)
c →

sk+1
c → s

f(k)+1
c = switch.3b → switch.3b → switch.3b → switch.3b). Using (D.6) and (D.7) we 
an�nd the following expressions for ∆xk+1

c,ic
and ∆x

f(k)+1
c,ic

:203



∆xk+1
c,ic

= −gµ,kic
(µic − λic) + r̃max

ic
λic , (D.29)

∆x
f(k)+1
c,ic

= −gµ,k+1
ic

(µic − λic) + r̃max
ic λic . (D.30)Note that ∆x

f(k)+1
c,ic

is equal to the expression from ∆xk+2
c,ic

. In Lemma D.15 we have shown that forall signals ic ∈ Gc it holds that:1 max
ic∈Gc

∆xk+2
c,ic

≤ 0 if max
ic∈Gc

∆xk+1
c,ic

≤ 02 max
ic∈Gc

∆xk+2
c,ic

= 0 if max
ic∈Gc

∆xk+1
c,ic

= 0Thus, it holds that max
ic∈Gc

∆x
f(k)+1
c,ic

≤ 0 if max
ic∈Gc

∆xk+1
c,ic

≤ 0 and max
ic∈Gc

∆x
f(k)+1
c,ic

= 0 if max
ic∈Gc

∆xk+1
c,ic

= 0Nowwe prove that max
ic∈Gc

∆x
f(k)+1
c,ic

≤ 0 if max
ic∈Gc

∆xk+1
c,ic

≤ 0 and that max
ic∈Gc

∆x
f(k)+1
c,ic

= 0 if max
ic∈Gc

∆xk+1
c,ic

=

0 (when skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.2 → switch.2 → switch.2 or skc → s

f(k)
c →

sk+1
c → s

f(k)+1
c = switch.3b → switch.3b → switch.3b → switch.3b). Using (D.6) , (D.7) we 
an �ndthe following expressions for ∆xk+1

c,ic
and ∆x

f(k)+1
c,ic

:
∆xk+1

c,ic
= −g

µ,f(k)
ic

(µic − λic ) + r̃max
ic λic , (D.31)

∆x
f(k)+1
c,ic

= −g
µ,f(k)
ic

(µic − λic ) + r̃max
ic λic . (D.32)Note that∆xk+1

c,ic
= ∆x

f(k)+1
c,ic

. As a result max
ic∈Gc

∆x
f(k)+1
c,ic

≤ 0 if max
ic∈Gc

∆xk+1
c,ic

≤ 0 and max
ic∈Gc

∆x
f(k)+1
c,ic

=

0 if max
ic∈Gc

∆xk+1
c,ic

= 0. This 
on
ludes this proof.Lemma D.22 Whenever skc → s
f(k)
c = switch.1a → switch.1a then ∃ic ∈ Gc : g

µ,f(k)
ic

= g
f(k)
ic

and itholds that gf(k)ic
> gpbtic

, ∀ic ∈ Gc.Proof. Whenever sf(k)c = switch.1a then it holds that ∃ic ∈ Gc : xic(t) > x♯
ic
, where xic(t) is thequeue length of queue ic ∈ Gc when signal ir,fc swit
hes to red (during rk+1

ic
, ic ∈ Gc) (see Se
tion D.1 formore information). The de�nition of x♯

ic
is shown in (8.2). Be
ause all queues in the set Gc were emptyat the start of rkic (sin
e skc = switch.1a) this means that ∃ic ∈ Gc : (r

k+1
ic

− σir,fc ,ic
)λic > x♯

ic
, ic ∈ GcUsing (8.2) we 
an �nd that rk+1

ic
> ric (and thus that g

f(k)
ic

> gic , ∀ic ∈ Gc). Thus, it holdsthat g
f(k)
ic

> gic . Using (7.14
), (7.14a) and (D.2) we 
an �nd that g
f(k)
ic

> gpbtic
, ∀ic ∈ Gc and that

g
f(k)
ic

> gmin
ic

, ∀ic ∈ Gc.Note that (in general) when s
f(k)
c = switch.1a then either ∃ic ∈ Gc : g

f(k)
ic

= gmin
ic

(a signal is servedfor the minimum green time) or ∃ic ∈ Gc : g
µ,f(k)
ic

= g
f(k)
ic

(there is a signal ic ∈ Gc that we swit
h tored exa
tly at the moment it is emptied). Be
ause, when skc → s
f(k)
c = switch.1a → switch.1a it holdsthat gf(k)ic

> gmin
i2c

, ∀ic ∈ Gc it must hold that ∃ic ∈ Gc : g
µ,f(k)
ic

= g
f(k)
ic

(there is a signal ic ∈ Gc that weswit
h to red exa
tly at the moment that it is emptied).204



Lemma D.23 Whenever skc = switch.1b then we will follow the traje
tory that we want to followfrom the start of the k + 1th 
y
le c. Whenever skc = switch.1b then skc = switch.1b, ∀h ≥ k and
s
f(h)
c = switch.1b, ∀h ≥ k.Proof. We swit
h be
ause of the reason skc = switch.1b whenever τ1

i
g,f
c

≤ τ2
i
g,f
c

∧ τ1
i
g,f
c

≤ τ3
i
g,f
c

and
∀ic ∈ Gc : xic (t) ≤ x♯

ic
(see Se
tion 8.3).We are going to show that whenever skc = switch.1b then it will hold that gkic = gic , ic ∈ Gc and

s
f(k)
c = switch.1b.Whenever skc = switch.1b we 
an �nd that:

τ1.1
ig,fc

≤ max
ic∈Gc

(
x♯
ic
+ σir,fc ,ic

λic

µic − λic

+ σir,fc ,ic,i
r,f
c

− σir,fc ,ir,f
c

,ir,fc
) + σres

ir,fc

≤ gir,fc
+ σres

ir,fc

, (D.33a)
τ1.2
ig,fc

= max
ic∈Gc

(gmin
ic

+ σir,fc ,ic,i
r,f
c

− σir,fc ,ir,fc ,ir,fc
) + σres

ir,fc

≤ gir,fc
+ σres

ir,fc

, (D.33b)
τ1.3
ig,fc

= min
ic∈Gc

(
x♯
ic

λic

− σ
i
r,f
c ,i

g,f
c

) = g
i
r,f
c

+ σres
ir,fc

, (D.33
)
τ2
ig,fc

= gmax
ir,fc

+ σres
ir,fc

≥ gir,fc
+ σres

ir,fc
, (D.33d)

τ3
i
g,f
c

= min
ic∈Gc

(
xmax
ic

λic

− σir,fc ,ig,fc
) ≥ gir,fc

+ σres

i
r,f
c

. (D.33e)We will explain these expressions one by one.For the desired traje
tory the queue length of queue ic ∈ Gc equals x♯
ic
+ σ

ir,fc ,ic
λic when the greentime of signal ic starts. For the desired traje
tory the amount of tra�
 that arrives during a red period
an depart during a green period. Hen
e, it holds that:

x♯
ic
+ σir,fc ,ic

λic

µic − λic

≤ gic , ∀ic ∈ Gc.Further, be
ause the green times are related a

ording to (D.2) we 
an �nd that for the desiredtraje
tory it holds that:
max
ic∈Gc

(
x♯
ic
+ σir,fc ,ic

λic

µic − λic

+ σir,fc ,ic,i
r,f
c

− σir,fc ,ir,fc ,ir,fc
) ≤ gir,fc

.Further, to �nd the expression (D.33a) we have used the fa
t that signal ir,fc is swit
hed to green
σres
ir,f
c

se
onds after signal ig,fc is swit
hed to green and the fa
t that ea
h queues ic ∈ Gc satis�ed thatits queue length xic(t) at the end of gk
ir,fc

is smaller than (or equal to) x♯
ic
(be
ause skc = switch.1b).Be
ause the green periods of the signals in the set Gc are related a

ording to (D.2) and using (7.14
)we 
an �nd that:

max
ic∈Gc

(gmin
ic + σir,fc ,ic,i

r,f
c

− σir,fc ,ir,fc ,ir,fc
) ≤ gir,fc

.Further, to �nd the expression (D.33b) we have used the fa
t that signal ir,fc is swit
hed to green
σres
ir,fc

se
onds after signal ig,fc is swit
hed to green.205



Queue ic ∈ Gc rea
hes a queue length of x♯
ic

when this signal has been red for x
♯
ic

λic

. Signal ig,fcswit
hes to green σ
i
r,f
c ,i

g,f
c

se
onds after signal ig,fc swit
hed red therefore we �nd that:
τ1.3
ig,fc

= min
ic∈Gc

(
x♯
ic

λic

− σ
i
r,f
c ,i

g,f
c

). (D.34)Using (8.2) and (D.2) we 
an �nd expression (D.33
).We 
an �nd expression (D.33d) using the relation between maximum green times shown in (8.1f) and(8.1g) and using the fa
t that signal ir,fc is swit
hed to green σres
ir,fc

se
onds after signal ig,fc is swit
hedto green.Queue ic rea
hes a queue length of xmax
ic

when this signal has been red for xmax
ic

λic

. Signal ig,fc swit
hesto green σir,fc ,ig,fc
se
onds after signal ig,fc swit
hed red. Using (7.14b) results in:

g
ir,fc

≤ min
ic∈Gc

(
xmax
ic

λic

− σ
ir,fc ,ig,fc

).From (D.33) we 
an see that gf(k)
ir,fc

= g
ir,fc

. Be
ause all green times in the set Gc are related a

ordingto (D.2) this means that gf(k)ic
= gic , ∀ic ∈ Gc.From (D.33) we 
an easily see that:

τ1
ig,fc

≤ τ2
ig,fc

∧ τ1
ig,fc

≤ τ3
ig,fc

, ∀ic ∈ Gc : xic(t) ≤ x♯
ic
.Thus, it holds that sf(k)c = switch.1b.Hen
e, when switch.1b o

urs from then on we always swit
h signals to red be
ause of the reasons

switch.1b and from then on the green time of every signal is equal to the green time of that signal forthe traje
tory that we want to follow.We 
an easily see that when skc = switch.1b o

urs then we follow the desired traje
tory from thestart of the k + 1th 
y
le c be
ause it holds for all signals that ic ∈ Gc that the queue length at theend of gf(k)ic
are equal to zero (just like for the desired traje
tory) and ∀ic ∈ Gc it holds that the queuelength at the end of gf(k)

ir,fc

is equal to x♯
ic
(just like for the desired traje
tory).
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