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SummaryWith an inreasing number of road users the e�ieny of tra� lights gets more and more important.Tra� light shedules ould have a great e�et on the irulation of tra� at intersetions and on theirulation of tra�. To derive e�ient tra� light ontrol more researh is needed.Most of the researh on this topi is devoted to �xed yle tra� light ontrol. For �xed yletra� light ontrol the durations of the green periods as well as the durations of the red periods arenot a�eted by tra�. This type of tra� light ontrol an be e�ient when a lot of tra� arrives atthe tra� lights. However, when little tra� arrives, road users might have to wait in front of a tra�light for no apparent reason. For example, at night a road user might have to wait while there is noother tra� near this intersetion.Another type of tra� light ontrol is vehile-atuated tra� light ontrol. In ontrast to �xed yletra� light ontrol, for vehile-atuated tra� light ontrol the durations of the green periods as well asthe duration of the red periods are a�eted by arriving tra�. For vehile-atuated tra� light ontrol,via detetors information is gathered about the queue lengths at the intersetion. This information isused to regulate the duration of the green and red periods.In pratie, for safety reasons restritions on the duration of a green period are given: minimumgreen times and maximum green times. Most researh devoted to vehile-atuated tra� light ontroleither does not regard these restritions on green times or is restrited to one tra� light being greenat a time. Furthermore, one of the most studied vehile atuated tra� light ontrols is the exhaustivepoliy whih swithes a tra� light to red when its queue is emptied.In this thesis we derive a vehile-atuated tra� light ontrol that does regard restritions on greentime duration, that is not restrited to one tra� light being green at a time and that is not restritedto swithing a tra� light to red whenever its queue is leared.We disuss three problems in this thesis. The �rst problem is trajetory optimization, whih is�nding the desired behavior of the intersetion. This desired behavior is derived by modeling theintersetion with a hybrid �uid model. This hybrid �uid model tra� assumes deterministi arrivals anddeterministi departures. We derive the desired behavior of the intersetion, minimizing the averageweighted queue length at the intersetion. Sine we assume deterministi arrivals and deterministidepartures to derive the desired behavior of the intersetion, in pratie the intersetion deviates fromit due to for example stohasti arrivals.The seond problem is regulation. The problem of regulation is to �nd a poliy (a feedbak ontrol),whih is a set of rules (as funtion of the queue lengths at the tra� lights) that de�nes when to takewhat ontrol ations (for example when to hange the olor of a tra� light). This poliy should makesure that the intersetion returns to the desired behavior whenever the intersetion deviates from thisdesired behavior.The third problem is to address the quality of the proposed poliy in a stohasti environment. Tothis end, we use a stohasti model for the intersetion. This stohasti model assumes Poisson arrivals.In this thesis we onsider relatively small intersetions. However, in the future we will try to extendto larger intersetions.
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Summary (Duth)Door het toenemen van het aantal weggebruikers wordt de e�iëntie van verskeerslihten steedsbelangrijker. Het aanpassen van verskeerslihtregelingen kan een groot e�et hebben op de doorstromingvan verkeer. Om e�iënte verskeerslihtregelingen te verkrijgen is onderzoek nodig.Het grootste deel van het onderzoek is gedaan naar verskeerslihten met vaste groen- en roodtijden.Verkeerslihten met deze vaste afstellingen zijn niet afhankelijk van het aankomend verkeer. Dit typeverskeerslihtregeling kan goed werken wanneer er veel verkeer aankomt bij de verskeerslihten. Wanneerweinig verkeer aankomt bij een kruispunt kan het zo zijn dat je moet wahten zonder duidelijke reden.Bijvoorbeeld wanneer 's nahts een auto aankomt bij een leeg kruispunt kan het zijn dat deze auto tohmoet wahten voor een rood verskeersliht.Een ander type verskeerslihtregeling is de voertuigafhankelijke regeling. In tegenstelling tot eenverskeersliht met vaste groen- en roodtijden is de voertuigafhankelijke regeling wel afhankelijk vanaankomend verkeer. Via meetlussen in de weg wordt informatie verkregen over het wahtend verkeerop een kruispunt. Deze informatie wordt gebruikt om groen- en roodtijden te bepalen.In de praktijk worden er boven- en ondergrenzen gesteld op groentijden. Het merendeel van hetonderzoek naar de voertuigafhankelijke regeling houdt geen rekening met deze grenzen op groentijden.Verder wordt er vaak aangenomen dat er hoogstens één verskeersliht tegelijkertijd groen is. Een veelonderzohte voertuigafhankelijke regeling is de regeling waarbij een verskeersliht rood wordt zodra ergeen verkeer meer staat te wahten voor dit verskeersliht.In dit verslag beshouwen we een voertuigafhankelijke verskeerslihtregeling die wel rekening houdtmet de boven- en ondergrenzen op groentijden, waarbij meerdere (niet on�iterende) verskeerslihtentegelijkertijd groen kunnen zijn en waarbij een verskeersliht niet per sé rood wordt als er geen verkeerstaat te wahten voor dit verskeersliht.Er worden drie problemen behandeld. Het eerste probleem wordt het trajetory optimization pro-bleem genoemd. Voor het trajetory optimization probleem wordt het gewenste gedrag van een kruispuntafgeleid door het kruispunt te modeleren met een hybride vloeistof model. Dit hybride vloeistof modelgaat uit van deterministishe aankomsten en deterministishe vertrekken. Tijdens het trajetory opti-mization probleem wordt gezoht naar het gedrag van het kruispunt dat de gewogen wahrijlengte aanhet kruispunt minimaliseert. Om het gewenste gedrag van het kruispunt af te leiden wordt aangenomendat de aankomsten en vertrekken deterministish zijn. In de praktijk zijn de aankomsten en vertrekkenstohastish en zal het kruispunt van dit gewenste gedrag afwijken.Het tweede probleem is regulation. Voor dit probleem wordt naar een feedbak poliy (als funtievan de wahtrijlengtes bij de verskeerslihten) gezoht. De feedbak poliy bestaat uit regels die bepalenwanneer welke aties ondernomen moeten worden (bijvoorbeeld wanneer de kleur van een verskeerslihtmoet veranderen). Deze regels moeten ervoor zorgen dat wanneer het kruispunt afwijkt van het gewenstegedrag (verkregen via het trajetory optimization probleem), het kruispunt weer terug gaat naar ditgewenste gedrag.Verder worden deze regels getest in een stohastishe omgeving. Via simulatie worden resultatenverkregen. Voor deze simulatie wordt het kruispunt gemodelleerd met een stohastish model. Ditstohastishe model neemt aan dat de aankomsten bij het kruispunt Poisson verdeeld zijn.In dit verslag beshouwen we relatief kleine kruispunten. In de toekomst wordt geprobeerd om ditwerk uit te breiden naar grotere kruispunten.
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Chapter 1IntrodutionTra� lights are signalling devies that ontrol the aess of ompeting tra� �ows to an intersetion.The main purpose of tra� lights is to improve safety and derease disomfort of road users. Thetra� lights origin, an be traed bak to semaphores and lights used in regulating train tra�. The�rst tra� light was already in use before automobiles dominated the roads and tra� onsisted ofpedestrians, buggies and wagons. This tra� light was a rotating gas lantern with red and green lightsand it was installed in 1868 outside the British Houses of Parliament in Londen. The gas lantern wasvery similar to the railway signals of the time and it was invented by railway engineer J.P. Knight.With the rise of the automobiles, the roads got more oupied. Hene, the tra� light got more usefuland more pratial. In 1920 the �rst four-way three olor tra� light was installed in Detroid.In the 1920s tra� lights were also introdued in the urban streets of almost every sizable Duthity. Eah of these ities developed its own tra� light system. In the 1930s this variety of systemsgave way for the three-olor system that would beome the international standard.With an inreasing number of road users the e�ieny of tra� lights gets more and more important.Tra� light shedules ould have a great e�et on the irulation of tra� at intersetions and on theirulation of tra�. Another way to inrease the irulation of tra� is by hanging the road struture.Obviously, hanging tra� light shedules is relatively heap and easy to implement in omparison tohanging road struture. Besides, hanging road struture is not always possible. For example, beauseof limited spae in ities, adding an extra lane to derease tra� ongestion is often out of the question.The main goal of this thesis is to make a �rst step in developing vehile-automated tra� lightontrols that improve the e�ieny of tra� lights at intersetions, i.e. improve the irulation oftra�. More spei�ally, our goal is to minimize the average weighted queue length for relatively smallintersetions. Minimizing the average queue length is equivalent to minimizing the average delay ofroad users at an intersetion. In this thesis we de�ne the delay as the additional travel time experienedby a driver, ylist or pedestrian, whih is the same de�nition as an be found in [14℄. To minimize theaverage weighted queue length at an intersetion, we distinguish two main roots of ontrol theory f.[24℄: trajetory optimization and regulation.In Setion 1.1 we introdue some of the de�nitions and introdue some of the notation used in thisthesis. We give a summary of the introdued de�nitions and the introdued notation in Setion 1.2 andSetion 1.3. In Setion 1.4 we give the problem de�nition and in Setion 1.5 we give an overview of thisthesis.
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1.1 Example: Intersetion With 32 Tra� LightsIn this setion we introdue some of the de�nitions and some of the notation used in this thesis. Thede�nitions and notation introdued in this setion are summarized in Setion 1.2 and Setion 1.3.PSfrag replaements
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Figure 1.1: An example of an intersetion ontrolled with tra� lights.Vehile lanes, biyle lanes and pedestrian rossings In Figure 1.2 we an see an example ofan intersetion. This intersetion onsists of 8 vehile lanes, 8 biyle lanes and 8 (two-way) pedestrianrossings. A vehile lane is de�ned as the part of the road leading to the intersetion that is designed fora single line of vehiles. A biyle lane is a portion of the roadway that has been designated by striping,signing, and pavement markings for the exlusive use of biylists. In this example eah vehile laneand eah biyle lane is equipped with one tra� light. We de�ne a pedestrian rossing as a designatedplae where pedestrians an ross a street and where vehiles must stop to let them ross. Generally,at a pedestrian rossing pedestrians an walk in two diretions (two-way pedestrian rossing). Eahdiretion is equipped with a tra� light. Hene, this intersetion has a total of 32 tra� lights.The intersetion depited in Figure 1.2 is not very realisti due to its lak of vehile lanes for turningtra�. However, we have hosen this example beause it is one of the more omplex intersetions thatwe ould ontrol using the results from this thesis.Signals and approahes We an partition eah of the tra� lights in exatly one set, eah setorresponding to one signal. A signal is a set of one or more tra� lights, whih swith to greensimultaneously and swith to red simultaneously. A Signals is designated to either vehiles, ylists12



Signal Type of tra� number of tra� lights in eah signal1,...,4 Vehiles going straight ahead 25,12 Cylists (in this example ylists are not allowed tonot go lokwise) 113,...,20 Pedestrians. 2Table 1.1: partitioning the 32 tra� lights in Figure 1.2 into 20 signalsor pedestrians. Two tra� lights may only be partitioned in the same signal designated to vehiles orylists whenever the tra� arriving at these tra� lights originates from the same diretion. Signalsare numbered 1, ..., N and we use N = {1, 2, . . . , N} to refer to the set of all signals at an intersetion.With approah i ∈ N we refer to the roads that lead to the tra� lights in signal i. In Figure 1.2and Table 1.1 we an see how we have numbered the approahes (and thus how we have numbered thesignals) respetively how we have partitioned the 32 tra� lights in 20 signals. Thus, in this example
N = 20. Another division of tra� lights in signals is also possible. The division of tra� lights insignals is up to the engineers that derive tra� light shedules for an intersetion. The tra� lights thatare partitioned into the same signal swith simultaneously. Therefore, these tra� lights have exatlythe same tra� light shedule. For this example, by partitioning tra� lights into signals there are 20di�erent tra� light shedules (one for every signal) instead of 32 di�erent tra� light shedules.In eah diretion there are two lanes for vehiles. Beause the tra� from these two adjaent lanesoriginates from the same diretion and goes in the same diretion it is logial to swith the orrespondingtwo tra� lights to green simultaneously and to red simultaneously. Hene, we partition these tra�lights in the same signal. Moreover, for this example we partition the two tra� lights of a pedestrianrossing in the same signal.Signal state In most ountries, the state of eah of these signals an be either green, amber or red.We de�ne the signal state as the visual state of the tra� lights that are element of the same signal.However, in this thesis we do not onsider the amber (orange) signal state beause depending onthe assumptions this amber signal state ould be modeled as a red signal state, a green signal state or aombination of those two. When assuming that tra� still departs when its signal is amber, the ambersignal state an be modeled as a green signal state. When assuming that tra� does not depart whenits signal is amber, the amber signal state an be modeled as a red signal state. When assuming thatduring the �rst part of the amber signal state tra� departs and during the seond part tra� does notdepart, we an model the �rst part as a green signal state and the seond part as a red signal state.We use mi(t) for the signal state of signal i ∈ N at time t ∈ R

+. The signal state mi(t) is equal toi or i whenever the signal state is green or red respetively. When the signal state of signal i ∈ N isred, we often use the short version: signal i is red. When the signal state of signal i ∈ N is green weoften use one of the short versions: signal i is served or signal i is green.Green and red period We de�ne a green (red) period as the interval during whih the signal stateis green (red), i.e. the interval between the moment that the signal is swithed to green (red) and themoment that the signal is swithed to red (green). During the green period of signal i, tra� waiting atthe orresponding approah is allowed to ross the ommon rossing area. On the other hand, duringthe red period of signal i, tra� from the orresponding approah is not allowed to ross the ommonrossing area. The duration of a green (red) period is alled a green (red) time. We use gki , k = 1, 2, . . .for the kth green time of signal i (starting from t = 0) and we use rki for the red time of signal i thatomes between gki and gk+1
i . A tra� light shedule is a spei�ed sequene of red and green periods fora tra� light. 13



In pratie, signals generally have onstraints on the length of the green period, i.e. a green timemay not exeed the maximum green time and a green time must exeed the minimum green time. Wedenote the maximum green time and the minimum green time of signal i ∈ N with gmax
i respetively

gmin
i , where gmax

i > 0 and gmin
i ≥ 0. Whenever a green period is extremely short or extremely long(and as a result a red period of another signal is extremely long), road users ould get irritated whihresults in more red negation, i.e. in more people ignoring a red light. Further, whenever a green periodis extremely short or extremely long, road users might think the tra� lights are malfuntioning. Theselower and upper boundaries on green times should guarantee that the intersetion is believable andshould limit the irritation of road users.Arrival rate We assume that at all of the tra� lights, tra� arrives. How muh tra� arrives isdenoted with the arrival rate. The arrival rate is the mean number of vehiles, ylists or pedestriansarriving at a signal or tra� light per seond. In pratie this arrival rate varies. For example moretra� arrives during rush hour. However we assume that the arrival rate at signal i ∈ N is onstant.The arrival rate at signal i ∈ N is denoted with λi and it is often obtained by ounting the number ofvehiles, ylists or pedestrians arriving at a tra� light. We assume λi > 0.Maximum departure rate The maximum departure rate is the highest possible rate at whih tra�from a tra� light or signal ould ross the intersetion in vehiles per seond, ylists per seond orpedestrians per seond. We use µi for the maximum departure rate of signal i ∈ N . In pratie thismaximum departure rate is not onstant beause at the beginning of a green time there is a startupe�et; people do not respond instantaneously and the tra� needs some time to aelerate. Hene, inthe beginning the maximum departure rate inreases. After a ertain amount of time the maximumdeparture rate does not hange anymore. The transient part, where the maximum departure rateinreases, is alled the startup e�et in the departure rate. The maximum departure rate µi an beeasily omputed, based on the design of the intersetion. The maximum departure rate satis�es µi > 0.We assume µi > λi. Further, we use ρi for the ratio between the arrival rate and the maximumdeparture rate of signal i, i.e. ρi = λi

µi
. i ∈ N whih is equal to λi

µi
.Queues The tra� waiting at a tra� light forms a queue. A queue is de�ned as the vehiles, ylistsand pedestrians at an approah that are waiting to ross the intersetion. With queue i ∈ N we referto the vehiles, ylists and pedestrians that are waiting at approah i. We use xi(t) to refer to thequeue length of queue i ∈ N . Sine there is limited spae for tra� to wait at a tra� light, thereare maximum queue lengths. The maximum queue length is the maximum amount of vehiles, ylistsor pedestrian that ould be waiting in front of a tra� light or signal. These maximum queue lengthsfollow from the design of the intersetion. The maximum queue length of queue i ∈ N is denoted with

xmax
i (t).Slow mode During a slow mode a signal is green and the orresponding queue is empty. During aslow mode arriving tra� experienes no delay. We use gλ,ki for the length of the slow mode at signal iduring the kth green period of signal i. We use gµ,ki for the length of the interval during the kth greenperiod of signal i during whih the queue of signal i is not empty, i.e. gµ,ki = gki − gλ,ki .Con�iting signals For safety reasons, not all signals at an intersetion that is ontrolled with tra�lights may be green simultaneously (if this was the ase we would not need tra� lights). Two signalsare on�iting when the tra� from these approahes annot safely ross the ommon rossing areasimultaneously. In Table 1.2 we present the on�it matrix for the intersetion in Figure 1.2. In a on�itmatrix we an see whih signals are on�iting (denoted with an 'x') and whih are not on�iting.14



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 x x x x x x2 x x x x x x3 x x x x x x4 x x x x x x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 xTable 1.2: Con�it matrix of the intersetion in Figure 1.2.Some of the vehiles, ylists and pedestrians already start to aelerate when they expet theirsignal to swith to green. When the order in whih these signals are served hanges, these expetationsmay be wrong and ould result in unsafe situations. Hene, in pratie, often signals are served in a�xed order. To de�ne the order in whih we serve these signals, we use signal groups. A signal group isa group of signals that do not on�it with eah other. The order in whih we serve these signal groupsis always the same.When we have more than 2 signal groups, we have to determine the order in whih to serve thesignals. For example in the ase of 3 signal groups (group 1, group 2 and group 3) we an hoose toserve the signals in the following orders:order 1 serve the signals in group 1 → serve the signals in group 2 → serve the signals in group 3 →serve the signals in group 1 → serve the signals in group 2 → serve the signals in group 3 → . . .order 2 serve the signals in group 1 → serve the signals in group 3 → serve the signals in group 2 →serve the signals in group 1 → serve the signals in group 3 → serve the signals in group 2 → . . .One way to �nd signal groups from a on�it matrix is by solving a graph oloring problem. Theverties of the graph oloring problem represent the signals. Two verties are onneted (with an edge)whenever the orresponding signals are on�iting. We an �nd the minimum number of signal groupsneeded, by oloring the verties with a minimum number of olors suh that two onneted verties donot have the same olor.For the intersetion in Figure 1.2 this graph oloring problem results in two signal groups. One ofthe groups ontains the signals 1, 3, 7, 8, 11, 12, 15, 16, 19 and 20. The other group ontains the signals
2, 4, 5, 6, 9, 10, 13, 14, 17 and 18.Determining the signal groups and determining in whih order to serve these signal groups is notin the sope of this thesis. In this thesis we assume that the signal groups are given. Furthermore, weonly onsider intersetions with 2 signal groups. 15
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1 3 7 8 11 12 15 16 19 20
2 4 5 6 8 10 13 14 17 18Figure 1.2: Graph oloring for the intersetion in Figure 1.2.Setup times A setup time is a �xed minimum time between the end of the green period of a signaland the beginning of the green period of a on�iting signal. A setup time is a safety measure thatlimits the hinder for tra� rossing the intersetion. The setup time between serving signal i ∈ N andserving signal j ∈ N is denoted with σi,j . During this setup time, signal i and signal j are both red.In pratie, setup times an be negative. Whenever σi,j < 0 this means that signal j may swith togreen (a maximum of) |σi,j | seonds before signal i has swithed to red. For the intersetion in Figure1.2, possibly signal 3 may swith to green before signal 5 has swithed to red beause it takes sometime for the vehiles from signal 3 to reah the part of the road that ylists from signal 5 also use.Furthermore, we should also note that in general σi,j and σj,i are not equal. for the intersetion inFigure 1.2 it probably holds that σ1,4 < σ4,1 beause it takes longer for vehiles from signal 4 (than forvehiles from signal 1) to arrive at the part of the intersetion that both the vehiles from signal 1 andthe vehiles from signal 4 use. Further, we use σi,j,i = σi,j + σj,i.In this thesis we restrit ourselves to non-negative setup times.
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1.2 TerminologyBelow we list some of the terminology used in this thesis.Approah = Approah i refers to the roads that lead to the tra� lights in signal i, i =
1, ..., N .Biyle lane = Portion of the roadway that has been designated by striping, signing, andpavement markings for the exlusive use of biylists.Con�iting signals = Two signals are on�iting when the tra� from the orresponding approahesannot safely ross the ommon rossing area simultaneously.Delay = Additional travel time experiened by a driver, ylist or pedestrian with re-spet to the travel time of a driver, ylist or pedestrian that arrives at thesame tra� light during a green period while the queue is empty.Green period = Interval during whih the signal state is green, i.e. the interval between themoment that the signal is swithed to green and the moment that the signal isswithed to red. During the green period of signal i, tra� from the queue ofthe orresponding approah an ross the ommon rossing area.Green time = Duration of a green period.Intersetion = Set of approahes and a ommon rossing area.Pedestrian rossing = A designated plae where pedestrians an ross a street and where vehilesmust stop to let them ross.Queue = The vehiles, ylists and pedestrians at an approah that are waiting to rossthe intersetion. With queue i we refer to the vehiles, ylists and pedestriansthat are waiting at approah i.Red period = Interval during whih the signal state is red, i.e. the interval between themoment that the signal is swithed to red and the moment that the signal isswithed to green.Red time = Duration of a red period.Setup time = Fixed minimum time between the end of the green period of a signal and thebeginning of the green period of a on�iting signal.Signal = Set of one or more tra� lights whih swith simultaneously to green andsimultaneously to red. A Signals is designated to either vehiles, ylists orpedestrians. Two tra� lights may only be partitioned in the same signaldesignated to vehiles or ylists whenever the tra� arriving at these tra�lights originates from the same diretion. Signals are numbered 1, ..., N .Signal group = A group of signals that do not on�it with eah other.Signal state = The visual state, i.e. green or red, of the tra� lights that are element ofthe same signal. We do not onsider the amber state. Vehiles, ylists andpedestrians are assumed to depart only when the signal state of their signal isgreen.Swith = Change in the state of a signal.Slow mode = Interval during whih the signal state is green and the orresponding queue isempty. The tra� that arrives during a slow mode experienes no delay.Vehile lane = Part of the road leading to the intersetion that is designed for a single line ofvehiles.
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1.3 NotationsIn this setion we list some of the notation used in this thesis.
λi = Arrival rate at signal i, i.e. the mean number of vehiles, ylists or pedestrians arriving atapproah i per seond.
µi = Maximum departure rate of signal i, i.e. the maximum rate at whih tra� from signal iould ross the intersetion in vehiles per seond, ylists per seond or pedestrians perseond.
N = The set of all signals at an intersetion, i.e. N = {1, 2, . . . , N}
ρi = Ratio between the arrival rate and the maximum departure rate of signal i, i.e. ρi = λi

µi
.

σi,j = Setup time between serving signal i and serving signal j. During this setup time signal iand signal j are both red, i.e. during this setup, tra� from signals i and j may not rossthe intersetion.
σi,j,i = σi,j + σj,i.
mi(t) = Signal state of signal i at time t ∈ R

+. The signal state mi(t) is equal to i or i wheneverthe signal state is green or red respetively.
gki = Length of the kth green period period of signal i.
gλ,ki = Length of the slow mode at signal i during the kth green period of signal i.
gµ,ki = Length of the interval during the kth green period of signal i during whih the queue ofsignal i is not empty, i.e. gµ,ki = gki − gλ,ki .
rki = Length of the red period of signal i that omes between the kth green period of signal i andthe k + 1th green period of signal i.
gmax
i = Upper boundary on the length of the green period of signal i, i.e. the maximum green time.
gmin
i = Lower boundary on the length of the green period of signal i, i.e. the minimum green time.
xi(t) = Amount of tra� in queue i at time t ∈ R

+, i.e. the queue length of queue i at time t.
xmax
i = Maximum queue length of queue i. The maximum queue length of queue i is the maximumamount of tra� that ould be waiting at approah i.1.4 Problem DesriptionIn this thesis we disuss three problems.Problem 1: trajetory optimization The �rst problem is trajetory optimization. The problemof trajetory optimization is the proess of designing a trajetory that minimizes or maximizes somemeasure of performane within presribed onstraint boundaries. For small intersetions we want to �ndoptimal trajetories, minimizing the average weighted queue length at the intersetion. These optimaltrajetories an be seen as the desired behavior of the intersetion. We assume that we an ontrol thesignal state and the departure rate of tra� at eah of the signals of an intersetion.An example of a trajetory optimization problem is the problem of �nding an optimal �ight traje-tory of an airplane from Vanouver to Cape town. Before the pilot even starts �ying he ould alreadyderive some trajetory he wants to follow. For example the fastest trajetory. Finding this trajetoryis the trajetory optimization problem.For an intersetion a trajetory onsists out of the evolution (as funtion of time) of the followingvariables for eah of the signals i ∈ N : 18



- xi(t): the queue lengths of signal i as a funtion of time.- mi(t): the signal state, also alled the mode, of signal i as a funtion of time.- di(t): the departure rate of both signal i as a funtion of time.To solve the trajetory optimization problem for an intersetion, we model the intersetion witha hybrid �uid model (see Setion 3.2). This model assumes deterministi arrivals and deterministidepartures. In pratie there are stohasti e�ets. However, this deterministi model is more suitablefor optimization purposes.Problem 2: regulation To obtain the desired trajetory we assume deterministi arrivals and de-terministi departures. However, due to stohasti e�ets we may deviate from the desired trajetory.The seond problem is regulation, whih is �nding a poliy (a feedbak ontrol). A poliy is the set ofrules that de�nes when to take what ontrol ations (for example when to hange the olor of a tra�light). When we deviate from the desired trajetory, the poliy should make sure that we again returnto this desired trajetory.An example of a regulation problem is when an airplane wants to follow some trajetory (for exam-ple the fastest trajetory). This desired trajetory follows from the trajetory optimization problem.However, due to fators like haoti air�ow, the airplane annot follow this desired trajetory exatly.Whenever the airplane deviates from this desired trajetory, the pilot an observe this and he ouldorret the airplane in the right diretion by steering, aelerating or deelerating. In this way theairplane returns to the desired trajetory whenever it deviates from it. What ations the pilot shouldtake (and when it should take these ations) is the problem of regulation.Problem 3: Performane in a stohasti setting The third problem is aessing the performaneof the poliy in a stohasti setting via simulation.1.5 Outline of this thesisFirst we give an overview of the literature about tra� light ontrol in Chapter 2. Subsequently, weintrodue two models, i.e. the stohasti model (SM) and the hybrid �uid model (HFM), in Chapter 3.The hybrid �uid model is used in the largest part of this thesis.In hapters 4, 5 and 6 we onsider a simple intersetion of two signals. Subsequently, we onsider amore general intersetion (with two signal groups) in hapters 7, 8 and 9.In Chapter 4 and Chapter 7 we address the �rst problem: trajetory optimization. First we provethat we an always �nd an optimal trajetories satisfying some properties. Using these properties wean pose an optimization problem. This optimization problem an be solved analytially for someintersetions.In hapters 5 and 8 we onsider the seond problem; regulation. In these hapters we propose apoliy (a feedbak ontrol) and we prove that this poliy works as desired; the poliy makes sure thatwe return to the desired periodi optimal trajetory whenever we deviate from it. This poliy does notneed to ontrol the departure rates. We only need to ontrol the signal states.In hapters 6 and 9 we address the quality of the proposed poliy in a stohasti environment.Finally, in Chapter 10 we summarize the most important onlusions of this thesis and we give somereommendations for future researh.
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Chapter 2LiteratureThere are two primary types of tra� light ontrol: �xed yle tra� light ontrol and vehile-atuatedtra� light ontrol. For �xed yle tra� light ontrol the duration of the green period as well as theduration of the red period are not a�eted by tra�, i.e. the green time of a tra� light is always thesame and the red time of a tra� light is always the same. For a vehile-atuated tra� light ontrol,via detetors information is gathered about the queue lengths at the intersetion. This information isused to regulate the red and green times. We give an overview of the literature about both types oftra� light ontrol.Fixed Cyle Tra� Light Control There has been a broad e�ort to obtain exat expressions andgood approximations for the queue length and the delay of vehiles at intersetions with tra� lights.The delay is often used as an optimization and evaluation riterion for tra� light ontrol. However, itis not easy to determine the delay.In the e�ort to obtain good approximations for the delay, the �xed-yle tra� light (FCTL) queueis one of the best-studied models in tra� engineering. For this model, the tra� light alternatesbetween green and red periods of e�etive duration g and r and the vehiles that arrive at a tra� lightform a queue. It is assumed that during the green periods tra� an depart at equal time intervals.For the FCTL queue the duration of the green period as well as the duration of the red period arenot a�eted by tra�, i.e. the green time of a tra� light is always the same and the red time of atra� light is always the same. The majority of the researh devoted to the FCTL queue is based onthe simplifying assumption that tra� arrives aording to a Poisson proess. The most famous resultis that from Webster [28℄. It gives the mean delay of a vehile in losed form, whih is partly based ontheoretial grounds and partly based on simulation.Other expressions for the mean delay, assuming that tra� arrives aording to a (Compound)Poisson proess, an be found in Darroh [8℄, MNeill [18℄ and Webster and Cobe [29℄. In MNeill[18℄ an exat expression for the mean delay was given up to one unknown: the mean queue length atthe end of a green period. We denote this unknown with EXg. Later, in [8℄, Darroh found an exatexpression for EXg. In [23℄, Ohno gives a detailed desription of a omputational algorithm for severalharateristis suh as the average delay, the average queue length and the probability of learing thequeue. This omputational algorithm alulates the (rather ompliated) expression for EXg given inDarroh [8℄ in an exat manner. Further, Ohno gives an overview of new approximate expressionsand existing approximate expressions in omparison with the exat values of the average delay. InHeidemann [13℄ analytial results on statistial distributions of queue lengths and delays at tra� lightsare derived. To obtain these probability distributions Poisson arrivals are assumed.21



There is also some researh devoted to more general types of arrival proesses. In van Leeuwaarden[16℄, a probability generating funtion is given for the queue length distribution at the end of a greenperiod and a Laplae-Stieltjes transform is given for the delay distribution. To obtain this probabilitygenerating funtion and Laplae-Stieltjes transform, the queue is modeled in disrete-time and it isassumed that the number of vehiles that arrive per time slot follows some disrete distribution (thePoisson distribution and Compound Poisson distribution are also disrete distributions). Also in Vanden Broek et al. [6℄, a more general disrete distribution is onsidered and several bounds and approxi-mations are presented for the average delay. Further, in [6℄ a new approximation is given, based on theheavy tra� limit and a saling argument. In Miller [19℄ and Newell [20℄ approximations for EXg arederived using fairly general arguments.More reently, a probabilisti queuing model is used in Viti and Van Zuylen [26℄, assuming anytemporal distribution of the arrivals. It an explain the dynami and stohasti behavior of queues at�xed-time ontrolled intersetions and allows one to apture the temporal behavior of queues, as wellas the unertainty of a predition.We have shown that there are several exat expressions and approximations available for the delay.These expressions an be used to �nd the optimal �xed yle tra� light ontrol. In Webster [28℄, atehnique is proposed, that uses Webster's famous delay formula, to �nd �xed yle ontrol shemes foran isolated intersetion. In Van den Broek [5℄, a mixed integer program is given for �nding the optimalontrol and an algorithm is proposed to solve this mixed integer program. In Fouladvand and M.Nematollahi [11℄ the analytial solutions were found for a �xed-time ontrolled intersetion of two one-way streets and a �xed-time ontrolled intersetion of a two-way street with a one-way street. To �ndthis analytial solution, onstant arrival rates and onstant departure rates are assumed. Further, nosetup times, no onstraints on green times and no maximum queue lengths are onsidered. An algorithmfor designing tra� light shedules is proposed in Riedel et. al [25℄. The model of an intersetion isderived by onsidering a small intersetion. Using a ombination of dynami programming and branhand bound, a ontrol algorithm is developed.Further, there is also some researh devoted to networks of intersetions. In Brokfeld et al. [4℄the goal is to minimize travel times for a ity network: a square lattie of intersetions. To thisend, the network is modeled with a ellar automata model. For synhronized tra� lights, one �ndsstrong osillations in the global �ow as funtion of the yle time. Further, green wave and randomswithing strategies are tested. In Alfa and Neuts [1℄, the arrival proess is modeled using a disrete-time Markovian Proess. This model takes into aount the bunhing of tra�, i.e. forming of platoons,and the orrelations between inter arrival times. They onlude that ignoring the orrelation in thearrival proess results in the underestimation of performane measures suh as the mean queue length,espeially at high tra� intensities.Vehile-atuated Tra� Light Control For a vehile-atuated tra� light ontrol, via detetorsinformation is gathered about the queue lengths at the intersetion. This information is used to regulatethe red and green times.One of the most studied vehile-atuated tra� light ontrols is the exhaustive poliy that swithesa tra� light to red when the queue is leared. One of the �rst e�orts in analyzing vehile-atuatedtra� light ontrol is done in Darroh [9℄. In Darroh [9℄ Poisson arrivals are assumed to analyze theexhaustive poliy for an intersetion of two one-way streets. In Newell [21℄ this exhaustive poliy isanalyzed using �uid and di�usion queueing approximations for an intersetion of two one-way streets.In [21℄ arriving tra� is assumed to be a stationary stohasti proess with an arrival rate just slightlybelow that whih saturates the intersetion. Newell onludes that the vehile-atuated tra� lightontrol has a high e�ieny ompared to the �xed yle tra� light ontrol.In Daganzo [7℄ and Boon [2℄ polling models with more general arrivals and departure proesses are22



used to model and analyze intersetions. These polling models are either restrited to serving one �owof tra� at a time or restrited to the exhaustive poliy.More reently an intersetion of two interseting tra� �ows is onsidered in Wang and Yin [27℄.Wan and Yin analyze green extensions; after a queue is leared, arriving vehiles ativate a green periodextension during a period alled the ritial gap. When no vehiles arrive during the ritial gap, thesignal is swithed to red. Wang �nds that the optimal ritial gap is generally not zero, whih indiatesthat the exhaustive poliy even in heavy tra� is not optimal.Some researh is devoted to intersetion where multiple signals are served simultaneously. Haijemaand Van der Wal [12℄ onsider an intersetion with a number of signals. The set of all signals ispartitioned into signal groups. The problem onerning when to swith (and whih signal group toserve next) is modeled as a Markovian deision proess in disrete time. In [22℄ the analysis of a vehile-atuated intersetion from Newell [21℄ is extended to an intersetion of two two-way streets (four-wayintersetion). They onlude that the high e�ieny of a vehile-atuated tra� light ontrol, as foundin Newell [21℄, does not neessarily hold for the ase of two-way streets. Further, in Lämmer and Helbing[15℄ a self-organization approah to tra� light ontrol is proposed. This self-organization approahis inspired by self-organized osillations of pedestrian �ows at bottleneks. The ontrol strategy is aombination of two omplementary ontrol regimes, an optimizing regime and a stabilizing regime.
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Chapter 3ModelsIn this hapter we introdue two models for an intersetion. Both models are used in this thesis.The �rst model is a stohasti model (SM) and the seond model is a hybrid �uid model (HFM).We model an intersetion with a hybrid �uid model for the trajetory optimization problem and forthe regulation problem. The stohasti model (SM) be used to obtain simulation results. For thetrajetory optimization problem we assume that we an ontrol the departure rate of tra� at eahsignal. However, it turns out that the poliy that we propose does not need to ontrol the departurerate. Thus, for the stohasti model we do not assume that we an ontrol the departure rate, we alwayslet tra� depart at the highest possible rate.We show that we ould model mixed arrival �ows with a hybrid �uid model. Further, we show howto model two-way pedestrian rossings for the hybrid �uid model. We do not model mixed arrival �owsand two-way pedestrian rossings in our stohasti model.3.1 Stohasti ModelWe desribe the behavior of an intersetion with a stohasti queueing model. For this stohastiqueueing model we assume a Poisson arrival proess and a deterministi departure proess. We modeleah tra� light (also those in the same signal) separately. Eah of these tra� lights has one queue,an arrival proess, and a departure proess. We assume that the arrival proesses and the departureproesses of the di�erent tra� lights are independent. However, in pratie this might not be the ase.When for example a vehile arrives at signal 1, 2, 3 or 4 in Figure 1.2, the driver deides at whih laneto wait and the arrival and departure proesses of these tra� lights are not independent.In this setion we use slightly di�erent notation than in the rest of this thesis. In this setion weuse:- λi for the arrival rate at tra� light i = 1, ..., Ntl, where Ntl is the number of tra� lights at theintersetion. In the rest of this thesis λi refers to the arrival rate at a signal and not at a tra�light.- µi for the maximum departure rate at tra� light i = 1, ..., Ntl. In the rest of this thesis µi refers tothe maximum departure rate of a signal and not at a tra� light.- σi,j for the setup time from tra� light i = 1, ..., Ntl to (on�iting) tra� light j = 1, ..., Ntl. Thissetup time is the �xed minimum time between the end the green period of tra� light i and thebeginning of the green period of on�iting tra� light j. Normally σi,j refers to the setup timebetween two signals and not the setup time between two tra� lights. σi,j is equal to the setuptime from the signal that tra� light i = 1, ..., Ntl is element of to the signal that tra� light25



j = 1, ..., Ntl is element of. Two tra� lights are on�iting when the orresponding signals ofthese two tra� lights are on�iting.3.1.1 Arrival Proesses and Departure ProessesWe assume that the inter-arrival times at tra� light i = 1, ..., Ntl are exponentially distributed withmean 1
λi

whih means that we onsider an isolated intersetion. We de�ne the arrival time as the timeat whih a vehile, ylist or pedestrian would have rossed the stop line if its tra� light was greenand no tra� was waiting at that tra� light. Note that this assumption of exponential inter-arrivaltimes is not valid for a sequene of intersetions beause vehiles arrive in so alled platoons. Platoonsour espeially when the distane between two onneted intersetions is small. A platoon is a groupof vehiles, ylists or pedestrians traveling together. When platoons arise the arrival rate �utuatesand the inter-arrival times are not independent.Eah tra� light has a separate departure proess. The departure proess is assumed to be deter-ministi. Whenever there is tra� waiting in front of tra� light i = 1, ..., Ntl at the beginning of agreen period then a departure proess is started. We register a departure at the moment that a vehile,ylist or pedestrian has entirely rossed the stop line whih ours 1
µi

seonds after the start of thisdeparture proess. When a departure is registered the next vehile, ylist or pedestrian (if present)an start its departure proess. This inter departure time 1
µi

is assumed to be onstant. In Figure3.1 we show the departures during a green period whenever the queue is not empty during the wholegreen period. Sine at eah tra� light at most one departure proess is ative at a time, this may notbe the best way to model the departures of ylists and pedestrians beause in pratie ylists andpedestrians an depart with more than one at a time.PSfrag replaements 1
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µitime (seonds)Figure 3.1: Departures during a green period of tra� light i = 1, ..., Ntl. The olor of the time line islight gray and dark gray whenever the tra� light is green respetively red. A departure is visualizedwith a bold blak vertial line.The departure time is de�ned as the time at whih a vehile, ylist or pedestrian atually rossesthe stop line. Hene, the delay of a vehile, ylist or pedestrian is equal to the di�erene between itsdeparture time and its arrival time. Whenever a vehile, ylist or pedestrian arrives when the queueis empty and the orresponding tra� light is green, this vehile, ylist or pedestrian ould departimmediately. In this ase its departure time is equal to its arrival time and it experienes a delay ofzero seonds. Whenever the queue is emptied during a green period it stays empty during this greenperiod.3.1.2 QueueVehiles that have to wait in front of a tra� light form a queue. We model the queue with a FIFO(First-In-First-Out) bu�er. The queue length is a non-negative integer. We assume that tra� arrivesat the queue at the arrival time; the queue length inreases with one at the moment of an arrival time.Furthermore, the queue length dereases with one at the moment of a departure.26



There is no di�erene between a vehile, ylist or pedestrian that arrives when the maximum queuelength is reahed (or exeeded) and a vehile, ylist or pedestrian that arrives when the maximumqueue length is not reahed.3.1.3 Modeling Startup E�et in the Maximum Departure RateWe assume in our stohasti model that the inter departure time 1
µi

at tra� light i = 1, ..., Ntl isonstant. However, at the beginning of a green time there is a startup e�et; people do not respondinstantaneously and tra� needs some time to aelerate. Hene, the inter departure time is notonstant; it dereases and after a ertain amount of time the inter departure time does not hangeanymore. The transient part, where the inter departure time dereases, is alled the startup e�et. Weassume that inter departure times are deterministi (also during the startup e�et) and we assume thethe startup e�et always has the same duration at a tra� light.We an model this startup e�et by adapting the duration of the setups. Assume for example thatthe startup e�et at tra� light i = 1, .., Ntl takes 5.0 seonds. In these 5.0 seonds, 2 vehiles oulddepart. Hereafter, every 2 seonds a vehile ould depart (hene, 1
µi

= 2)(see Figure 3.2). Assuming thatthe startup e�et takes less than the minimum green time we an get the same number of departuresduring a green period by taking the departure rate equal to zero vehiles per seond in the �rst seondand hereafter equal to 0.5 vehiles per seond. Tra� annot depart during the red period and thereforethis maximum departure rate equal to zero vehiles per seond an be realized by inreasing the redperiod of this tra� light with one seond. Inreasing the red period of tra� light i with one seondan be realized by inreasing the setup time σj,i with 1 seond, for all tra� lights j = 1, ..., Ntl thatare on�iting with tra� light i.
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seonds for alltra� lights j that are on�iting with tra� light i. During the green period, every 1
µi

seonds onevehile, ylist or pedestrian departs.
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3.2 Hybrid Fluid ModelWith the hybrid �uid model we an approximate the behavior of the stohasti model. We use thehybrid �uid model for the trajetory optimization problem beause it is more suitable for optimizationpurposes. This makes it relatively easy (in omparison to using the stohasti model) to solve thetrajetory optimization problem.For the hybrid �uid model, tra� is modeled as a �uid. First we onsider only one type of tra�arriving at a signal (for example only ars or only pedestrians) and we show how we model queues,arrivals and departures for the hybrid �uid model. Subsequently, we illustrate how to deal with mixed�ows, i.e. signals and tra� lights where di�erent types of tra� arrive. We also show how to model atwo-way pedestrian rossing and how to inorporate a startup e�et in the maximum departure rate.For the hybrid �uid model we model eah signal with one queue, one arrival proess and one departureproess. The arrival proess at signal i ∈ N is de�ned by a onstant arrival rate λi and the departureproess is de�ned by a onstant maximum departure rate µi.3.2.1 Modeling QueuesBeause we model tra� as a �uid, the queue length is a non-negative real value. For example, thequeue length at a signal ould be equal to 0.75 ars.Beause there is limited waiting spae at tra� lights (approahes are �nite) we are given maximumqueue lengths. The maximum queue length of queue i ∈ N is the maximum amount of tra� that ouldbe waiting at approah i. These maximum queue lengths follow from the design of the intersetion.The maximum queue length of queue i ∈ N is denoted with xmax
i (t). Whenever a signal onsists of

M tra� lights and the maximum queue lengths of these tra� lights are xmax
i,j , j = 1, ...,M , we andetermine the maximum queue length of signal i using:

xmax
i =

M
∑

j=1

xmax
i,j . (3.1)Reall that in the stohasti model eah tra� light has a separate bu�er. Thus, the maximumqueue length of tra� light j (in signal i) that is used in the stohasti model is equal to xi,j .For eah signal we model its queue with one bu�er. Thus, all the tra� arriving at signal i is storedin one bu�er.The total time that a vehile, ylist or pedestrian spends at the intersetion, onsists of:1 A travel time to the bak of the queue (whenever the queue is not empty) or to the tra� light(whenever the queue is empty). For the hybrid �uid model we assume that tra� arrives in-stantaneously, i.e. the travel time to the bak of the queue or to the tra� light (depending onwhether the queue is empty) is assumed to be equal to zero.2 The time between the moment of arrival (at the bak of the queue or at the tra� light, dependingon whether the queue is empty) and the moment of departure (the moment at whih this vehile,ylist of pedestrian rosses the stop line). During a slow mode the time between the moment ofarrival and the moment of departure is equal to zero seonds.3 A travel time (starting at the moment of departure) to leave the intersetion. For a hybrid �uidmodel, we assume tra� departs instantaneously, i.e. the travel time to leave the intersetion isassumed to be equal to zero seonds.Hene, during a slow mode arriving tra� spends zero seonds at the intersetion. The delay at theintersetion is de�ned as the additional travel time experiened by a driver, ylist or pedestrian at theintersetion. For the hybrid �uid model the average delay at the intersetion is equal to the average28



duration of part 2, i.e. the average time between the moment of arrival (at the bak of the queue or atthe tra� light depending on whether the queue is empty) and the moment of departure.3.2.2 Modeling ArrivalsAt eah of the approahes, tra� (vehiles, ylists or pedestrians) arrives with a ertain intensity. Weuse λi to denote the arrival rate at signal i ∈ N , i.e. the mean number of vehiles, ylists or pedestriansarriving at approah i per seond. For the hybrid �uid model we assume that the amount of tra� thatarrives at signal i during an interval of size T is equal to exatly λiT . Thus, we assume that the arrivalrate is onstant over time (think of it as a onstant �ow of water into the bu�er).The arrival rate is often obtained by ounting the number of vehiles, ylists or pedestrians arrivingat a tra� light. When signal i ∈ N onsists out of more than one tra� light, the arrival rate of signal
i is equal to the sum of the arrival rates of all tra� lights in this signal. When signal i onsists out of
M tra� lights and λi,j , j = 1, ...,M are the arrival rates at these tra� lights then the arrival rate atsignal i is given by:

λi =
M
∑

j=1

λi,j . (3.2)Reall that in the stohasti model eah tra� light has a separate arrival proess. Thus, the arrivalrate of tra� light j (in signal i ∈ N ) that is used in the stohasti model is equal to λi,j .3.2.3 Modeling DeparturesDuring the green period of a signal, tra� an depart. For the hybrid �uid model, departures an beseen as a �ow of water pouring out of a bu�er.Consider the ase where signal i ∈ N onsists out of M tra� lights and λi,j , j = 1, ...,M and
µi,j are the arrival rates respetively the maximum departure rates at these tra� lights. The tra�waiting at these M tra� lights is stored in one bu�er. For the hybrid �uid model, a fration λi,j

λi
ofthe arrivals at signal i, atually arrive at tra� light j and a fration λi,j

λi
of the tra� waiting at signal

i is tra� that is atually waiting at tra� light j. For the hybrid �uid model, a fration λi,j

λi
of thetra� that departs at this signal is tra� that departs at tra� light j. Hene, we an alulate themaximum departure rate at signal i using:

µi =

M
∑

j=1

λi,j

λi
µi,j . (3.3)Reall that in the stohasti model eah tra� light has a separate departure proess. Thus, themaximum departure rate of tra� light j (in signal i ∈ N ) that is used in the stohasti model is equalto µi,j .3.2.4 Modeling Mixed Arrival FlowsIn this setion we show how to alulate the arrival rate, maximum departure rate and maximum queuelength of a tra� light with mixed tra� �ows. From the arrival rates, maximum departure rates andmaximum queue lengths of the tra� lights in a signal we an again alulate the arrival rate, departurerate and maximum queue length of a signal using (3.1), (3.2) and (3.3).At a tra� light M di�erent types of tra� arrive. We use:29



- λi, i = 1, ...,M is the arrival rate of type i tra�, i.e. how many type i units arrive per seond.- µi, i = 1, ...,M is the maximum departure rate of type i tra�, i.e. the maximum amount of type iunits that an depart per seond.- xmax
i is the maximum queue length in type i units, when the queue only onsists out of type i tra�.Note that in this setion the index i refers to a type of tra�. In the rest of this thesis this indexrefers to a signal.In this setion we give the equations for the arrival rate, the maximum departure rate and themaximum queue length of a tra� light when we are given λi, i = 1, ...,M , µi, i = 1, ...,M and xmax

i ,
i = 1, ...,M . These equations are explained using an example.For tra� of type i, i = 1, ...,M , we an alulate the dimensionless arrival rate λ̃i, the dimensionlessmaximum departure rate µ̃i, i = 1, ...,M and the maximum queue length x̃max

i in seonds via:
λ̃i =

λi

µi
,

µ̃i =
µi

µi
= 1,

x̃max
i =

xmax
i

µi
.When onsidering the hybrid �uid model, the dimensionless arrival rate λ̃ at the tra� light, thedimensionless maximum departure rate µ̃ at the tra� light and the maximum queue length x̃max atthe tra� light an be alulated via:

λ̃ =

M
∑

i=1

λ̃i,

µ̃ = 1,

x̃max =

M
∑

i=1

λ̃i

λ̃
x̃max
i .Both x̃max and x̃max

i are real valued numbers (see also example below).Example 3.2.1 Consider the ase where truks, trators and ars arrive at the same tra� light.The arrival rate of truks, trators and ars are respetively λtruck = 0.05 truks per seond,
λtractor = 0.01 trators per seond and λcar = 0.3 ars per seond. The maximum departure ratesof truks, trators and ars are respetively µtruck = 0.2 truk per seond, µtractor = 0.3 trators perseond and µcar = 0.5 ars per seond. Whenever the queue only onsists out of truks, the maximumqueue length is xmax

truck = 4.4 truks. Whenever the queue only onsists out of trators, the maximumqueue length is xmax
tractor = 7.5 trators and whenever the queue only onsists out of ars, the maximumqueue length is xmax
truck = 12 truks.The dimensionless arrival rates of truks, trators and ars are equal to respetively λ̃truck = 0.25,

λ̃tractor = 1/30 and λ̃car = 0.6. We an interpret these arrival rates as the seonds of work that arriveevery seond. For example, every seond λtrucks truks arrive. When using the maximum departure rate(µtruck) this amount of truks departs in λ̃truck = 0.25 seonds. Thus, every seond, 0.25 seonds ofwork of the type 'truks' arrives. The total arrival rate at the tra� light is λ̃ = 1/4+1/30+4/5 ≈ 0.8833(seonds of work that arrive every seond). 30



It is trivial to say that when we let tra� of type i depart at the maximum departure rate, everyseond one seond of work departs. Thus, µ̃i = 1. As a result, independent of the type of tra� thatdeparts, one seond of work depart every seond when working at the maximum departure rate. Hene,it holds that µ̃ = 1.The maximum queue lengths of truks, trators and ars are equal to respetively x̃max
truck = 22 seonds(of work), x̃max

tractor = 25 seonds (of work) and x̃max
car = 24 seonds (of work).A fration λ̃i

λ̃
of the arriving work is of the type i = truck, tractor, car. Thus when the maximumqueue length of the tra� light is reahed, this queue ontains λ̃i

λ̃
x̃max
i seonds (of work) of type i.Hene, the maximum queue length of the tra� light in seonds is equal to:

∑

i=truck,tractor,car

λ̃i

λ̃
x̃max
i ≈ 23.5 seonds.Whenever we have alulated all the arrival rates, departure rates and maximum queue lengths ofthe tra� lights in a signal, we an alulate the arrival rate, maximum departure rate and maximumqueue length of this signal via (3.1), (3.2) and (3.3). In these equations all arrival rates, maximumdeparture rates and maximum queue lengths of the di�erent tra� lights must be expressed in thesame unit. For example, all arrival rates and maximum departure rates in their dimensionless form andall maximum queue lengths in seonds (of work).3.2.5 Modeling Two-Way Pedestrian CrossingsAt pedestrian rossings pedestrians generally walk in two diretions (two-way pedestrian rossing). Inthis ase at eah side of the pedestrian rossing, a tra� light is positioned. In pratie these two tra�lights swith to green at the same time and swith to red at the same time. Hene, these tra� lightsan be partitioned in the same signal. The arrival rate at this signal is simply equal to the sum ofthe arrival rates at both sides of the pedestrian rossing. Further, beause the pedestrian rossing hasto be 'shared' by the pedestrians that walk the pedestrian rossing in both diretion, it is logial toassume that the maximum departure rate µi at this signal (the number of pedestrians that an rossthe pedestrian rossing per seond) is onstant.For example, at a pedestrian rossing the maximum departure rate is equal to µi. This means thatwhen at a moment the departure rate at one side is equal to d(t) ≤ µi pedestrians per seond, at thatmoment maximally µi − d(t) pedestrians an ross the pedestrian rossing from the other side.Usually a large number of pedestrians an ross the pedestrian rossing simultaneously. Hene,pedestrian rossings usually have a large maximum departure rate. However, beause pedestrians moverelatively slow (in omparison to vehiles and ylists) it takes a while before a pedestrian has rossedthe pedestrian rossing. Therefore, a on�iting signal may only swith to green whenever the signal ofa pedestrian rossing has been red for a relatively long time (large setup times).Furthermore, it is fair to assume that the maximum queue lengths are in�nite at a pedestrianrossing beause pedestrians always �nd a spot to wait in front of the tra� light.3.2.6 Modeling Startup E�et in the Maximum Departure RateWe assume in our hybrid �uid model that the maximum departure rate is onstant during a greenperiod. However, at the beginning of a green time there is a startup e�et; people do not respondinstantaneously and tra� needs some time to aelerate. Hene, the maximum departure rate is notonstant; it inreases and after a ertain amount of time the maximum departure rate does not hangeanymore. The transient part, where the maximum departure rate inreases, is alled the startup e�et.31



Just like for the stohasti model, we an adjust the duration of the setups to model this startupe�et. When tstartup is the duration (in seonds) of the startup e�et at signal i and D is the numberof vehiles, ylists or pedestrians that depart at signal i during this startup e�et then we model thisstartup e�et by inreasing the setup times σj,i with tstartup − D
µi

seonds for all signals j that areon�iting with signal i. During the green period, the maximum departure rate is onstant and equalto µi. We assume that the startup e�et always (every green period) has the same duration at a signal
i and we assume that the startup e�et takes less than the minimum green time.In this setion we introdued two models; a stohasti model and a hybrid �uid model. For bothmodels we have shown how to model queues, arrivals and departures. Furthermore, we showed how tomodel a startup e�et in the maximum departure rate. For the hybrid �uid model we showed that weould also model mixed arrival �ows and two-way pedestrian rossings. In the next hapter we solve thetrajetory optimization problem for a simple intersetion with two (on�iting) signals. In that hapterwe model the intersetion with the hybrid �uid model. The stohasti model is used for simulation.
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Chapter 4Trajetory Optimization: A SimpleIntersetion of Two SignalsIn this hapter we onsider the trajetory optimization problem for a simple intersetion of two on-�iting signals. First we explain the trajetory optimization problem more expliitly in Setion 4.1and Setion 4.2. Subsequently, in Setion 4.3 we prove that we an always �nd an optimal trajetorysatisfying some properties. Using these properties an optimization problem (that we solve analytially)is proposed in Setion 4.8. In Figure 4.1 we present two example of an intersetion with two on�itingsignals: the intersetion of two one-way streets a two-way street with a roadblok.
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(a) An intersetion of two one-waystreets. PSfrag replaements 1

2(b) Two-way street with a roadblok. Tra� lights ontrols whih tra� �owmay pass the roadblok.Figure 4.1: Examples of two on�iting signals.4.1 Problem DesriptionThe problem of trajetory optimization is the proess of designing a trajetory that minimizes ormaximizes some measure of performane within presribed onstraint boundaries. A trajetory is asolution of a mathematial model. Just like in [24℄ we onsider a mathematial model as an exlusionlaw. A mathematial model expresses the opinion that some things an happen, are possible, while otherannot, are delared impossible. These exlusion laws of a mathematial model an be expressed in the33



form of equations. These equations are alled behavioral equations. The outomes that a mathematialmodel allows, and are delared possible, are alled the behavior of the mathematial model, i.e. thebehavior is the solution set of the behavioral equations. A solution of the behavioral equations is alleda trajetory. To solve the trajetory optimization problem we model the simple intersetion with thehybrid �uid model proposed in Setion 3.2. The behavioral equations of the hybrid �uid model for thissimple intersetion are presented in Setion 4.2. A solution of these behavioral equations is alled atrajetory and onsists out of the evolution (as funtion of time) of the following variables:- xi(t), i = 1, 2: the queue lengths of both signals as a funtion of time.- mi(t), i = 1, 2: the signal state, also alled the mode, of both signals as a funtion of time.- di(t), i = 1, 2: the departure rate of both signals as a funtion of time.For the simple intersetion of only two on�iting signals, we want to �nd a trajetory minimizingthe average weighted queue length:
J = lim sup

t→∞

1

t

∫ t

0

[f1(x1(s)) + f2(x2(s))]ds, (4.1)where fi : R+ → R+ is a weight funtion. Weight funtion fi relates the queue lengths at signal
i to osts. We assume that the funtions fi are stritly inreasing, i.e. larger queue lengths resultin higher osts. In Setion 4.8 we use more spei� weight funtions fi: the linear weight funtions
f1(x1(t)) = w1x1(t) and f2(x2(t)) = w2x2(t). In Setion 4.1.1 we show that minimizing the linearweight funtion, where w1 = w2 is equivalent to minimizing the average delay of an arbitrary road userat this intersetion.4.1.1 Average Delay of A Road User At the IntersetionIn this setion we show that minimizing the linear weight funtion where w = w1 = w2, is equivalent tominimizing the average delay of an arbitrary road user at this intersetion. In this setion we assumethat eah arrival rate λi, i = 1, 2, is given in number of vehiles per seond, number of ylists perseond or number of pedestrians per seond and that eah queue length xi, i = 1, 2, is given in numberof ars, number of ylists or number of pedestrians. When di�erent types of tra� arrive at a signalit does not hold that minimizing the linear weight funtion where w = w1 = w2, is equal to minimizingthe average delay of an arbitrary road user at this intersetion.When fi(xi) = wxi, i = 1, 2 we an write (4.1) as follows:

J = w(x1 + x2), (4.2)where
x1 = lim sup

t→∞

1

t

∫ t

0

x1(s)ds,

x2 = lim sup
t→∞

1

t

∫ t

0

x2(s)ds.Note that xi is the average queue length at queue i = 1, 2 inluding the road user that is departing.From Little's Law we know that: 34



δi =
xi

λi
, i = 1, 2,where, δi is the average delay of a road user at signal i = 1, 2. Hene, we an rewrite (4.2) to:

J = wλδ, (4.3)where
δ =

(

δ1
λ1

λ
+ δ2

λ2

λ

)

, (4.4)
λ = λ1 + λ2.A fration λ1

λ
of the road users arrives at signal 1 and a fration λ2

λ
of the road users arrive at signal 2.Hene, δ =

(

δ1
λ1

λ
+ δ2

λ2

λ

) is the average delay of an arbitrary road user at the intersetion. Note, thatthe optimal trajetory does not hange when multiplying the objetive funtion (ost funtion) with
1
wλ > 0. Hene, minimizing the linear weight funtion, where w = w1 = w2 results in the same optimaltrajetory as minimizing the average delay of an arbitrary road user.4.2 Behavioral Equations of the Hybrid Fluid ModelIn this setion we give the behavioral equations of the hybrid �uid model. First, we introdue thevariables that we use in these behavioral equations in Setion 4.2.1. In Setion 4.2.2 we give thebehavioral equations of the hybrid �uid model.4.2.1 Manifest Variables and Latent VariablesIn this setion we give the manifest variables and the latent variables that we use in the behavioralequations. The manifest variables are the variables that we are interested in. A trajetory onsists outof the evolution (as funtion of time) of these manifest variables. The latent variables are used so thatwe an give the behavioral equations in a ompat and readable form.We use the following manifest variables:- xi(t) ∈ R

+, i = 1, 2: the queue length of queue i as a funtion of time. The funtion xi(t), i = 1, 2 isright-ontinuous.- mi(t) ∈ { i , i }, i = 1, 2: the signal state of signal i as a funtion of time. The funtion mi(t), i = 1, 2is right-ontinuous.- di(t) ∈ R
+, i = 1, 2: the departure rate at signal i as a funtion of time. The funtion di(t), i = 1, 2is measurable.Further, we use the following latent variables:- Li

τ (t) ∈ R
+, i = 1, 2: the time that has elapsed sine the last hange in the signal state of signal i.The funtion Li

τ (t), i = 1, 2 is right-ontinuous.
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4.2.2 Behavioral EquationsIn this setion we give the behavioral equations of a simple intersetion with two signals.The hange in the queue length is equal to the net in�ow (arrival rate minus departure rate):
ẋi(t) = λi − di(t), i = 1, 2. (4.5a)The latent variable Li

τ (t), i = 1, 2 denotes a time. Hene, its derivative with respet to time is equalto one:
L̇i
τ (t) = 1, i = 1, 2. (4.5b)The time that has elapsed sine the last hange in the signal state is set to zero when the signalstate hanges:

Li
τ (t) = 0 if mi(t

−) 6= mi(t), i = 1, 2, (4.5)where
mi(t

−) = lim
y↑t

mi(y)When the signal state of signal i = 1, 2 hanges, it holds that mi(t
−) (the left limit) is not equal to

mi(t) (the right limit) (see Figure 4.2).PSfrag replaements
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tFigure 4.2: At time t signal 1 swithes from red to green.Whenever a signal is red, tra� from the orresponding queue annot ross the intersetion:
di(t) = 0 if mi(t) = i , i = 1, 2, ∀t ∈ R

+. (4.5d)When there is no tra� waiting at queue i = 1, 2, tra� an depart at a rate that is smaller than orequal to the arrival rate λi (otherwise it would result in a negative queue length xi(t)):
di(t) ≤ λi if xi(t) = 0, i = 1, 2, ∀t ∈ R

+. (4.5e)Tra� annot depart at a rate that exeeds the maximum departure rate:36



di(t) ≤ µi, i = 1, 2, ∀t ∈ R
+. (4.5f)Sine signal 1 and signal 2 are on�iting, both signals annot be green at the same time:

m1(t) = 1 if m2(t) = 2 , (4.5g)
m2(t) = 2 if m1(t) = 1 . (4.5h)Signal 1 annot swith to green whenever signal 2 swithed to red less than σ2,1 seonds ago. In thesame way, signal 2 annot swith to green whenever signal 1 swithed to red less than σ1,2 seonds ago:

m1(t) = 1 if m2(t) = 2 ∧ L2
τ (t) < σ2,1, (4.5i)

m2(t) = 2 if m1(t) = 1 ∧ L1
τ (t) < σ1,2. (4.5j)The maximum queue length annot be exeeded.

xi(t) ≤ xmax
i , i = 1, 2. (4.5k)The duration of a green period must be at least the minimum green time and annot exeed themaximum green time:

mi(t) = i if T i
τ (t) < gmin

i ∧mi(t
−) = i , i = 1, 2, (4.5l)

mi(t) = i if T i
τ (t) ≥ gmax

i ∧mi(t
−) = i , i = 1, 2. (4.5m)A solution of these behavioral equations (the manifest variables as funtion of time) is alled atrajetory. Note that we allow every initial ondition as long as it satis�es (4.5).4.2.3 AssumptionsIn this setion we give the assumptions used in this hapter. We assume that the arrival rate and themaximum departure rate of a signal is positive:

λ1, λ2, µ1, µ2 > 0. (4.6a)We assume that the setup times are both non-negative and that one of the setup times is stritlypositive:
σ1,2, σ2,1 ≥ 0, (4.6b)

σ1,2 + σ2,1 > 0. (4.6)We assume that the minimum green times are non-negative:
gmin
1 , gmin

2 ≥ 0. (4.6d)We assume that the average green times onverge. Thus, we assume that the following limits exist:37



ḡ1 = lim
M→∞

M
∑

k=1

gk1
M

, (4.6e)
ḡ2 = lim

M→∞

M
∑

k=1

gk2
M

. (4.6f)(4.6g)Further, we assume that the maximum green times and the maximum queue lengths satisfy thefollowing inequalities:
min{gmax

1 ,
xmax
2

λ2
− σ1,2,1} ≥ ρ1σ1,2,1

1− ρ1 − ρ2
, (4.6h)

min{gmax
2 ,

xmax
1

λ1
− σ1,2,1} ≥ ρ2σ1,2,1

1− ρ1 − ρ2
, (4.6i)

min{gmax
1 ,

xmax
2

λ2
− σ1,2,1} ≥ gmin

1 , (4.6j)
min{gmax

2 ,
xmax
1

λ1
− σ1,2,1} ≥ ρ2

1− ρ2
(σ1,2,1 + gmin

1 ), (4.6k)
min{gmax

2 ,
xmax
1

λ1
− σ1,2,1} ≥ gmin

2 , (4.6l)
min{gmax

1 ,
xmax
2

λ2
− σ1,2,1} ≥ ρ1

1− ρ1
(σ1,2,1 + gmin

2 ). (4.6m)In Setion 4.8 we show that we an always (and only) �nd a trajetory resulting in a �nite averageweighted queue length alulated with (4.1) whenever the inequalities in (4.6h)�(4.6m) hold.4.3 Properties of Optimal TrajetoriesIn Chapter 5 of van Eekelen [10℄ we an �nd some lemmas on optimal trajetories, whih van Eekelenproves by a proof of ontradition. In that hapter no restritions on green times where onsidered,i.e. (4.5l) and (4.5m) are not in the behavior. When inluding these restritions on green times thelemmas from [10℄ are not valid anymore. Therefore, we have developed new lemmas to inlude theserestritions on green times (minimum green times and maximum green times). Furthermore, with thesenew lemmas we avoided a irular argument found in [10℄. The results are lemma 4.1� 4.3. BothLemma 4.1 and Lemma 4.2 hold in general (for any intersetion).Lemma 4.1 Without loss of generality it an be assumed that for an optimal trajetory in the behavior,during a green period a signal always uses the highest possible departure rate, after whih it might idle,i.e. use a departure rate equal to zero. This highest possible departure rate equals µi when the queue isnot empty (xi(t) > 0), and equals the arrival rate λi otherwise.Proof. Suppose that we are given a green time of gki = tf − t0, k ≥ 1 that satis�es gmin
i ≤ gki ≤ gmax

iand a trajetory is given, for whih at the beginning of gki , the queue length of queue i equals x0
i and atthe end of gki the queue length equals xf

i . Then one an onsider the alternative trajetory whih onlydi�ers from the original trajetory during gki . This alternative trajetory serves signal i equally long and38



�rst lets tra� depart at the highest possible rate, i.e. at the maximum departure rate when the queueis not empty(xi(t) > 0) and the arrival rate otherwise. In the end, this alternative signal idles, i.e. weuse a departure rate equal to zero, to make sure that at the end of gki the queue length equals xf
i (seeFigure 4.3). Clearly, the alternative trajetory satis�es (4.5d)�(4.5m) whenever the original trajetorydoes. Further, during the green period the queue length annot derease faster in the beginning andannot inrease faster in the end. Therefore, for the alternative signal the queue length of type i issmaller or equal at every time instants. Further, the evolution of the queue lengths of the other queuesremain the same for both trajetories and fi is stritly inreasing. Hene, the alternative trajetoryworks at least as good, i.e. the osts (alulated with (4.1)) of the alternative trajetory are not biggerthan the osts of the original trajetory.
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Further, the evolution of the queue lengths of the other queues remain the same for both trajetoriesand fi is stritly inreasing. Hene, the alternative trajetory works at least as good, i.e. the osts(alulated with (4.1)) of the alternative trajetory are not bigger.
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timeti0 tifFigure 4.4: Graphial representation of Lemma 4.2.Thus, whenever we are given a trajetory that does not satisfy the property given in this lemma,we an always �nd an alternative trajetory that does satisfy this property and that works at least asgood. Hene, there must be an optimal trajetory that satis�es the property given in this lemma.When we ombine the results of Lemma 4.1 and Lemma 4.2 we see that (as expeted) we alwaysuse the highest possible departure rate during a green period of signal i = 1, 2:
di(t) =

{

µi if xi(t) > 0,
λi if xi(t) = 0.It would have been a surprising yet interesting result, if using a lower departure rate an have apositive e�et on the osts. If this turned out to be true, we ould think about ways to ontrol thedeparture rate of tra� at a tra� light.Lemma 4.3 Without loss of generality it an be assumed that for an optimal trajetory in the behavior,a queue is always emptied during its green period and green periods always take equally long, i.e. gki =

gk+1
i , ∀k ≥ 1.Proof. Lets onsider a trajetory de�ned on the time interval [0,∞) where a queue is not emptied atleast one or where the duration of the green periods is not always the same for a signal. Lets all thistrajetory the 'original trajetory'. In Figure 4.5a we an see an example of the original trajetory.
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We introdue the following notation for the average duration of gki , rki , gλ,ki and gµ,ki :
ḡi = lim

M→∞

M
∑

k=1

gki
M

, i = 1, 2, (4.7a)
r̄i = lim

M→∞

M
∑

k=1

rki
M

, i = 1, 2, (4.7b)
ḡλi = lim

M→∞

M
∑

k=1

gλ,ki

M
,i = 1, 2, (4.7)

ḡµi = lim
M→∞

M
∑

k=1

gµ,ki

M
,i = 1, 2. (4.7d)We an propose an alternative trajetory where a queue is always emptied during a green period andwhere the green times of a signal are always the same (see Figure 4.5b). For this alternative trajetorywe take the green times and red times of signal i equal to respetively ḡi and r̄i. We serve signal 1during the red period of signal 2 and we serve signal 2 during the red period of signal 1.We an prove that the osts J related to this alternative trajetory are not greater than the ostsrelated to the original trajetory.First we prove that the limits in (4.7) exist. We assume that the limits lim

M→∞

M
∑

k=1

gk
i

M
, i = 1, 2 exist(see Setion 4.2.3). Note that whenever ḡ1 and ḡ2 both exist then r̄1 and r̄2 also exist beause theaverage red period of a signal is related to the average green period of the other signal aording to:

r̄1 = ḡ2 + σ1,2,1,

r̄2 = ḡ1 + σ1,2,1.Whenever signal i = 1, 2 satis�es λir̄i 6= (µi − λi)ḡ
µ
i for the original trajetory, this means that thequeue length of queue i would go to ∞ or −∞ beause:

lim
t→∞

xi(t) = lim
M→∞

M
∑

k=1

(λir
k
i − (µi − λi)g

µ,k
i ) = lim

M→∞
M(λir̄i − (µi − λi)ḡ

µ
i ).Note that we have used that eah green time of signal i is �nite. A queue length must be a non-negative number and therefore a trajetory where a queue length goes to −∞ is not feasible. Further,whenever a queue length goes to ∞, the osts alulated with (4.1) are in�nite. Hene, it must holdthat:

λir̄i = (µi − λi)ḡ
µ
i , i = 1, 2. (4.8)Thus, the amount of tra� that arrives during a red period of signal i = 1, 2 is equal to λir̄i and wean let this amount of tra� depart during a period equal to exatly ḡµi . As a result, from ḡi = ḡµi + ḡλiwe an obtain that for the alternative poliy the length of the slow mode is equal to ḡλi during eahgreen period. From (4.8) we an see that ḡµi exists (beause r̄i exists) and from ḡi = ḡµi + ḡλi we knowthat ḡλi exists. Hene, ḡi, r̄i, ḡλi and ḡµi all exist.Also note that the alternative trajetory is always feasible. First of all, the green periods of thealternative trajetory (with duration ḡi) always take longer than the shortest green period of the original41



trajetory. Seond of all, the green periods of the alternative trajetory (with duration ḡi) always takeshorter than the longest green period of the original trajetory. Furthermore, the maximum queuelength are less for the alternative trajetory than for original trajetory. As a result, whenever theoriginal trajetory satis�es (4.5d)�(4.5m), the alternative trajetory does as well.Now we are going to prove that the osts related to the alternative trajetory are not bigger thanthe osts related to the original trajetory. We use bgµ,k
i

, k ≥ 1 and brki , k ≥ 1 for the time at whih thegreen period gki starts respetively the time at whih the red period rki starts. Further, we use egµ,k
i

,
k ≥ 1 for the time at whih queue i is emptied during gki and we use erki , k ≥ 1 for the time at whih
rki ends. We distinguish three di�erent areas (see Figure 4.5): Ak

1 , k ≥ 1, Ak
2 , k ≥ 1 and Ak

3 , k ≥ 1.
Ak

1 =

∫ e
g
µ,k
i

b
g
µ,k
i

(xi(t)− xi(bgµ,k
i

))dt, k ≥ 1,

Ak
2 =

∫ e
rk
i

b
rk
i

(xi(t)− xi(erki ))dt, k ≥ 1,

Ak
3 = xi(bgµ,k

i
)(egµ,k

i
− bgµ,k

i
) + xi(erki )(erki − brki ),k ≥ 1.In Figure 4.5, Ak

1 is visualized in dark gray, Ak
2 is visualized in medium gray and Ak

3 is visualized inlight gray.
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3 = 0, k ≥ 1for this trajetory.Now we are going to prove that the osts related to signal i and made during only the red periodsare not bigger for the alternative trajetory than for original trajetory. Thus, we only onsider thesignal during the red periods of signal i = 1, 2, i.e. we ut out the parts where signal i is green (seeFigure 4.6a).Now we an shift eah and every red period towards the xi(t) = 0-axis for the original trajetory, i.e.removing the areas Ak
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On the left side of Figure 4.6b we an see Ak
1 and Ak+1

1 plotted for the shifted original trajetory.Without loss of generality we an assume that the �rst red period rki is longer than the seond redperiod rk+1
i for two adjaent red periods. When we take both green times equal to rki +rk+1

i

2 we get theareas Ak
1 and Ak+1

1 as an be seen on the right side of Figure 4.6b. We an see that the dark gray areasare the same and that the medium gray areas di�er (the di�erene is the light gray area). Sine fi isstritly inreasing, taking the red time of two adjaent red periods equal to eah other annot inreasethe osts related to the red periods of signal i. Hene, taking all red periods equal to eah other annotinrease the osts related to the red periods of signal i. Note, that the osts, of this shifted trajetorywhere all red periods are equal to eah other, are exatly the osts made during the red periods of thealternative trajetory. Thus, the osts related to the red periods of the alternative trajetory annot bebigger than the osts related to the red periods of the original trajetory.PSfrag replaements

xi(t)

Ak
1

Ak+1
1

Ak
3 Ak+1

3

rki gki rk+1
itime(a) Visualization of only the red periods of theoriginal trajetory.

PSfrag replaements

xi(t)xi(t)
Ak

1Ak
1 Ak+1

1Ak+1
1

rki rk+1
i timetime rki +rk+1

i

2
rki +rk+1

i

2(b) Left: visualization of the shifted red periods of the original trajetory, right: 2 equal red periods insteadof 2 unequal red periods.Figure 4.6: Comparing the osts made during the red periods for both trajetories.In exatly the same way we an prove that the osts related to the green periods of signal i = 1, 2annot be bigger for the alternative trajetory than for the original trajetory. Hene, the osts of the43



alternative trajetory are not bigger than the osts of the original trajetory.Thus, whenever we are given a trajetory that does not satisfy the property given in this lemma,we an always �nd an alternative trajetory that does satisfy this property and that works at least asgood. Hene, there must be an optimal trajetory that satis�es the property given in this lemma.4.4 Shape of the Periodi Optimal TrajetoryUsing lemmas 4.1�4.3 we an �nd the following orollary for the simple intersetion of two signals.Corollary 4.4 For the simple intersetion of two signals there is always an optimal trajetory (mini-mizing (4.1)) that has the periodi shape shown in Figure 4.7, whih onsists out of the following phases(these phases repeat periodially):phase 1 Signal 1 is green and d1(t) = µ1 until queue 1 is empty.phase 2 Signal 1 is green and d1(t) = λ1.phase 3 perform a setup to signal 2, i.e. swith signal 1 to red and keep both signals red for a period equalto σ1,2phase 4 Signal 2 is green and d2(t) = µ2 until queue 2 is empty.phase 5 Signal 2 is green and d2(t) = λ2.phase 6 perform a setup to signal 1, i.e. swith signal 2 to red and keep both signals red for a period equalto σ2,1Beause all green periods of a signal have the same duration and all red periods of a signal have thesame duration, we use:
gi = gki , i = 1, 2, k ≥ 1,

ri = rki , i = 1, 2, k ≥ 1,

gλi = gλ,ki ,i = 1, 2, k ≥ 1,

gµi = gµ,ki ,i = 1, 2, k ≥ 1.Phase 2 and phase 4 are the so alled slow modes and may have a duration equal to zero. We allthis periodially repeated sequene of 6 phases a yle. On the left hand side of Figure 4.7, this yleis plotted in the (x1, x2)-plane. The right hand side graphs shows the queue lengths over time, with theslopes annotated to them. The duration of a yle is denoted with c and is equal to g1 + g2 + σ1,2,1.A slow mode an redue the ost funtion beause it inreases the yle duration c and as a onse-quene the system swithes less, i.e. there are less setups.The tra� that arrives during a red period of signal 1 an (preisely) depart during gµ1 . In the sameway, the tra� that arrives during a red period of signal 2 an (preisely) depart during gµ2 . Hene wean �nd:
gµ1 =

ρ1
1− ρ1

(g2 + σ1,2,1), (4.9a)
gµ2 =

ρ2
1− ρ2

(g1 + σ1,2,1). (4.9b)44
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We use x♯

1 for the queue length of queue 1 when the green period of signal 2 is ended and we use x♯
2for the queue length of queue 2 when the green period of signal 1 ended:

x♯
1 = (g2σ1,2)λ1 (4.10a)

x♯
2 = (g1σ2,1)λ2 (4.10b)We all the shape (onsisting of phases 1 until 6) shown on the left hand side of Figure 4.7 thetrunated bow tie urve. Whenever gλ1 = gλ2 = 0 we all this shape the pure bow tie urve (onsistingof only phases 1, 3, 5 and 6). The pure bow tie urve is the urve with the shape shown in Figure4.7 that has the smallest possible yle duration c. When gλ1 = gλ2 = 0 the green times g1 and g2 arepreisely large enough to let the amount of tra� depart that arrives during a red period. Thus for thepure bow tie urve it holds that:

g1(µ1 − λ1) = r1λ1= (g2 + σ1,2,1)λ1, (4.11a)
g2(µ2 − λ2) = r2λ2= (g1 + σ1,2,1)λ2. (4.11b)From (4.11) we an obtain that for the pure bow tie urve it holds that:
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c =
σ1,2,1

1− ρ1 − ρ2
,

g1 = gµ1 = ρ1
σ1,2,1

1− ρ1 − ρ2
,

g2 = gµ2 = ρ2
σ1,2,1

1− ρ1 − ρ2
.The pure bow tie urve is shown in Figure 4.8.PSfrag replaements
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1Figure 4.8: Pure bow tie urve.The following expressions an be found for the oordinates of the pure bow tie urve:
x∗
1 = λ1

(

σ1,2 +
ρ2σ1,2,1

1− ρ1 − ρ2

)

, (4.12a)
x̂∗
1 = λ1σ1,2,1

(

1− ρ1
1− ρ1 − ρ2

)

, (4.12b)
x∗
2 = λ2

(

σ2,1 +
ρ1σ1,2,1

1− ρ1 − ρ2

)

, (4.12)
x̂∗
2 = λ2σ1,2,1

(

1− ρ2
1− ρ1 − ρ2

)

. (4.12d)
4.5 An Optimal Trajetory Disarding Restritions on Maxi-mum Queue Lengths, Minimum Green Times and MaximumGreen TimesIn the rest of this hapter we onsider a more spei� form of the ost funtion J : the linear ostfuntion presented in (4.13).

J =
1

c

∫ c

0

[w1x1(s) + w2x2(s)]ds, (4.13)46



where, w1, w2 > 0.In this setion, we disard the restritions on maximum queue lengths, the restritions on minimumand the restritions maximum green times. Thus, we disard (4.5k)�(4.5m) of the behavioral equationsgiven in Setion 4.2.2, i.e. the maximum queue lengths are in�nite, the minimum green times are equalto zero and the maximum green times are in�nite.In [10℄, van Eekelen has proven that for this situation Theorem 4.1 holds. Without loss of generalityhe assumes that w1λ1 ≥ w2λ2.Theorem 4.1 For a simple intersetion of two signals the periodi optimal trajetory with respet tolinear osts on queue lengths (4.13), has a slow mode for at most one signal (signal 1). The slow modeours if and only if w1λ1(ρ1 + ρ2)− (w1λ1 − w2λ2)(1− ρ2) < 0Proof. See appendix A.2 of [10℄Hene, when disarding behavioral equations (4.5k)�(4.5m) and we assume w.l.o.g. that w1λ1 ≥
w2λ2, the optimal steady state yle has the shape shown in Figure 4.9.
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x♯
1 = λ1

(

σ1,2 +
σ1,2,1ρ2(1 + α1(1 − ρ1))

1− ρ1 − ρ2

)

, (4.14a)
x̂1 = λ1σ1,2,1

(

(1 + α1ρ2)(1 − ρ1))

1− ρ1 − ρ2

)

, (4.14b)
x♭
2 = λ2σ1,2,1

(

(1− ρ2)(1 + α1(1− ρ1))

1− ρ1 − ρ2

)

, (4.14)
x♯
2 = λ2

(

σ2,1 +
σ1,2,1(α1(1 − ρ1)(1− ρ2) + ρ1)

1− ρ1 − ρ2

)

, (4.14d)
x̂2 = λ2σ1,2,1

(

(1− ρ2)(1 + α1(1− ρ1))

1− ρ1 − ρ2

)

. (4.14e)47



In [10℄ we an �nd that α1 equals:
α1 =

{

0 if w1λ1(ρ1 + ρ2)− (w1λ1 − w2λ2)(1 − ρ2) ≥ 0,positive root of (4.15) otherwise. .

[w1λ1ρ
2
2+w2λ2(1−ρ1)

2(1−ρ2)]α
2
1+2[w1λ1ρ

2
2+w2λ2(1−ρ1)(1−ρ2)]α1+[w1λ1(ρ1+ρ2)−(w1λ1−w2λ2)(1−ρ2)] = 0.(4.15)4.6 An Optimal Trajetory Disarding Restritions on Mini-mum Green Times and Maximum Green TimesIn this setion we (only) disard behavioral equation (4.5l) and (4.5m) given in Setion 4.2.2, i.e. theminimum green times are equal to zero and the maximum green times are in�nite. In setion 5.4 of [10℄,van Eekelen presents the e�ets of �nite maximum queue lengths on the periodi optimal trajetory. Inthis setion he again assumes w.l.o.g. that w1λ1 ≥ w2λ2. We reapitulate his results quikly.A trajetory an only be found whenever xmax

i ≥ x̂∗
i , i = 1, 2. With x̂∗

i , i = 1, 2 as in (4.12). Inthe left hand side of Figure 4.10 the periodi optimal trajetory is shown for a �nite maximum queuelength of signal 1. In the right hand side of Figure 4.10 the periodi optimal trajetory is shown for a�nite maximum queue length of signal 2.The oordinates of the periodi optimal trajetory with queue length onstraints are denoted withbars (¯). The original (unonstrained) periodi optimal trajetory is shown in light gray.
PSfrag replaements

x2 x2

x1 x1

ˆ̄x2

x̄♯
2

x̄♯
2

x̄♭
2

x̄♭
2

x̄♯
1 x̄♯

1
ˆ̄x1

xmax
2

xmax
1Figure 4.10: New periodi optimal trajetory, due to queue length onstraints. the original unon-strained periodi optimal trajetory is visualized in light gray and the onstrained optimal trajetoryin dark gray.Van Eekelen derived the following oordinates of the periodi optimal trajetory with �nite queuelengths. 48



x̄♯
1 = min{x♯

1, xmax
1 − λ1σ2,1, λ1

(

σ1,2 +
xmax
2

µ2−λ2

)

},
ˆ̄x1 = min{x̂1, xmax

1 , λ1

(

σ1,2,1 +
xmax
2

µ2−λ2

)

},
x̄♭
2 = min{x♭

2, xmax
1 , λ1

(

σ1,2,1 +
xmax
2

µ2−λ2

)

},
x̄♯
2 = min{x♯

2, µ2−λ2

λ1
(xmax

1 − λ1σ1,2,1)− λ2σ1,2, xmax
2 − λ2σ1,2},

ˆ̄x2 = min{x̂2, µ2−λ2

λ1
(xmax

1 − λ1σ1,2,1), xmax
2 }.With the expressions for x♯

1, x♯
2, x♭

1, x♭
2 and x̂1 as in (4.14).4.7 An Optimal Trajetory Disarding Restritions on Mini-mum Green timesIn this setion we (only) disard behavioral equation (4.5l) given in Setion 4.2.2, i.e. the minimumgreen times are equal to zero.Sine we onsider a hybrid �uid model and beause of the shape of the periodi optimal trajetoryshown in Figure 4.7, imposing a maximum green time on signal 1 is essentially the same as imposing aonstraint on the maximum queue length of signal 2 and vie versa. This beause when signal 1 has amaximum green time gmax

1 it means that signal 2 has a maximum red time of gmax
1 + σ1,2,1. Therefore,the queue length of signal 2 an be equal to maximally λ2(g

max
1 + σ1,2,1). When signal 2 is also subjetto a queue length onstraint, i.e. its queue an have a maximum length equal to xmax

2 , it has to bedetermined whih onstraint is more restritive: the maximum green time of signal 1 or the maximumqueue length xmax
2 . For this purpose we introdue the virtual maximum queue lengths xvmax

1 and xvmax
2whih an be alulated via:

xvmax
2 = min{λ2(g

max
1 + σ1,2,1), x

max
2 },

xvmax
1 = min{λ1(g

max
2 + σ1,2,1), x

max
1 }.When the �rst term realizes this minimum, the maximum green time of the other signal is morerestritive than the maximum queue length. When the seond term realizes this minimum, the maximumqueue length is more restritive than the maximum green time of the other signal.However the reverse also holds: the maximum queue length of signal 1 an be seen as a maximumgreen time of signal 2 and vie versa. With the same reasoning we an �nd the virtual maximum greentimes gvmax

1 and gvmax
2 , whih an be alulated using:

gvmax
1 = min{gmax

1 ,
xmax
2

λ2
− σ1,2,1}, (4.16a)

gvmax
2 = min{gmax

2 ,
xmax
1

λ1
− σ1,2,1}. (4.16b)Note that the virtual maximum green time gvmax

1 and gvmax
2 and the virtual maximum queue lengths

xvmax
1 and xvmax

2 are related aording to:
xvmax
1 = λ1(g

vmax
2 + σ1,2,1),

xvmax
2 = λ2(g

vmax
1 + σ1,2,1).49



When only disarding onstraints on minimum green times we an still use the knowledge fromsetion 5.4 of [10℄. Instead of using maximum queue lengths xmax
1 and xmax

2 we virtual maximum queuelengths xvmax
1 and xvmax

2 .4.8 Periodi Optimal TrajetoryIn this setion we onsider all behavioral equations that are given in Setion 4.2.2. From Corollary 4.4we know that w.l.o.g. we an assume that optimal trajetories are periodi. For these periodi optimaltrajetories a queue is emptied during eah green period. For these periodi trajetories we an rewritethe behavioral equations in Setion 4.2.2.We want to minimize the linear ost funtion (4.13). From the right side of Figure 4.7 we an obtainthe following expression for the linear ost funtion of the simple intersetion with two signals.
J =

1

c

∫ c

0

[w1x1(s) + w2x2(s)]ds,

=
w1(σ1,2,1 + gµ1 + g2)(σ1,2,1 + g2)λ1

2(σ1,2,1 + g1 + g2)
, (4.17)

+
w2(σ1,2,1 + gµ2 + g1)(σ1,2,1 + g1)λ2

2(σ1,2,1 + g1 + g2)
.Using (4.9) we an rewrite (4.17) to:

J =

λ1w1

2(1−ρ1)
(g2 + σ1,2,1)

2 + λ2w2

2(1−ρ2)
(g1 + σ1,2,1)

2

g1 + g2 + σ1,2,1
.Multiplying this objetive funtion with 2(1−ρ2)

λ2w2
results in (4.18). Note that multiplying an objetivewith a positive onstant value does not hange the position of the minimum, i.e. the values for g1 and

g2 that minimize the objetive funtion.
min
g1,g2

λ1w1(1−ρ2)
λ2w2(1−ρ1)

(g2 + σ1,2,1)
2 + (g1 + σ1,2,1)

2

g1 + g2 + σ1,2,1
. (4.18)This objetive funtion is subjet to the following onstraints. The green time of signal i = 1, 2must be large enough for tra�, that arrives during a red period, to depart:

g1 ≥
ρ1

1− ρ1
(σ1,2,1 + g2), (4.19a)

g2 ≥
ρ1

1− ρ1
(σ1,2,1 + g1). (4.19b)The maximum queue length of a signal must be larger than the amount of tra� that arrives duringa red period:

g1 ≤ xmax
2

λ2
− σ1,2,1, (4.19)

g2 ≤ xmax
1

λ1
− σ1,2,1. (4.19d)50



The duration of a green period must be at least the minimum green time and may not exeed themaximum green time:
g1 ≥ gmin

1 , (4.19e)
g2 ≥ gmin

2 , (4.19f)
g1 ≤ gmax

1 , (4.19g)
g2 ≤ gmax

2 . (4.19h)4.8.1 Solution of the Optimization ProblemUsing (4.16) we an see that we an only �nd values for g1 and g2 satisfying onstraints (4.19) whenever:
gvmax
1 ≥ ρ1σ1,2,1

1− ρ1 − ρ2
, (4.20a)

gvmax
2 ≥ ρ2σ1,2,1

1− ρ1 − ρ2
, (4.20b)

gvmax
1 ≥ gmin

1 , (4.20)
gvmax
2 ≥ ρ2

1− ρ2
(σ1,2,1 + gmin

1 ), (4.20d)
gvmax
2 ≥ gmin

2 , (4.20e)
gvmax
1 ≥ ρ1

1− ρ1
(σ1,2,1 + gmin

2 ). (4.20f)These inequalities make sure that the smallest possible periodi trajetory is possible without vio-lating any onstraints. Inequalities (4.20a) and (4.20b) make sure that the pure bow tie urve does notexeed the maximum queue lengths or exeed the maximum green times.When the pure bow tie urve violates the minimum green times, inequalities (4.20),(4.20d), (4.20e),(4.20f)make sure that either the smallest periodi trajetory where g1 = gmin
1 or the smallest periodi traje-tory where g2 = gmin

2 is possible without violating any onstraints.This optimization problem an be solved analytially (see Appendix C.1). The periodi optimaltrajetory an have 0, 1 or 2 slow modes. For more information see Appendix C.1. In this appendix weuse the notation shown below. We assume w.l.o.g. that 0 < k ≤ 1.
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k =
w2λ2(1− ρ1)

w1λ1(1− ρ2)
,

y1 =
g1

σ1,2,1
,

y2 =
g2

σ1,2,1
,

ymin
1 =

gmin
1

σ1,2,1
,

ymin
2 =

gmin
2

σ1,2,1
,

ymax
1 =

min{gmax
1 ,

xmax
2

λ2
− σ1,2,1}

σ1,2,1
,

ymax
2 =

min{gmax
2 ,

xmax
1

λ1
− σ1,2,1

σ1,2,1
.
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Chapter 5Regulation: A Simple Intersetion ofTwo SignalsIn the previous hapter we onsidered the trajetory optimization problem. We showed how to deriveperiodi optimal trajetories for a simple intersetion of two signals. To obtain these desired trajetorieswe assumed deterministi arrivals and deterministi departures. However, due to for example stohastiarrivals we may deviate from the desired trajetory. The seond problem disussed in this thesis isregulation. In this hapter we onsider the regulation problem for the simple intersetion of two signals.First we explain the regulation problem more expliitly in Setion 5.1. Subsequently, we propose apoliy in Setion 5.2.5.1 Problem DesriptionIn Polderman and Willems [24℄, the problem of regulation is desribed as the problem to design meha-nisms that keep ertain to be ontrolled variables at onstant values against external disturbanes thatat on the plant that is being regulated or against hanges in its properties. The system that is beingontrolled is usually referred to as the plant.One of the entral onepts of regulation is feedbak; some of the variables in the plant are measuredand used to determine what ontrol ations to take. A feedbak loop is depited in Figure 5.1. Somevariables are measured by sensors and send to the feedbak ontroller. From these measured variablesthe ontroller determines what ontrol inputs to send to the atuators.In our ase the omponents depited in this �gure are as follows.Plant: The intersetion.Atuators: The olor of a tra� light an hange.Sensors: Sensors that ould measure queue lengths.Exogenous-inputs Tra� arriving at the intersetion.To-be-ontrolled-output: The queue lengths.Measured-outputs: The queue lengths.Control-inputs: The signal state of eah of the signals.We want to �nd a poliy to implement in the feedbak ontroller. A poliy is a set of rules thatonvert the measured outputs to the ontrol inputs. This poliy should make sure that when we deviatefrom the optimal trajetory (that follows from the trajetory optimization problem) we again return53



PSfrag replaements exogenousinputs to-be-ontrolledoutputsPlantAtuators Sensors
ontrol-inputs measured-outputsFeedbak ontrollerFigure 5.1: Visualization of a feedbak loop.to this optimal trajetory. In this hapter we model the intersetion using the hybrid �uid model (seesetion 3.2) and we use the same assumptions as presented in Setion 4.2.3.5.2 Proposing a PoliyIn this setion we propose a poliy for the simple intersetion with two signals. We prove that for ahybrid �uid model a trajetory onverge to the periodi optimal trajetory whenever this is possible.Convergene to the periodi optimal trajetory is not always possible. The (x1, x2)-plane an bedivided into regions from whih it is impossible to onverge to the periodi optimal trajetory when ina ertain mode. When entering the area annotated with 1† (see Figure 5.2a) while serving signal 1,eventually one of the onstraints is violated. When performing a setup to signal 2, a maximum queuelength is exeeded. Moreover, if we do not perform this setup, a maximum queue length is exeeded aswell. Similarly, whenever entering the area annotated with 2† while serving signal 2, eventually one ofthe onstraints is violated. If the trajetory is on the pure bow tie urve in the upper right orner thetrajetory stays here (if the minimum green times allow so).Further, beause of the restritions on the minimum green period duration, we may not start servingsignal 1 respetively signal 2 in the areas annotated with 1† respetively 2† (see Figure 5.2b). Hene,when the initial queue lengths are in the area annotated with 1† we have to start serving signal 2 andwhen the initial queue lengths are in the area annotated with 2† we have to with serving signal 1.When the initial queue lengths are in the area with both 1† and 2† , eventually a onstraint is violated.Assuming a hybrid �uid model, the poliy must satisfy the restritions on green times and therestritions on maximum queue lengths. Note that in a stohasti setting it is theoretially impossibleto make sure that a maximum queue length is not exeeded when assuming Poisson arrivals. To satisfythese restritions on green times and maximum queue lengths, signal i = 1, 2 may only swith to redwhenever:

Li
τ (t) ≥ gmin

i .Further, a signal must be swithed to red whenever the maximum green time is reahed:54
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Li
τ (t) ≥ gmax

i .Signal 1 must swith to red whenever otherwise the maximum queue length of signal 2 is exeeded(assuming a hybrid �uid model). Thus signal 1 must swith to red when:
x2(t) ≥ xmax

2 − λ2σ1,2.Signal 2 must swith to red whenever otherwise the maximum queue length of signal 1 is exeeded(assuming a hybrid �uid model). Thus signal 2 must swith to red when:
x1(t) ≥ xmax

1 − λ1σ2,1.The poliy proposed in Proposition 5.1 satis�es these restritions.Proposition 5.1 A feedbak poliy whih stabilizes an intersetion with two signals to the desiredperiodi optimal trajetory if started from a feasible starting point (see Figure 5.2) is given by:
• Mode 1: Serve signal 1 at the highest possible departure rate. When (x1(t) = 0∧L1

τ (t) ≥ gmin
1 ∧x2(t) ≥

x♯
2) ∨ L1

τ (t) ≥ gmax
1 ∨ x2(t) ≥ xmax

2 − λ2σ1,2 swith signal 1 to red and go to Mode 2.
• Mode 2: After σ1,2 seonds go to Mode 3.
• Mode 3: Serve signal 2 at the highest possible departure rate. When (x2(t) = 0∧L2

τ (t) ≥ gmin
2 ∧x1(t) ≥

x♯
1) ∨ L2

τ (t) ≥ gmax
2 ∨ x1(t) ≥ xmax

1 − λ1σ2,1 swith signal 2 to red and go to Mode 4.
• Mode 4: After σ2,1 seonds go to Mode 1.Where x♯

1 and x♯
2 are alulated via (4.10).Proof. See Appendix 8.1. In this appendix, we atually prove Proposition 8.1 whih is proposed inSetion 8. In Proposition 8.1 we propose a poliy for an intersetion with two signal groups. For anintersetion with two signals this poliy redues to the poliy proposed in Proposition 5.1.55





Chapter 6Quality of the Poliy in a StohastiSetting: A Simple Intersetion of TwoSignalsIn Chapter 4 we derived periodi optimal trajetories for a simple intersetion of two (on�iting) signalsby modeling the intersetion with a hybrid �uid model. In Chapter 5 we proposed a (feed-bak) poliy.In this hapter we onsider the third problem disussed in this thesis: We address the quality of theproposed poliy for an intersetion with two signals in a stohasti setting. To this end, we modelthe intersetion with the stohasti model desribed in Setion 3.1. Reall that this stohasti modelassumes Poisson arrivals and deterministi departures. To obtain results for the poliy in a stohastisetting, a simulation program is made in the programming language χ3.0. The ode of this simulationprogram is given in Appendix B.For eah test ase we obtain the average delay δ (in seonds) of a road user at the intersetion andwe obtain the fration of the time that the maximum queue length is exeeded at eah of the queues.A road user ould either be a vehile, a ylist or a pedestrian.Before simulating a test ase we alulate the following information about the periodi optimaltrajetory (see Chapter 4.8).- The oordinates x♯
1 and x♯

2 alulated with (4.10).- The yle duration c = g1 + g2 + σ1,2,1.- The queue length at signal 1 at the beginning of a green period, whih is equal to λ1(g2 + σ1,2,1).- The average delay of a road user. This average delay is obtained using (4.18), where w = w1 = w2 = 1and (4.3).For eah test ase we perform at least 100 runs. We perform enough runs suh that the 95%on�dene interval for the average delay of a road user is at most 1% of the average delay of a road user.For eah run we start serving signal 1. At the start of a run the queue length of queue 1 is taken equalto ⌈λ1(g2 + σ1,2,1)⌉ (obtained from the periodi optimal trajetory) and the queue length of queue 2 iszero. Eah run simulates 100c seonds, were c is the yle duration of the periodi optimal trajetory(see Setion 4.4). We onsider the following test ases.
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1 = 4 gmin
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2 = 4 gmin

2 = 4 gmin
2 = 4

gmax
1 = ∞ gmax

1 = ∞ gmax
1 = 4, 4.5, . . . , 9

gmax
2 = ∞ gmax

2 = 16, 16.5, . . . , 26 gmax
2 = ∞

xmax
1 = ∞ xmax

1 = ∞ xmax
1 = ∞

xmax
2 = ∞ xmax

2 = ∞ xmax
2 = ∞test ase 3a test ase 3b

µ1 = 0.5 µ1 = 0.5
µ2 = 0.5 µ2 = 0.5
λ1 = 1

15 λ1 = 1
15

λ2 = 5
15 λ2 = 5

15
σ1,2 = 2 σ1,2 = 2
σ2,1 = 2 σ2,1 = 2
gmin
1 = 4 gmin

1 = 4
gmin
2 = 4 gmin

2 = 4
gmax
1 = ∞ gmax

1 = ∞
gmax
2 = ∞ gmax

2 = ∞
xmax
1 = ∞ xmax

1 = 2, 3, . . . , 7
xmax
2 = 3, 4, . . . , 30 xmax

2 = ∞For test ases 2a, 2b, 3a and 3b it holds that ρ1 + ρ2 = 0.8. In this hapter we use µ = µ1 = µ2. Insetions 6.2�6.4 we show the results for these test ases6.1 Theoretial Comparison to Exhaustive PoliyFor the small intersetion with 2 signals we want to ompare the average delay of a road user obtainedfor our proposed poliy to the average delay for an exhaustive poliy. This exhaustive poliy worksas follows. A signal i = 1, 2 is always served until it is emptied (disregarding minimum green times,maximum green times and maximum queue lengths). When queue i is emptied, signal i swithes to redand as soon as the setup time has elapsed the other signal swithes to green. Thus, for the exhaustivepoliy there are no slow modes. Whenever both queues are empty, the exhaustive poliy results in thefollowing swith behavior. Whenever a queue is empty at the moment that it may swith to green (thesetup time towards this signal is �nished), this signal does not swith to green and we immediatelystart performing a setup towards the other signal. Thus, whenever both queues are empty, onstantlysetups are performed.This exhaustive poliy is analyzed in [3℄. From [3℄ we an obtain an expression for the average delayof a vehile for this exhaustive poliy. This expression is given in (6.1). This equation assumes equalmaximum departure rates, i.e. µ = µ1 = µ2.
δ =

ρ

2µ(1− ρ)
+

σ1,2,1

2
+

σ1,2,1ρ1ρ2
ρ(1 − ρ)

+
1

µ
, (6.1)58



where
ρ = ρ1 + ρ2.We ompare the average delay of a road user obtained via simulation for our proposed poliy to theaverage delay of the exhaustive poliy obtained with (6.1).6.2 Test Case 1: E�et of the Arrival RatesIn this test ase we address the e�et of the arrival rates on the delay; we want to determine δ(λ) forthe proposed poliy, where the arrival rates are varied as follows:
λ = λ1 = λ2 = 0.0125, 0.025, ..., 0.2375.As a result ρ = ρ1 + ρ2 varies as follows:

ρ = 0.05, 0.1, ..., 0.95.In Figure 6.1 the results are shown.
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Figure 6.1: The average delay of a road user δ versus λ for test ase 1.For this test ase the average delay δ(λ) goes to 2 for the proposed poliy when λ → 0 (assumingthe stohasti model). We an explain this. For the proposed poliy the signal that is green stays greenwhen both queues are empty. For λ → 0 the probability that both queues are empty at the time of anarrival is equal to 1. Sine the maximum green times are in�nite for this test ase, the probability thatthe minimum green time has elapsed at the moment of an arrival goes to 1 for λ → 0 (the inter-arrivaltime goes to in�nity for λ → 0) and the probability that no setup is being performed at the moment ofan arrival goes to 1 for λ → 0. Whenever a road user arrives at the signal that is red, the other signalswithes to red immediately. This road user experienes a delay of 4 seonds: a setup time equal to 2seonds plus a departure time equal to 1
µ
= 2 seonds. Whenever a road user arrives at the signal that isgreen, this road user an ross the intersetion without any delay. Sine the arrival rates of both signalsare the same (for this test ase), the probability that an arbitrary road user arrives at signal i = 1, 259



is equal to 0.5. Hene, the average delay of a road user goes to 2 seonds for λ → 0. Note that theaverage delay δ(λ) only goes to 2 for λ → 0 if a maximum green time is in�nite. When both maximumgreen times are �nite the probability that at the moment of an arrival no setup is being performed andthe minimum green time has elapsed does not go to 1 for λ → 0.Reall that the exhaustive poliy serves signal i = 1, 2 until it is emptied disregarding minimumgreen times. For the exhaustive poliy the average delay δ(λ) goes to 4 for λ → 0 beause for theexhaustive poliy onstantly a setup is performed (either σ1,2 or σ2,1) whenever both queues are empty.The probability that both queues are empty at the time of an arrival is equal to 1 for λ → 0. Whenevera road user arrives, on average it takes σ1,2,1

2 = 2 seonds before this signal is swithed to green for theexhaustive poliy (see Setion 6.1). After this residual setup of 2 seonds and a departure time of 1
µ
= 2seonds, this road user has rossed the intersetion with a delay of 4 seonds.Hene, the proposed poliy works better than the exhaustive poliy for λ → 0. Note that there arepoliies that result in even lower values for the average delay δ(λ) for λ → 0. For example when bothsignals are red if both queues are empty. At the moment of an arrival at signal i = 1, 2 we immediatelyswith this signal to green (if the other signal has been red for 2 seonds). Assuming in�nite maximumgreen times, this poliy results in an average delay δ(λ) of 0 seonds for λ → 0.Further, the proposed poliy might result in smaller delays than the exhaustive poliy beause theproposed poliy allows slow modes. A slow mode ould redue the average delay beause the systemswithes less, i.e. there are less setups.For low values of δ(λ) the average delay of the proposed poliy is smaller for the stohasti modelthan the average delay obtained via trajetory optimization (Setion 4).For larger values of λ the average delay obtained via trajetory optimization is an underestimationof the average delay in the stohasti setting. For these larger values of λ the exhaustive poliy results inlower values for δ(λ) than the proposed poliy. For large values of δ(λ) the periodi optimal trajetoriesobtained via trajetory optimization do not have a slow mode. However, for large values of δ(λ) westill observe slow modes for the proposed poliy in a stohasti setting. These slow modes ause thedi�erene in δ(λ) for the proposed poliy and the exhaustive poliy at large values for λ. Thus, theseslow modes have a positive e�et for smaller values of λ and they have a negative e�et for larger valuesof λ.6.3 Test Case 2: E�et of The Maximum Green TimeIn this setion we address the e�et of the maximum green times on the delay of a road user. For testase 2a and test ase 2b the arrival rate at signal 2 is 5 times as large as the arrival rate at signal 1.We use 'low tra� signal' to refer to signal 1 and we use 'high tra� signal' to refer to signal 2.6.3.1 Test Case 2a: E�et of The Maximum Green Time of the High Tra�SignalFor this test ase the maximum green time of signal 2 is varied between 16 seonds and 26 seonds. Amaximum green time of 16 seonds is the smallest maximum green time gmax

2 satisfying (4.20) and thusthe smallest maximum green time for whih we an �nd an optimal trajetory. In Figure 6.2 we ansee the results for test ase 2a. The result obtained for gmax
2 = 16 seonds is not shown in this �gurebeause it results in instability: the queue length of queue 2 keeps inreasing. We an explain thisinstability as follows. For the hybrid �uid model, during the maximum green time gmax

2 = 16 seondsthe tra� that arrives during a red period (with duration gmin
1 + σ1,2,1) an preisely depart during agreen period: 60



gmax
2 =

ρ2
1− ρ2

(gmin
1 + σ1,2,1).Due to determinism, for the hybrid �uid model the red time of signal 2 is always equal to 8 seonds(the minimum green time of signal 1 plus the setup times). However, when inluding stohasti arrivalsthe average red time is greater than 8 seonds beause every red time is at least 8 seonds (otherwisewe do not satisfy the minimum green time of signal 1) and the red time exeeds 8 seonds wheneverat least 3 road users depart during a green period of signal 1. This larger average red time auses theinstability.
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Figure 6.2: The average delay of a road user δ versus gmax
2 for test ase 2a.In this �gure we an see that the relation between the maximum green time and the average delayhas the shape of a sawtooth. The proposed poliy works better when the maximum green time is not amultiple of the inter-departure time 1

µ . This an be explained sine a new departure proess is startedwhen, at the moment of a departure, the orresponding signal is green and its queue is not empty (seeSetion 3.1). Hene, during a maximum green time of gmax
2 , ⌈gmax

2 µ⌉ road users depart. We an seethe funtion ⌈gmax
2 µ⌉ for the di�erent values of gmax

2 in Figure 6.3. Thus, the number of departuresduring a maximum green period of 20 seonds is the same as the number of departures during a greenperiod of 18.5 seonds whih auses the sawtooth relation between the maximum green time and theaverage delay of a road user.In Figure 6.2 we an see that the global trend (disregarding the sawtooth shape) is that smallermaximum green times result in larger delays.
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Figure 6.3: The number of departures during gmax
2 .6.3.2 Test Case 2b: E�et of the Maximum Green Time of the Low Tra�SignalFor test ase 2b the maximum green time of signal 2 is in�nite and the maximum green time of signal 1 isvaried between 4 seonds and 9 seonds. A maximum green time of 4 seonds is the smallest maximumgreen time gmax

1 satisfying (4.20) and thus the smallest maximum green time for whih we an �ndan optimal trajetory. For the optimal trajetory we serve signal 1 for the minimum green time gmin
1(independent of gmax

1 ). In Figure 6.4 we an see the results.

 

 

PSfrag replaements

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
Proposed poliy (stohasti model)Proposed poliy (hybrid �uid model)Exhaustive poliy567

8910
11

8
gmax
1

δ

Figure 6.4: The average delay of a road user δ versus gmax
1 for test ase 2b.We again see the sawtooth relation between the maximum green time and the average delay ofa road user. At signal 1 on average more tra� an depart during a minimum green time than whatarrives during a red time. As a result, the low tra� signal is often already emptied before the minimumgreen time is reahed (for all values of gmax
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6.4 Test Case 3: E�et of Maximum Queue lengthsIn this setion we address the e�et of the maximum queue lengths. For test ase 3a and test ase 3bthe arrival rate at signal 2 is 5 times as large as the arrival rate at signal 1. We use 'low tra� signal'to refer to signal 1 and we use 'high tra� signal' to refer to signal 2.6.4.1 Test Case 3a: Maximum Queue Length of the High Tra� SignalFor test ase 3a the maximum queue length of signal 1 is in�nite and we vary the maximum queuelength of signal 2 between 3 road users and 30 road users. A maximum queue length of 2 2
3 seonds isthe smallest maximum queue length satisfying (4.20) and thus the smallest maximum queue length forwhih we an �nd an optimal trajetory. In Figure 6.5 we an see the results.
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Note that in a stohasti setting we swith signal 1 to red at the moment that x2(t) ≥ xmax
2 −σ1,2λ2(also whenever the minimum green time is not satis�ed). Hene, for smaller xmax

2 a green period ofsignal 1 is sometimes shorter than the minimum green time. As a result, hanging the maximum queuelength of queue 2 has a limited e�et on the average delay of a road user. However, we an see that forsmaller maximum queue lengths xmax
2 the maximum queue length is exeeded more often.When omparing Figure 6.5a with Figure 6.1 we an also see the e�et of asymmetrial arrivalrates. In Figure 6.1 we an see that when assuming in�nite maximum green times and in�nite queuelengths, the delay is about 12 seonds for symmetrial arrival rates and λ = λ1 = λ2 = 0.2 (resulting in

ρ1+ρ2 = 0.8). In Figure 6.5a we an see that when assuming in�nite maximum green times the averagedelay is about 9 seonds seonds at large values of the maximum queue length for asymmetrial arrivalrates (and ρ1 + ρ2 = 0.8). Thus, asymmetrial arrival rates result in smaller mean delays. We an seethat the average delay goes to zero for λ2

λ1
→ ∞. Assuming in�nite maximum green times, the delaygoes to zero for λ2

λ1
→ ∞ beause all of the road users arrive at signal 2. Hene, if queue 2 is emptiedone, it always stays empty (slow mode).Further, we an see that for test ase 3a the proposed poliy results in a smaller average delaythan the exhaustive poliy. For the proposed poliy slow modes where observed at signal 2. Theseslow modes are desirable beause most of the tra� arrives at signal 2 and all tra� arriving duringa slow mode rosses the intersetion without delay. Hene, the proposed poliy results in small delays(ompared to the exhaustive poliy) espeially for asymmetrial arrival rates.In Figure 6.5b we an see that the queue length is exeeded more often when the maximum queuelength of queue 2 is smaller. For a maximum queue length of 10 or higher the maximum queue lengthis (almost) never exeeded.6.4.2 Test Case 3b: Maximum Queue Length of the Low Tra� Tra�SignalFor test ase 3b the maximum queue length of signal 2 is in�nite and the maximum green time ofsignal 1 is varied between 2 and 7. A maximum queue length of 1 1

3 seonds is the smallest value for
xmin
1 satisfying (4.20) and thus the smallest value for xmax

1 for whih we an �nd an optimal trajetory.In Figure 6.6 we an see the results.We an see that for smaller values of xmax
1 the average delay of a road user inreases beause thehigh tra� signal (signal 2) has to swith to red before its queue is emptied. The road users that ouldnot ross the intersetion during the green period experiene large delays. Further, for smaller valuesof xmax

1 , the maximum queue length of queue 1 is exeeded more often.
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Chapter 7Trajetory Optimization: AnIntersetion with Two Signal GroupsIn this hapter we again onsider the trajetory optimization problem. However, this time we onsiderthe trajetory optimization for a more general intersetion with two signal groups (instead of an in-tersetion with two signals). In Figure 1.2 we showed an example of an intersetion with two signalgroups. For this example one of the signal groups onsists out of signals 1,3,7,8,11,12,15,16,19 and 20and the other signal group onsists out of signals 2,4,5,6,8,10,13,14,17 and 18.In this hapter we assume without loss of generality that the signals in signal group 1 are numbered
1, 2, ..., N1 and that the signals in signal group 2 are numbered N1 + 1, N1 + 2, ..., N . We use G1 =
{1, 2, ..., N1} and G2 = {N1 + 1, ..., N}. First we explain the trajetory optimization problem for thismore general intersetion in Setion 7.1 and Setion 7.2. Subsequently, in Setion 7.3 we prove that wean always �nd an optimal trajetory satisfying some properties. Using these properties an optimizationproblem is proposed in Setion 7.5.7.1 Problem DesriptionTo solve the trajetory optimization problem we model the intersetion with the hybrid �uid modelgiven in Setion 3.2. In Setion 7.2 we present the behavioral equations of the hybrid �uid model foran intersetion with two (or more) signal groups. A solution of these behavioral equations is alled atrajetory and onsists of the evolution (as funtion of time) of the following variables:- xi(t), i ∈ N : the queue lengths of all signals as a funtion of time.- mi(t), i ∈ N : the signal state of all signals as a funtion of time.- di(t), i ∈ N : the departure rate of all signals as a funtion of timeWe want to �nd a trajetory minimizing the average weighted queue length:

J = lim sup
t→∞

1

t

∫ t

0

∑

i∈N
fi(xi(s))ds, (7.1)where fi : R+ → R+ is a weight funtion. Weight funtion fi relates the queue lengths at signal ito osts. We assume that the funtions fi are stritly inreasing, i.e. larger queue lengths resultin higher osts. In Setion 7.5 we use more spei� weight funtions fi: the linear weight funtions67



fi(xi(t)) = wixi(t), i ∈ N . In Setion 7.1.1 we show that minimizing the linear weight funtion, where
w = w1 = · · · = wN , is equivalent to minimizing the average delay of an arbitrary road user at thisintersetion.7.1.1 Average Delay of A Road User At the IntersetionIn this setion we show that minimizing the linear weight funtion where w = w1 = · · · = wN , isequivalent to minimizing the average delay of an arbitrary road user at this intersetion. In this setionwe assume that eah arrival rate λi, i ∈ N is given in number of vehiles per seond, number of ylistsper seond or number of pedestrians per seond and that eah queue length xi, i ∈ N is given in numberof vehiles, number of ylists or number of pedestrians. When di�erent types of tra� arrive at a signalit does not hold that minimizing the linear weight funtion where w = w1 = · · · = wN , is equivalent tominimizing the average delay of an arbitrary road user at this intersetion.Similar to Setion 4.1.1, we an �nd that when fi(xi) = wxi, i ∈ N we an write (7.1) as follows:

J = wλδ, (7.2)where
δ =

∑

i∈N
δi
λi

λ
,

λ = λ1 + λ2.In this equation δ is the average delay of an arbitrary road user at the intersetion and δi is theaverage delay of a road user at signal i.To obtain (7.2) we have used:
xi = lim sup

t→∞

1

t

∫ t

0

xi(s)ds, i ∈ N ,

δi =
xi

λi
, i ∈ N ,

λ =
∑

i∈N
λi,where, xi is the average queue length at queue i (inluding the road user that is departing) and δiis the average delay of a road user at signal i.A fration λi

λ
of the road users arrives at signal i ∈ N . Hene, ∑

i∈N
δi

λi

λ
is the average delay ofan arbitrary road user at the intersetion. Note, that the optimal trajetory does not hange whenmultiplying the objetive funtion (ost funtion) with 1

wλ
> 0. Hene, minimizing the linear weightfuntion, where w = w1 = · · · = wN results in the same optimal trajetory as minimizing the averagedelay of an arbitrary road user at the intersetion.7.2 Behavioral Equations of the Hybrid Fluid ModelIn this setion we give the behavioral equations of the hybrid �uid model. First, we introdue thevariables that we use in these behavioral equations in Setion 7.2.1. In Setion 7.2.2 we give thebehavioral equations of the hybrid �uid model for an intersetion with two (or more) signal groups.68



7.2.1 Manifest Variables and Latent VariablesWe use the following manifest variables:- xi(t) ∈ R
+, i ∈ N : the queue length of queue i as a funtion of time. The funtion xi(t), i ∈ N isright-ontinuous.- mi(t) ∈ { i , i }, i ∈ N : the signal state of signal i as a funtion of time. The funtion mi(t), i ∈ Nis right-ontinuous.- di(t) ∈ R
+,i ∈ N : the departure rate at signal i as a funtion of time. The funtion di(t), i ∈ N ismeasurable.Further, we use the following latent variables:- Li

τ (t) ∈ R
+, i ∈ N : the time that has elapsed sine the last hange in the signal state of signal i.7.2.2 Behavioral EquationsIn this setion we give the behavioral equations for an intersetion with two (or more) signal groups.In these behavioral equations we use:

zi,j = zj,i =

{

1 if signal i and j are on�iting,
0 otherwise.For an intersetion with two signal groups, zi,j is 1 whenever signal i and signal j are partitionedin di�erent signal groups. Whenever signal i and signal j are partitioned in the same signal group itholds that zi,j is 0.The hange in the queue length is equal to the net in�ow (arrival rate minus departure rate):

ẋi(t) = λi − di(t), i ∈ N . (7.3a)The latent variable Li
τ (t), i ∈ N denotes a time. Hene, its derivative with respet to time is equalto one:

L̇i
τ (t) = 1, i ∈ N . (7.3b)The time that has elapsed sine the last hange in the signal state, is set to zero when the signalstate hanges:

Li
τ (t) = 0 if mi(t

−) 6= mi(t), i ∈ N , (7.3)where
mi(t

−) = lim
y↑t

mi(y).Whenever a signal is red, the tra� from the orresponding queue annot ross the intersetion:
di(t) = 0 if mi(t) = i , i ∈ N , ∀t ∈ R

+. (7.3d)When there is no tra� waiting at queue i ∈ N , tra� an depart at a rate that is smaller than orequal to the arrival rate λi (otherwise it would result in a negative queue length xi(t)):69



di(t) ≤ λi if xi(t) = 0, i ∈ N , ∀t ∈ R
+. (7.3e)Tra� annot depart at a rate that exeeds the maximum departure rate:

di(t) ≤ µi, i ∈ N , ∀t ∈ R
+. (7.3f)Two on�iting signals annot be green at the same time:

mi(t) = i if ∃j ∈ N (zi,j = 1 and mj(t) = j ), i ∈ N . (7.3g)A signal an only swith to green whenever all orresponding setups have been performed:
mi(t) = i if ∃j ∈ N

(

zi,j = 1 and mj(t) = j and Lj
τ (t) < σj,i

)

, i ∈ N . (7.3h)The maximum queue length annot be exeeded:
xi(t) ≤ xmax

i , i ∈ N . (7.3i)The duration of a green period must be at least the minimum green time and annot exeed themaximum green time:
mi(t) = i if T i

τ (t) < gmin
i ∧mi(t

−) = i , i ∈ N , (7.3j)
mi(t) = i if T i

τ (t) ≥ gmax
i ∧mi(t

−) = i , i ∈ N . (7.3k)A solution of these behavioral equations (the manifest variables as funtion of time) is alled atrajetory. Note that we allow every initial ondition as long as it satis�es (7.3).7.2.3 AssumptionsWe assume that the arrival rate and the maximum departure rate of a signal is positive:
λi, µi > 0, i ∈ N . (7.4a)We assume that all setup times are non-negative and that the setup σ1,N,1 is stritly positive:
σi,j ≥ 0, i, j ∈ N , (7.4b)
σ1,N,1 > 0. (7.4)We assume that the minimum green times are non-negative:
gmin
i ≥ 0, i ∈ N . (7.4d)We assume that for all signals the average green time and the average red time onverges. Thus, weassume that the following limits exist for all signals in N :
ḡi = lim

M→∞

M
∑

k=1

gki
M

,

r̄i = lim
M→∞

M
∑

k=1

rki
M

.70



We only onsider trajetories where the signals are served in a �xed order. This is a desirable featurein pratie beause some of the vehiles, ylists and pedestrians already start to aelerate when theyexpet their signal to swith to green. When the order in whih these signals are served hanges, theseexpetations may be wrong and an result in unsafe situations. For a �xed order for an intersetion withtwo signal groups eah signal in G1 is green during the red period of the signals in G2 and eah signalin G2 is green during during the red period of the signals in G1. Note that beause we only onsidernon-negative setup times, eah signal in G1 is red whenever a signal in G2 is green and vie versa.For example when G1 = {1} and G1 = {2, 3}, we only onsider the trajetory where signals 2 and3 are both served during eah red time of signal 1. In Setion 7.5.4, we show that another trajetory(that does not satisfy this property) might result in a lower value for the ost funtion 7.1.Further, we assume that the setup times are related aording to:
σi1,i2 − σi1,l2 = σl1,i2 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (7.4e)
σi2,i1 − σi2,l1 = σl2,i1 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (7.4f)Using this assumption we an always swith signal i2 to green σi1,i2 − σi1,l2 seonds after (if σi1,i2 −

σi1,l2 ≥ 0) or before (if σi1,i2 − σi1,l2 < 0) signal l2 swithes to green and we an always swith signal
i1 to green σi2,i1 − σi2,l1 seonds after (if σi2,i1 − σi2,l1 ≥ 0) or before (if σi2,i1 − σi2,l1 < 0) signal l1swithes to green.Whenever a green period is extremely short or extremely long (and as a result a red period of anothersignal is extremely long), road users an get irritated whih probably results in more red negation, i.e.in more people ignoring a red light. Further, whenever a green period is extremely short or extremelylong, road users might think the tra� lights are malfuntioning. From this pratial point of view it islogial to assume that we are given restritions on the maximum red times instead of a restrition on themaximum green times. Hene, we assume (7.4g) and (7.4h). Note that gmax

i1
+ σi1,i2,i1 , i1 ∈ G1, i2 ∈ G2is the maximum duration of a red period of signal i2 and that gmax

i2
+ σi1,i2,i1 , i1 ∈ G1, i2 ∈ G2 is themaximum duration of a red period of signal i1.

gmax
i1 + σi1,i2,i1 = gmax

j1 + σj1,i2,j1 , ∀i1, j1 ∈ G1, ∀i2 ∈ G2, (7.4g)
gmax
i2 + σi1,i2,i1 = gmax

j2 + σi1,j2,i1 , ∀i1 ∈ G1, ∀i2, j2 ∈ G2. (7.4h)In Figure 7.1 we an see an example for the ase where (7.4h) is not satis�ed. In this example we ansee that signal 2 is already �nished performing the setup σ2,1 while the setup σ3,1 has not yet �nished.Hene, at the moment that the setup σ2,1 has �nished, signal 1 annot yet swith to green. Sine thepurpose of a maximum green time is to redue the red times of another signal, signal 2 is red withoutpurpose.Further, we assume that inequalities (7.4i)�(7.4t) are satis�ed for all i1 ∈ G1 and for all i2 ∈ G2. InSetion 7.5.2 we show that we an always �nd a periodi trajetory satisfying the behavioral equations(7.3) if and only if (7.4i)�(7.4t) are satis�ed for all i1 ∈ G1 and for all i2 ∈ G2. For more informationsee Setion 7.5.2.
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di(t) =

{

µi if xi(t) > 0,
λi if xi(t) = 0.Lemma 7.1 Without loss of generality it an be assumed that for an optimal trajetory in the behavior,it holds ∀k ≥ 1 that:

gki1 + σi1,i2,i1 = gkj1 + σj1,i2,j1 , ∀i1, j1 ∈ G1, ∀i2 ∈ G2, (7.5a)
gki2 + σi1,i2,i1 = gkj2 + σi1,j2,i1 , ∀i1 ∈ G1, ∀i2, j2 ∈ G2. (7.5b)Proof. In this proof we use the following notation:

c =

{

2 if c = 1,
1 if c = 2.Suppose that we are given a trajetory that satis�es gkic +σic,ic,ic > gkjc +σjc,ic,jc , jc, ic ∈ Gc, ic ∈ Gc,

c = 1, 2. Thus, the property given in this lemma is not satis�ed. For this trajetory signal jc swithesto green at time t0 + σic,jc and swithes to red at time tf − σjc,ic (see Figure 7.2).
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the alternative trajetory and signal ic is red for the original trajetory. The alternative trajetory usesthe highest possible departure rate at the times where signal ic is green for the alternative trajetoryand signal ic is also green for the original trajetory.Hene, the evolution of the queue length of queue ic is exatly the same for both trajetories.As a result the alternative trajetory satis�es the onstraints on queue lengths whenever the originaltrajetory does. Further, from assumptions (10.1) and (10.2) we know that we satisfy behavioralequations (7.3g) and (7.3h). From (7.4g) and (7.4h) we know that the alternative trajetory satis�esthe onstraints on green time duration whenever the original trajetory does.Sine the evolution of the queue lengths is exatly the same for both trajetories, both trajetoriesresult in the same osts (alulated via (7.1)).Thus, whenever we are given a trajetory that does not satisfy the property given in this lemma,we an always give an alternative trajetory that does satisfy this property and that works at least asgood. Hene, there must be an optimal trajetory that satis�es the property given in this lemma.Lemma 7.2 Without loss of generality it an be assumed that for an optimal trajetory in the behavior,a queue is always emptied during its green period and green periods always take equally long, i.e. gki =
gk+1
i , ∀k ≥ 1.Proof. The proof of this lemma is shown in Appendix C.3. The proof of this lemma is very similar tothe proof of Lemma 4.3.Lemma 7.3 Without loss of generality it an be assumed that for an optimal trajetory in the behavior,a signal is green as long as possible during a red period of a on�iting signal:

ri2 = gi1 + σi1,i2,i1 , ∀i1 ∈ G1, ∀i2 ∈ G2, (7.6)
ri1 = gi2 + σi1,i2,i1 , ∀i1 ∈ G1, ∀i2 ∈ G2, (7.7)where, gi respetively ri is the duration of all green times of signal i ∈ N and the duration of all redtimes of signal i ∈ N .Proof. In this proof we use the following notation:

c =

{

2 if c = 1,
1 if c = 2.Suppose we are given a trajetory where the green times and red times of the di�erent signals aregiven and denoted with gi, i ∈ N and ri, i ∈ N and that this trajetory does not satisfy the propertygiven in this lemma. We an prove that there is always an alternative trajetory that does satisfy thisproperty and that results in osts (alulated via (7.1)) that are not larger than the osts of the originaltrajetory. This alternative trajetory has the same green times as the original trajetory. The redtimes of this alternative trajetory are hosen suh that the property given in this lemma is satis�ed.We use ralti for the red times of signal i ∈ N for the alternative trajetory. For the alternative trajetorywe swith signal i1 ∈ G1 to green exatly σi2,i1 seonds after we swith signal i2 ∈ G2 to red and weswith signal i2 ∈ G2 to green exatly σi1,i2 seonds after we swith signal i1 ∈ G1 to red. Thus, weswith a signal to green as soon as its allowed. The alternative trajetory is shown in Figure 7.3.Note that a red time of signal ic ∈ Gc, c = 1, 2 must satisfy ric ≥ gic + σic,ic,ic , ∀ic ∈ Gc beauseotherwise onstraint (7.3g) or (7.3h) is violated. Hene, it holds that ralti ≤ ri, ∀i ∈ N .In Figure 7.4 we an see the queue length evolution of signal i for both original trajetory andthe alternative trajetory. In this �gure we use talt0 for the time at whih a red period starts for thealternative trajetory and we use torg0 for the time at whih a red period starts for the original trajetory.74
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We introdue the following notation:
Jalt
1,i : The average osts related to signal i during a red period (during the interval [talt0 , talt0 + ralti ]) ofthe alternative trajetory.

Jorg
1,i : The average osts related to signal i during the interval [torg0 , torg0 +ralti ] of the original trajetory.

Jalt
2,i : The average osts related to signal i during a green period (during the interval [talt0 + ralti , talt0 +

ralti + gi]) of the alternative trajetory.
Jorg
2,i : The average osts related to signal i during a green period (during the interval [torg0 + ri, t

org
0 +

ri + gi]) of the original trajetory.
Jorg
3,i : The average osts for signal i during during the interval [torg0 + ralti , torg0 + ri] of the originaltrajetory.For the alternative trajetory the average osts related to signal i are equal to:

Jalt
i =

ralti

ralti + gi
Jalt
1,i +

gi

ralti + gi
Jalt
2,i .We an see that the queue length evolution during [torg0 , torg0 + ralti ] of the original trajetory is thesame as the queue length evolution during the interval [talt0 , talt0 + ralti ] of the alternative trajetory .Hene, Jalt

1,i = Jorg
1,i . Furthermore, we an see from Figure 7.5 that Jalt

2,i ≤ Jorg
2,i beause fi is stritlyinreasing. During the interval [torg0 +ralti , torg0 +ri] the queue length of signal i for the original trajetorysatis�es xi(t) ≥ λir

alt
i . For the alternative trajetory the queue length (always) satis�es xi(t) ≤ λir

alt
i .Thus, it holds that Jalt

3,i ≥ Jalt
i beause fi is stritly inreasing.PSfrag replaements
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Using this information we an derive that:
Jorg
i =

ralti

ri + gi
Jorg
1,i +

gi
ri + gi

Jorg
2,i +

ri − ralti

ri + gi
Jorg
2,i

=
ralti + gi
ri + gi

(

ralti

ralti + gi
Jorg
1,i +

gi

ralti + gi
Jorg
2,i

)

+
ri − ralti

ri + gi
Jorg
2,i

≥ ralti + gi
ri + gi

(

ralti

ralti + gi
Jalt
1,i +

gi

ralti + gi
Jalt
2,i

)

+
ri − ralti

ri + gi
Jalt
i

≥ ralti + gi
ri + gi

Jalt
i +

ri − ralti

ri + gi
Jalt
i

≥ Jalt
i .Hene, the osts related to eah signal i ∈ N are not larger for the alternative trajetory than forthe original trajetory.Furthermore, we an see that the alternative trajetory is feasible beause:- Assuming (10.1) and (10.2) there is exatly enough time to perform the setups and thus to satisfyonstraint (7.3g) and onstraint (7.3h).- For the original trajetory the queue length of signal i ∈ N is at most λiri and for the alternativetrajetory the queue length of signal i is at most λir

alt
i ≤ λiri. Hene, when the original trajetorysatis�es the onstraints on maximum queue lengths the alternative trajetory does as well beausethe queue length of signal ic inreases with the duration of a red period.- both trajetories have the same green times. Hene, when the original trajetory satis�es the on-straints on maximum queue lengths the alternative trajetory does as well.

7.4 Shape of the Periodi Optimal TrajetoryUsing lemmas 4.1, 4.2, 7.1, 7.2 and 7.3 we an �nd the following orollary for the intersetion with twosignal groups.Corollary 7.4 For an intersetion with two signal groups and assumptions given in Setion 7.2.3 wean without loss of generality assume that an optimal trajetory (minimizing (7.1)) has the periodishape shown in the (xi1 , xi2)-plane, i1 ∈ G1,i2 ∈ G2 that is shown in Figure 7.6. This periodi shape inthe (xi1 , xi2)-plane onsists of the following phases (these phases repeat periodially):phase 1 Signal i1 is green and di1(t) = µi1 until queue i1 is empty.phase 2 Signal 1 is green and di1(t) = λi1 .phase 3 perform a setup to signal i2, i.e. swith signal i2 to red and keep both signals red for a periodequal to σi1,i2phase 4 Signal i2 is green and di2(t) = µi2 until queue i2 is empty.phase 5 Signal i2 is green and di2(t) = λi2 .phase 6 perform a setup to signal i1, i.e. swith signal i2 to red and keep both signals red for a periodequal to σi2,i1 77



Sine all green periods of a signal have the same duration and all red periods of a signal have thesame duration, we use:
gi = gki , i ∈ N , k ≥ 1,

ri = rki , i ∈ N , k ≥ 1,

gλi = gλ,ki ,i ∈ N , k ≥ 1,

gµi = gµ,ki ,i ∈ N , k ≥ 1. (7.8)Step 2 and phase 4 are the so alled slow modes and may have a duration equal to zero. We all thisperiodially repeated sequene a yle. On the left hand side of Figure 4.7, this yle is plotted in the
(xi1 , xi2)-plane. The right hand side graphs show the queue lengths over time, with the slopes annotatedto them. The duration of a yle is denoted with c and is equal to gi1 + gi2 + σi1,i2,i1 .The green times are related aording to:

gi1 + σi1,i2,i1 = gj1 + σj1,i2,j1 , ∀i1, j1 ∈ G1, ∀i2 ∈ G2, (7.9a)
gi2 + σi1,i2,i1 = gj2 + σi1,j2,i1 , ∀i1 ∈ G1, ∀i2, j2 ∈ G2. (7.9b)PSfrag replaements
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The tra� that arrives during a red period of signal i ∈ N an (preisely) depart during gµi . Henewe an �nd:
gµi1 =

ρi1
1− ρi1

(gi2 + σi1,i2,i1), ii1 ∈ Gi1 , ii2 ∈ Gi2 , (7.10a)
gµi2 =

ρi2
1− ρi2

(gi1 + σi1,i2,i1), ii1 ∈ Gi1 , ii2 ∈ Gi2 . (7.10b)7.5 Periodi Optimal TrajetoryFrom Corollary 7.4 we know that w.l.o.g. we an assume that optimal trajetories are periodi. Forthese periodi optimal trajetories a queue is emptied during eah green period. Using these propertieswe an rewrite the behavioral equations (7.3). In Setion 7.5.1 we give the rewritten form of thesebehavioral equations. In Setion 7.5.3 we elaborate on the solutions of this optimization problem.7.5.1 Optimization ProblemWe want to minimize the linear ost funtion. From now on we use a more spei� form of the ostfuntion J : the linear ost funtion shown in (7.11).
J =

1

c

∫ c

0

∑

i∈N
wixi(s)ds. (7.11)From the right side of Figure 7.6 and using (7.9) we an obtain the following expression for thelinear ost funtion for an intersetion with two signal groups.

J =
1

c

∫ c

0

∑

i∈N
wixi(s)ds,

=
∑

i∈G1

wi(σi,N,i + gN + gµi )(σi,N,i + gN)λi

2(σ1,N,1 + g1 + gN)
,

+
∑

i∈G2

wi(σ1,i,1 + gN + gµi )(σ1,i,1 + g1)λi

2(σ1,N,1 + g1 + gN )
. (7.12)Reall that by de�nition signal 1 is element of signal group 1 and signal N is element of signal group2. Using (7.10) we an obtain:

min
g1,gN

∑

i∈G1

ki(σi,N,i + gN)2 +
∑

i∈G2

ki(σi,1,i + g1)
2

g1 + gN + σ1,N,1
, (7.13)where

βi =
λiwi

2(1− ρi)
, i ∈ N .79



The green time of a signal must be large enough for the tra�, that arrives during a red period,to depart. Otherwise, we would not get the periodi optimal trajetory from Corollary 7.4 beause aqueue length goes to in�nity.
gi ≥

ρi
1− ρi

ri, ∀i ∈ N . (7.14a)The maximum queue length of a signal must be larger than the amount of tra� that arrives duringa red period:
ri ≤

xmax
i

λi
, ∀i ∈ N . (7.14b)Eah green time must exeed the minimum green time:

gi ≥ gmin
i , ∀i ∈ N . (7.14)Eah green time may not exeed the maximum green time:

gi ≥ gmax
i , ∀i ∈ N . (7.14d)Using the relations between green times given in (7.9) we an rewrite (7.14) to:

g1 ≥ max
i∈G1

ρigN + σi,N,i

1− ρi
− σ1,N,1, (7.15a)

gN ≥ max
i∈G2

ρig1 + σ1,i,1

1− ρi
− σ1,N,1, (7.15b)

g1 ≤ min
i∈G2

xmax
i

λi
− σ1,i,1, (7.15)

gN ≤ min
i∈G1

xmax
i

λi
− σi,N,i, (7.15d)

g1 ≥ max
i∈G1

gmin
i + σi,N,i − σ1,N,1, (7.15e)

gN ≥ max
i∈G2

gmin
i + σ1,i,1 − σ1,N,1, (7.15f)

g1 ≤ gmax
1 , (7.15g)

gN ≤ gmax
N . (7.15h)We want to �nd values for g1 and gN that satisfy onstraints (7.15) and minimize the linear ostfuntion (7.13). From these values for g1 and gN we an derive the green times of all other signals via(7.9).7.5.2 Existene of a SolutionA solution to the optimization problem with onstraints (7.15) is only possible if we an �nd values for

gi1 , ∀i1 ∈ G1 and gi2 , ∀i2 ∈ G2 satisfying inequalities (7.14). We an �nd values for gi1 , ∀i1 ∈ G1 and
gi2 , ∀i2 ∈ G2 satisfying inequalities (7.14) if and only if the following inequalities are satis�ed for allsignals i1 ∈ G1 and for all signals i2 ∈ G2: 80



gmax
i1

≥ σi1,i2,i1ρi1
1− ρi1 − ρi2

, (7.16a)
gmax
i1 ≥ gmin

i1 , (7.16b)
gmax
i1 ≥ (gmin

i2 + σi1,i2,i1)
ρi1

1− ρi1
, (7.16)

gmax
i2 ≥ σi1,i2,i1ρi2

1− ρi1 − ρi2
, (7.16d)

gmax
i2

≥ gmin
i2

, (7.16e)
gmax
i2

≥ (gmin
i1

+ σi1,i2,i1)
ρi2

1− ρi2
, (7.16f)

xmax
i1

≥ λi1 (
σi1,i2,i1ρi2

1− ρi1 − ρi2
+ σi1,i2,i1), (7.16g)

xmax
i1

≥ λi1

gmin
i1

ρi2 + σi1,i2,i1

1− ρi2
, (7.16h)

xmax
i1 ≥ λi1 (g

min
i2 + σi1,i2,i1), (7.16i)

xmax
i2 ≥ λi2 (

σi1,i2,i1ρi1
1− ρi1 − ρi2

+ σi1,i2,i1), (7.16j)
xmax
i2

≥ λi2

gmin
i2

ρi1 + σi1,i2,i1

1− ρi1
, (7.16k)

xmax
i2

≥ λi2 (g
min
i1

+ σi1,i2,i1). (7.16l)The inequalities in (7.16) an be interpreted as follows. Whenever, a periodi trajetory satis�es
gi1 =

σi1,i2,i1ρi1

1−ρi1−ρi2
and gi2 =

σi1,i2,i1ρi2

1−ρi1−ρi2
(and we let tra� depart at the maximum departure rate) weget a pure bow tie urve in the (i1, i2)−plane (see Figure 7.7). The green times gi1 =

σi1,i2,i1ρi1

1−ρi1−ρi2
and

gi2 =
σi1,i2,i1ρi2

1−ρi1−ρi2
are the smallest green times for whih all tra� that arrives during a yle at signal i1and signal i2 an depart during a yle.The inequalities (8.1h),(8.1k),(8.1n) and (8.1q) make sure that this pure bow tie urve in the (i1, i2)-plane does not violate the maximum green times gmax

i1
and gmax

i2
and it does not violate the maximumqueue lengths xmax

i1
and xmax

i2
.However, a pure bow tie urve in the (i1, i2)-plane might violate a onstraint on the minimum greentime duration. The inequalities (8.1i),(8.1l),(8.1o) and (8.1r) make sure that there exists a perioditrajetory where gi1 = gmin

i1
, suh that the maximum green times gmax

i1
and gmax

i2
and the maximumqueue lengths xmax

i1
and xmax

i2
are not violated. Similarly, inequalities (8.1j),(8.1m),(8.1p) and (8.1s)make sure that the maximum green times gmax

i1
and gmax

i2
and the maximum queue lengths xmax

i1
and

xmax
i2

are not violated.7.5.3 SolutionIn this setion we present the solution to the optimization problem for two ases. First we onsider anintersetion where G1 = {1}, G2 = {2, 3} and σ1,2,1 = σ1,3,1. Subsequently we onsider an intersetionwhere G1 = {1}, G2 = {2, 3} and σ1,2,1 6= σ1,3,1.
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i1Figure 7.7: Pure bow tie urve in the (i1, i2)−planeEqual Setup TimesIn this setion we onsider an intersetion where G1 = {1}, G2 = {2, 3} and σ1,2,1 = σ1,3,1. From (7.9)we know that in this ase g2 = g3. For this intersetions the objetive funtion (7.13) redues to:

J =
1

c

∫ c

0

∑

i∈N
wixi(s)ds =

β1(σ1,3,1 + g3) + (β2 + β3)(σ1,3,1 + g1)
2

σ1,3,1 + g1 + g3
, (7.17)where

βi =
λiwi

2(1− ρi)
, i ∈ N .Further, the onstraints (7.15) redue to:

g1 ≥ ρ1
1− ρ1

(σ1,3,1 + g3),

g3 ≥
max
i=2,3

ρi

1− max
i=2,3

ρi
(σ1,3,1 + g1),

g1 ≤ min
i=2,3

xi

λi
− σ1,3,1,

g3 ≤ x1

λ1
− σ1,3,1,

g1 ≥ gmin
1 ,

g3 ≥ min{gmin
2 , gmin

3 },
g1 ≤ gmax

1 ,

g3 ≤ gmax
3 . 82



This optimization problem an be solved analytially (see Appendix C.1). The periodi optimaltrajetory an have 0, 1 or 2 slow modes. For more information see Appendix C.1. The optimizationproblem with objetive funtion (7.17) and onstraints (7.18) is related to the optimization problem inC.1 as follows.Whenever (β2 + β3) ≤ β1, the two optimization problems are related aording to:
k =

(β2 + β3)

β1
,

y1 =
g1

σ1,3,1
,

y2 =
g3

σ1,3,1
,

ymin
1 =

gmin
1

σ1,3,1
,

ymin
2 =

max{gmin
2 , gmin

3 }
σ1,3,1

,

ymax
1 =

min{gmax
1 , min

i=2,3

xmax
i

λi
− σ1,3,1}

σ1,3,1
,

ymax
2 =

min{gmax
2 ,

xmax
1

λ1
− σ1,3,1}

σ1,3,1
,

α1 = ρ1,

α2 = max
i=2,3

ρi.Whenever (β2 + β3) ≥ β1, the two optimization problems are related aording to:
k =

β1

(β2 + β3)
,

y1 =
g3

σ1,3,1
,

y2 =
g1

σ1,3,1
,

ymin
1 =

max{gmin
2 , gmin

3 }
σ1,3,1

,

ymin
2 =

gmin
1

σ1,3,1
,

ymax
1 =

min{gmax
2 ,

xmax
1

λ1
− σ1,3,1}

σ1,3,1
,

ymax
2 =

min{gmax
1 , min

i=2,3

xmax
i

λi
− σ1,3,1}

σ1,3,1
,

α1 = max
i=2,3

ρi,

α2 = ρ1. 83



Generalization: using the assumptions in Setion 7.2.3, the analytial solution in Appendix C.1 anbe used for any intersetion with two on�it groups where:
σ1,N,1 = σi1,N,i1 ,∀i1 ∈ G1,

σ1,N,1 = σi2,1,i2 , ∀i2 ∈ G2.For this lass of intersetions we an �nd the following expressions for the optimization problem inAppendix C.1. Without loss of generality we assume that 0 < k ≤ 1.
k =

∑

i∈G2

βi

∑

i∈G1

βi
,

y1 =
g1

σ1,N,1
,

y2 =
gN

σ1,N,1
,

ymin
1 =

max
i∈G1

gmin
i

σ1,N,1
,

ymin
2 =

max
i∈G2

gmin
i

σ1,N,1
,

ymax
1 =

min{gmax
1 ,min

i∈G2

xi

λi
− σ1,N,1}

σ1,N,1
,

ymax
2 =

min{gmax
N ,min

i∈G1

xmax
i

λi
− σ1,N,1}

σ1,N,1
,

α1 = max
i∈G1

ρi,

α2 = max
i∈G2

ρi.Unequal Setup TimesIn this setion we onsider an intersetion where G1 = {1}, G2 = {2, 3} and σ1,2,1 6= σ1,3,1. From (7.9)we know that g2 + σ1,2,1 = g3 + σ1,3,1. For this intersetion the objetive funtion (7.13) redues to:
J =

1

c

∫ c

0

∑

i∈N
wixi(s)ds =

β1(σ1,3,1 + g3)
2 + β2(σ1,2,1 + g1)

2 + β3(σ1,3,1 + g1)
2

σ1,3,1 + g1 + g3
, (7.19)where

βi =
λiwi

2(1− ρi)
, i ∈ N .Further, the onstraints (7.15) redue to (7.20). Note that (7.20b) and (7.20) both follow from(7.15d). 84



g1 ≥ ρ1
1− ρ1

(σ1,3,1 + g3), (7.20a)
g3 ≥ ρ3

1− ρ3
(σ1,3,1 + g1), (7.20b)

g3 ≥ ρ2g1 + σ1,2,1

1− ρ2
− σ1,3,1, (7.20)

g1 ≤ min
i=2,3

xi

λi
− σ1,i,1, (7.20d)

g3 ≤ x1

λ1
− σ1,3,1, (7.20e)

g1 ≥ gmin
1 , (7.20f)

g3 ≥ min{gmin
2 + σ1,2,1 − σ1,3,1, g

min
3 }, (7.20g)

g1 ≤ gmax
1 , (7.20h)

g3 ≤ gmax
3 . (7.20i)Assuming (with loss of generality) that β1 ≥ (β2+β3) and assuming w.l.o.g. that σ1,3,1 ≥ σ1,2,1 thisoptimization problem is solved analytially (see Appendix C.2). The periodi optimal trajetory anhave 0, 1 or 2 slow modes. For more information see Appendix C.2. The optimization problem withobjetive funtion (7.19) and onstraints (7.20) is related to the optimization problem in Appendix C.2as follows.

k1 =
β2

β1
,

k2 =
β3

β1
,

k3 =
σ1,2,1

σ1,3,1
,

y1 =
g1

σ1,3,1
,

y2 =
g3

σ1,3,1
,

ymin
1 =

gmin
1

σ1,3,1

ymin
2 =

max
i=2,3

gmin
i + σ1,i,1

σ1,3,1
− 1,

ymax
1 =

min{gmax
1 , min

i=2,3

xi

λi
+ σ1,i,1 − σ1,3,1}

σ1,3,1
,

ymax
2 =

min{gmax
N ,

xmax
1

λ1
− σ1,3,1}

σ1,3,1
,

α1 = ρ1,

α2 = ρ2,

α3 = ρ3. 85



Generalization: using the assumptions in Setion 7.2.3, the analytial solution in Appendix C.2 anbe used for the lass of intersetions satisfying the following properties:- All signals i1 ∈ G1 have the same setup time σi1,N,i1 , i.e. σ1,N,1 = σi1,N,i1, ∀i1 ∈ G1.- Eah signal i ∈ G2 an be partitioned into one of two sets B1 or B2. All signals i ∈ B1 have the samesetup time σ1,i,1 > 0 whih we denote with σB1 . All signals i ∈ B2 have the same setup time
σ1,i,1 > 0 whih we denote with σB2 .- ∑

i∈G1

βi ≥
∑

i∈G2

βi.For this lass of intersetions we an �nd the following expressions for the optimization problem inAppendix C.2. Without loss of generality we assume that 0 < k3 ≤ 1 and w.l.o.g. we assume thatsignal N is partitioned in B2, i.e. N ∈ B2.
k1 =

∑

i∈B1

βi

∑

i∈G1

βi
,

k2 =

∑

i∈B2

βi

∑

i∈G1

βi
,

k3 =
σB1

σB2

, (7.21)
y1 =

g1
σ1,N,1

,

y2 =
gN

σ1,N,1
,

ymin
1 =

max
i∈G1

gmin
i + σi,N,i

σ1,N,1
− 1,

ymin
2 =

max
i∈G2

gmin
i + σ1,i,1

σ1,N,1
− 1,

ymax
1 =

min{gmax
1 ,min

i∈G2

xi

λi
+ σ1,i,1 − σ1,N,1}

σ1,3,1
,

ymax
2 =

min{gmax
N ,min

i∈G1

xi

λi
+ σi,N,i − σ1,N,1}

σ1,3,1
,

α1 = max
i∈G1

ρi,

α2 = max
i∈B1

ρi,

α3 = max
i∈B2

ρi.7.5.4 Fixed Order and OptimalityIn this hapter we have only onsidered signals where we serve the signals in a �xed order; we alternatebetween serving all signals in G1 and serving all signals in G2. In pratie, often signals are servedin a �xed order. Some of the vehiles, ylists and pedestrians already start to aelerate when they86



expet their signal to swith to green. When the order in whih these signals are served hanges, theseexpetations are likely to be wrong and an result in unsafe situations.Using an example we show that trajetories that do not serve signals in a �xed order might resultsin a lower value for the ost funtion (7.1).Example 7.5.1 Consider an intersetion with two signal groups: G1 = {1} and G2 = {2, 3}. We aregiven the following information about the intersetion.
λ1 = 0.3 vehiles per seond, λ2 = 0.1 vehiles per seond, λ3 = 0.001 vehiles per seond
µ1 = 0.5 vehiles per seond, µ2 = 0.5 vehiles per seond, µ3 = 0.5 vehiles per seond,
ρ1 = 0.6 ρ2 = 0.2, ρ3 = 0.002,
σ1,2 = 2.5 seonds, σ2,1 = 2.5 seonds,
σ1,3 = 20 seonds, σ3,1 = 20 seonds.We do not impose restritions on minimum green times, maximum green times and maximum queuelengths. We onsider the linear weight funtion in (7.11) where w1 = w2 = w3 = 1. Thus, we like tominimize the average delay of a road user at the intersetion (see Setion 7.1.1).For a �xed order, signal 2 and signal 3 are both served during every red period of signal 1. The greentimes of the optimal trajetory with a �xed order an be obtained by solving the optimization problemwith objetive funtion (7.20) and onstraints (7.19). We an obtain the following green times:

g1 = 63.6275 seonds,
g2 = 35.2077 seonds,
g3 = 0.2077 seonds.From these green times we an alulate the average delay of a vehile via (7.19) and (7.2), whihis J = 21.7587 seonds. This periodi trajetory is shown in Figure 7.8a.However, in Figure 7.8b we show a trajetory where signal 2 is served twie as often as signal 3.The green times shown in this �gure are:
g1 = 61 seonds,
g12 = 16.5 seonds,
g22 = 35.5 seonds,
g3 = 0.5 seonds. (7.22)This trajetory redues the value for the average delay of a vehile to 18.294 seonds. This trajetoryworks better for this example beause the setup time σ1,3,1 is large. As a result whenever signal 3 isserved, signal 1 has to wait very long until it is served again. Further, the arrival rate at signal 3 isvery small. As a result, it is better to sometimes skip serving signal 3.
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Chapter 8Regulation: An Intersetion with TwoSignal GroupsIn the previous hapter we onsidered the trajetory optimization problem. We showed how to de-rive periodi optimal trajetories for an intersetion with two signal groups. To obtain these desiredtrajetories we assumed deterministi arrivals and deterministi departures. However, due to for ex-ample stohasti arrivals we may deviate from the desired trajetory. The seond problem disussedin this thesis is regulation. In this hapter we onsider the regulation problem for an intersetionwith two signal groups: signal group 1 and signal group 2. We assume without loss of generality thatthe signals in signal group 1 are numbered 1, 2, ..., N1 and the signals in signal group 2 are numbered
N1 + 1, N1 + 2, ..., N . We use G1 = {1, 2, ..., N1} and G2 = {N1 + 1, ..., N}. The problem desription ofthe regulation problem is given in Setion 5.1. In this hapter we use 'desired trajetory' to refer to thetrajetory obtained via trajetory optimization.8.1 AssumptionsWe assume that the arrival rate and the maximum departure rate of a signal is positive:

λi, µi > 0, i ∈ N . (8.1a)We assume that all setup times are non-negative and that the setup σ1,N,1 is stritly positive:
σi,j ≥ 0, i, j ∈ N , (8.1b)
σ1,N,1 > 0. (8.1)Further, we assume that the setup times are related aording to:

σi1,i2 − σi1,l2 = σl1,i2 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (8.1d)
σi2,i1 − σi2,l1 = σl2,i1 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (8.1e)Furthermore, we assume that the maximum green times are related aording to (8.1f) and (8.1g).See Setion 7.2.3 for more information about this assumption.

gmax
i1

+ σi1,i2,i1 = gmax
j1

+ σj1,i2,j1 , ∀i1, j1 ∈ G1, ∀i2 ∈ G2, (8.1f)
gmax
i2 + σi1,i2,i1 = gmax

j2 + σi1,j2,i1 , ∀i1 ∈ G1, ∀i2, j2 ∈ G2. (8.1g)89



Furthermore, we assume that (8.1h)�(8.1s) are satis�ed. The inequalities (8.1h)�(8.1s) are the stritform of (7.16). For more information about these assumptions see Setion 7.5.2.
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> λi2 (g
min
i1

+ σi1,i2,i1). (8.1s)Further we assume that a desired trajetory (the trajetory that we want to onverge to), satis�es theperiodi shape from Corollary 7.4.8.2 ConvergeneBefore proposing the poliy we show that onvergene to the desired trajetory is not always possible.The (xi1 , xi2)-plane, i1 ∈ G1, i2 ∈ G2 an be divided into regions from whih it is impossible toonverge to the periodi optimal trajetory when in a ertain mode. When entering the area annotatedwith i1† (see Figure 8.1a) while serving signal i1, eventually one of the onstraints is violated. Whenperforming a setup to signal 2, a maximum queue length is exeeded. Moreover, if we do not performthis setup, a maximum queue length is exeeded as well. Similarly, whenever entering the area annotatedwith i2† while serving signal i2, eventually one of the onstraints is violated. If the trajetory is onthe pure bow tie urve in the upper right orner the trajetory stays here (if the minimum green timesallow so).Further, beause of restritions on the minimum green period duration, we may not start servingsignal i1 respetively signal i2 in the areas annotated with i1† respetively i2† (see Figure 8.1b).Hene, when the initial queue lengths are in the area annotated with i1† we have to start servingsignal group 2 and when the initial queue lengths are in the area annotated with i2† we have towith serving signal group 1. When the initial queue lengths are in the area with both i1† and i2† ,eventually a onstraint is violated. 90
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i1 ∈ G1 swithed to red and the poliy swithes signal i2 ∈ G1 to green σi2,i1 seonds after signal i2 ∈ G2swithed to red.Without loss of generality we assume that the signals in signal group 1 are numbered suh that:
σ1,N ≥ σ2,N ≥ · · · ≥ σN1,Nand that the signals in signal group 2 are numbered suh that:

σN1+1,1 ≥ σN1+2,1 ≥ · · · ≥ σN,1.For this order, signal 1 is the �rst signal in G1 to swith to red (see Figure 8.2). Further, signal
i1 ∈ G1 swithes to red σ1,N − σi1,N seonds after signal 1 has swithed to red and signal i2 ∈ G2swithes to green σ1,i2 seonds after signal 1 swithed to red. In the same way, signal N1+1 is the �rstsignal in G2 to swith to red. Signal i2 ∈ G2 swithes to red σN1+1,1 − σi2,1 seonds after signal N1 + 1has swithed to red and signal i1 ∈ G1 swithes to green σN1+1,i1 seonds after signal N1 + 1 swithedto red.We want to derive a rule that de�nes when to swith signal 1 to red and when to swith signal
N1+1 to red. From these two swith ations, we an derive when to swith eah of the signals to greenand red.For the poliy that we propose we use x♯

i1
for the queue length of queue i1 ∈ G1 at the moment thatsignal 1 swithes to red for the desired trajetory. We use x♯

i2
for the queue length of queue i2 ∈ G2 atthe moment that signal N1 + 1 swithes to red for the desired trajetory. We an obtain the followingexpressions for x♯

i1
and x♯
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x♯
i1

= (ri1 − σi1,N )λi1 , (8.2a)
x♯
i1

= (ri2 − σi2,1)λi2 . (8.2b)where ri, i ∈ N is the red time of signal i for the desired trajetory. Furthermore, we use:
ir,f1 = 1,

ir,f2 = N1 + 1.Thus ir,fc , c = 1, 2 refers to the signal in the set Gc that is swithed to red �rst. We use ig,f1 to referto the signal in the set G1 that swithes to green �rst:
ig,f1 = argmin

i1∈G1

σN,i1 . (8.3)We use ig,f2 to refer to the signal in the set G2 that is swithes to green �rst:
ig,f2 = argmin

i2∈G2

σ1,i2 . (8.4)Further we use σres
i1

for the residual time that signal i1 ∈ G1 has to be red for at the moment thatsignal ig,f1 swithes to green:
σres
i1 = σi2,i1 − σi2,i

g,f
1

, i2 ∈ G2. (8.5)We use σres
i2

for the residual time that signal i2 ∈ G2 has to be red for at the moment that signal
ig,f2 swithes to green:

σres
i2

= σi1,i2 − σi1,i
g,f
2

, i1 ∈ G1. (8.6)We use τi for the time that has elapsed sine the last mode hange at signal i ∈ N .92



8.3.1 Overview of the PoliyFirst we give a short overview of the poliy. In Setion 8.3.2 we give a formal expression to determinewhen to swith signal 1 to red and when to swith signal N1 + 1 to red.We want to serve the signals in the set Gc, c = 1, 2 long enough to satisfy the following 3 onditions:1.1 all queues ic, ic ∈ Gc are (expeted to be) emptied during their green period (assuming a hybrid�uid model).1.2 all signals are served for at least the minimum green time.1.3 the queue length of at least one of the queues ic ∈ Gc satis�es xic ≥ x♯
ic
, whre c = { 1 if =2,2 if =1. .Whenever onditions 1.1�1.3 are satis�ed we swith signal 1 (if c = 1) or signal N1 + 1 (if c = 2) tored.It might not be possible to serve the signals in the set Gc long enough to satisfy onditions 1.1�1.3.We might have to stop earlier beause of ondition 2 or ondition 3:2 The maximum green time of signal 1 (if c = 1) or the maximum green time of signal N1+1 (if c = 2)is reahed. From (8.1f) we know that when signal 1 is served for the maximum green time then allsignals in G1 are served for the maximum green time and from (8.1g) we know that when signal

N1 + 1 is served for the maximum green time then all signals in G2 are served for the maximumgreen time.3 queue ic ∈ Gc has reahed a queue length of xmax
ic

− λicσ1,ic (if c = 1) or a queue length of xmax
ic

−
λicσN1+1,ic (if c = 2). In this ase queue ic is swithed to green when its queue length reahes
xmax
ic

(assuming a hybrid �uid model).8.3.2 Swithing the Signals 1 and N1 + 1 to RedIn this setions we give formal expressions for when the onditions, introdued in the previous setion,are satis�ed.Formal expression for ondition 1.1 Condition 1.1 is satis�ed when all queues ic, ic ∈ Gc are(expeted to be) emptied during their green period (assuming a hybrid �uid model).When signal ig,fc ∈ Gc, c = 1, 2 swithes to red at time t, signal ic ∈ Gc is still red for max{σres
ic

−
τ
ig,fc

(t), 0} = (σres
ic

− τ
ig,fc

(t))+ seonds (see Figure 8.3). When (σres
ic

− τ(t))+ is positive, this meansthat the setup towards signal ic is not �nished yet. During this residual part of the setup, tra� arrivesat signal ic at arrival rate λic .Sine signal ic swithes to red σ
i
r,f
c ,i
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c

− σ
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c

seonds after signal ir,fc swithes to red, signal
ic ∈ Gc is still green for a duration of σir,fc ,ig,fc
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c

− (σres
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(t))+ if signal ir,fc swithes to redat time t.Hene, ondition 1.1 is satis�ed when:
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. (8.7)
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seonds after signal ig,fc is swithed to green. Using (8.1f)and (8.1g) we an see that ondition 2 is satis�ed whenever τig,fc
(t) ≥ gmax

ir,fc

+ σres
ir,fc

.Formal expression for ondition 3 Condition 3 is satis�ed when ∃ic ∈ Gc

(

xic(t) ≥ xmax
ic

− σir,fc ,ic
λic

)94



Thus, we swith the signal ir,fc to red when serving signal group c = 1, 2 if the following expressionis true:
(t1.1 ∧ t1.2 ∧ t1.3) ∨ t2 ∨ t3,where
t1.1 = ∀i2 ∈ G2

(

xi2(t) ≤ (σir,fc ,ig,fc
− σic ,i

g,f
c

)(µic − λic)− (σres
ic − τig,fc

(t))+µic

)

,

t1.2 = τig,fc
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c
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t3 = ∃ic ∈ Gc

(

xic(t) ≥ xmax
ic

− σir,fc ,ic
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)

.Proposition 8.1 A feedbak poliy whih stabilizes an intersetion with two signal groups to the desiredperiodi trajetory if started from a feasible starting point (for whih we avoid the areas in Figure 8.1from whih no onvergene is possible) is given by:
• Mode 1: Serve signal i1 ∈ G1 at the highest possible rate if signal i1 is green. Swith signal i1 ∈ G1to green if τ

i
g,f
1

≥ σres
i1

. If (8.8) results in the boolean 'true' for c = 1 then swith signal 1 to redand go to Mode 2.
• Mode 2: Swith signal i1 to red if τ1 ≥ σ1,N − σi1,N . If τ1 ≥ σ1,ig,f2

then swith signal ig,f2 to greenand go to Mode 3.
• Mode 3: Serve signal i2 ∈ G2 at the highest possible rate if signal i2 is green. Swith signal i2 ∈ G2 togreen if τig,f2

≥ σres
i2

. If (8.8) results in the boolean 'true' for c = 2 then swith signal N1 + 1 tored and go to Mode 4.
• Mode 2: Swith signal i2 to red if τN1+1 ≥ σN1+1,1 − σi2,1. If τN1+1 ≥ σN1+1,ig,f1

then swith signal
ig,f1 to green and go to Mode 1.Proof. Below we give a sketh of the proof. See Appendix D for the entire proof of this proposition.We distinguish 5 di�erent reasons why we swith signal ir,fc , c = 1, 2 to red: swith.1a, swith.1b,swith.2, swith.3a and swith.3b (see Appendix D).We onsider an in�nite sequene of reasons why we swith the signals in the set G1 from green tored and why we swith the signals in the set G2 from green to red. Below we an see an example ofsuh an in�nite sequene. We use sl for the lth swith reason. When we start serving the signals in theset G1 then the swith reasons s2l+1, l = 0, 1, 2, . . . ,∞ refer to why we swith signal 1 from green to redand all swith reasons s2l, l = 1, 2, 3, . . . ,∞ refer to why we swithed the signal N1 + 1 from green tored.

s1 → s2 → s3 → · · · = switch.3a → switch.3a → switch.3a → switch.3a → switch.3a → · · · →
switch.2 → switch.3a → switch.2 → switch.3a → · · · → switch.1a → switch.1a → switch.1a → . . .We an prove that after some (�nite) time only switch.1a ours or only switch.1b ours. Whihof these two depends on the harateristis of the desired trajetory. We prove that whenever one of95



these two swith reasons (either switch.1a or switch.1b) ours until in�nity we onverge to the desiredtrajetory.Below we show an overview of how to prove that eventually (in �nite time) only switch.1a oursor only switch.1b ours. We onsider ombinations of 2 subsequent swith reasons (sl → sl+1), l > 1(for example (sl → sl+1) = (switch.3a → switch.3a), (sl → sl+1) = (switch.2 → switch.3a) et.). Weuse Ci = 1, . . . , nc to refer to a ertain ombination of swith reasons. We use Ci, i = 1, . . . , ns to referto a set of ombinations of swith reasons. These sets satisfy:
Ci 6= ∅,
i=nc
⋃

i=1

Ci = C,

Ci ∩ Cj = ∅, i = 1, . . . , ns, j = 1, . . . , ns, i 6= j,where
Cns−1 = {(switch.1a → switch1a)},
Cns

= {(switch.1b → switch1b)},
C = {Ci : i = 1, . . . , nc} .Thus, none of the sets Ci, i = 1, . . . , ns is empty and eah ombination Ci = 1, . . . , nc is partitionedin exatly one of the set Ci, i = 1, . . . , ns. Note, that in total there are 5 × 5 = 25 ombinations of 2subsequent swith reasons possible beause there are 5 di�erent swith reasons (switch.1a, switch.1b,

switch.2, switch.3a and switch.3b). However, we do not use all ombinations, i.e. nc < 25. We havehosen the nc ombinations suh that for every (feasible) in�nite sequene of swith reasons, eah ofthose swith reasons sl, l > 1 makes a ombination Ci, i = 1, . . . , nc with either the previous swithreason, the next swith reason or both, i.e. ∀l > 1 : (sl−1 → sl) ∈ C ∨ (sl → sl+1) ∈ C. Thus, everyswith reason is part of a ombination Ci, i = 1, . . . , nc.First of all, we an prove that whenever sl, l ≥ lstart (where lstart is a �nite integer) is part ofa ombination that is in Ci, 1 < i ≤ ns (with either sl−1 or sl+1) then sl+1 annot be part of aombination that is in the set Cj , 1 ≤ j < i (with either sl or sl+2). Note that this means that whenevera ombination in the set (sl−1, sl) = Ci, 2 < i ≤ n, l ≥ lstart has ourred then a ombination in the set
Cj , 1 ≤ j < i an never our again. Furthermore, we an prove that only a �nite number of subsequentswith reasons sl an be part of a ombination in the set Ci, 1 ≤ i ≤ ns − 2 (with either sl−1 or sl+1).Hene, eventually only ombinations in the sets Cns−1 or Cns

an our. As previously mentioned foran in�nite sequene of switch.1a swith reasons or an in�nite sequene of switch.1b swith reasons wean show onvergene to the desired signal.
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Chapter 9Quality of the Poliy in a StohastiSetting: An Intersetion With TwoSignal GroupsIn Chapter 7 we derived periodi optimal trajetories for an intersetion with two signal groups bymodeling the intersetion with a hybrid �uid model. In Chapter 8 we proposed a (feed-bak) poliy.In this hapter we onsider the third problem disussed in this thesis; we address the quality of theproposed poliy for an intersetion with two signal groups in a stohasti setting. To this end, we modelthe intersetion with the stohasti model desribed in Setion 3.1. Reall that this stohasti modelassumes Poisson arrivals and deterministi departures. To obtain results for the poliy in a stohastisetting a simulation program is made in the programming language χ3.0. The ode of this simulationprogram is given in Appendix B. For eah test ase we obtain the average delay δ (in seonds) of aroad user at the intersetion and we obtain the fration of the time that the maximum queue length isexeeded at eah of the queues. A road user ould either be a vehile, a ylist or a pedestrian.Before simulating a test ase we alulate the following information about the periodi optimaltrajetory (see Chapter 4).- The oordinates x♯
i1
, i1 ∈ G1 x♯

i2
, i2 ∈ G2 alulated with (8.2).- The yle duration c = g1 + gN + σ1,N,1.- The queue lengths of the signals i1 ∈ G1 at the beginning of a green period, whih is equal to

λi1(gN + σi1,N,i1), i1 ∈ G1.- The average delay of a road user. This average delay is obtained using (7.12), where w = w1 = · · · =
wN = 1 and (7.2).For eah test ase we perform at least 100 runs. We perform enough runs suh that the 95%on�dene interval for the average delay of a road user is at most 1% of the average delay of a roaduser. For eah run we start with the situation where all signals in signal group 1 are green. At the startof a run the queue length of queue i1 ∈ G1 is taken equal to ⌈λi1 (gN + σi1,N,i1)⌉ (obtained from theperiodi optimal trajetory). At the start of a run the queue length of queue i2 ∈ G2 is zero. Eah runsimulates 100c seonds, were c is the yle duration of the periodi optimal trajetory (see Setion 7.4).We onsider the following test ases.
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test ase 1a test ase 1b test ase 1
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f

f = 1, 1.2, ..., 4 f = 1, 1.2, ..., 4
gmax
1 = gmax

2 = ∞ gmax
1 = gmax

2 = ∞ gmax
1 = gmax

2 = ∞
gmax
3 = gmax

4 = ∞ gmax
3 = gmax

4 = ∞ gmax
3 = gmax

4 = ∞
xmax
1 = xmax

2 = ∞ xmax
1 = xmax

2 = ∞ xmax
1 = xmax

2 = ∞
xmax
3 = xmax

4 = ∞ xmax
3 = xmax

4 = ∞ xmax
3 = xmax

4 = ∞test ase 2a test ase 2b
λ1 = λ3 = 1

15 λ1 = λ3 = 1
15

λ2 = λ4 = 5
15 λ2 = λ4 = 5

15
gmax
1 = gmax

3 = ∞ gmax
1 = gmax

3 = 4, 4.5, . . . , 9
gmax
2 = gmax

3 = 16, 16.5, . . . , 26 gmax
2 = gmax

4 = ∞
xmax
1 = xmax

3 = ∞ xmax
1 = xmax

3 = ∞
xmax
2 = xmax

4 = ∞ xmax
2 = xmax

4 = ∞test ase 3a test ase 3b
λ1 = λ3 = 1

15 λ1 = λ3 = 1
15

λ2 = λ4 = 5
15 λ2 = λ4 = 5

15
gmax
1 = gmax

3 = ∞ gmax
1 = gmax

3 = ∞
gmax
2 = gmax

4 = ∞ gmax
2 = gmax

4 = ∞
xmax
1 = xmax

3 = ∞ xmax
1 = xmax

3 = 2, 3, . . . , 7
xmax
2 = xmax

4 = 3, 4, . . . , 30 xmax
2 = xmax

4 = ∞For all these test ases it holds that:
G1 = {1, 2},
G2 = {3, 4},
µ1 = µ2 = µ3 = µ4 = 0.5,

σ1,3 = σ1,4 = σ2,3 = σ2,4 = σ3,1 = σ3,2 = σ4,1 = σ4,2 = 2

gmin
1 = gmin

2 = gmin
3 = gmin

4For test ases 1b, 1, 2a, 2b, 3a and 3b it holds that max{ρ1, ρ2} + max{ρ3, ρ4} = 0.8. In thishapter we use µ = µ1 = µ2. In setions 9.1�9.3 we show the results for these test ases. In Setion6 we ompared our proposed poliy to an exhaustive poliy. We do not ompare our proposed poliyto an exhaustive poliy in this setion beause (6.1) onsiders intersetions where 1 signal is green at atime.9.1 Test Case 1: E�et of the Arrival RatesIn this setion we address the e�et of the arrival rate on the average delay of a road user. The resultsfor the di�erent test ases are shown in setions 9.1.1�9.1.3.9.1.1 Test Case 1a: E�et of Inreasing Arrival RatesIn this test ase we address the e�et of inreasing the arrival rates on the delay; we want to determine
δ(λ) for the proposed poliy, where the arrival rates are varied as follows:98



λ = λ1 = λ2 = λ3 = λ4 = 0.0125, 0.025, ..., 0.2375.As a result ρ = max{ρ1, ρ2}+max{ρ3, ρ4} varies as follows:
ρ = 0.05, 0.1, ..., 0.95.In Figure 9.1 the results are shown.
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Figure 9.1: The average delay of a road user δ versus λ for test ase 1a.The results shown in this �gure are very similar to the results shown in Figure 6.1. Espeiallyfor λ ≤ 0.15 the delays obtained for an intersetion of 4 signals are lose to the delays obtained foran intersetion of 2 signals. As seen in Setion 6.2 we an again observe that δ(λ) goes to 2 for theproposed poliy when λ → 0 (assuming the stohasti model). However, for larger arrival rates wean see that the di�erene in delays obtained for an intersetion with 4 signals and obtained for anintersetion with 2 signals gets larger. The delays are larger for an intersetion with 4 signals beausefor this intersetion it takes longer to satisfy ondition 1.2 given in Setion 8.3.1, i.e. it takes longerbefore all queues in the same signal group are emptied.9.1.2 Test Case 1b: E�et of Asymmetrial Arrival Rates Between SignalGroupFor this test ase the arrival rates are varied as follows:
λ1 = λ2 =

0.4

1 + f
,

λ3 = λ4 =
0.4f

1 + f
,

f = 1, 1.2, ..., 4.The results are shown in Figure 9.2. In this �gure we an see that larger di�erenes in arrival rates(and the same value for ρ) result in smaller delays. When the di�erenes in arrival rates between signalgroups is larger, a larger proportion of the road users arrives at signals from signal group 2. As a result,more road users an bene�t from a slow mode at a signal in signal group 2. We an see that the averagedelay even goes to zero for max{λ1,λ2}
max{λ3,λ4} → ∞ when assuming in�nite maximum green times and in�nite99
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Figure 9.2: The average delay of a road user δ when the di�erene in arrival rates between the signalsin di�erent signal groups inreases.maximum queue lengths. The delay goes to zero for λ2

λ1
→ ∞ beause all of the road users arrive atsignals in signal group 2. Hene, signals in signal group 2 an always be green. As a result, if queue

i2 ∈ G2 is emptied one, it always stays empty (slow mode) and eah of the road users arriving duringa slow mode experienes a delay of zero seonds.9.1.3 Test Case 1: E�et of Asymmetrial Arrival Rates in a Signal GroupFor this test ase the arrival rates are varied as follows:
λ1 = λ3 = 0.2

λ2 = λ4 =
0.2

f

f = 1, 1.2, ..., 4
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Figure 9.3: The average delay of a road user δ when the di�erene in arrival rates between signals inthe same signal group inreases. 100



The results are shown in Figure 9.3. When f inreases the arrival rates at signal 2 and 4 derease.Hene, for f → ∞ all tra� arrives at signals 1 and 3 and the intersetion with 4 signals is equivalentto an intersetion with 2 signals. Thus, we an onlude that for an intersetion with two signal groupsthe average delay of a road user inreasing for an inreasing number of signals in eah of the signalgroup.9.2 Test Case 2: E�et of The Maximum Green TimeIn this setion we address the e�et of the maximum green times on the delay of a road user. For testase 2a and test ase 2b the arrival rates at the signals in signal group 2 are 5 times as large as thearrival rates at the signals in signal group 1. We use 'low tra� signals' to refer to the signals in signalgroup 1 and we use 'high tra� signals' to refer to signals in signal group 2.9.2.1 Test Case 2a: E�et of The Maximum Green Time of the High Tra�SignalsFor this test ase the maximum green time of the signals in signal group 2 are varied between 16 seondsand 26 seonds:
gmax
3 = gmax

4 = 16, 16.5, ..., 26. (9.1)A maximum green time of 16 seonds is the smallest maximum green time gmax
2 satisfying (4.20)and thus the smallest maximum green time for whih we an �nd an optimal trajetory. However, forthe same reason as explained in Setion 6.3 a maximum green time gmax

3 = gmax
4 = 16 seonds, doesnot result in stability; the queue lengths of queue 3 and queue 4 keep inreasing.
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Figure 9.4: The average delay of a road user δ versus gmax
3 = gmax

4 for test ase 2a.Just like in Figure 6.2 we an see the sawtooth shape funtion of the average delay of a road user asfuntion of the maximum green time gmax
2 . In Figure 9.4 we an see that the global trend (disregardingthe sawtooth shape) is that smaller maximum green times result in larger delays. This global trend ismore obvious for the intersetion of 4 signals (Figure 9.4) than it was for the intersetion of two signals(Figure 6.2). 101



9.2.2 Test Case 2b: E�et of the Maximum Green Time of the Low Tra�SignalsFor test ase 2b the maximum green time of the signals in signal group 1 are varied between 4 seondsand 9 seonds:
gmax
1 = gmax

2 = 4, 4.5, ..., 9.A maximum green time of 4 seonds is the smallest maximum green time satisfying (4.20) and thus thesmallest maximum green time for whih we an �nd an optimal trajetory. For the optimal trajetorywe serve the signals in signal group 1 for the minimum green time of 4 seonds (independent of gmax
1and gmax

2 ). In Figure 9.5 we an see the results.
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Figure 9.5: The average delay of a road user δ versus gmax
1 = gmax

2 for test ase 2b.We again see the sawtooth relation between the maximum green time and the average delay of aroad user. The global trend (disregarding the sawtooth shape) is that smaller maximum green timesresult in larger delays.9.3 Test Case 3: E�et of Maximum Queue lengthsIn this setion we address the e�et of the maximum queue lengths on the average delay of a road user.For test ase 3a and test ase 3b the arrival rates of the signals in signal group 2 are 5 times as largeas the arrival rates of the signals in signal group 2. We use 'low tra� signals' to refer to the signals insignal group 1 and we use 'high tra� signals' to refer to the signals in signal group 2.9.3.1 Test Case 3a: Maximum Queue Length of the High Tra� SignalsFor test ase 3a the maximum queue lengths of the signals in signal group 2 are varied between between3 road users and 30 road users:
xmax
3 = xmax

4 = 3, 4, ..., 30.102



A maximum queue length of 2 2
3 seonds is the smallest maximum green time satisfying (4.20) andthus the smallest maximum green time for whih we an �nd an optimal trajetory. In Figure 9.6 wean see the average delay of a road user as funtion of the maximum queue lengths of signal 3 andsignal 4.
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Figure 9.6: The average delay of a road user δ versus xmax
3 = xmax

4 for test ase 3a.We an see that the average delay of a road user is about 9 seonds exept when the maximumqueue length is lose to 3. In Figure 9.7 we an see that the fration of the time that the maximumqueue length (of signals 3 and 4) is exeeded, inreases for dereasing maximum queue length. In this�gure we an see that the variation in the results obtained for the fration of over�ow is quite largesine the fration of over�ow should be the same for queue 3 and for queue 4 (beause both signals havethe same harateristis).
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xmax
1 = xmax

2 = 2, 3, ..., 11.In Figure 9.8 we an see that the average delay of a road user is about 9 seonds exept when themaximum queue length is lose to 2.
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Chapter 10Conlusions and Reommendations forFurther ResearhIn this hapter we state the most important onlusions of this master thesis, thereafter we state ourreommendations for further researh10.1 ConlusionsIn this master thesis we have onsidered the following three problems for intersetions with two on�itgroups.1 Trajetory optimization: �nding an optimal trajetory minimizing the average weighted queue lengthat an intersetion.2 Regulation: �nding a set of rules (a poliy) that de�nes when to swith the state of a tra� light.3 Addressing the quality of the proposed poliy in a stohasti setting.We state our most important onlusions for these three problems in setions 10.1.1�10.1.3.10.1.1 Trajetory optimizationTo solve the trajetory optimization problem we modeled intersetions with a hybrid �uid model. Thishybrid �uid model assumes deterministi arrivals and departures.For an intersetion with two signal groups and using assumptions (7.2.3) we derived that we anw.l.o.g. assume that an optimal trajetory, minimizing the average weighted queue length at an inter-setion, satis�es the following properties:- always the highest possible departure rate is used during a green period of signal i ∈ N :
di(t) =

{

µi if xi(t) > 0,
λi if xi(t) = 0.- a queue is always emptied during its green period- green periods always take equally long 105



- a signal is green as long as possible during a red period of a on�iting signal:
ri2 = gi1 + σi1,i2,i1 , ∀i1 ∈ G1, ∀i2 ∈ G2,

ri1 = gi2 + σi1,i2,i1 , ∀i1 ∈ G1, ∀i2 ∈ G2,where, gi respetively ri is the duration of all green times of signal i ∈ N and the duration of allred times of signal i ∈ N .Using these properties, we proposed an optimization problem whih we ould solve (analytially)for two lasses of intersetions (see Setion 7.5.3).10.1.2 RegulationA poliy is proposed for an intersetion with two signal groups. For this poliy we try to serve thesignals in a signal group long enough to satisfy onditions 1.1�1.31.1 all queues in this signal group are (expeted to be) emptied during their green period (assuming ahybrid �uid model).1.2 all signals are served for at least the minimum green time.1.3 the queue length of a signal i in the other signal group satis�es xi(t) ≥ x♯
i .It might not be possible to serve the signals in the set long enough to satisfy onditions 1.1�1.3.We might have to swith earlier beause otherwise a maximum green time or a maximum queue length(assuming a hybrid �uid model) is exeeded.We have proven that when the intersetion is modeled with a hybrid �uid model, trajetories onvergeto the desired trajetory (derived with the trajetory optimization problem) if started from a feasiblestarting point.10.1.3 Addressing the Quality of the proposed poliyWe have tested the proposed poliy on several test ases. For these test ases we varied the arrival rates,maximum green times and maximum queue lengths. For intersetions with two on�iting signals theproposed poliy is ompared to an exhaustive poliy. The proposed poliy works better than theexhaustive poliy for smaller arrival rates. For large arrival rates the exhaustive poliy works better.Further, for an intersetion with two signals the proposed poliy works better than than the exhaus-tive poliy if most of the tra� arrives at one of the signals (asymmetrial arrival rates). In this aseslow modes at the high tra� signal are desirable beause all tra� arriving during a slow mode rossesthe intersetion without delay.For the proposed poliy, a signal ould have slow modes in a stohasti environment even if thissignal does not have any slow modes for the desired trajetory (derived with the trajetory optimizationproblem).10.2 Reommendations for Further ResearhHere we state our reommendations for further researh on the topis treated in this thesis.
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10.2.1 Comparison of proposed poliy to existing poliiesIn this thesis the proposed poliy is only ompared to the exhaustive poliy for an intersetion of twosignals (see Setion 6). To address the quality of the proposed poliy, this proposed poliy an beompared to other existing poliies. Further, the proposed poliy has to be tested for intersetions withmore than 4 signals.We an ompare the proposed poliy to the poliy proposed in Newell and Osuna [22℄ for an inter-setion of two two-way streets. In [22℄ it is proposed to swith both signals in a sign group to red atthe moment that both queues are leared. Further, we an ompare the proposed poliy to the poliyproposed in Haijema and van der Wal [12℄. In [12℄ the deision when to swith and whih signals toserve next is modeled as a Markovian deision proess. Furthermore, the poliy an be ompared to a�xed yle tra� light ontrol.10.2.2 Improving our PoliyIt an our that the poliy proposed in this thesis does not satisfy the restrition on minimum greentime duration in a stohasti setting. In a stohasti setting the proposed poliy might swith a signalto red before the minimum green time has elapsed whenever the queue of a on�iting signal is loseto its maximum queue length (see Setion 6). For safety reasons, the poliy should always satisfy theseminimum green times. When hanging (8.8) to the following equation we always satisfy the restritionson green times:
(t1.1 ∧ t1.2 ∧ t1.3) ∨ t2 ∨ (t3 ∧ t1.2),

t1.1, t1.2, t1.3, t2 and t3 remain as de�ned in 8.8For the hybrid �uid model we only onsidered situations for whih none of the onstraints wereviolated. Hene, Chapter 5 and Chapter 8 are still valid for this altered poliy. However, the outomeof test ases 3a and 3b in Chapter 6 and Chapter 9 will be di�erent for this altered poliy.Furthermore, we observed that a signal ould have a slow mode in a stohasti setting if it does nothave a slow mode for the desired trajetory (for more information see Setion 6). The ause is that weswith a signal only to red when a on�iting signal i satis�es xi(t) ≥ x♯
i . We ould adjust the poliyby adjusting the de�nition of x♯

i1
, i1 ∈ G1 and x♯

i2
, i2 ∈ G2:

x♯
i1
=

{

(ri1 − σi1,N)λi1 if ∀i1 ∈ G1

(

gλi1 > 0
),

0 if ∃i1 ∈ G1

(

gλi1 = 0
).

x♯
i2
=

{

(ri2 − σi2,1)λi2 if ∀i2 ∈ G2

(

gλi2 > 0
),

0 if ∃i2 ∈ G2

(

gλi2 = 0
).Note that this new de�nition for x♯

i , i ∈ N di�ers from the de�nition used in this thesis only whena signal in the same signal group has no slow mode for the desired trajetory (derived via trajetoryoptimization).For these new de�nitions the proof of Proposition 8.1 is not entirely valid anymore and has to beadjusted.10.2.3 Setup TimesIn this thesis we assumed Non-negative setup times:107



σi1,i2 ≥ 0, i1 ∈ G1, i2 ∈ G2,

σi2,i1 ≥ 0, i1 ∈ G1, i2 ∈ G2,For further researh, we might drop this assumption. The proofs of Lemma 4.1 and Lemma 4.2 arestill valid when dropping the assumption of positive setup times. The proofs of lemmas 7.1�7.3 needsome (minor) modi�ations. Further, the shape of the optimal trajetory given in Corollary 7.4 doesnot hold anymore beause for negative green times two on�iting signals an be green at the sametime.The poliy that is proposed in Setion 8 swithes a signal to green only if all on�iting signals arered. If a setup time is negative, two on�iting signals an be green at the same time. Hene, a newpoliy must be proposed.Further, in this thesis we assumed that:
σi1,i2 − σi1,l2 = σl1,i2 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (10.1)
σi2,i1 − σi2,l1 = σl2,i1 − σl1,l2 , ∀i1, l1 ∈ G1 i2, l2 ∈ G2 (10.2)This assumption was needed in the proof of Lemma 7.1. Hene, when dropping this assumptionLemma 7.1 is not valid anymore. Lemma 7.2 is still valid. However, when dropping assumptions (10.1)and (10.2), we have to formally prove that the alternative trajetory satis�es behavioral equations (7.3g)and (7.3h).10.2.4 Multiple Signal GroupsIn this thesis we have onsidered intersetions with two signal groups. In pratie, often more signalgroups are needed. When onsidering more than two signal groups lemmas 7.1�7.3 have to be adjusted.Furthermore, the order in whih these signal groups are served has to be determined and a new poliyhas to be derived for the ase of more than two signal groups.10.2.5 Networks of IntersetionsIn this thesis we onsidered isolated intersetions; the arrival rates where assumed to be onstant. Fora network of intersetions these arrival rates are not onstant and so alled platoons an arise. A�rst step towards deriving optimal trajetories for a network of intersetions is to onsider an isolatedintersetion with pieewise onstant arrivals. A possible starting point might be the researh done byvan Eekelen in [10℄. In Setion 5.8 of [10℄, an intersetion with two on�iting signal with pieewiseonstant arrivals is onsidered. In Setion 5.8 of [10℄ no onstraints on green times and maximum queuelengths are onsidered.
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Appendix ATable of Symbols (Used in χ3.0Simulation CodeA.1 TypesIn this setion we give the newly de�ned types used in the χ simulation program.Type De�nitionTra�light The type 'tra�light' ontains information about a ertain tra�light.Tra�light.mu Maximum departure rate of this tra� light.Tra�light.lambda Arrival rate of this tra� light.Tra�light.tif Amount of time between the moment that this tra� lightswithes to red and the moment that the �rst on�iting tra�light swithes to greenTra�light.t� Amount of time between the moment that the �rst tra� light inthe same signal group swithes to green and the moment that thistra� light swithes to green.Tra�light.Xsharp Value for x♯
i for this tra� light.Tra�light.Xmax The maximum queue length of this tra�light.Tra�light.gmin Minimum green time of this tra� light.Tra�light.gmax Maximum green time of this tra� light.Tra�light.ArrivalTime List of arrival times of the road users waiting at this tra� light.IntervalType An interval onsists out of a start time and an end time.IntervalType.StartTime Start time of an interval.IntervalType.EndTime End time of an interval.Output1Type Type used to store information that is written to the output �le'output1.txt'Output1Type.AvgDelay The average delay of a road user at the intersetionOutput1Type.Over�ow List of the fration of the time that the maximum queue length isexeeded for eah of the tra� lights.
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Output2Type Type used to store information that is written to the output �le'output2.txt'. This information an be used to visualize the greenperiods, red periods and slow modes of eah tra� lights. Fur-thermore, it an be used to plot the queue length at eah of thetra� lights over time.Output2Type.Green Intervals of green periods for eah of the tra� lights.Output2Type.Red Intervals of red periods for eah of the tra� lights.Output2Type.Slowmode Intervals of green periods for eah of the tra� lights.Output2Type.X List with queue lengths for eah of the tra� lights. This list anbe used to plot the queue length as funtion of time for eah tra�light (together with Output2Type.Time).Output2Type.Time List with times for the tra� lights. This list an be used to plotthe queue length as funtion of time for eah tra� light (togetherwith Output2Type.X).tlControlInfoType This type ontains the input that the poliy needs and the outputthat the poliy returns.tlControlInfoType.SetServed The index (either 0 for signal group 1 and 1 for signal group 2) ofthe signal group that is urrently served.tlControlInfoType.SetNotServed The index (either 0 for signal group 1 and 1 for signal group 2) ofthe signal group that is urrently not served.tlControlInfoType.tlServedFirst This integer refers to the tra� light in the set 'SetServed' that(always) swithes to green �rst (of all tra� lights in the set 'Set-Served').tlControlInfoType.tlSwithedFirst This integer refers to the tra� light in the set 'SetServed' that(always) swithes to red �rst (of all tra� lights in the set 'Set-Served').tlControlInfoType.ToLS Time of the most reent time that the tra� light tlServedFirstswithed from red to green or that the tra� light tlSwithedFirstswithed from green to red.tlControlInfoType.Swithed Time of the most reent time that the tra� light tlServedFirstswithed from red to green or that the tra� light tlSwithedFirstswithed from green to red.tlControlInfoType.Swithed This boolean is true whenever the the signal tlSwithedFirst isred.tlControlInfoType.Green List with the state of eah of the tra� lights: True whenever atra� light is green and False whenever a tra� light is red.
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A.2 SymbolsIn this setion we give the most important symbols used in the χ simulation program.Symbol De�nitionAvgDelayHFM The average delay of a road user obtained via trajetory optimization. Thisvariable is read from an input �le.SimDelay The average delay of a road user obtained for a single run.ListSimDelay List of average delays obtained for di�erent runs of a test ase.SimFraOver�ow List with the fration of over�ow (fration of time that a queue length is ex-eeded) for eah of the tra� lights for a single run.ListSimFraOver�ow List of the variables 'SimFraOverFlow' obtained for di�erent runs of a testase.SimDuration The duration that is simulated during a run.StartSimTime The simulated time keeps inreasing for a hi simulation. StartSimTime is theduration that is simulation when a run start. This variable is used to determinethe simulated time sine the start of a run.FirstRun Only during the �rst run of a test ase we write information to output2.txt.FirstRun is a boolean that is true whenever it is the �rst run of a test ase.G G[0℄ ontains the indies of the signals in signal group 1 and G[1℄ ontains theindies of the signals in signal group 2.N = Number of tra� lights at the intersetion.NumOfDepartures Number of road users that have rossed the intersetion.DepProStarted This variable is true whenever a departure proess is started.
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Appendix B
χ 3.0 Simulation Code1 # This simulation onsiders a traffi intersetion with two signal groups where thetraffi light ontrol is subjet to:2 # - maximum and minimum green times3 # - maximum queue lengths . This is a soft onstraint ; a queue ould exeed themaximum queue length but we try to avoid it.4 # We keep trak of the fration of the time that this maximum queue length isexeeded .5 # - Clearane /setup times . When traffi light i and traffi light j are onfliting (may not be green at the same time) then traffi6 # light i must be red for a ertain amount of time before traffi light j may turngreen (and vie versa ).78 # In this simulation we try to follow periodi behavior using a poliy9 # a poliy is a set of rules that speify when to swith traffi lights from green tored and from red to green.10111213 ########################################################14 ################### Defining types ######################15 ########################################################1617 type traffilight = tuple(list real ArrivalTime ; real mu; real lambda ; real tif ; realtfi ; real Xsharp ; real Xmax; real gmin; real gmax);1819 type IntervalType = tuple(list real StartTime ; list real EndTime );2021 type Output1Type = tuple (real AvgDelay ; list real FraOverflow);2223 type Output2Type = tuple (list IntervalType Green; list IntervalType Red; listIntervalType Slowmode ; list list int X; list list real Time);2425 type tlControlInfoType = tuple (int SetServed ; int SetNotServed; int tlServedFirst; inttlSwithedFirst; real ToLS; bool Swithed ; list bool Green );2627 ########################################################28 ####################### Model ##########################29 ########################################################3031 model intersetion():32 # Variable delaration33 real stddev ; 113



34 real SimDelay ;35 real AvgDelayHFM ;36 real StartSimTime;37 real SimDuration ;38 real real_temp ;39 real Width95IntSimDelay = 0.0;40 real AvgSimDelay = 0.0;41 list real ListSimDelay;42 list real SimFraOverflow;43 list list real ListSimFraOverflow;4445 int NumberOfRuns = 0;46 int NumberOfTestases;47 int id;48 int N;49 list(2) set int G;5051 bool FirstRun ;5253 traffilight tl_temp ;54 list traffilight tl;5556 han real han_Delay ;57 han list real han_Overflow;58 han int a_temp , d_temp ;59 list han int a,d;60 han void t;6162 file InputFile ,Output1File , Output2File ;6364 # Opening input and output files65 InputFile = open("input.txt ","r");66 Output1File = open("Output1 .txt ","w");67 Output2File = open("Output2 .txt ","w");6869 # Read the number of test ases70 NumberOfTestases = read(InputFile ,int );7172 for k in range(NumberOfTestases):7374 # emptying some lists for the new test ase75 a = a[1:1℄;76 d = d[1:1℄;77 SimFraOverflow = SimFraOverflow [1:1℄;78 ListSimFraOverflow = ListSimFraOverflow [1:1℄;79 ListSimDelay = ListSimDelay[1:1℄;8081 # resetting some variables for the new testase82 Width95IntSimDelay = 0.0;83 AvgSimDelay = 0.0;8485 # read all inputs for this testase from the input file.86 (id , AvgDelayHFM , SimDuration , N, G, tl) = ReadInput (InputFile );8788 # write some of the information to outputfiles89 write (Output1File , "%s \t", id);90 write (Output1File , "%s \t", AvgDelayHFM );91 write (Output1File , "%s \t", N);92 write (Output2File , "%s \t", id);93 write (Output2File , "%s \t", N);94 114



95 # Making sure that lists have the right size96 for i in range (N):97 a = a + [a_temp ℄;98 d = d + [d_temp ℄;99 SimFraOverflow = SimFraOverflow + [ real_temp ℄;100 end ;101102 FirstRun = true;103 NumberOfRuns = 0;104105106 while Width95IntSimDelay >= 0.01* AvgSimDelay or NumberOfRuns < 100:107108 StartSimTime = time; # The time at whih we start a run .109 # We start a run110 start buffer (StartSimTime , SimDuration , tl, G, FirstRun , han_Delay ,han_Overflow , a, d, t, Output1File , Output2File );111112 # We obtain the results of this run via hannels113 han_Delay ?SimDelay ;114 han_Overflow?SimFraOverflow;115116 # add the obtained results of this run to arrays that ontain the results for allruns of this testase117 ListSimDelay = ListSimDelay + [ SimDelay ℄;118 ListSimFraOverflow = ListSimFraOverflow + [ SimFraOverflow℄;119120 # From all runs of this testase obtain the average delay of a vehile at theintersetion.121 AvgSimDelay = mean( ListSimDelay);122 # From all runs of this testase obtain the width of the 95% onfidene intervalof the average delay .123 stddev = StdDev ( ListSimDelay);124 Width95IntSimDelay = 2*1.960* stddev /size(ListSimDelay);125126 FirstRun = false ; # We already performed at leatst one run127 NumberOfRuns = NumberOfRuns + 1; # The number of runs is inreased with one .128129 # writing information to the sreen130 write ("Simulating ase %s \n", k+1);131 write ("Number of runs %s \n", NumberOfRuns);132 write ("average Delay %s \n", AvgSimDelay );133 write ("width of 95- onfidene interval %s \n", Width95IntSimDelay);134 end135136 # write information obtained for a testase to the file Output1File137 write (Output1File ,"%s\t",size(ListSimDelay));138 for i in range (size(ListSimDelay)):139 write (Output1File ,"%s\t",ListSimDelay[i℄);140 end141 for i in range (N):142 for j in range (size(ListSimFraOverflow)):143 write(Output1File ,"%s\t",ListSimFraOverflow[j℄[i℄);144 end145 end146 write (Output1File ,"\n");147 end ;148 end149150 ########################################################151 ###################### Proesses #######################115



152 ########################################################153154 pro buffer (real StartSimTime; real SimDuration ; list traffilight tl; list set int G;bool FirstRun ; han! real han_Delay ; han! list real han_Overflow; list han? inta,d; han void t; file Output1File ; file Output2File ):155156 # Variable delaration157 int N = size(tl);158 int k;159 int NumOfDepartures = 0;160 list (N) list int list_int_temp;161162 real deltaT = 0.001; # We sample the feedbak of the ontroller every deltaT seonds .163 list(N) real real_temp ;164 list (N) list real list_real_temp;165166 list(N) bool DepProStarted;167 list(N) bool PreviousGreen;168 list(N) bool SlowmodeStarted;169 list(N) bool bool_temp ;170171 Output1Type Output1 ;172 Output2Type Output2 ;173174 tlControlInfoType tlControlInfo;175176 list(N) IntervalType interval_temp;177178179 # making lists the right size180 tlControlInfo.Green = bool_temp ;181 Output1 .FraOverflow = real_temp ;182183 Output2 .Green = interval_temp;184 Output2 .Red = interval_temp;185 Output2 .Slowmode = interval_temp;186187 Output2 .X = list_int_temp;188 Output2 .Time = list_real_temp;189190 # Initialization:191 (tlControlInfo , Output2 , SlowmodeStarted) = Initialization(G, FirstRun ,tl, Output2 ,SlowmodeStarted , tlControlInfo);192 # We start with the situation where all traffi lights in set 1 (G[0℄) are green andall traffi lights in set 2 (G[1℄) are red193194 # Starting departure proesses for the traffi lights that are green and whose queuesare non -empty.195 # When a traffi light is green and its queue is empty then traffi an immediatelyross the intersetion (without delay ).196 for i in G[0℄:197 if size(tl[i℄. ArrivalTime )> 0:198 start departure (tl[i℄.mu,i,d);199 DepProStarted[i℄ = true;200 else:201 DepProStarted[i℄ = false;202 end203 end ;204 for i in G[1℄: # All traffi lights in set 2 (G[1℄) are red . Traffi annot departand we start a red period205 DepProStarted[i℄ = false ; 116



206 end ;207208 # Start arrival proesses for all traffi lights209 for i in range(N):210 start arrival (tl[i℄.lambda ,i,a);211 end212213 # Start the timer proess . This proess sends a signal every deltaT seonds .214 start timerproess(deltaT ,t);215216217 while (time - StartSimTime) < SimDuration :218 selet219 # Sampling the Controller deision whenever we reeive a void from hannel t.220 t?: PreviousGreen = tlControlInfo.Green;221 tlControlInfo = CalGreenTls(tl,G,time -StartSimTime ,tlControlInfo);222 if FirstRun : # Some information we will only gather during the first run of atestase223 (Output2 , SlowmodeStarted) = UpdateOutput2(PreviousGreen , tlControlInfo.Green, Output2 , tl, time - StartSimTime);224 end225226 # If a traffi light is green and its queue is not empty then we start adeparture proess (if it was not already started )227 for i in G[ tlControlInfo.SetServed ℄:228 if tlControlInfo.Green[i℄ and not DepProStarted[i℄ and size(tl[i℄.ArrivalTime ) >0:229 start departure (tl[i℄.mu,i,d);230 DepProStarted[i℄ = true;231 end232 end ;233234 # We again start the timerproess235 start timerproess(deltaT ,t);236 alt237 unwind j in range (N):238 a[j℄?k: # If we reeive a signal via hannel a[j℄ then a vehile arrives attraffi light j239 start arrival (tl[k℄.lambda ,k,a); # We again start a new arrival proess240241 # The arrived vehile is only added to the queue when the queue is not empty242 # or the traffi light is red . We assume that a vehile arriving when243 # the queue is empty and the traffi light is green an immediately244 # ross the intersetion.245 if size(tl[k℄. ArrivalTime ) >0 or not tlControlInfo.Green[k℄:246 Output1 .FraOverflow[k℄ = UpdateFraOverflow (( time - StartSimTime), Output2.Time[k℄[-1℄, Output1 .FraOverflow[k℄, size(tl[k℄. ArrivalTime ), tl[k℄.Xmax);247 if FirstRun : # Some information we will only gather during the first runof a test ase248 Output2 .X[k℄ = Output2 .X[k℄ + [size(tl[k℄. ArrivalTime )℄;249 Output2 .Time[k℄ = Output2 .Time[k℄ + [time - StartSimTime℄;250 end251 tl[k℄. ArrivalTime = tl[k℄. ArrivalTime + [time - StartSimTime℄; # Store thetime of arrival252 Output2 .X[k℄ = Output2 .X[k℄ + [size(tl[k℄. ArrivalTime )℄; # Update thequeue length253 Output2 .Time[k℄ = Output2 .Time[k℄ + [time - StartSimTime℄; # Update thetime of the last hange in queue length254 elif size(tl[k℄. ArrivalTime ) == 0 and tlControlInfo.Green [k℄: # If avehile arrived when the traffi light was green117



255 # and the queue was empty then this vehileexperiened no delay256 NumOfDepartures = NumOfDepartures + 1;257 Output1 .AvgDelay = UpdateAvgDelay(NumOfDepartures , Output1 .AvgDelay , 0.0);258 end259 end260 alt261 unwind l in range (N):262 d[l℄?k: # If we reeive a signal via hannel d[j℄ then a vehile has justdeparted at traffi light j263 # Update the average delay264 NumOfDepartures = NumOfDepartures + 1;265 Output1 .AvgDelay = UpdateAvgDelay(NumOfDepartures , Output1 .AvgDelay , (time -StartSimTime - tl[k℄. ArrivalTime [0℄));266 Output1 .FraOverflow[k℄ = UpdateFraOverflow (( time - StartSimTime), Output2 .Time[k℄[-1℄, Output1 .FraOverflow[k℄, size(tl[k℄. ArrivalTime ), tl[k℄. Xmax);267268 if FirstRun : # Some information we will only gather during the first run ofa testase269 Output2 .X[k℄ = Output2 .X[k℄ + [size(tl[k℄. ArrivalTime )℄;270 Output2 .Time[k℄ = Output2 .Time[k℄ + [time - StartSimTime℄;271 end272 tl[k℄. ArrivalTime = tl[k℄. ArrivalTime [1:℄; # Erase the first elementof the array 'ArrivalTime '273 # (the vehile that orresponds to the erasedelement has just departed ).274 Output2 .X[k℄ = Output2 .X[k℄ + [size(tl[k℄. ArrivalTime )℄; # Update the queuelength275 Output2 .Time[k℄ = Output2 .Time[k℄ + [time - StartSimTime℄; # Update the timeof the last hange in queue length276 if tlControlInfo.Green[k℄ and size(tl[k℄. ArrivalTime ) >0: # Again start adeparture proess whenever the traffi light is green and277 # the queue length is non -zero278 start departure (tl[k℄.mu,k,d);279 DepProStarted[k℄ = true;280 else:281 DepProStarted[k℄ = false;282 end283 if FirstRun : # Some information we will only gather during the first run ofa test ase284 if size(tl[k℄. ArrivalTime ) == 0 and tlControlInfo.Green [k℄ and notSlowmodeStarted[k℄: # If the queue length is zero and the traffi light285 # is green then a slow modestarts (if it was notalready started ).286 SlowmodeStarted[k℄ = true;287 Output2 . Slowmode [k℄. StartTime = Output2 .Slowmode [k℄. StartTime + [time -StartSimTime℄;288 end289 end290 end291 end ;292 end ;293294295 # let all started departure proesses finish :296 for i in range(N):297 while DepProStarted[i℄: # for some reason it does not work with an if loop298 d[i℄?k;299 DepProStarted[i℄ = false; 118



300 end301 end302303 # let all started arrival proesses finish :304 for i in range(N):305 a[i℄?k;306 end307 # let the timer proess finish :308 t?;309310 if FirstRun :311 Output2 = Write2Output2File(Output2File , Output2 , tl, time - StartSimTime); # Thisfuntion writes information to the file 'Output2File '.312 # We reeived 'Output2 ' from the funtion . However 'Output2 ' has not hanged . Afuntion must always return something .313 end314315 han_Delay !Output1 .AvgDelay ;316 han_Overflow!Output1 .FraOverflow;317 end318319 # The timerproess sends a void signal after deltaT seonds320 pro timerproess(real deltaT ; han! void t):321 delay deltaT ;322 t!323 end324325 # The proess 'arrival ' sends a interger i over hanel a[i℄ after exponentiallydistributed amount of time has elapsed .326 # When suh a signal is send this means that a vehile has arrived at traffi light 'i'.327 pro arrival (real lambda ; int i; list han! int a):328 dist real interarrivaltimedist = exponential (1/ lambda );329 real interarrivaltime;330331 interarrivaltime = sample (interarrivaltimedist);332 delay interarrivaltime;333 a[i℄!i;334 end335336 # The proess 'departure ' sends a integer i over hannel a[i℄ after 1/mu seonds haselapsed .337 # When suh a signal is send this means that a vehile has departed at traffi light 'i'.338 pro departure (real mu; int i; list han! int d):339 delay 1/mu;340 d[i℄!i;341 end342343 ########################################################344 ###################### Funtions #######################345 ########################################################346347 fun tuple(int id; real AvgDelayHFM ; real SimDuration ; int N; list(2) set int G; listtraffilight tl) ReadInput (file InputFile ):348349 # Variable delaration350 real AvgDelayHFM ;351 real SimDuration ;352353 int X0_temp ; 119



354 int id;355 int N, N1, N2;356 list int X0;357 list(2) set int G;358359 traffilight tl_temp ;360 list traffilight tl;361362 # Read the id of the test ase363 id = read(InputFile , int );364365 # Read the average delay for this test ase that was obtained via the Hybrid FluidModel (alulated with matlab )366 AvgDelayHFM = read(InputFile , real);367368 # Read the simulation time of a single run369 SimDuration = read(InputFile , real);370371 # Read the number of traffi lights in set 1 (N1) and the number of traffi lights inset 2 (N2)372 N1 = read(InputFile , int );373 N2 = read(InputFile , int );374 N = N1+N2;375376 # The first N1 traffi lights (0,..., N1) are in set 1 (G[0℄)377 for i in range(N1):378 G[0℄ = G[0℄ + {i};379 end ;380381 # The other traffi lights (N1+1,...,N) are in set 2 (G[1℄)382 for i in range(N1 ,N):383 G[1℄ = G[1℄ + {i};384 end385386 # Making sure that lists have the right size387 for i in range(N):388 tl = tl + [tl_temp ℄;389 X0 = X0 + [X0_temp ℄;390 end ;391392 # Reading the initial queue lengths393 for i in range(N):394 X0[i℄ = read(InputFile , int );395 end396397 # At the start there are already X0[i℄ vehiles waiting in front of traffi light i.We assume these vehiles have arrived at time 0.0.398 for i in range(N):399 for j in range (X0[i℄):400 tl[i℄. ArrivalTime = tl[i℄. ArrivalTime + [0.0℄;401 end402 end403404 # Reading the maximum departure rates405 for i in range(N):406 tl[i℄.mu = read(InputFile , real);407 end408409 # Reading the arrival rates410 for i in range(N):411 tl[i℄. lambda = read(InputFile , real); 120



412 end413414 # tl[i℄.tif : Always when traffi light i has been red for tl[i℄.tif seonds , thefirst traffi light in the other set is swithed to green .415 for i in range(N):416 tl[i℄. tif = read(InputFile , real);417 end418419 # tl[i℄.tfi : traffi light i is swithed to green tl[i℄.tfi seonds after the firsttraffi light in the same set is swithed to green.420 for i in range(N):421 tl[i℄. tfi = read(InputFile , real);422 end423424 # Xsharp (X^{#}) is needed for the ontroller . See ??????? for more information aboutXsharp425 for i in range(N):426 tl[i℄. Xsharp = read(InputFile , real);427 end428429 # Reading the maximum queue lengths430 for i in range(N):431 tl[i℄. Xmax = read(InputFile , real);432 end433434 # Reading the minimum green times435 for i in range(N):436 tl[i℄. gmin = read(InputFile , real);437 end438439 # Reading the minimum green times440 for i in range(N):441 tl[i℄. gmax = read(InputFile , real);442 end ;443444 return (id , AvgDelayHFM , SimDuration , N, G, tl)445 end446447 fun tuple(tlControlInfoType tlControlInfo; Output2Type Output2 ; list boolSlowmodeStarted) Initialization(list(2) set int G; bool FirstRun ; list traffilighttl; Output2Type Output2 ; list bool SlowmodeStarted; tlControlInfoTypetlControlInfo):448449 tlControlInfo. Swithed = false ; # We start with the situation where all traffi lightin group 1 are green .450 tlControlInfo.ToLS = 0.0;451 tlControlInfo. SetServed = 0; # We start serving set 1 (G[0℄)452 tlControlInfo. SetNotServed = 1;453454 for i in G[0℄:455 tlControlInfo.Green[i℄ = true; # the traffi lights in set 1 (G[0℄) are swithed togreen456 end457458 for i in G[1℄:459 tlControlInfo.Green[i℄ = false; # the traffi lights in set 2 (G[1℄) are swithedto red460 end461462 # Calulating the traffi lights in the set 1 (G[0℄) that is the first traffi light(in the set 1) to swith to green . 121



463 tlControlInfo. tlServedFirst = CalServedFirst(G[0℄, tl);464 # Calulating the traffi light in the set 1 (G[0℄) that is the first traffi light (in the set 1) to swith to red465 tlControlInfo. tlSwithedFirst = CalServedFirst(G[0℄, tl);466467 for i in range(size(tl)):468 Output2 .X[i℄ = Output2 .X[i℄ + [size(tl[i℄. ArrivalTime )℄; # The initial queu length469 Output2 .Time[i℄ = Output2 .Time[i℄ + [0.0℄; # The initial time470 end471472 # Initialization of all other information in Output2 .473 if FirstRun :474 (Output2 , SlowmodeStarted) = InitializationOutput2Info (G, tl , Output2 ,SlowmodeStarted);475 end476477 return (tlControlInfo , Output2 , SlowmodeStarted)478 end479480 fun tuple(Output2Type Output2 ; list bool SlowmodeStarted) InitializationOutput2Info (list(2) set int G; list traffilight tl; Output2Type Output2 ; list boolSlowmodeStarted):481482 # We start with the situation where all traffi lights in set 1 (G[0℄) are green andall traffi lights in set 2 (G[1℄) are red483 for i in G[0℄:484 Output2 .Green[i℄. StartTime = Output2 .Green [i℄. StartTime + [0.0℄; # All traffilights in set 1 start a green period .485 if size(tl[i℄. ArrivalTime )> 0: # If the queue (in set 1) is not empty at the startthen we start the departure proess486 SlowmodeStarted[i℄ = false ;487 else: # If the queue (in set 1) is empty at the start then this is the start of aslowmode488 SlowmodeStarted[i℄ = true;489 Output2 .Slowmode [i℄. StartTime = Output2 . Slowmode [i℄. StartTime + [0.0℄;490 end491 end ;492 for i in G[1℄: # All traffi lights in set 2 (G[1℄) are red . Traffi annot departand we start a red period493 SlowmodeStarted[i℄ = false ;494 Output2 .Red[i℄. StartTime = Output2 .Red[i℄. StartTime + [0.0℄;495 end496497 return (Output2 , SlowmodeStarted)498 end499500 fun tuple(Output2Type Output2 ; list bool SlowmodeStarted) UpdateOutput2(list boolPreviousGreen; list bool Green ; Output2Type Output2 ; list traffilight tl; realCurrentTime ):501502 # Variable delaration503 int N = size(Green);504 list(N) bool SlowmodeStarted;505506 for i in range(N):507 if PreviousGreen[i℄ and not Green [i℄: # If a traffi light was green and is now redthen this is the end of a green period and the start of a red period .508 Output2 .Red[i℄. StartTime = Output2 .Red[i℄. StartTime + [ CurrentTime ℄;509 Output2 .Green[i℄. EndTime = Output2 .Green [i℄. EndTime + [ CurrentTime ℄;122



510 if size(Output2 . Slowmode [i℄. StartTime ) > size(Output2 .Slowmode [i℄. EndTime ): #When a slowmode started during the previous green time , the slowmode is ended.511 Output2 . Slowmode [i℄. EndTime = Output2 . Slowmode [i℄. EndTime + [CurrentTime ℄;512 SlowmodeStarted[i℄ = false;513 end514 elif not PreviousGreen[i℄ and Green[i℄: # If a traffi light was red and is nowgreen then this is the end of a red period and the start of a green period .515 Output2 .Green[i℄. StartTime = Output2 .Green[i℄. StartTime + [CurrentTime ℄;516 Output2 .Red[i℄. EndTime = Output2 .Red[i℄. EndTime + [CurrentTime ℄;517 if size(tl[i℄. ArrivalTime )== 0 and not SlowmodeStarted[i℄: # If a traffi lightis empty at the beginning of its green period , a slowmode is started .518 SlowmodeStarted[i℄ = true;519 Output2 . Slowmode [i℄. StartTime = Output2 .Slowmode [i℄. StartTime + [ CurrentTime ℄;520 end521 end522 end523524 return (Output2 , SlowmodeStarted)525 end526527 fun Output2Type Write2Output2File(file Output2File ; Output2Type Output2 ; listtraffilight tl; real CurrentTime ):528529 int N = size(tl); # Number of traffi lights530531 for i in range(N):532 Output2 .X[i℄ = Output2 .X[i℄ + [size(tl[i℄. ArrivalTime )℄;533 Output2 .Time[i℄ = Output2 .Time[i℄ + [CurrentTime ℄;534 end535536 # for all traffi lights we first write the number of green periods of the traffilight to the file 'Output2File '.537 # Herafter we write all the start times of these green periods to the file 'Output2 'followed by all the end times of these green periods538 for i in range(N):539 if size(Output2 .Green[i℄. StartTime ) > size(Output2 .Green[i℄. EndTime ): # A greenperiod is not finished yet540 Output2 .Green[i℄. EndTime = Output2 .Green [i℄. EndTime + [ CurrentTime ℄;541 end542 write (Output2File , "%s \t", size(Output2 .Green[i℄. StartTime ));543 for j in range (size(Output2 .Green [i℄. StartTime )):544 write (Output2File , "%s \t", Output2 .Green[i℄. StartTime [j℄);545 end546 for j in range (size(Output2 .Green [i℄. StartTime )):547 write (Output2File , "%s \t", Output2 .Green[i℄. EndTime [j℄);548 end549 end ;550551 # for all traffi lights we first write the number of red periods of this traffilight to the file 'Output2File '.552 # Herafter we write all the start times of these red periods to the file followed byall the end times of these red periods to the file 'Output2File '.553 for i in range(N):554 if size(Output2 .Red[i℄. StartTime ) > size(Output2 .Red[i℄. EndTime ): # A green periodis not finished yet555 Output2 .Red[i℄. EndTime = Output2 .Red[i℄. EndTime + [CurrentTime ℄;556 end557 write (Output2File , "%s \t", size(Output2 .Red[i℄. StartTime ));558 for j in range (size(Output2 .Red[i℄. StartTime )):559 write (Output2File , "%s \t", Output2 .Red[i℄. StartTime [j℄);123



560 end561 for j in range (size(Output2 .Red[i℄. StartTime )):562 write (Output2File , "%s \t", Output2 .Red[i℄. EndTime [j℄);563 end564 end565566 # for all traffi lights we first write the number of slowmodes of this traffi lightto the file 'Output2File '.567 # Herafter we write all the start times of these slowmodes to the file followed byall the end times of these slowmodes to the file 'Output2File '.568 for i in range(N):569 if size(Output2 .Slowmode [i℄. StartTime ) > size(Output2 .Slowmode [i℄. EndTime ): # Aslowmode is not finished yet570 Output2 .Slowmode [i℄. EndTime = Output2 .Slowmode [i℄. EndTime + [ CurrentTime ℄;571 end572 write (Output2File , "%s \t", size(Output2 .Slowmode [i℄. StartTime ));573 for j in range (size(Output2 .Slowmode [i℄. StartTime )):574 write (Output2File , "%s \t", Output2 .Slowmode [i℄. StartTime [j℄);575 end576 for j in range (size(Output2 .Slowmode [i℄. StartTime )):577 write (Output2File , "%s \t", Output2 .Slowmode [i℄. EndTime [j℄);578 end579 end580581 # For all traffi lights write the queue lengths to the file 'Output2File ' andhereafter write the times orresponding to these queue lengths to the file 'Output2File '582 for i in range(N):583 write (Output2File , "%s \t", size(Output2 .X[i℄));584 for j in range (size(Output2 .X[i℄)):585 write (Output2File , "%s \t", Output2 .X[i℄[j℄);586 end587 for j in range (size(Output2 .X[i℄)):588 write (Output2File , "%s \t", Output2 .Time[i℄[j℄);589 end590 end591592 # Go to a new line for the next testase .593 write(Output2File , "\n");594595 return Output2596 end597598 # Calulate the traffi light in the set G that is swithed to green first (of thetraffi lights in the set G).599 # The traffi light that satisfies tf[i℄.tfi = 0.0 is the first traffi light in theset G to swith to green .600 # This beause tl[i℄.tfi seonds after the first traffi light has swithed to greentraffi light i swithes to green .601 fun int CalServedFirst(set int G; list traffilight tl):602 int tlServedFirst;603604 for i in G:605 if tl[i℄. tfi == 0.0:606 tlServedFirst=i;607 end608 end ;609610 return tlServedFirst611 end612 124



613 # Calulate the traffi light in the set G that is swithed to red first (of thetraffi lights in the set G).614 # The traffi light in the set G that has the largest value for tf[i℄.tif is the firsttraffi light in the set G to swith to red .615 # This beause tl[i℄.tif seonds after traffi light i has swithed to red the firsttraffi light in the other set is swithed to green .616 fun int CalSwithedFirst(set int G; list traffilight tl):617 int tlSwithedFirst;618 real Maxtif = 0.0;619620 for i in G:621 if tl[i℄. tif >= Maxtif :622 tlSwithedFirst=i;623 Maxtif = tl[i℄.tif;624 end625 end ;626627 return tlSwithedFirst628 end629630 # This funtion ontrols whih of the traffi lights are green and whih of the traffilights are red631 fun tlControlInfoType CalGreenTls(list traffilight tl; list set int G; real Ctime;tlControlInfoType tlControlInfo):632633 if tlControlInfo. Swithed : # In this ase we already swithed the 'tlSwithedFirst'to red .634 if (Ctime - tlControlInfo.ToLS) >= tl[tlControlInfo.tlSwithedFirst℄.tif : # tl[tlControlInfo.tlSwithedFirst℄.tif seonds after we swithed the traffilight 'tlSwithedFirs' to red a traffilight in the other set is swithed to green.635 tlControlInfo.SetServed , tlControlInfo.SetNotServed = tlControlInfo.SetNotServed ,tlControlInfo.SetServed ; # We hange the set that is urrently served636 tlControlInfo.tlSwithedFirst = CalSwithedFirst(G[ tlControlInfo.SetServed ℄, tl); # We alulate the traffi light (in the set that is urrentlyserved ) that was swithed to green the first (of the traffilights in the setthat is urrently served ).637 tlControlInfo.tlServedFirst = CalServedFirst(G[tlControlInfo.SetServed ℄, tl);# We alulate the traffi light (in the set that is urrentlyserved ) that will be swithed to red the first (of the traffilights in theset that is urrently served ).638 tlControlInfo.ToLS = Ctime; # The last time that the traffi light 'tlSwithedFirst' was swithed to red or the traffi light 'tlServedFirst' wasswithed to green .639 tlControlInfo.Swithed = false ; # We have not yet swithed the traffi light 'tlSwithedFirst' to red .640 end641 else: # If we have not yet swithed the traffi light 'tlSwithedFirst' to red weevaluate whether we should swith the traffi light 'tlSwithedFirst' to red .642 tlControlInfo.Swithed = swith (tl , G, tlControlInfo.SetServed , tlControlInfo.SetNotServed , tlControlInfo.tlServedFirst , tlControlInfo.tlSwithedFirst , Ctime- tlControlInfo.ToLS);643 if tlControlInfo.Swithed : # If we swith the first traffi light in the setSetServed to red , we hange ToLS (Time of Last swith ) ot the urrent time.644 tlControlInfo.ToLS = Ctime; # The last time that the traffi light 'tlSwithedFirst' was swithed to red or the traffi light 'tlServedFirst' wasswithed to green .645 end646 end ;647648 for i in G[tlControlInfo.SetNotServed℄: # Whenever a set is not served all thetraffi lights in this set are red . 125



649 tlControlInfo.Green[i℄ = false;650 end651652 for i in G[tlControlInfo.SetServed ℄:653 if tlControlInfo.Swithed : # (tl[tlControlInfo. tlSwithedFirst℄.tif - tl[i℄.tif )seonds after 'tlSwithedFirst' swithed to red , traffilight i swithes to red654 if (Ctime - tlControlInfo.ToLS) < (tl[tlControlInfo. tlSwithedFirst℄.tif - tl[i℄.tif ):655 tlControlInfo.Green[i℄ = true;656 else:657 tlControlInfo.Green[i℄ = false ;658 end659 else: # tl[i℄.tfi seonds after 'tlServedFirst' swithed to green , traffilight iswithes to green . During the first green time of set 1 (when tlControlInfo.ToLS = 0.0) all traffi lights in set 1 are green .660 if (Ctime - tlControlInfo.ToLS) >= tl[i℄.tfi or tlControlInfo.ToLS <= 0.00001:661 tlControlInfo.Green[i℄ = true;662 else:663 tlControlInfo.Green[i℄ = false ;664 end665 end666 end ;667668 return tlControlInfo669 end670671 # With this funtion we evaluate whether we should swith the traffi light 'tlSwithedFirst' to red if we have not yet swithed the traffi light 'tlSwithedFirst' to red .672 # For more information about when we swith the traffi light 'tlSwithedFirst to redsee ??????673 fun bool swith (list traffilight tl; list set int G; int SetServed ; int SetNotServed;int tlServedFirst; int tlSwithedFirst; real tstar):674 bool b13 = false ;675676 # tstar is the time that has elapsed sine the traffi light 'tlServedFirst' wasswithed to green.677 # If the maximum green time is exeeded then we swith the traffi light 'tlSwithedFirst' to red .678 if tstar >= (tl[ tlSwithedFirst℄.gmax + tl[ tlSwithedFirst℄.tfi):679 return true680 end681682 # We swith the traffi light to red (that must be swithed first) if otherwise aqueue would exeed its maximum queue length (for a hybrid fluid model ).683 # If we swith 'tlSwithedFirst' to red then traffi light j (in the set that is notserved ) will be green (tl[tlSwithedFirst℄.tif + tl[j℄.tfi ) seonds684 for j in G[SetNotServed℄:685 if size(tl[j℄. ArrivalTime ) >= tl[j℄. Xmax - (tl[ tlSwithedFirst℄.tif + tl[j℄.tfi)*tl[j℄. lambda :686 return true687 end688 end689690 # We also swith the traffi light 'tlSwithedFirst' to red whenever onditions 1.1,1.2 and 1.3 are satisfied691692 # Is ondition 1.3 satisfied ?693 for j in G[SetNotServed℄:694 if size(tl[j℄. ArrivalTime ) >= tl[j℄. Xsharp and b13 == false :695 b13 = true; 126



696 end697 end698699 # If ondition 1.3 is not satisfied and ondition 2 and 3 are both not satisfied thenwe do not swith traffi light 'tlSwithedFirst' to red700 if b13 == false :701 return false702 end703704 # Condition 1.1 is satisfied whenever all traffi lights j in the set 'SetServed 'satisfy size(tl[j℄. ArrivalTime ) <= ((tl[tlSwithedFirst℄.tif - tl[j℄.tif )*(tl[j℄.mu - tl[j℄.lambda ) - max ((tl[j℄.tfi -tstar ) ,0.0) )705 # Condition 1.2 is satisfied whenever all traffi lights j in the set 'SetServed 'satisfy tstar > (tl[j℄.gmin + tl[j℄.tfi + tl[j℄.tif - tl[ tlSwithedFirst℄.tif ).706 for j in G[SetServed ℄:707 if size(tl[j℄. ArrivalTime ) > ((tl[ tlSwithedFirst℄.tif - tl[j℄.tif)*(tl[j℄.mu - tl[j℄. lambda ) - max ((tl[j℄.tfi -tstar) ,0.0)) or tstar < (tl[j℄.gmin + tl[j℄.tfi +tl[j℄.tif - tl[tlSwithedFirst℄. tif):708 # If ondition 1.1 or 1.2 is not satisfied and ondition 2 and 3 are both notsatisfied then we do not swith traffi light 'tlSwithedFirst' to red709 return false710 end711 end712713 # if ondition 1.1, 1.2 and 1.3 are all satisfied then we swith traffi light 'tlSwithedFirst' to red714 return true715 end716717 # This Funtion updates the average delay whenever a vehile has departed .718 # About the input of this funtion :719 # - NumOfDepartures is the number of Departures at the intersetion (inluding thevehile that has just departed )720 # - AvgDelay is the average delay of the vehiles (exluding the vehile that has justdeparted )721 fun real UpdateAvgDelay(int NumOfDepartures; real AvgDelay ; real Delay):722 AvgDelay = (NumOfDepartures -1)/ NumOfDepartures* AvgDelay + 1/ NumOfDepartures*Delay; #updating average delay723724 return AvgDelay725 end726727728 # This Funtion updates the fration of time that a queue exeeded its maximum queuelength .729 fun real UpdateFraOverflow(real CurrentTime ; real TimeOfPreviousChange; realFraOverflow; int X; real Xmax):730 if X > Xmax:731 FraOverflow = (CurrentTime -TimeOfPreviousChange )/CurrentTime *FraOverflow +TimeOfPreviousChange /CurrentTime # updating fration of overflow732 else:733 FraOverflow = (CurrentTime -TimeOfPreviousChange )/CurrentTime *FraOverflow734 end735736 return FraOverflow737 end738739 # Funtion alulating x squared740 fun real Square (real x):741 return x*x742 end 127



743744 # Calulating the average of a list745 fun real mean(list real xs):746 real sum;747 for x in xs:748 sum = sum + x;749 end ;750751 return sum / size(xs)752 end753754 # Calulating the standard deviation of the elements inside a list.755 fun real StdDev (list real xs):756 real avgx;757 real sum;758 avgx = mean(xs);759 for x in xs:760 sum = sum + Square (x - avgx);761 end762763 return sqrt (1/( size(xs) -1)*sum)764 end
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Appendix CProofs (Trajetory Optimization)C.1 Analytial Solution Optimization Problem 1In this setion we �nd an analyti solution for the optimization problem posed in Setion 4.8. Weassume that we an �nd a solution to this optimization problem. Below we show the objetive funtionand the inequality onstraints of the optimization problem:Objetive:
J(y1, y2) =

k(y2 + 1)2 + (y1 + 1)2

1 + y1 + y2
. (C.1a)Constraints:

b1 : y1 ≥ ρ1
1− ρ1

(1 + y2), (C.1b)
b2 : y2 ≥ ρ2

1− ρ2
(1 + y1), (C.1)

b3 : ymin
1 ≤ y1, (C.1d)

b4 : ymin
2 ≤ y2, (C.1e)

b5 : y1 ≤ ymax
1 , (C.1f)

b6 : y2 ≤ ymax
2 , (C.1g)where

0 < k ≤ 1,

ymin
i ,≥ 0 i = 1, 2,

0 < ρi < 1, i = 1, 2,

ρ1 + ρ2 < 1,

σ1,2,1 > 0.Unonstrained optimization problem First we onsider the unonstrained problem. By takingthe derivative of (C.1a) with respet to y1 and y2 and setting them to zero we obtain two stationary129



points:
(y1, y2) = (−1,−1) ,

(y1, y2) =

(

k − 1

k + 1
,
1− k

k + 1

)

.

(y1, y2) = (−1,−1) is a loal maximum and (y1, y2) =
(

k−1
k+1 ,

1−k
k+1

) is a loal minimum. In FigureC.1 we have shown some level sets for di�erent values of k. As an be seen in these plots, the level setsare ellipsis. The shape of these ellipses depends on the value of k. Note that the sales on the axes ofthese �gures di�er.

(a) Level sets for k = 0.01 (b) Level sets for k = 0.1

() Level sets for k = 0.5 (d) Level sets for k = 1Figure C.1: Level sets for di�erent values of k.Both stationary points (the loal maximum as the loal minimum) annot be positioned in thefeasible area of the onstrained optimization problem. As a result, one of the onstraints b1 until b6must be ative, i.e. the onstrained minimizer is positioned on a boundary of the feasible area.130



Feasible area In Figure C.2 we an see all onstraints of the optimization problem. In this �gure allboundaries of the onstraints are positioned in the feasible area.PSfrag replaements
y2

y1(0, 0)

ymin
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ymin
1
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ymax
2
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1

feasible area
Figure C.2: Feasible area of the optimization problem.Upper bounds We an derive ∂J

∂y1
+ ∂J

∂y2
= 2(y2+ky1+(k+1)y1y2)

(1+y1+y2)2
whih is greater than zero for y1 >

0 ∧ y2 > 0. Hene, on the boundary of onstraint b5 and b6 and in the feasible area we an alwaysderease the linear ost funtion J by moving towards the y1 − axis or y2 − axis. As a onsequene,the global onstrained minimum an only be positioned on a boundary of onstraint b1, b2, b3 or b4.Unonstrained minimum on a lineLemma C.1 On the line y2 = ay1 + by1 were a, b ∈ R
+, the linear ost funtion J has two stationarypoints: a loal (unonstrained) minimum and a loal (unonstrained) maximum. The y1-position of theloal minimum ould be non-negative. The y1-position of the loal maximum ould not. The position ofthe loal (unonstrained) minimum on the line y2 = ay1 + by1 is:

yunc,min
1 =

−(1 + b)

1 + a
+

√

(a− b)2 + (1 + b)2k

(1 + a)
√

(1 + a2k)
.Proof. In Figure C.7 we give an overview of what we are about to prove. In this �gure we an see thefollowing:- A loal (unonstrained) maximum at y1 = root1 = −(1+b)

1+a
−

√
((a−b)2+(1+b)2k)

(1+a)
√

(1+a2k)
< 0.- An asymptote at −(1+b)

1+a
< 0.- A loal (unonstrained) minimum at y1 = root2 = −(1+b)

1+a
+

√
((a−b)2+(1+b)2k)

(1+a)
√

(1+a2k)
.
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PSfrag replaements
y2

root1
−(1+b)
1+a

< 0

root2

y1Figure C.3: Overview of this proof.Using y2 = ay1 + b and (C.1a) we obtain the following equation for J :
J =

tC + ty1y1 + ty2
1
y21

nC + ny1y1
, (C.2)where

tC = 1 + (1 + b)2k > 0,

ty1 = 2 + 2a(1 + b)k > 0,

ty2
1
= 1 + a2k > 0,

nC = 1 + b > 0,

ny1 = 1 + a > 0.Note that |J | goes to in�nity for y1 → −(1+b)
1+a < 0, i.e. there is an asymptote at y1 = −(1+b)

1+a < 0.When taking the derivative with respet to y1 we obtain:
dJ

dy1
=

nCty1 − tCny1 + 2nCty2
1
y1 + ny1ty2

1
y21

(nC + ny1y1)
2

. (C.3)We an �nd the y1-position of the stationary points of (C.2) by setting the denominator of (C.3)equal to zero. By using the ab-equation and after some rewriting we an �nd expressions for the 2stationary points: root1 and root2. 132



root1 =
−(1 + b)

1 + a
−
√

(a− b)2 + (1 + b)2k

(1 + a)
√

(1 + a2k)
< 0,

root2 =
−(1 + b)

1 + a
+

√

(a− b)2 + (1 + b)2k

(1 + a)
√

(1 + a2k)
.Note that these roots are real (not imaginary) sine (a− b)2 + (1+ b)2k > 0. We an see that root1is smaller than the asymptote. The other stationary point root2 is larger than the asymptote.We an easily see that root1 is a maximum and root2 is a minimum beause the objetive funtionin (C.2) goes to ∞ for y1 → ∞ and the objetive funtion in (C.2) goes to −∞ for y1 → −∞.Hene, the root yunc,min

1 that orresponds to the unonstrained minimum on the line y2 = ay1 + bis equal to:
yunc,min
1 =

−(1 + b)

1 + a
+

√

(a− b)2 + (1 + b)2k

(1 + a)
√
1 + a2k

. (C.4)Similarly to the proof of Lemma C.1 we an �nd that on the line y1 = ay2 + b, where a, b ∈ R
+,the linear ost funtion J has two stationary points: a loal (unonstrained) minimum and a loal(unonstrained) maximum. The y2-position of the loal minimum ould be non-negative. The y1-position of the loal maximum ould not. The position of the loal (unonstrained) minimum on theline y1 = ay2 + b is:

yunc,min
2 = − (1 + b)

1 + a
+

√

(1 + b)2 + (a− b)2k

(1 + a)
√
a2 + k

. (C.5)Using (C.15) and (C.5) we an �nd the unonstrained minima on the boundaries of the onstraints
b1 until b4. By writing the boundaries of these onstraint in the form y1 = ay2 + b, a, b ∈ R+ or
y2 = ay1 + b, a, b ∈ R+ we have obtained the following expressions for ybi(k) =

(

ybi
1
(k), ybi

2
(k)
),

i = 1, ..., 4, whih is the (y1, y2)−position of the minimum on the boundary of onstraint bi:
yb1(k) =

(

ρ1
√

k(1− ρ1)2 + ρ21
,−1 +

1− ρ1
√

k(1− ρ1)2 + ρ21

)

,

yb2(k) =

(

−1 +

√
k(1 − ρ2)

√

(1− ρ2)2 + kρ22
,

√
kρ2

√

(1 − ρ2)2 + kρ22

)

,

yb3(k) =

(

ymin
1 ,−(1 + ymin

1 ) +

√

(ymin
1 )2k + (1 + ymin

1 )2√
k

)

,

yb4(k) =

(

−(1 + ymin
2 ) +

√

(ymin
2 )2 + (1 + ymin

2 )2k, ymin
2

)

. (C.6)We an see that yb2
1
(k) = −1 +

√
k(1−ρ2)√

(1−ρ2)2+kρ2
2

< 0. Thus, the unonstrained minimum on theboundary of onstraint b2 annot be positioned in the feasible area.As a result, the onstrained global minimizer of the optimization problem with objetive (C.1a) andonstraints (C.1b) until (C.1g) is positioned on the boundary of onstraint b1, b3 or b4.133



Monotoniity For now we are going to onsider the optimization problem with only onstraints b1,b3and b4, i.e. for the moment we forget about onstraints b2, b5 and b6 (see Figure C.4). Note that thethree lines an interset in di�erent ways.PSfrag replaements
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Figure C.4: Whenever we onsider only onstraints b1,b3 and b4 and we inrease k, the position of theonstraint minimizer follows the arrows annotated to the boundaries of the 3 onstraints.Lemma C.2 When we onsider the onstrained problem with the objetive shown in (C.1a) and on-straints b1, b3 and b4, the position of the onstrained minimum follows the arrows annotated to theboundaries in Figure C.4 when inreasing k.Proof. We an easily see that the derivatives ∂yb1

1

∂k
, ∂yb3

2

∂k
and ∂yb4

1

∂k
are aording to the arrows in FigureC.4:We an easily see that the derivatives ∂yb1

1

∂k
, ∂yb3

2

∂k
and ∂yb4

1

∂k
are aording to the arrows in FigureC.4:

∂yb1
1

∂k
= − (1 − ρ1)

2ρ1
2(k(1− ρ1)2 + ρ21)

1.5
< 0,

∂yb3
2

∂k
= − (1− ymin

1 )2

2k1.5
√

(1 + ymin
1 )2 + (ymin

1 )2k
< 0,

∂yb4
1

∂k
=

(1 − ymin
2 )2

2
√

k(1 + ymin
2 )2 + (ymin

2 )2
> 0.From now on we use ki,j , i, j = 1, ..., 6 for the value of k for whih ybi is positioned at the intersetionof the boundary of onstraint bi and the boundaries of onstraint bj.We an derive:
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k1,3 =
ρ21(1 − ymin2

1 )

(1 − ρ1)2ymin2

1

,

k1,4 =
1

(1 + ymin
2 )2

− ρ21
(1− ρ1)2

,

k3,1 =
ρ21(1 + ymin

1 )2

(1 − ρ21)y
min2

1

,

k3,4 =
(1 + ymin

1 )2

(1 + ymin
2 )(1 + ymin

2 + 2ymin
1 )

,

k4,1 =
1

(1 − ρ1)2
− ymin2

2

(1 + ymin
2 )2

,

k4,3 =
(1 + ymin

1 )(1 + ymin
1 + 2ymin

2 )

(1 + ymin
2 )2

.We have to show that:- k4,3 ≥ k3,4 when the intersetion between the boundary of b4 and the boundary of b3 is positioned inthe feasible area.- k4,1 ≥ k1,4 when the intersetion between the boundary of b4 and the boundary of b1 is positioned inthe feasible area.- k3,1 ≥ k1,3 when the intersetion between the boundary of b3 and the boundary of b1 is positioned inthe feasible area.We an see that always k4,3 ≥ k3,4 beause 1 + ymin
1 ≤ 1 + ymin

1 + 2ymin
2 (hene the numerator of

k4,3 is larger than the nominator of k3,4) and 1 + ymin
2 ≤ 1 + ymin

2 + 2ymin
1 (hene the denominatorof k4,3 is smaller than the denominator of k3,4). It also holds that k4,1 ≥ k1,4 beause we an derive

k4,1 − k1,4 =
2(ρ1+ymin

2 )(1+ρ1y
min
2 )

(1−ρ1)2(1+ymin
2 )2

> 0. We an derive that the y2-position of the intersetion betweenthe boundary of b3 and the boundary is non-negative for ymin
1 ≥ ρ1

1−ρ1
. When using ymin

1 ≥ ρ1

1−ρ1
wean �nd k3,1 − k1,3 =

(ymin
1 −ρ1)ρ

2
1(1+ymin

1 )

(1−ρ1)2(1+ρ1)ymin2
1

≥ ρ4
1(1+ymin

1 )

(1−ρ1)2(1+ρ1)ymin2
1

≥ 0. Hene, it holds that k3,1 ≥ k1,3when the intersetion between the boundary of b3 and the boundary of b1 is positioned in the feasiblearea.Thus, when we onsider the onstrained problem with the objetive shown in (C.1a) and onstraints
b1, b3 and b4, the position of the onstrained minimum follows the arrows annotated to the boundarieswhen inreasing k.Lets again onsider the optimization problem with onstraints b1 until b6. We know that the on-strained minimum is positioned on the boundary of b1, b3 or b4. We an obtain expressions for theonstraint minimum on eah of these lines. We use kmin

i for the smallest value for k suh that the un-onstrained minimum ybi(k) is positioned in the feasible area. We use kmax
i for the largest value for ksuh that the unonstrained minimum ybi(k) is positioned in the feasible area. Whenever the boundaryof onstraint bi is not positioned in the feasible area (and hene there is no onstrained minimum onthis boundary) it holds that kmin

i > kmax
i . Before we give the expressions for kmin

i , i = 1, 3, 4 and kmax
i ,we give the relevant expressions for ki,j : 135



k1,2 =
(1 − ρ2)(1− ρ2 − 2ρ1)

(1− ρ1)2
,

k1,3 =
ρ21(1− ymin2

1 )

(1 − ρ1)2ymin2

1

,

k1,4 =
1

(1 + ymin
2 )2

− ρ21
(1− ρ1)2

,

k1,5 =
1

(1 + ymax
2 )2

− ρ21
(1− ρ1)2

,

k1,6 =
ρ21(1− ymax2

1 )

(1 − ρ1)2ymax2

1

,

k3,1 =
ρ21(1 + ymin

1 )2

(1 − ρ21)y
min2

1

,

k3,2 =
(1− ρ2)

2(1 + ymin
1 )2

(1 + ymin
1 )2 − (1− ρ2)2ymin2

1

,

k3,4 =
(1 + ymin

1 )2

(1 + ymin
2 )(1 + ymin

2 + 2ymin
1 )

,

k3,5 =
(1 + ymin

1 )2

(1 + ymax
2 )(1 + ymax

2 + 2ymin
1 )

,

k4,1 =
1

(1 − ρ1)2
− ymin2

2

(1 + ymin
2 )2

,

k4,2 =
(1− ρ22)y

min2

2

ρ22(1 + ymin
2 )2

,

k4,3 =
(1 + ymin

1 )(1 + ymin
1 + 2ymin

2 )

(1 + ymin
2 )2

,

k4,6 =
(1 + ymax

1 )(1 + ymax
1 + 2ymin

2 )

(1 + ymin
2 )2

.We found the following expressions for the onstrained minima on the boundaries of onstraints b1,
b3 and b4.Constrained minimum on the boundary of b1:

yb1(kmin
1 ) if k ≤ kmin

1 ≤ kmax
1 ,

yb1(k) if kmin
1 ≤ k ≤ kmax

1 ,

yb1(kmax
1 ) if kmin

1 ≤ kmax
1 ≤ k,where

kmin
1 =max{k1,5, k1,6},

kmax
1 =min{k1,2, k1,3, k1,4}.136



Constrained minimum on the boundary of b3:
yb3(kmin

3 ) if k ≤ kmin
3 ≤ kmax

3 ,

yb3(k) if kmin
3 ≤ k ≤ kmax

3 ,

yb3(kmax
3 ) if kmin

3 ≤ kmax
3 ≤ k,where

kmin
3 =max{k3,1, k3,5},

kmax
3 =min{k3,2, k3,4}.Constrained minimum on the boundary of b4:

yb4(kmin
4 ) if k ≤ kmin

4 ≤ kmax
4 ,

yb4(k) if kmin
4 ≤ k ≤ kmax

4 ,

yb4(kmax
4 ) if kmin

4 ≤ kmax
4 ≤ k,where

kmin
4 =max{k4,1, k4,3},

kmax
4 =min{k4,2, k4,6}.Solution Using Lemma C.2 we an �nd the analytial solution (shown below) for the position of theonstrained minimizer (ycon,min

1 , ycon,min
2

).
(

y
con,min
1 , y

con,min
2

)

=



























































yb1(kmin
1 ) if k ≤ kmin

1 ≤ kmax
1 ,

yb1(k) else if kmin
1 < k < kmax

1 ,

yb1(kmax
1 ) else if kmax

3 < kmin
3 ∨ kmax

4 < kmin
4 ,

yb1(kmin
3 ) else if k ≤ kmin

3 ≤ kmax
3 ,

yb1(k) else if kmin
3 < k < kmax

3 ,

yb1(kmax
3 ) else if kmax

4 < kmin
4 ,

yb1(kmin
4 ) else if k ≤ kmin

4 ≤ kmax
4 ,

yb1(k) else if kmin
4 < k < kmax

4 ,

yb1(kmax
4 ) otherwise.where

y
b1(k) =

(

ρ1
√

k(1− ρ1)2 + ρ21
,−1 +

1− ρ1
√

k(1− ρ1)2 + ρ21

)

,

y
b3(k) =

(

y
min
1 ,−(1 + y

min
1 ) +

√

(ymin
1 )2k + (1 + ymin

1 )2√
k

)

,

y
b4(k) =

(

−(1 + y
min
2 ) +

√

(ymin
2 )2 + (1 + ymin

2 )2k, ymin
2

)

,

k
min
1 = max{k1,5, k1,6},

k
max
1 = min{k1,2, k1,3, k1,4},137



k
min
3 = max{k3,1, k3,5},

k
max
3 = min{k3,2, k3,4},
k
min
4 = max{k4,1, k4,3},

k
max
4 = min{k4,2, k4,6},

k1,2 =
(1− ρ2)(1− ρ2 − 2ρ1)

(1− ρ1)2
,

k1,3 =
ρ21(1− ymin2

1 )

(1− ρ1)2ymin2

1

,

k1,4 =
1

(1 + ymin
2 )2

− ρ21
(1− ρ1)2

,

k1,5 =
1

(1 + ymax
2 )2

− ρ21
(1− ρ1)2

,

k1,6 =
ρ21(1− ymax2

1 )

(1− ρ1)2ymax2

1

,

k3,1 =
ρ21(1 + ymin

1 )2

(1− ρ21)y
min2

1

,

k3,2 =
(1− ρ2)

2(1 + ymin
1 )2

(1 + ymin
1 )2 − (1− ρ2)2ymin2

1

,

k3,4 =
(1 + ymin

1 )2

(1 + ymin
2 )(1 + ymin

2 + 2ymin
1 )

,

k3,5 =
(1 + ymin

1 )2

(1 + ymax
2 )(1 + ymax

2 + 2ymin
1 )

,

k4,1 =
1

(1− ρ1)2
− ymin2

2

(1 + ymin
2 )2

,

k4,2 =
(1− ρ22)y

min2

2

ρ22(1 + ymin
2 )2

,

k4,3 =
(1 + ymin

1 )(1 + ymin
1 + 2ymin

2 )

(1 + ymin
2 )2

,

k4,6 =
(1 + ymax

1 )(1 + ymax
1 + 2ymin

2 )

(1 + ymin
2 )2

.C.2 Analytial Solution Optimization Problem 2In this setion we �nd an analyti solution for the optimization problem posed in Setion 7.5.3. Beforeyou read this setion we advie you to read Setion C.1 �rst. In Setion C.1 we �nd the analytialsolution of a more simple optimization. However, �nding the analytial solution is very similar for bothoptimization problems. Below we show the objetive funtion and the inequality onstraints of theoptimization problem. We assume that we an �nd a solution to this optimization problem.
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J(y1, y2) =
(1 + y2)

2 + k1(1 + y1)
2 + k2(k3 + y1)

2

1 + y1 + y2
, (C.7)

b1 : y2 ≥ α2

1− α2
(1 + y1),

b2 : y2 ≥ α3y1 + k3
1− α3

− 1,

b3 : y1 ≥ α1

1− α1
(1 + y2),

b4 : ymin
1 ≤ y1,

b5 : ymin
2 ≤ y2,

b6 : y1 ≤ ymax
1 ,

b7 : y2 ≤ ymax
2 ,where

0 < k1 + k2 ≤ 1,

0 < k3, k1, k2 ≤ 1,

ymin
i ≥ 0, i = 1, 2,

αi > 0, i = 1, 2, 3,

α1 + α2 < 1,

α1 + α3 < 1. (C.8)Unonstrained optimization problem First we onsider the unonstrained problem. By takingthe derivative of (C.7) with respet to y1 and y2 and setting them to zero we obtain two stationarypoints:
(y1, y2) =

(

−1−
√

(k1 + k2)(k1(1 + k2(1− k3)2) + k2k2
3)√

k1 + k2(k1 + k2k3)
,
−1− k2(1− k3)−

√

(k1 + k2)(k1(1 + k2(1− k3)2) + k2k2
3)

1 + k1 + k2

)

,(C.9a)
(y1, y2) =

(

−1 +

√

(k1 + k2)(k1(1 + k2(1− k3)2) + k2k2
3)√

k1 + k2(k1 + k2k3)
,
−1− k2(1− k3) +

√

(k1 + k2)(k1(1 + k2(1− k3)2) + k2k2
3)

1 + k1 + k2

)

.(C.9b)The oordinate in (C.9a) is a loal maximum. It is positioned outside the feasible area sine bothits y1-oordinate and its y2-oordinate are negative. The oordinate in (C.9b) is a loal minimum. Thispoint is positioned outside the feasible area beause for this oordinate it holds that y1 + y2 ≤ 0. Weproof this below:
y1 + y2 =

−√
k1 + k2 +

√

k1(1 + k2(1− k3)2) + k2k23√
k1 + k2

.139



Thus, y1 + y2 ≤ 0 if k1 + k2 ≥ k1(1 + k2(1 − k3)
2) + k2k

2
3 . Below we prove that this is indeed thease:

k1 + k2 ≥ k1(1 + k2(1− k3)
2) + k2k

2
3 ,

k2 ≥ k1k2(1− k3)
2 + k2k

2
3 ,

1 ≥ k1(1− k3)
2 + k23 .Thus, both stationary points (the loal maximum as the loal minimum) annot be positioned inthe feasible area of the onstrained optimization problem. As a result, one of the onstraints b1 until

b7 must be ative, i.e. the onstrained minimizer is positioned on a boundary of the feasible area.Feasible area In Figure C.5 we an see all onstraints of the optimization problem. In this �gure allboundaries of the onstraints are positioned in the feasible area. However, this does not have to be thease. PSfrag replaements
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ymin
2

ymin
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b7

b1
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ymax
2

ymax
1

feasible area b2

Figure C.5: Feasible area of the optimization problem.Writing the boundaries of the onstraints bi, i = 1, 2, 3 in the form y2 = aiy1 + bi gives us:
a1 =

α2

1− α2
> 0,

a2 =
α3

1− α3
> 0,

a3 =
1− α1

α1
> 0. (C.10)Lemma C.3 The boundary of onstraint b2, i.e. the line y2 = α3y1+k3

1−α3
− 1, ould be positioned in thefeasible area only if α3 ≥ α2. In this ase it holds that a3 ≥ a2.Proof. When we write the onstraints bi, i = 1, 2 in the form y2 = aiy1 + bi we get:
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a1 =
α2

1− α2
,

a2 =
α3

1− α3
,

b1 =
α2

1− α2
,

b2 =
k3

1− α3
− 1.When α3 < α2 it holds that b1 − b2 = 1

1−α2
− k3

1−α3
< 0. In this ase it holds that a2 > a1 and theboundary of onstraint b2 annot be positioned in the feasible area. This situation is shown in FigureC.6.Hene, boundary of onstraint b2, i.e. the line y2 = α3y1+k3

1−α3
− 1, ould be positioned in the feasiblearea only if α3 ≥ α2. In this ase it holds that a3 ≥ a2.

PSfrag replaements
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Figure C.6: The boundary of onstraint b2 ould only be positioned in the feasible area whenever
α2 > α1.Upper bounds We an derive:

∂J

∂y1
+

∂J

∂y2
=

2y1 + k2(k3 + y1)(y2 + (1− k3)) + (k1 + (k1 + 1)y1)y2
(1 + y1 + y2)2

.We an see that ∂J
∂y1

+ ∂J
∂y2

> 0 if y1 > 0 ∧ y2 ≥ 0. Hene, on the boundary of onstraint b6 and
b7 and in the feasible area we an always derease the linear ost funtion J by moving towards the
y1 − axis or y2 − axis. As a onsequene, the global onstrained minimum an only be positioned on aboundary of onstraint b1, b2, b3, b4 or b5.Unonstrained minimum on a line 141



Lemma C.4 On the line y2 = ay1 + by1 were a, b ∈ R
+, the linear ost funtion J has two stationarypoints: a loal (unonstrained) minimum and a loal (unonstrained) maximum. The y1-position of theloal minimum ould be non-negative. The y1-position of the loal maximum ould not. The position ofthe loal (unonstrained) minimum on the line y2 = ay1 + by1 is:

yunc,min
1 = − (1 + b)

1 + a
+

√

(1 + b)2 + k1(a− b)2 + k2((1 + a)k3 − (1 + b))2

(1 + a)
√
a2 + k1 + k2

. (C.11)Proof. In Figure C.7 we give an overview of what we are about to prove. In this �gure we an see thefollowing:- A loal (unonstrained) maximum at y1 = root1 = − (1+b)
1+a −

√
(1+b)2+k1(a−b)2+k2((1+a)k3−(1+b))2

(1+a)
√
a2+k1+k2

< 0.- An asymptote at −(1+b)
1+a

< 0.- A loal (unonstrained) minimum at y1 = root2 = − (1+b)
1+a

+

√
(1+b)2+k1(a−b)2+k2((1+a)k3−(1+b))2

(1+a)
√
a2+k1+k2

.
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y1Figure C.7: Overview of this proof.Using y2 = ay1 + b and (C.1a) we obtain the following equation for J :
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J =
tC + ty1y1 + ty2

1
y21

nC + ny1y1
, (C.12)

tC = (1 + b)2 + k2k
2
3 ,

ty1 = 2(a(1 + b) + k1 + k2k3),

ty2
1
= a2 + k1 + k2,

nC = 1 + b,

ny1 = 1 + a. (C.13)Note that |J | goes to in�nity for y1 → −(1+b)
1+a < 0, i.e. there is an asymptote at y1 = −(1+b)

1+a < 0.When taking the derivative with respet to y1 we obtain:
dJ

dy1
=

nCty1 − tCny1 + 2nCty2
1
y1 + ny1ty2

1
y21

nC + ny1y1
. (C.14)We an �nd the y1-position of the stationary points of (C.12) by setting the denominator of (C.14)equal to zero. By using the ab-equation and after some rewriting we an �nd expressions for the twostationary points: root1 and root2.

root1 = − (1 + b)

1 + a
−
√

(1 + b)2 + k1(a− b)2 + k2((1 + a)k3 − (1 + b))2

(1 + a)
√
a2 + k1 + k2

< 0,

root2 = − (1 + b)

1 + a
+

√

(1 + b)2 + k1(a− b)2 + k2((1 + a)k3 − (1 + b))2

(1 + a)
√
a2 + k1 + k2

.Note that these roots are real (not imaginary) sine (1+b)2+k1(a−b)2+k2((1+a)k3−(1+b))2 > 0.We an see that root1 is smaller than the asymptote. The other stationary point root2 is larger thanthe asymptote.We an easily see that root1 is a maximum and root2 is a minimum beause the objetive funtionin (C.12) goes to ∞ for y1 → ∞ and the objetive funtion in (C.12) goes to −∞ for y1 → −∞.Hene, the root yunc,min
1 that orresponds to the unonstrained minimum on the line y2 = ay1 + bis equal to:
− (1 + b)

1 + a
+

√

(1 + b)2 + k1(a− b)2 + k2((1 + a)k3 − (1 + b))2

(1 + a)
√
a2 + k1 + k2

. (C.15)Similarly to the proof of Lemma C.1 we an �nd that on the line y1 = ay2 + b, where a, b ∈ R
+,the linear ost funtion J has two stationary points: a loal (unonstrained) minimum and a loal(unonstrained) maximum. The y2-position of the loal minimum ould be non-negative. The y1-position of the loal maximum ould not. The position of the loal (unonstrained) minimum on theline y1 = ay2 + b is:

yun, min
2 = − (1 + b)

1 + a
+

√

k1(1 + b)2 + k2((k3 − 1)(1 + a) + (1 + b))2 + (a− b)2

(1 + a)
√

1 + a2(k1 + k2)
. (C.16)143



Using (C.11) and (C.16) we an �nd the unonstrained minima on the boundaries of the onstraints
b1 until b4. By writing the boundaries of these onstraint in the form y1 = ay2 + b, a, b ∈ R

+ or
y2 = ay1 + b, a, b ∈ R

+ we have obtained the following expressions for ybi(k1) =
(

ybi
1
(k1), y

bi
2
(k1)

),
i = 1, ..., 5, whih is the (y1, y2)−position of the minimum on the boundary of onstraint bi:

yb1(k1) =

(

−1 +
(1− α2)

√

1 + k2(1− k3)2
√

(k1 + k2)(1 − α2)2 + α2
2

,
α2

√

1 + k2(1− k3)2
√

(k1 + k2)(1 − α2)2 + α2
2

)

, (C.17a)
yb2(k1) =

(

−k3 +
(1 − α3)

√

k1(1− k3)2 + k23
√

(k1 + k2)(1 − α3)2 + α2
3

,−(1− k3) +
α3

√

k1(1− k3)2 + k23
√

(k1 + k2)(1 − α3)2 + α2
3

)

, (C.17b)
yb3(k1) =

(

√

k1 + k2k23α1
√

(k1 + k2)α2
1 + (1− α1)2

,−1 +

√

k1 + k2k23(1 − α1)
√

(k1 + k2)α2
1 + (1− α1)2

)

, (C.17)
yb4(k1) =

(

ymin
1 ,−(1 + ymin

1 ) +
√

(ymin
1 )2 + k1(1 + ymin

1 )2 + k2(ymin
1 + k3)2

)

, (C.17d)
yb5(k1) =

(

−(1 + ymin
2 ) +

√

(1 + ymin
2 )2 + k1(ymin

2 )2 + k2(1 + ymin
2 − k3)2√

k1 + k2
, ymin

2

)

. (C.17e)We an see that yb3
2
(k1) ≤ 0 beause√k1 + k2k23(1−α1) ≤ (1−α1) and√(k1 + k2)α2

1 + (1− α1)2 ≥
(1− α1). Hene at least one of the boundaries bi i = 1, 2, 4, 5 must be ative.Monotoniity For now we are going to onsider the optimization problem with only onstraints
bi,i = 1, 2, 4, 5, i.e. for the moment we forget about onstraints b3, b6 and b7 (see Figure C.8). Notethat the three lines an interset in di�erent ways.PSfrag replaements
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Figure C.8: Whenever we onsider only onstraints b1,b2,b4 and b5 and we inrease k1 (in the range
[0, 1]), the position of the onstraint minimizer follows the arrows annotated to the boundaries.Theorem C.1 When we onsider the onstrained problem with the objetive shown in (C.7) and on-straints bi, i = 1, 2, 4, 5 the arrows annotated to the boundaries of onstraints bi , i = 1, 2, 4, 5 shown inFigure C.8 visualize the diretion in whih the onstrained minimum moves when inreasing k1 (in therange [0, 1]). 144



Proof. Before we prove Theorem C.1 we �rst prove some lemma's.Lemma C.5 The onstraint minimum ybi(k1), i = 1, 4, 5 moves in the diretion shown in Figure C.8when inreasing k1.Proof. We an derive:
∂yb1

1

∂k1
= − (1− α2)

2
√

1 + k2(1 − k3)2

2((k1 + k2)(1− α2
2) + α2

2)
1.5

< 0,

∂yb4
2

∂k1
=

(1 + ymin
1 )2

2
√

(ymin
1 )2 + k1(1 + ymin

1 )2 + k2(k3 + ymin
1 )2

> 0,

∂yb5
1

∂k1
= − k2(1 − k3)(1 − k3 + 2ymin

2 ) + (1 + ymin
2 )2

2(k1 + k2)1.5
√

k1ymin2

2 + (1 + ymin
2 )2 + k2(1− k3 + ymin

2 )2
< 0.Thus, the derivatives ∂yb1

1

∂k1
, ∂yb4

2

∂k1
and ∂yb5

1

∂k1
are aordane with the arrows in Figure C.8.Lemma C.6 When yb2

1
(k1) ≥ 0 and yb2

2
(k1) ≥ 0 then it must hold that k3 > α3.Proof. Lets assume that yb2

1
(k1) ≥ 0 ∧ yb2

2
(k1) ≥ 0 is also possible when k3 ≤ α3. First we derive thatif yb2

1
(k1) ≥ 0 ∧ yb2

2
(k1) ≥ 0 was possible when k3 ≤ α3 then it must hold that k3 < 1 − α3. Hereafterwe derive that when k3 ≤ α3 and k3 ≤ 1 − α3 it holds that yb2

2
< 0. Hene, yb2

1
(k1) ≥ 0 ∧ yb2

2
(k1) ≥ 0ould not our when k3 ≤ α3. In ase yb2

1
(k1) ≥ 0 ∧ yb2

2
(k1) ≥ 0 it must hold that:

yb2
1

+ yb2
1

= −1 +

√

k1(1 − k3)2 + k23
√

(k1 + k2)(1 − α3)2 + (1 − α1)2
≥ 1. (C.18)(C.19)This beause otherwise either yb2

1
is negative, yb2

2
is negative or both are negative and the unon-strained minimum yb2(k1) ould not be positioned in the feasible area. Lets use:

q =

√

k1(1− k3)2 + k23
√

(k1 + k2)(1− α3)2 + α2
1

. (C.20)We an derive that:
∂q

∂k2
= − (1 − α3)

2
√

k1(1− k3)2 + k23
2(a23 + (1− a3)2(k1 + k2))1.5

< 0.Hene, it holds that:
√

k1(1− k3)2 + k23
√

k1(1− α3)2 + α2
1

< q.For k2 = 0 we an derive: 145



∂q

∂k1
=

(1− k3)
2α2

3 − (1− α3)
2k23

2(k1(1− α3)2 + a23)
1.5
√

k1(1 − k3)2 + k23
.We know ∂q

∂k1
≥ 0 beause k3 ≤ α3. Hene it holds that:

√

(1− k3)2 + k23
√

(1 − α3)2 + α2
1

≥
√

k1(1 − k3)2 + k23
√

k1(1− α3)2 + α2
1

> q.Hene, when q ≥ 1 it must hold that:
(1− k3)

2 + k23 > (1− α3)
2 + α2

1. (C.21)In Figure (C.9) we an see the funtion f(x) = (1 + x)2 + x2 for 0 ≤ x ≤ 1. We an see that thisfuntion is symmetri around the line x = 0.5. Both x′, 0 ≤ x′ ≤ 1 and 1− x′ result in the same value
f(x′). From this �gure we an easily see that when k3 ≤ α3 and α3 ≥ 0.5 then f(k3) > f(α3) ouldonly hold if k3 < 1 − α3. Hene, when k3 ≤ α3, (C.18) ould only be satis�ed when it also holds that
k3 < 1− α3 (for the ase where α3 < 0.5 it also holds that k3 < 1− α3 beause k3 ≤ α3).PSfrag replaements
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∂yb2

2

∂k3
= 1− α3

α2
3 + (1− α3)2k2

k1(1 − k3)− k3
√

k2(1− k3)2 + k23
> 0.Hene, we an derive:
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yb2
2

=− (1− k3) +
α3

√

k1(1− k3)2 + k23
√

(k1 + k2)(1− α3)2 + α2
3

,

yb2
2

≤− (1− α3) +
α3

√

k1(1− α3)2 + α2
3

√

(k1 + k2)(1− α3)2 + α2
3

,

yb2
2

≤− 1 + α3(1 +

√

k1(1− α3)2 + α2
3

√

(k1 + k2)(1− α3)2 + α2
3

),

yb2
2

<− 1 + 2α3,

yb2
2

<0.In the �rst step we used k3 = α3. Hene, in situation 1 the unonstrained minimum yb2(k1) ouldnot be positioned in the feasible area.Situation 2 In situation 2 we an derive:
yb2
2

=− (1 − k3) +
α3

√

k1(1 − k3)2 + k23
√

(k1 + k2)(1− α3)2 + α2
3

,

yb2
2

≤− α3 +
α3

√

k1α2
3 + (1− α3)2

√

(k1 + k2)(1− α3)2 + α2
3

,

yb2
2

≤α3(

√

k1α2
3 + (1 − α3)2

√

(k1 + k2)(1 − α3)2 + α2
3

− 1).Using k2(1 − α3)
2 ≥ 0 and 1 − α3 < α3 we an derive that √

k1α2
3+(1−α3)2√

(k1+k2)(1−α3)2+α2
3

< 1. Hene, insituation 2 it holds that yb2
2

< 0 and the unonstrained minimum yb2(k1) ould not be positioned in thefeasible area.Lemma C.7 When the unonstrained minimum yb2(k1) is in the feasible area, it moves in the diretionshown in Figure C.8 when inreasing k1 (in the range [0, 1]).Proof. In this lemma we prove that ∂yb2
1

∂k1
< 0 whenever the unonstrained minimum yb2 is positionedin the feasible area.We do so by proving that ∂yb2

1

∂k1
≥ 0 ould only our if yb2

1
+ yb2

2
< 0. If yb2

1
+ yb2

2
< 0 then the

y1-oordinate or the y2-oordinate of yb2 is negative (and thus yb2 is positioned outside the feasiblearea).We an derive the following expression for ∂yb2
1

∂k1
:

k2(1− α3)
2(1− k3)

2 − (k3 − α3)(α3(1 − k3) + k3(1 − α3))

2(1− α3)((k1 + k3)(1 − α3)2 + α2
3)

1.5
√

k23 + k1(1− k3)2
.
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We an see that:
∂yb2

1

∂k1
< 0 if k2 < h,

∂yb2
1

∂k1
= 0 if k2 = h,

∂yb2
1

∂k1
> 0 if k2 > h,where

h =
(k3 − α3)(α3(1− k3) + k3(1 − α3))

(1− k3)2(1− α3)2
.From Lemma C.6 we know that yb2

1
> 0 ∧ yb2

1
> 0 is only possible when k3 > α3. Hene, it holdsthat h > 0. When h > 1 it holds that ∂yb2

1

∂k1
< 0 beause k2 ≤ 1. We still have to proof that ∂yb2

1

∂k1
< 0for h < 0 ≤ 1. We do so by proving that 0 < h ≤ 1 and k2 ≥ h is not possible.We an derive the following:

∂(yb2
1

+ yb2
2
)

∂k2
= −

√

k1(1− k3)2 + k23(1− α3)
2

((k1 + k2)(1 − α3)2 + α2
3)

1.5
< 0.Therefore, when 0 < h ≤ 1 and k2 ≥ h it holds:

yb2
1

+ yb2
1

= −1 +

√

k1(1− k3)2 + k23
√

(k1 + k2)(1 − α3)2 + (1− α1)2

≤ −1 +
1− k3
1− α3

< 0.We used k2 = h whih is the smallest value for k2 satisfying 0 < h ≤ 1 and k2 ≥ h. When 0 < h ≤ 1and k2 ≥ h this value for k2 results is the largest value for yb2
1

+ yb2
1

sine ∂(yb2
1

+yb2
2

)

∂k2
< 0. In the laststep we used k3 > α3.Thus, when the unonstrained minimum yb2(k1) is in the feasible area it holds that ∂yb2

1

∂k1
< 0. Thus,the unonstrained minimum yb2(k1) it moves in the diretion shown in Figure C.8 when inreasing k1(in the range [0, 1]).From now on we use yi=j =

(

yi=j
1 , yi=j

2

) for the oordinate of the intersetion of the boundary ofonstraint bi and the boundaries of onstraint bj . Further we use ki,j , i, j = 1, ..., 7 for the value of k1for whih ybi is positioned at yi=j .Lemma C.8 Whenever the oordinate y1=2 is positioned in the feasible area and 0 ≤ k2,1 ≤ 1, it holdsthat k1,2 ≥ k2,1.Proof. We an obtain y1,2 =
(

(1−α3)−k3(1−α2)
α3−α2

, (1−k3)α2

α3−α2

). From y2,32 ≥ 0 we an obtain that α2 ≤ α3and from y2,31 ≥ 0 we an obtain that k3 ≤ (1−α3)
1−α2
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Furthermore, we know from Lemma C.6 that if yb2
1
(k1) ≥ 0 ∧ yb2

2
(k1) ≥ 0 then it must hold that

k3 > α3. Hene, we know that when y1=2 is positioned in the feasible area then 0 ≤ k2,1 ≤ 1 holds onlywhen k3 > α3.Thus, we have to prove that k1,2 − k2,1 ≥ 0 whenever α2 ≤ α3 ≤ k3 ≤ (1−α3)
1−α2

. Note that this alsomeans that α3 ≤ 1
2−α2

. We an derive that:
k1,2 = −k2(1− α3)(1 − k3)

2((1− α2) + (α3 − α2)) + α2
2(1− k3)

2 − (α3 − α2)
2

(1− α2)2(1− k3)2
,

k2,1 = −k2(1− k3)
2(1− α3)

2 + (α3 − k3α2)((1 − k3)α3 − k3(α3 − α2))

(1− k3)2(1− α2)((1 − α3)− (α3 − α2))
.We an derive:

k1,2 − k2,1 =
2(α3 − α2)

2(1− α3)

(1− α2)2((1 − α3)− (α3 − α2))
k2,

+
2(α3 − α2)(α3 − k3α2)((1 − k3)− (α3 − α2))

(1− k3)2(1− α2)2((1 − α3)− (α3 − α2))
≥ 0.We an see that k2,31 − k3,21 ≥ 0 by using α3 ≥ α2 and beause:

(1− α3)− (α3 − α2) ≥ (1− k3)− (α3 − α2) ≥
α2(α3 − α2)

1− α2
≥ 0.We shortly elaborate on the result of Lemma C.8. Lets onsider the optimization problem withobjetive funtion (C.7) and we want to �nd the onstrained minimum on the boundary of either b1 oron the boundary of b2 (see Figure C.10). Thus, we want to solve the following optimization problem:Objetive funtion:

J(y1, y2) =
(1 + y2)

2 + k1(1 + y1)
2 + k2(k3 + y1)

2

1 + y1 + y2
.Constraint:

y2 ≥ α2

1− α2
(1 + y1),

y2 ≥ α3y1 + k3
1− α3

− 1,

y2 =
α2

1− α2
(1 + y1) ∨ y2 =

α3y1 + k3
1− α3

− 1.For 0 ≤ k1 ≤ 1 it holds that the onstraint minimum is positioned on the line y2 = α3y1+k3

1−α3
− 1 (theboundary of onstraint b2) if k1 < k2,1 for k2,1 ≤ k1 ≤ k1,2 the onstrained minimum is positioned onthe intersetion of the two lines and for k1 > k1,2 the onstrained minimum is positioned on the line

y2 = α2

1−α2
(1+ y1) (the boundary of onstraint b1). Thus, when inreasing k1 the onstrained minimummoves along the arrows (see Figure C.10).Lemma C.9 Whenever the oordinate y1=5 is positioned in the feasible area, it holds that k5,1 ≥ k1,5.149
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Figure C.10: The onstrained minimum moves is on the boundary of b2 for k1 < k2,1. For k2,1 ≤ k1 ≤
k1,2 the onstrained minimum is positioned on the intersetion of the two boundaries and for k1 > k1,2the onstrained minimum is positioned on the boundary of b1.Proof. We an obtain y1,5 =

(

−1 + 1−α2

α2
ymin
2 , ymin

2

), whih ould only be positioned in the feasiblearea if ymin
2 ≥ α2

1−α2
.

k5,11 =
α2((1 + ymin

2 )2 + k2(1− k3 + ymin
2 )2)− k2y

min2

2

(1− α2
2)y

min2

2

,

k1,51 =
(1 + k2(1− k3)

2)α2
2 − (k2(1− α2)

2 + α2
2)y

min2

2

(1− α2)2ymin2

2

.Using ymin
2 ≥ α2

1−α2
we an �nd:

k5,11 − k1,51 =
2α2

2(y
min
2 (1 + k2(1 − k3) + (1− α2)y

min
2 )− α2(1 + k2(1− k3)(1− k3 + ymin

2 ))

(1 − α2)2(1 + α2)(ymin
2 )2

≥ 2α2
2(y

min
2 (1 + k2(1 − k3) + (1− α2)y

min
2 )− ymin

2 (1− α2)(1 + k2(1− k3)(1 − k3 + ymin
2 )))

(1− α2)2(1 + α2)(ymin
2 )2

≥ 2α2
2y

min
2 (ymin

2 (1− α2)(1− k2(1− k3)) + α2(1 + k2(1 − k3)
2) + k2(1− k3)k3)

(1− α2)2(1 + α2)(ymin
2 )2

≥ 0.Lemma C.10 Whenever the oordinate y1=4 is positioned in the feasible area, it holds that k4,1 ≥ k1,4.We an obtain:
k1,41 = − α2

2

(1− α2)2
− 1− k2(2− k3 − ymin

1 )(k3 + ymin
1 )

(1 + ymin
1 )2

,

k4,11 =
1− k2(1 − α2)

2(k3 + ymin
1 )2 + ymin

1 (2 + (2− α2)α2y
min
1 )

(1− α2)2(1 + ymin
1 )2

. (C.22)we an obtain:
k4,11 − k1,41 =

2(α2 + ymin
1 (1 + α2) + k2(1 − k2)(1 − α2)

2(k3 + ymin
1 ))(1 + α2y

min
1 )

(1− α2)2(1 + ymin
1 )2

≥ 0.150



Lemma C.11 Whenever the oordinate y2=5 is positioned in the feasible area and 0 ≤ k2,5 ≤ 1, itholds that k5,2 ≥ k2,5.From Lemma C.6 we know that the minimum on the boundary of b2 an only be positioned in thefeasible area whenever k3 ≥ α3. We an obtain y5,2 =
(

−k3+(1−α3)(1+ymin
2 )

α3
, ymin

2

), whih ould only bepositioned in the feasible area whenever k3 ≤ (1 + α3)(1 + ymin
2 ).Thus, we have to prove that k5,2 − k2,5 ≥ 0 whenever α3 ≥ α3 ≥ (1 + α3)(1 + ymin

2 ). Note that thisalso means that α3 ≤ 1
2−α2

. We an derive that α3 ≤ 1+ymin
2

2+ymin
2

:
k3,41 = − (1− α3)

2(1− k3 + ymin
2 )2

(1− k3 + (1 − α3)ymin
2 )(−k3(1− α3)− α3(1− k3) + (1 + ymin

2 )(1 − α3))
k2

+− α2
3(1− 2k3 + ymin

2 )(1 + ymin
2 )

(1− k3 + (1− α3)ymin
2 )(−k3(1− α3)− α3(1− k3) + (1 + ymin

2 )(1− α3))
,

k4,31 = − (1− α2
3)(1− k3 + ymin

2 )2

(1− k3 + (1 − α3)ymin
2 )(1− k3 + (1 + α3)ymin

2 )
≤ 0k2

α2
3(1 + ymin

2 )2

(1− k3 + (1− α3)ymin
2 )(1 − k3 + (1 + α3)ymin

2 )
.We an prove k5,21 − k2,51 ≥ 0 by using:

1− k3 − α3 + ymin
2 ≥ 1− 2α3 + ymin

2 ≥ 1− 2(1 + ymin
2 )

(2 + ymin
2 )

+ ymin
2 ≥ ymin

2 (1 + ymin
2 )

2 + ymin
2

≥ 0.and using:
1− k3 + (1− α3)y

min
2 ≥ (1 − k3)(1 − α3)− α3(1− k3) + (1− α3)y

min
2

≥ −k3(1 − α3)− α3(1− k3) + (1− α3)(1 + ymin
2 )

≥ −(1− α3)
2(1 + ymin

2 )− α3(1− α3)3) + (1− α3)(1 + ymin
2 )

≥ α3(1− α3)y
min
2 ≥ 0.we an �nd:

k5,21 − k2,51 =

(

(1− α3)
2(1− k3 + ymin

2 )2

(1− k3 + (1− α3)ymin
2 )(−k3(1− α3)− α3(1− k3) + (1 + ymin

2 )(1− α3))

− (1− α2
3)(1 − k3 + ymin

2 )2

(1− k3 + (1− α3)ymin
2 )(1 − k3 + (1 + α3)ymin

2 )
k2

)

k2

+
2α2

3(1− k3 + ymin
2 )(1− k3 − α3 + ymin

2 )(1 + ymin
2 )

(1− k3 + (1− α3)ymin
2 )(1 − k3 + (1 + α3)ymin

2 )(−k3(1 − α3)− α3(1− k3) + (1 + ymin
2 )(1 − α3))

≥ 0.Lemma C.12 Whenever the oordinate y2=4 is positioned in the feasible area 0 ≤ k2,4 ≤ 1, it holdsthat k4,2 ≥ k2,4. 151



From Lemma C.6 we know that the minimum on the boundary of b2 an only be positioned in thefeasible area whenever k3 ≥ α3. We an obtain y2,4 =
(

ymin
1 ,

α3(1+ymin
1 )−(1−k3)
1−α3

), whih ould only bepositioned in the feasible area for k3 ≥ 1− α3(1 + ymin
1 ).Thus, we have to prove that k4,21 − k2,41 ≥ 0 whenever α3 ≤ k3 ∧ 1− α3(1 + ymin

1 ) ≤ 0.
k2,41 = − (k3 + ymin

1 )2

(1 + ymin
1 )(−1 + 2k3 + ymin

1 )
k2 −

(k3 + α3y
min
1 )(α3y

min
1 − k3(1− 2α3))

(1 − α3)2(1 + ymin
1 )(−1 + 2k3 + ymin

1 )
,

k4,21 = − (k3 + ymin
1 )2

(1 + ymin
1 )2

+
(k3 + (2− α3)y

min
1 )(k3 + α3y

min
1 )

(1 − α3)2(1 + ymin
1 )(−1 + 2k3 + ymin

1 )
.Using:

−1 + α3 + k3 + ymin
1 ≥ −1 + 2α3 + ymin

1

≥ (1 − α3)y
min
1 ≥ 0.we an �nd that:

k4,21 − k2,41 =
2(1− k3)(k3 + ymin

1 )2

(1 + ymin
1 )2(1 + 2k3 + ymin

1 )
k2

+
2(k3 + ymin

1 )(−1 + k3 + α3 + ymin
1 )(k3 + α3y

min
1 )

(1− α3)2(1 + ymin
1 )2(−1 + 2k3 + ymin

1 )
≥ 0.Lemma C.13 Whenever the oordinate y4=5 is positioned in the feasible area, it holds that k4,2 ≥ k2,4.We an �nd:

k4,51 =
−k2(k3 + ymin

1 )2 + (1 + ymin
2 )(1 + 2ymin

1 + ymin
2 )

(1 + ymin
1 )2

,

k5,41 =
k2(k3 + ymin

1 )(k3 − 2(1 + ymin
2 )− ymin

1 ) + (1 + ymin
2 )2

(1 + ymin
1 )(1 + ymin

1 + 2ymin
2 )

.From these expressions for k4,51 and k5,41 we an derive:
k4,51 − k5,41 =

2(1 + ymin
1 + ymin

2 )(k2(1− k3)(k3 + ymin
1 ) + (1 + ymin

2 )(ymin
1 + ymin

2 ))

(1 + ymin
1 )(1 + ymin

1 + 2ymin
2 )

. ≥ 0Combining Lemma C.5 until Lemma C.13 we an see that the arrows annotated to the boundariesof onstraints bi , i = 1, 2, 4, 5 shown in Figure C.8 visualize the diretion in whih the onstrainedminimum moves when inreasing k1 (in the range [0, 1]) when we onsider the onstrained problem withthe objetive shown in (C.7) and onstraints bi, i = 1, 2, 4, 5.Lets again onsider the optimization problem with onstraints b1 until b7. We know that the on-strained minimum is positioned on the boundary of b1, b2 ,b4 or b5. We an obtain expressions forthe onstraint minimum on eah of these lines. We use kmin
i for the smallest value for k suh that theunonstrained minimum ybi(k) is positioned in the feasible area. We use kmax

i for the largest value for k152



suh that the unonstrained minimum ybi(k) is positioned in the feasible area. Whenever the boundaryof onstraint bi is not positioned in the feasible area (and hene there is no onstrained minimum onthis boundary) it holds that kmin
i > kmax

i . Below we give the expressions for kmin
i , i = 1, 2, 4, 5 and

kmax
i . Note that in these expressions zmin

i , i = 1, 2, 4, 5 and zmax
i , i = 1, 2, 4, 5 atually refer to positionswhere bi intersets with another boundary. From the expressions for zmin

i and zmax
i we an alulate

kmin
i . Reall that for α3 ≤ α2 the boundary of b3 is always positioned below the boundary of b2. Thus,the boundary of α3 ≤ α2 is not positioned in the feasible area.Constrained minimum on the boundary of b1:

yb2(kmin
1 ) if k1 ≤ kmin

1 ≤ kmax
1 ,

yb2(k1) if kmin
1 ≤ k1 ≤ kmax

1 ,

yb2(kmax
1 ) if kmin

1 ≤ kmax
1 ≤ k1,where

ki1 =− α2
2

(1− α2)2
+

1− k2(2− k3 + zi1)(k3 + zi1)

(1 + zi1)
2

, i ∈ {min,max},

zmin
1 =

{

min{ymax
1 , 1−α2

α2
ymax
2 − 1, 1−k3(1−α2)−α3

α3−α2
} if α3 > α2,

min{ymax
1 , 1−α2

α2
ymax
2 − 1} if α3 ≤ α2,

zmax
1 =max{ymin

1 ,
1− α2

α2
ymin
2 − 1,

α1

1− α1 − α2
}.Constrained minimum on the boundary of b2:

yb1(kmin
2 ) if k1 ≤ kmin

2 ≤ kmax
2 ,

yb1(k1) if kmin
2 ≤ k1 ≤ kmax

2 ,

yb1(kmax
2 ) if kmin

2 ≤ kmax
2 ≤ k1,where

ki2 =

{

k2
3(1−α3)

2−(zi
2+k3)

2(k2(1−α3)
2+α2

3)

(1+zi
2)(−1+zi

2+2k3)(1−α3)2
if α3 > α2,

−∞ if α3 ≤ α2, i ∈ {min,max},

zmin
2 =min{ymax

1 ,
−k3 + (1− α3)(1 + ymax

2 )

α3
},

zmax
2 =max{ymin

1 ,
−k3 + (1− α3)(1 + ymin

2 )

α3
,

k3α1

1− α1 − α3
,
1− k3(1− α2)− α3

α3 − α2
}.Constrained minimum on the boundary of b4:

yb4(kmin
4 ) if k1 ≤ kmin

4 ≤ kmax
4 ,

yb4(k1) if kmin
4 ≤ k1 ≤ kmax

4 ,

yb4(kmax
4 ) if kmin

4 ≤ kmax
4 ≤ k1, 153



where
ki4 =

−k2(k3 + ymin
1 )2 + (1 + zi4)(1 + 2ymin

1 + zi4)

(1 + ymin
1 )2

, i ∈ {min,max},

zmin
4 =min{ymin

2 ,
ρ2

1− ρ2
(1 + ymin

1 ),
ρ3y

min
1 + k3
1− ρ3

− 1},

zmax
4 =max{ymax

2 ,−1 +
1− ρ1
ρ1

ymin
1 }.Constrained minimum on the boundary of b5:

yb5(kmin
5 ) if k1 ≤ kmin

5 ≤ kmax
5 ,

yb5(k1) if kmin
5 ≤ k1 ≤ kmax

5 ,

yb5(kmax
5 ) if kmin

5 ≤ kmax
5 ≤ k1,where

ki5 =
(1 + ymin

2 )2 + k2(k3 − 2(1 + ymin
2 )− zi5)(k3 + zi5)

(1 + zi5)(1 + 2ymin
2 + zi5)

, i ∈ {min,max},

zmin
5 =min{ymax

1 ,
1− α2

α2
ymin
2 − 1,

−k3 + (1 − α3)(1 + ymin
2 )

α3
},

zmax
5 =max{ymin

1 ,
α1

1− α1
(1 + ymin

2 )}. (C.23)Using Lemma C.2 we an �nd an analytial solution for the position of the onstrained minimizer
(

ycon,min
1 , ycon,min

2

):
(

ycon,min
1 , ycon,min

2

)

=



















































































yb2(kmin
2 ) if k1 ≤ kmin

2 ≤ kmax
2 ,

yb2(k1) else if kmin
2 < k1 < kmax

2 ,
yb2(kmax

2 ) else if kmax
1 < kmin

1 ∧ kmax
5 < kmin

5 ∧ kmax
4 < kmin

4 ,

yb1(kmin
1 ) else if k1 ≤ kmin

1 ≤ kmax
1 ,

yb1(k1) else if kmin
1 < k1 < kmax

1 ,
yb1(kmax

1 ) else if kmax
5 < kmin

5 ∧ kmax
4 < kmin

4 ,
yb5(kmin

5 ) else if k1 ≤ kmin
5 ≤ kmax

5 ,

yb5(k1) else if kmin
5 < k1 < kmax

5 ,
yb5(kmax

5 ) else if kmax
4 < kmin

4 ,
yb4(kmin

4 ) else if k1 ≤ kmin
4 ≤ kmax

4 ,
yb4(k1) else if kmin

4 < k1 < kmax
4 ,

yb4(kmax
4 ) otherwise.where

yb1(k1) =

(

−1 +
(1− α2)

√

1 + k2(1− k3)2
√

(k1 + k2)(1− α2)2 + α2
2

,
α2

√

1 + k2(1− k3)2
√

(k1 + k2)(1− α2)2 + α2
2

)
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yb2(k1) =

(

−k3 +
(1− α3)

√

k1(1 − k3)2 + k23
√

(k1 + k2)(1− α3)2 + α2
3

,−(1− k3) +
α3

√

k1(1− k3)2 + k23
√

(k1 + k2)(1− α3)2 + α2
3

)

,

yb4(k1) =

(

ymin
1 ,−(1 + ymin

1 ) +
√

(ymin
1 )2 + k1(1 + ymin

1 )2 + k2(ymin
1 + k3)2

)

,

yb5(k1) =

(

−(1 + ymin
2 ) +

√

(1 + ymin
2 )2 + k1(ymin

2 )2 + k2(1 + ymin
2 − k3)2√

k1 + k2
, ymin

2

)

,

ki1 = − α2
2

(1 − α2)2
+

1− k2(2 − k3 + zi1)(k3 + zi1)

(1 + zi1)
2

, i ∈ {min,max},

zmin
1 =

{

min{ymax
1 , 1−α2

α2
ymax
2 − 1, 1−k3(1−α2)−α3

α3−α2
} if α3 > α2

min{ymax
1 , 1−α2

α2
ymax
2 − 1} if α3 ≤ α2

,

zmax
1 = max{ymin

1 ,
1− α2

α2
ymin
2 − 1,

α1

1− α1 − α2
}

ki2 =

{

k2
3(1−α3)

2−(zi
2+k3)

2(k2(1−α3)
2+α2

3)

(1+zi
2)(−1+zi

2+2k3)(1−α3)2
if α3 > α2

−∞ if α3 ≤ α2

, i ∈ {min,max},

zmin
2 = min{ymax

1 ,
−k3 + (1 − α3)(1 + ymax

2 )

α3
},

zmax
2 = max{ymin

1 ,
−k3 + (1 − α3)(1 + ymin

2 )

α3
,

k3α1

1− α1 − α3
,
1− k3(1 − α2)− α3

α3 − α2
},

ki4 =
−k2(k3 + ymin

1 )2 + (1 + zi4)(1 + 2ymin
1 + zi4)

(1 + ymin
1 )2

, i ∈ {min,max},

zmin
4 = min{ymin

2 ,
ρ2

1− ρ2
(1 + ymin

1 ),
ρ3y

min
1 + k3
1− ρ3

− 1},

zmax
4 = max{ymax

2 ,−1 +
1− ρ1
ρ1

ymin
1 },

ki5 =
(1 + ymin

2 )2 + k2(k3 − 2(1 + ymin
2 )− zi5)(k3 + zi5)

(1 + zi5)(1 + 2ymin
2 + zi5)

, i ∈ {min,max},

zmin
5 = min{ymax

1 ,
1− α2

α2
ymin
2 − 1,

−k3 + (1− α3)(1 + ymin
2 )

α3
},

zmax
5 = max{ymin

1 ,
α1

1− α1
(1 + ymin

2 )}.C.3 Proof of Lemma 7.2Below we give the proof of Lemma 7.2. This lemma is given on page 74.Proof. Lets onsider a trajetory de�ned on the time interval [0,∞) where a queue is not emptied atleast one or where the duration of the green periods is not always the same for a signal. Lets all thistrajetory the 'original trajetory'. In Figure C.11a we an see an example of the original trajetory.
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We introdue the following notation for the average duration of gki , rki , gλ,ki and gµ,ki :
ḡi = lim

M→∞

M
∑

k=1

gki
M

, i ∈ N , (C.24a)
r̄i = lim

M→∞

M
∑

k=1

rki
M

, i ∈ N , (C.24b)
ḡλi = lim

M→∞

M
∑

k=1

gλ,ki

M
,i ∈ N , (C.24)

ḡµi = lim
M→∞

M
∑

k=1

gµ,ki

M
,i ∈ N . (C.24d)(C.24e)We an propose an alternative trajetory where a queue is always emptied during a green period andwhere the green time of a signal is always the same (see Figure C.11b). For this alternative trajetorywe take the green times and red times of signal i ∈ N equal to respetively ḡi and r̄i. We serve signal

i1 ∈ G1 during the red period of the signals in G2 and we serve i2 ∈ G2 during the red period of thesignals in G1.We an show that the osts J related to this alternative trajetory are not greater than the ostsrelated to the original trajetory.First we prove that the limits in (C.24) exist. We assume that the limits lim
M→∞

M
∑

k=1

gk
i

M , i ∈ N existand that the limits lim
M→∞

M
∑

k=1

rki
M
, i ∈ N exist (see Setion 7.2.3).Whenever signal i ∈ N satis�es λir̄i 6= (µi − λi)ḡ

µ
i for the original trajetory, this means that thequeue length of queue i would go to ∞ or −∞ beause:

lim
t→∞

xi(t) = lim
M→∞

M
∑

k=1

(λir
k
i − (µi − λi)g

µ,k
i ) = lim

M→∞
M, (λir̄i − (µi − λi)ḡ

µ
i ).Note that we have used that eah green time of signal i is �nite. A queue length must be a non-negative number and therefore a trajetory where a queue length goes to −∞ is not feasible. Further,whenever a queue length goes to ∞, the osts alulated with (7.1) are in�nite. Hene, it must holdthat:

λir̄i = (µi − λi)ḡ
µ
i , i = 1, 2. (C.25)Thus, the amount of tra� that arrives during a red period of signal i ∈ N is equal to λir̄i and wean let this amount of tra� depart during a period equal to exatly ḡµi . As a result, from ḡi = ḡµi + ḡλiwe an obtain that for the alternative poliy the length of the slow mode is equal to ḡλi during eahgreen period. From (C.25) we an see that ḡµi exists (beause r̄i exists) and from ḡi = ḡµi + ḡλi we knowthat ḡλi exists. Hene, ḡi, r̄i, ḡλi and ḡµi all exist.Also note that the alternative trajetory is always feasible. First of all, the green periods of thealternative trajetory (with duration ḡi) always take longer than the shortest green period of the original156



trajetory. Seond of all, the green periods of the alternative trajetory (with duration ḡi) always takeshorter than the longest green period of the original trajetory. Furthermore, the maximum queuelength are less for the alternative trajetory than for original trajetory. As a result, whenever theoriginal trajetory satis�es (7.3d) until (7.3k), the alternative trajetory does as well.Now we prove that the osts related to the alternative trajetory are not bigger than the osts of theoriginal trajetory. We use bgµ,k
i

, k ≥ 1 and brki , k ≥ 1 for the time at whih the green period gki startsrespetively the time at whih the red period rki starts. Further, we use egµ,k
i

, k ≥ 1 for the time atwhih queue i is emptied during gki and we use erki , k ≥ 1 for the time at whih rki ends. We distinguishthree di�erent areas (see Figure C.11): Ak
1 ,k ≥ 1, Ak

2 , k ≥ 1 and Ak
3 , k ≥ 1.

Ak
1 =

∫ e
g
µ,k
i

b
g
µ,k
i

(xi(t)− xi(bgµ,k
i

))dt, k ≥ 1,

Ak
2 =

∫ e
rk
i

b
rk
i

(xi(t)− xi(erki ))dt, k ≥ 1,

Ak
3 = xi(bgµ,k

i
)(egµ,k

i
− bgµ,k

i
) + xi(erki )(erki − brki ), k ≥ 1.In Figure C.11, Ak

1 is visualized in dark gray, Ak
2 is visualized in medium gray and Ak

3 is visualizedin light gray.
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On the left side of Figure C.12b we an see Ak
1 and Ak+1

1 plotted for the shifted original trajetory.Without loss of generality we an assume that the �rst red period rki is longer than the seond redperiod rk+1
i for two adjaent red periods. When we take both green times equal to rki +rk+1

i

2 we get theareas Ak
1 and Ak+1

1 as an be seen on the right side of Figure C.12b. We an see that the dark gray areasare the same and that the medium gray areas di�er (the di�erene is the light gray area). Sine fi isstritly inreasing, taking the red time of two adjaent red periods equal to eah other annot inreasethe osts related to the red periods of signal i. Hene, taking all red periods equal to eah other annotinrease the osts related to the red periods of signal i. Note, that the osts, of this shifted trajetorywhere all red periods are equal to eah other, are exatly the osts made during the red periods of thealternative trajetory. Thus, the osts related to the red periods of the alternative trajetory annot bebigger than the osts related to the red periods of the original trajetory.PSfrag replaements
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alternative trajetory are not bigger than the osts of the original trajetory.Thus, whenever we are given a trajetory that does not satisfy the property given in this lemma,we an always give an alternative trajetory that does satisfy this property and that works at least asgood. Hene, there must be an optimal trajetory that satis�es the property given in this lemma.
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Appendix DProof of Proposition 8.1 (Regulation)Below we give the proof of Proposition 8.1. This proposition is given on page 95. Before reading thisproof we advie you to read the overview of this proof given on page 8.1.In this overview we used �ve di�erent reasons to swith signal ir,fc ,c = 1, 2 to red: switch.1a,
switch.1b, switch.2, switch.3a and switch.3b. In Setion D.1 we elaborate on these di�erent reasons toswith a signal from green to red. In Setion D.2 we present some notation and de�nitions used in theproof of Proposition 8.1. All lemmas used in this proof are shown in Setion D.4.D.1 Di�erent reasons to swithIn this setion we show 5 di�erent reasons to swith a signal to red.Reall that τi is used for the time that has elapsed sine the last mode hange of signal i ∈ N .When signal ig,fc is green, we use τC

ig,fc

for the smallest value of τ
ig,fc

for whih ondition C ∈
{1.1, 1.2, 1.3, 2, 3} is satis�ed during this green time. See Setion 8.3.1 and Setion 8.3.2 for moreinformation about these onditions. Further we use τ1

ig,fc

for the smallest value of τig,fc
for whihonditions 1.1, 1.2 and 1.3 are all satis�ed:

τ1
ig,fc

= max{τ1.1
ig,fc

, τ1.2
ig,fc

, τ1.3
ig,fc

}.We swith the signals in the set Gc for the following reasons:
switch.1 We swith beause of the reason switch.1 whenever we swith signal τr,fic

to red when τ1
ig,fc

≤
τ2
ig,fc

∧ τ1
ig,fc

≤ τ3
ig,fc

. We split switch.1 into switch.1a and switch.1b:
switch.1a We swith beause of the reason switch.1a whenever we swith signal τr,fic

to red when
τ1
ig,fc

≤ τ2
ig,fc

∧ τ1
ig,fc

≤ τ3
ig,fc

and ∃ic ∈ Gc

(

xic (t) > x♯
ic

).
switch.1b We swith beause of the reason switch.1b whenever we swith signal τr,fic

to red when
τ1
ig,fc

≤ τ2
ig,fc

∧ τ1
ig,fc

≤ τ3
ig,fc

and ∀ic ∈ Gc

(

xic (t) ≤ x♯
ic

).
switch.2 We swith beause of the reason switch.2 whenever we swith signal τr,fic

to red when τ2
ig,fc

<

τ1
ig,fc

∧τ2
ig,fc

≤ τ3
ig,fc

. Thus, we swith beause otherwise the maximum green time would be exeeded.
switch.3 We swith beause of the reason switch.3whenever τ3

ig,fc

< τ1
ig,fc

∧τ3
ig,fc

< τ2
ig,fc

. Thus, we swithbeause otherwise a queue would over�ow. We split switch.3 into switch.3a and switch.3b:161



switch.3a We swith beause of the reason switch.3a whenever we swith signal τr,fic
to red when

τ3
ig,fc

< τ1
ig,fc

∧ τ3
ig,fc

< τ2
ig,fc

and the queue(s) that would over�ow �rst if we do not swith,was (where) not emptied during its (their) previous green time. In Figure D.1 we show thesituation where we swith signal 1 to red beause of the reason switch.3a. The queue ofsignal i2 ∈ G2 would over�ow if we did not swith signal 1 to red. We an see that duringthe previous green time of signal i2, queue i2 was not emptied.
switch.3b We swith beause of the reason switch.3a whenever we swith signal τr,fic

to red when
τ3
ig,fc

< τ1
ig,fc

∧ τ3
ig,fc

< τ2
ig,fc

and a queue that would over�ow �rst if we did not swith, wasemptied during its previous green time. In Figure D.2 we show the situation where we swithsignal 1 to red beause of the reason switch.3b. The queue of signal i2 ∈ G2 would over�owif we did not swith the signal 1 to red. We an see that during the previous green time ofsignal i2, queue i2 was emptied (points 2 and 3 ould also overlap).PSfrag replaements
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Figure D.2: Visualization of the swith reason switch.3b.D.2 Notation and de�nitionsIn this setion we introdue some notations and de�nitions.D.2.1 Referring to Signals and SetsWith i1 and l1 we refer to two di�erent signals in the signal group G1:
i1 ∈ G1, l1 ∈ G1, i1 6= l1.With i2 and l2 we refer to two di�erent signals in the signal group G2:
i2 ∈ G2, l2 ∈ G2, i2 6= l2.Further we use:

c = 1, 2,

c =

{ 1 if =2,2 if =1.Using c and c we are able to express to ases at one: the ase where c = 1 and c = 2 and the asewhere c = 2 and c = 1.Further, we use ikc to refer to a signal in the set Gc whih queue length is equal to xmax
ic

at the startof gkic . Queue ic is ative whenever a queue ic reahes its maximum queue length.D.2.2 Green times and Red timesWe use gki , i ∈ N to refer to the kth green time of signal i ∈ N . We assume without loss of generalitythat we start serving the signals in signal group 1. Further we use ri for the red period of signal i thatomes between the kth and (k + 1)th green period of signal i:163



rki1 = gki2 + σi1,i2,i1 , i1 ∈ G1, i2 ∈ G2, (D.1a)
rki2 = gk+1

i1
+ σi1,i2,i1 , i1 ∈ G1, i2 ∈ G2. (D.1b)From D.1 we an obtain that the green periods are related aording to:

gki1 + σi1,i2,i1 = gki1 + σl1,i2,l1 i1, l1 ∈ G1, i2 ∈ G2, (D.2a)
gki2 + σi1,i2,i1 = gkl2 + σi1,l2,i1 i1 ∈ G1, i2, l2 ∈ G2. (D.2b)When using c and c we use that gf(k)ic

omes between gkic and gk+1
ic

. We an �nd:
f(k) =

{ k if =1,k+1 if =2.Further, we split up gki , i ∈ N in gµ,ki and gλ,ki . We use gλ,ki for the length of the slow mode atsignal i during the kth green period of signal i and we use gµ,ki for the length of the interval during the
kth green period of signal i during whih the queue of signal i is not empty.Further, we use gpbti1,i2

to refer to the green time of signal i1 of the pure bow tie urve in the
(i1, i2)-plane and we use gpbti2,i1

to refer to the green time of signal i2 of the pure bow tie urve in the
(i1, i2)-plane:

gpbti1,i2
=

σi1,i2,i1ρ1
1− ρi1 − ρi2

, (D.3a)
gpbti2,i1

=
σi1,i2,i1ρ2

1− ρi1 − ρi2
. (D.3b)Further we use:

gpbti1
= max

i2∈G2

gpbti1,i2
, (D.4a)

gpbti2
= max

i1∈G1

gpbti2,i1
. (D.4b)(D.4)From Lemma D.17 we know that the queues in the set Sc are the only queues in Gc that ould gofrom empty to their maximum queue lengths without exeeding a maximum queue length and that aqueue is ∈ Sc an only go from empty to its maximum queue length whenever all queues in the set Scgo from empty to their maximum queue lengths.It must hold that rkis ≤ xmax

is

λis
, is ∈ Sc, ∀k ≥ 1 beause otherwise the maximum queue length ofqueue is (and the maximum queue lengths of all other signals in the set Gc) would be exeeded. Hene,using (D.1) we an see that the green time of signal ic annot be larger than xmax

is

λis
− σic,is,ic , is ∈ Sc.Hene, we an �nd that: 164



gkic ≤ g̃max
ic , ic ∈ Gc, (D.5a)

rkic ≤ r̃max
ic

, ic ∈ Gc, (D.5b)where
g̃max
ic = min{gmax

ic ,
xmax
is

λis

− σic,is,ic}, ic ∈ Gc, is ∈ Sc, (D.5)
r̃max
ic

= min{gmax
ic

,
xmax
is

λis

− σic,is,ic}+ σic,ic,ic , ic ∈ Gc, ic ∈ Gc, is ∈ Sc. (D.5d)Note that gkic = g̃max
ic

= gmax
ic

whenever skc = switch.2 and that gkic = g̃max
ic

=
ximax

s

λis
− σic,is,icwhenever skc = switch.3b. Further, note that:

r̃max
ic

= g̃max
ic

+ σic,ic,ic , ∀ic ∈ Gc, ∀ic ∈ Gc. (D.6)D.2.3 De�nition of Cyle 1 and Cyle 2In this setion we introdue two di�erent yles. Cyle 1 starts when signal ig,f1 swithes to green andends when signal ig,f1 swithes to green. Cyle 2 starts when signal ig,f2 swithes to green and ends whensignal ig,f2 swithes to green.We an distinguish the following phases for the kth yle 1.phase 1 �nish the setup σi2,i1 , whih still has a duration of σres
i1phase 2 perform gki1 .phase 3 perform the setup σi1,i2phase 4 perform gki2phase 5 Perform the setup σi2,i1 until the signal ig,f1 swithes to green, whih has a duration of σ

i2,i
g,f
1
.We an distinguish the following phases for the kth yle 2.phase 1 �nish the setup σi1,i2 , whih still has a duration of σres

i2phase 2 perform gki2 .phase 3 perform the setup σi2,i1phase 4 perform gk+1
i2phase 5 Perform the setup σi1,i2 until the signal ig,f2 swithes to green, whih has a duration of σ

i1,i
g,f
2
.We use xk

1,ic for the queue length at queue ic ∈ Gc at the beginning of the kth yle 1. Similarly,we use xk
2,ic

for the queue length at queue ic ∈ Gc at the beginning of the kth yle 2. We an �nd thefollowing expressions:
∆xk+1

1,i1
= xk+1

1,i1
− xk

1,i1 = (gki2 + σi1,i2,i1)λi1 − gµ,ki1
(µi1 − λi1 ), (D.7a)

∆xk+1
1,i2

= xk+1
1,i2

− xk
1,i2 = (gki1 + σi1,i2,i1)λi2 − gµ,ki2

(µi2 − λi2 ), (D.7b)
∆xk+1

2,i1
= xk+1

2,i1
− xk

2,i1 = (gki2 + σi1,i2,i1)λi1 − gµ,k+1
i1

(µi1 − λi1 ), (D.7)
∆xk+1

2,i2
= xk+1

2,i2
− xk

2,i2 = (gk+1
i1

+ σi1,i2,i1)λi2 − gµ,ki2
(µi2 − λi2 ). (D.7d)165
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xk+1
1,i1

= xk
2,i1 + (σres

i2
+ gki2 + σi2,i

g,f
1

)λi1 , (D.8a)
xk
2,i2 = xk

1,i2 + (σres
i1

+ gki1 + σ
i1,i

g,f
2

)λi2 . (D.8b)D.2.4 MappingsInstead of using the atual evolution of the queue length we often use mappings from the queue lengthsat the beginning of a yle (either yle 1 or yle 2) to the queue lengths at the end of this yle.In the previous setion we showed the phases that we distinguish for the kth yle 1. For themapping from (xk−1
1,i1

, xk−1
1,i2

), i1 ∈ G1 , i2 ∈ G2 k > 0 to (xk
1,i1

, xk
1,i2

) we hange the order of the phases tothe following order: phase 2, phase 1, phase 3, phase 5, phase 4 (see Figure D.3). Note that hangingthe order of these phases does not hange the queue length at the end of a yle.In Figure D.3 we show the mapping from (

xk−1
1,i1

, xk−1
1,i2

), i1 ∈ G1 , i2 ∈ G2 k ≥ 1 to (xk
1,i1

, xk
1,i2

). Theatual queue length an range from zero to the maximum queue length. Hene, for this mapping thefeasible range of xi1 is equal to:
[

−tfi1λi1 , x
max
i1

− tfi1λi1

]

=
[

x̃min
1,i1 , x̃

max
1,i1

]

.For this mapping the feasible range of xi2 is equal to:
[

σi2,i
f
1
λi2 , x

max
i2

+ σi2,i
f
1
λi2

]

=
[

x̃min
1,i2 , x̃

max
1,i2

]

.. In the previous setion we showed the phases that we distinguish for the kth yle 2. For themapping from (

xk−1
2,i1

, xk−1
2,i2

), i1 ∈ G1 , i2 ∈ G2 k > 0 to (xk
2,i1

, xk
2,i2

) we hange the order of the phasesto the following order: phase 2, phase 1, phase 3, phase 5, phase 4 (see Figure D.4).166
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.and for this mapping the feasible range of xi2 is equal to:
[

−tfi2λi2 , x
max
i2 − tfi2λi2

]

=
[

x̃min
2,i2 , x̃

max
2,i2

]

.Using some of the introdued notation we an summarize (D.8) in one equation:
x
f(k)
c,ic

= xk
c,ic

+ r
f(k)−1
ic

λic + x̃min
c,ic

− x̃min
c,ic

. (D.9)Also note, that queue ic ∈ Gc is full at the beginning of gkic i� xk
c,ic

= x̃max
c,ic

and that queue ic ∈ Gcis empty at the end of gkic i� x
f(k)
c,ic

= x̃min
c,ic

.In Figure D.5a we show the mapping of the pure bow-tie urve. In Figure D.5b we an see the asewhere the green time of signal ic exeeds gpbtic,ic
and the green time of signal ic exeeds gpbtic,ic

and bothsignals do not have a slow mode during these green times.D.3 Proof of the PoliyIn this setion we prove poliy proposed in Setion 8.1 makes sure that a trajetory onverges to thedesired trajetory. We use skc for the reason why we stopped the kth green period of the signals in theset Gc.We want to prove that every swith reason skc , k > 1 is part of a ombination in the set Ci,
i = 1, . . . , nc. Further, we want to prove that when skc , k ≥ nC1 +1 (where nC1 is a �nite integer) is partof a ombination in the set Ci, i = 1, . . . , ns then s

f(k)
c annot be part of a ombination Cj , 1 ≤ j < i.We explain later what the exat de�nition of nC1 is. Further, we want to prove that only a �nite numberof adjaent swith reasons an be part of a ombination in the set Ci, 1 ≤ i ≤ ns − 2 (either with theprevious or the next swith reason). 167
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Combination skc → s
f(k)
c ∆ In the set

C1 switch.1a → switch.1a - C11
C2 switch.1a → switch.1b - C12

switch.1a → switch.3a - not possible 1
C3 switch.1a → switch.3b - C10
C4 switch.1b → switch.1b - C12
C5 switch.2 → switch.1a - C9
C6 switch.2 → switch.1b - C12
C7 switch.2 → switch.2 max

ic∈Gc

∆xk+1
c,ic

≤ 0 ∧ max
ic∈Gc

∆xk+1
c,ic

≤ 0 C7
C8 switch.2 → switch.2 max

ic∈Gc

∆xk+1
c,ic

> 0 ∨ max
ic∈Gc

∆xk+1
c,ic

> 0 C2
C9 switch.2 → switch.3a max

ic∈Gc

∆xk+1
c,ic

≤ 0 C8
switch.2 → switch.3a max

ic∈Gc

∆xk+1
c,ic

> 0 not possible 2
C10 switch.2 → switch.3b max

ic∈Gc

∆xk+1
c,ic

≤ 0 C6
C11 switch.2 → switch.3b max

ic∈Gc

∆xk+1
c,ic

> 0 C4
C12 switch.3a → switch.1b - C12
C13 switch.3a → switch.3a - C1
C14 switch.3a → switch.3b max

ic∈Gc

∆xk+1
c,ic

< 0 C3
C15 switch.3a → switch.3b max

ic∈Gc

∆xk+1
c,ic

≤ 0 C4
C16 switch.3b → switch.1b - C12

switch.3b → switch.3b max
ic∈Gc

∆xk+1
c,ic

< 0 ∨ max
ic∈Gc

∆xk+1
c,ic

< 0 not possible 3
C17 switch.3b → switch.3b max

ic∈Gc

∆xk+1
c,ic

= 0 ∧ max
ic∈Gc

∆xk+1
c,ic

= 0 C5
C18 switch.3b → switch.3b max

ic∈Gc

∆xk+1
c,ic

> 0 C4
C19 switch.3b → switch.3b max

ic∈Gc

∆xk+1
c,ic

> 0 C41 From Lemma D.1 we know that this ombination is not possible.2 Whenever gkic
is stopped for the reason switch.2 and g

f(k)
ic

is stopped for the reason of switch.3a then max
ic∈Gc

∆x
k+1

c,i
k+1
c

≥ 0(beause a queue in the set Gc has reahed its maximum queue length at the start of g
k+1
ic

), gk

i
k+1
c

= gmax

i
k+1
c

> g
pbt

i
k+1
c

(beauseof inequalities (8.1h) and (8.1k)) and g
µ,k

i
k+1
c

= gk

i
k+1
c

(beause otherwise we stopped beause of switch.3b instead of switch.3a).Now we an see from Lemma D.18 that when skc → s
f(k)
c

= switch.2 → switch.3a then it holds that max
ic∈Gc

∆xk
c,ic

≤ 0.3 Whenever gkic
is stopped for the reason switch.3b and g

f(k)
ic

is stopped for the reason switch.3b then max
ic∈Gc

∆x
k+1
c,ic

< 0 ∨

max
ic∈Gc

∆x
k+1
c,ic

< 0 annot our. First of all, there is a queue in the set ic ∈ Gc that has a maximum queue length at thestart of g
k+1
ic

. Hene, ∆x
k+1

c,i
k+1
c

≥ 0. Furthermore, beause we stop gkic
for the reason switch.3b, there is at least one signal

ic that is emptied during g
f(k)−1
ic

. This signal satis�es xk
c,ic

= x̃min
c,ic

. In general it must hold that xk
c,ic

≥ x̃min
c,ic

, ic ∈ Gc,
k ≥ 1 (xk

c,ic
< x̃min

c,ic
implies a negative queue length). Hene it holds that the signal that satis�es xk

c,ic
= x̃min

c,ic
also satis�es

∆x
k+1
c,ic

≥ 0. Therefore max
ic∈Gc

∆x
k+1
c,ic

≥ 0.Table D.1: The ombinations that we onsider and how we partition these ombinations into sets.
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skc → s
f(k)
c1 switch.1a → switch.1a2 switch.1a → switch.1b3 switch.1a → switch.3a4 switch.1a → switch.3b5 switch.1b → switch.1b6 switch.2 → switch.1a7 switch.2 → switch.1b8 switch.2 → switch.29 switch.2 → switch.3a10 switch.2 → switch.3b11 switch.3a → switch.1b12 switch.3a → switch.3a13 switch.3a → switch.3b14 switch.3b → switch.1b15 switch.3b → switch.3bTable D.2: We onsider all ombinations of two subsequent swith reasons shown in this table.
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ase s
f(k)−1
c

→ skc → s
f(k)
c

omment1 ︷ ︸︸ ︷

switch.1b → switch.1b → switch.1b
︸ ︷︷ ︸2 ︷ ︸︸ ︷

∗ → switch.1b → switch.1b
︸ ︷︷ ︸3 ∗ →

︷ ︸︸ ︷

∗ → switch.1b4 ︷ ︸︸ ︷

switch.1a → switch.1a → switch.1a
︸ ︷︷ ︸5 ︷ ︸︸ ︷

switch.1a → switch.1a → switch.26 ︷ ︸︸ ︷

switch.1a → switch.1a → switch.3a
︸ ︷︷ ︸7 ︷ ︸︸ ︷

switch.1a → switch.1a → switch.3b
︸ ︷︷ ︸8 switch.1a → switch.2 → switch.1a
︸ ︷︷ ︸9 switch.1a → switch.2 → switch.2
︸ ︷︷ ︸10 switch.1a → switch.2 → switch.3a
︸ ︷︷ ︸11 switch.1a → switch.2 → switch.3b
︸ ︷︷ ︸12 ︷ ︸︸ ︷

switch.1a → switch.3a → switch.1a13 ︷ ︸︸ ︷

switch.1a → switch.3a → switch.214 ︷ ︸︸ ︷

switch.1a → switch.3a → switch.3a
︸ ︷︷ ︸15 ︷ ︸︸ ︷

switch.1a → switch.3a → switch.3b
︸ ︷︷ ︸16 ︷ ︸︸ ︷

switch.1a → switch.3b → switch.1a17 ︷ ︸︸ ︷

switch.1a → switch.3b → switch.218 ︷ ︸︸ ︷

switch.1a → switch.3b → switch.3a19 ︷ ︸︸ ︷

switch.1a → switch.3b → switch.3b
︸ ︷︷ ︸20 ︷ ︸︸ ︷

switch.2 → switch.1a → switch.1a
︸ ︷︷ ︸21 ︷ ︸︸ ︷

switch.2 → switch.1a → switch.222 ︷ ︸︸ ︷

switch.2 → switch.1a → switch.3a
︸ ︷︷ ︸23 ︷ ︸︸ ︷

switch.2 → switch.1a → switch.3b
︸ ︷︷ ︸24 ︷ ︸︸ ︷

switch.2 → switch.2 → switch.1a25 ︷ ︸︸ ︷

switch.2 → switch.2 → switch.2
︸ ︷︷ ︸26 ︷ ︸︸ ︷

switch.2 → switch.2 → switch.3a27 ︷ ︸︸ ︷

switch.2 → switch.2 → switch.3b28 ︷ ︸︸ ︷

switch.2 → switch.3a → switch.1a29 ︷ ︸︸ ︷

switch.2 → switch.3a → switch.230 ︷ ︸︸ ︷

switch.2 → switch.3a → switch.3a
︸ ︷︷ ︸31 ︷ ︸︸ ︷

switch.2 → switch.3a → switch.3b
︸ ︷︷ ︸32 ︷ ︸︸ ︷

switch.2 → switch.3b → switch.1aTable D.3: All possible ombinations of 3 subsequent swith reasons. When skc → s
f(k)
c is in TableD.1 this is visualized with braes. * means that this swith reason an be either one of the �ve swithreasons exept for swith.1b. Note that for ase 3, sf(k)−1

c → skc ould also be a ombination from TableD.1. 171



ase s
f(k)−1
c

→ skc → s
f(k)
c

omment33 ︷ ︸︸ ︷

switch.2 → switch.3b → switch.234 ︷ ︸︸ ︷

switch.2 → switch.3b → switch.3a35 ︷ ︸︸ ︷

switch.2 → switch.3b → switch.3b
︸ ︷︷ ︸36 switch.3a → switch.1a → switch.1a
︸ ︷︷ ︸37 switch.3a → switch.1a → switch.2 for more information see footnote 138 switch.3a → switch.1a → switch.3a
︸ ︷︷ ︸39 switch.3a → switch.1a → switch.3b
︸ ︷︷ ︸40 switch.3a → switch.2 → switch.1a
︸ ︷︷ ︸41 switch.3a → switch.2 → switch.2
︸ ︷︷ ︸42 switch.3a → switch.2 → switch.3a
︸ ︷︷ ︸43 switch.3a → switch.2 → switch.3b
︸ ︷︷ ︸44 ︷ ︸︸ ︷

switch.3a → switch.3a → switch.1a45 ︷ ︸︸ ︷

switch.3a → switch.3a → switch.246 ︷ ︸︸ ︷

switch.3a → switch.3a → switch.3a
︸ ︷︷ ︸47 ︷ ︸︸ ︷

switch.3a → switch.3a → switch.3b
︸ ︷︷ ︸48 ︷ ︸︸ ︷

switch.3a → switch.3b → switch.1a49 ︷ ︸︸ ︷

switch.3a → switch.3b → switch.250 ︷ ︸︸ ︷

switch.3a → switch.3b → switch.3a
︸ ︷︷ ︸51 ︷ ︸︸ ︷

switch.3a → switch.3b → switch.3b
︸ ︷︷ ︸52 switch.3b → switch.1a → switch.1a
︸ ︷︷ ︸53 switch.3b → switch.1a → switch.2 not possible. See footnote 254 switch.3b → switch.1a → switch.3a
︸ ︷︷ ︸55 switch.3b → switch.1a → switch.3b
︸ ︷︷ ︸56 switch.3b → switch.2 → switch.1a
︸ ︷︷ ︸57 switch.3b → switch.2 → switch.2
︸ ︷︷ ︸58 switch.3b → switch.2 → switch.3a
︸ ︷︷ ︸59 switch.3b → switch.2 → switch.3b
︸ ︷︷ ︸60 switch.3b → switch.3a → switch.1a not possible. See footnote 361 switch.3b → switch.3a → switch.2 not possible. See footnote 262 switch.3b → switch.3a → switch.3a
︸ ︷︷ ︸63 switch.3b → switch.3a → switch.3b
︸ ︷︷ ︸64 ︷ ︸︸ ︷

switch.3b → switch.3b → switch.1a65 ︷ ︸︸ ︷

switch.3b → switch.3b → switch.266 ︷ ︸︸ ︷

switch.3b → switch.3b → switch.3a67 ︷ ︸︸ ︷

switch.3b → switch.3b → switch.3b
︸ ︷︷ ︸1 In Figure D.5 we show the ase where s

f(k)−1
c

→ skc → s
f(k)
c

= switch.3a → switch.1a → switch.2. We use
ikc to refer to the queue that is full at the start of gkic

. From s
f(k)−1
c

→ skc = switch.3a → switch1a we knowthat we ould always empty queue ikc during a green time of g̃max
ic

(beause we where able to empty queue ikcduring gkic
). Furthermore, from s

f(k)−1
c

= switch.3a, we know that queue ikc was not emptied during g
k−1
ic

.Therefore sk−1
c = switch.1a, sk−1

c = switch.1b are not possible (if k > 1). Further, sk−1
c = switch.2 and

sk−1
c = switch.3b are not possible if k > 1 beause we ould always empty queue ikc during a green time of

g̃max
ic

. Hene, it must hold that sk−1
c = switch.3a.2 From Lemma D.2 we know that this sequene of swith reasons annot our.3 From Lemma D.3 we know that this sequene of swith reasons annot our.Table D.3: All possible ombinations of 3 subsequent swith reasons. When skc → s

f(k)
c is in Table D.1this is visualized with an braes. * means that this swith reason an be either one of the �ve swithreasons (exept for swith.1b). Note that for ase 3, sf(k)−1

c → skc ould also be a ombination fromTable D.1. 172



We an prove that ases 53, 60 and 61 annot our (see the footnotes of Table D.3). For ase 37 wean prove that when this ombination of three subsequent swith reasons ours then sk−1
c = switch.3aif k > 1 (see the �rst footnote of Table D.1). Thus, if ase 37 ours and k > 1 then s

f(k)−1
c ispart of a ombination in the set C1. Further, sf(k)c is part of a ombination Cj , j = 8, 9, . . . , 17 (seeTable D.1). Hene, sf(k)c is part of a ombination in the set Ci, i = 2, 3, 4, 5, 6, 7, 9, 11. Whenever

s
f(k)−1
c → skc → s

f(k)
c = switch.3a → switch.1a → switch.2 ours then we de�ne skc to be part of aombination in the set C2 (however aording to Table D.1 it is not). Beause of this de�nition, it stillholds that every swith reason skc , k > 1 is part of a ombination Ci, i = 1, 2, . . . , 25.The �rst problem is that we have to prove that when skc , k ≥ nC1 + 1 is part of a ombination inthe set Ci, i = 1, . . . , ns then s

f(k)
c annot be part of a ombination in the setCj, 1 ≤ j < i. Note thatthis holds for s

f(k)−1
c → skc → s

f(k)
c = switch.3a → switch.1a → switch.2 (ase 37). We use nC1 forthe smallest number k > 0 suh that sk1 is not part of a ombination in the set C1. We an prove (seeSetion D.3.1) that nC1 is �nite and that sk2 , k ≥ nC1 and sk1 , k ≥ nC1 annot be part of a ombinationin the set C1 anymore.The seond problem is that we have to prove that only a �nite sequene of swith reasons skc an bepart of a ombination in the set Ci, 1 ≤ i ≤ ns − 2.In setions D.3.1-D.3.12 we onsider these two problems for the sets C1 until C12.D.3.1 skc is part of a ombination in the set C1For the set C1 we have to show that an in�nite number of adjaent swith reasons skc that are all partof a ombination in the set C1 is not possible.In this setion we assume an in�nite sequene s11 → s

f(1)
2 → s21 → s

f(2)
2 → · · · = switch.3a →

switch.3a → switch.3a → switch.3a → . . . . We prove that gkic < gk+1
ic

, ∀k > 0 ∀ic ∈ G1 ∪G2. Hene, anin�nite sequene skc → s
f(k)
c → · · · = switch.3a → switch.3a → . . . is not possible beause eventuallythe green times are too big for switch.3a to our.Inreasing green timesWe show that gki1 < gk+1

i1
, ∀i1 ∈ G1, ∀k > 0 and that gki2 < gk+1

i2
, ∀i2 ∈ G2, ∀k > 0 by distinguishing thefollowing two situations:situation 1 g

f(k)

i
f(k)+1
c

> gpbt
i
f(k)+1
c

,ik+1
c

.situation 2 g
f(k)

i
f(k)+1
c

≤ gpbt
i
f(k)+1
c ,ik+1

c

.We prove that in situation 1 it holds that gkic < gk+1
ic

, ∀ic ∈ Gc and that in situation 2 it holds that
gkic < gk+1

ic
, ∀ic ∈ Gc. Hene, it follows that gki1 < gk+1

i1
, ∀i1 ∈ G1, ∀k > 0 and that gki2 < gk+1

i2
, ∀i2 ∈ G2,

∀k > 0.We have visualized situation 1 and situation 2 in Figure D.6.
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i
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c

,ik+1
c ,i
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c

is performed.174



3 between point 3 and point 4, gf(k)
i
f(k)+1
c

is performed.4 between point 4 and point 5, gk+1

ik+1
c

is performed.Using (D.7a) and (D.7d) we an �nd that in situation 1 point 1 is positioned above point 4 beause
g
f(k)

i
f(k)+1
c

> gpbt
i
f(k)+1
c

,ik+1
c

(see de�nition of situation 1), gµ,f(k)
i
f(k)+1
c

= g
f(k)

i
f(k)+1
c

(queue i
f(k)+1
c is not emptiedduring g

f(k)

i
f(k)+1
c

sine sk+1
c = switch.3a) and ∆xk+1

c,ik+1
c

≥ 0 (beause queue ik+1
c is full at the start of

gk+1

ik+1
c

). Further, point 2 annot be positioned above point 5 (otherwise the maximum queue apaitywould be exeeded). Hene, gk
ik+1
c

< gk+1

ik+1
c

. The green periods are related aording to D.2. Hene,
gk
ik+1
c

< gk
ik+1
c

also means gkic < gk+1
ic

, ∀ic ∈ Gc.In situation 2, it holds that g
f(k)

i
f(k)+1
c

≤ gpbt
i
f(k)+1
c ,ik+1

c

whih ould happen only if gk
ik+1
c

≤ gpbt
ik+1
c ,i

f(k)+1
c(Between the points 2,3 and 6 we shows the mapping of the pure bow-tie urve). We an see this using(D.7a) and (D.7b), gf(k)

i
f(k)+1
c

≤ gpbt
i
f(k)+1
c ,ik+1

c

(see de�nition of situation 2), gµ,f(k)
i
f(k)+1
c

= g
f(k)

i
f(k)+1
c

(queue if(k)+1
cis not emptied during gf(k)

i
f(k)+1
c

sine sk+1
c = switch.3a) and∆xk+1

c,ik+1
c

≥ 0 (beause queue ik+1
c is full at thestart of gk+1

ik+1
c

). Thus, it holds that gk
ik+1
c

≤ gpbt
ik+1
c ,i

f(k)+1
c

. However, it must hold that gk+1

ik+1
c

> gpbt
ik+1
c ,i

f(k)+1
cbeause otherwise no onvergene is possible (see Setion 8.2). Hene, gk

ik+1
c

< gk+1

ik+1
c

. The green periodsare related aording to D.2. Hene, gk
ik+1
c

< gk
ik+1
c

also means gkic < gk+1
ic

, ∀ic ∈ Gc.Hene, we know that gki1 < gk+1
i1

, ∀i1 ∈ G1, ∀k > 0 and that gki2 < gk+1
i2

, ∀i2 ∈ G2, ∀k > 0.Now we know that for an in�nite sequene skc → s
f(k)
c → · · · = switch.3a → switch.3a → . . . thegreen times keep inreasing. We want to show that eventually the green times are too large for switch.3ato our. However, when the green times of all signals inrease, it an be the ase that these green timesonverge to an asymptote. For example the series 1, 1+ 1
2 , 1+

1
2 +

1
4 , 1+

1
2 +

1
4 +

1
8 , 1+

1
2 +

1
4 +

1
8 +

1
16 , . . . .is inreasing. However, this series has an asymptote at 2.We want to exlude that the green times onverges to an asymptote. To this end we �rst show thatfor eah set G1 and G2, the queue that is ative an only hange �nitely many times, i.e. the queue thatreahes its maximum queue length an only hange �nitely many times. Hereafter, we prove that whenthe queue that is ative does not hange anymore for both sets (see Figure D.7) then ∆gk+1

ic
= gk+1

ic
−gkic ,

∀ic ∈ Gc inreases for inreasing gkic . As a result we annot onverge to a asymptote.The Bu�er That is Ative in Gc Can Only Change a Finite Number of TimesNow we show when the ative queue in the set Gc an hange. When, xk
c,ic

= x̃max
c,ic

∧ xk
c,jc

< x̃max
c,jc

,
ic ∈ Gc, jc ∈ Gc and xk+1

c,ic
< x̃max

c,ic
∧ xk+1

c,jc
= x̃max

c,jc
, ic, jc ∈ Gc (the queue that is ative hanges from icto jc), then it must hold that ∆xk+1

c,ic
< 0 and ∆xk+1

c,jc
> 0. Hene, using gµ,kic

≤ gkic , gµ,kjc
= gkjc (beauseif jc beomes ative when gµ,kjc

< gkjc then the signals would swith for the reason switch.3b and notfor the reason switch.3a), (D.7a), (D.7d) we an �nd that for an in�nite sequene of switch.3a swithreasons the ative bu�er an hange from ic to jc whenever we satisfy the following strit inequalities:
(g

f(k)
ic

+ σic,ic,ic)λic < gkic(µic − λic), (D.10a)
(g

f(k)
ic

+ σjc,ic,jc)λjc > gkjc(µjc − λjc). (D.10b)175



Using (D.2) we an see that we an �nd a value for gf(k)ic
that satis�es the inequalities in (D.10) ifand only if:

g
f(k)
ic

aic,jc − bic,jc > 0, (D.11)where
aic,jc =

ρjc
1− ρjc

− ρic
1− ρic

,

bic,jc =
σic,ic,ic

1− ρic
− σjc,ic,jc

1− ρj2
.Thus whenever signal ic is ative then jc an beome ative if (and only if) the inequality in (D.11) issatis�ed. We an represent whih signals ould beome ative using a transition system. This transitionsystem has the states 1, 2, . . . , Nc, where Nc is the number of signals in the set Gc. The state representswhih of the queues is ative. The transitions between these states represent whih signals ould beomeative. We ould make a transition from state ic to the state jc whenever the inequality (D.11) holds.Note that the following holds:

aic,jc = −ajc,ic , (D.12a)
bic,jc = −bjc,ic . (D.12b)Hene, it holds that whenever gf(k)ic

aic,jc − bic,jc > 0 then g
f(k)
ic

ajc,ic − bjc,ic < 0. Thus whenever atransition from ic to jc is possible then a transition jc to ic is not possibleWe distinguish two di�erent transitions.type 1 we make a transition from the state ic to the state jc and aic,jc ≥ 0.type 2 we make a transition from the state ic to the state jc and aic,jc < 0.First we onsider the �rst type of transitions. Beause g
f(k)
ic

inreases for inreasing k and beause
aj2,i2 = −aj2,i2 , we an see that whenever we make a type 1 transition from ic to jc, from that momenton it holds that gf(k)ic

ajc,ic − bjc,ic < 0. Hene, we annot make a diret transition from state jc to thestate ic anymore.Lets onsider an indiret path from the state jc to the state ic via the path l1 → l2 → · · · → lnwhere l1 = j2 and ln = i2. Thus, from the state jc we make a transition to the state l2 and from thestate l2 we make a transition to the state l3 etetera. Using (D.12) we an derive:
g
f(k)
ic

ajc,ic − bjc,ic =

m=n
∑

m=1

(g
f(k)
ic

alm,lm+1 − blm,lm+1) < 0. (D.13)Hene, ∃m : g
f(k)
ic

alm,lm+1 − blm,lm+1 < 0 and thus every path from jc to ic ontains a transitionthat is not possible. In onlusion whenever we make a type 1 transition out of the state ic, we annever reah the state ic again. In other words, the signal ic an never beome ative anymore (whenonsidering the in�nite sequene skc → s
f(k)
c → · · · = switch.3a → switch.3a → . . . ).A type 2 transition from the state ic to the state jc is only possible whenever bic,jc < 0, i.e. when

σj2,ic,jc

1−ρjc
>

σic,ic,ic

1−ρic
. Thus, when there are Nreachable reahable states then we an make maximally

Nreachable − 1 type 2 transitions in a row. 176



Thus, we an make maximally Nreachable−1 type 2 transitions in a row (and then the next transitionhas to be a type 1 transition). Whenever we make a type 1 transition out of a state we an never reahthis state again (number of reahable states dereases with at least one). Hene, we annot make morethan Nc
∑

i=1

i = Nc(Nc+1)
2 transitions (and thus the ative queue in the set Gc annot hange more than

Nc(Nc+1)
2 times), whih is �nite when we assume Nc is �nite.The Green Times Cannot Converge to a AsymptoteNow we prove that when the queue that is ative does not hange anymore for both sets (see FigureD.7) then ∆gk+1

ic
= gk+1

ic
− gkic , ∀ic ∈ Gc k > 0 inreases for inreasing gkic . Lets assume queue ikc ∈ Gcis the ative queue in Gc and assume that queue i

f(k)
c ∈ Gc is the ative queue in Gc andWe an distinguish the following setions:1 between point 1 and point 2, gk

ikc
is performed.2 between point 2 and point 3,the setup σ

i
f(k)
c ,ikc ,i

f(k)
c

is performed.3 between point 3 and point 4, gf(k)
i
f(k)
c

is performed.4 between point 4 and point 5, gk+1
ikc

is performed.PSfrag replaements x̃max

c,i
f(k)
c

x̃max

c,i
f(k)
c

− λ
i
f(k)
c

σ
i
f(k)
c

,ikc ,i
f(k)
c
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f(k)
c
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Figure D.7: when the queue that is ative does not hange anymore for both setsUsing ∆xk+1
c,ikc

= 0 we an derive ∆xk+1

c,i
f(k)
c

= gk+1
ikc

1−ρ
ikc

−ρ
i
f(k)
c

ρ
ikc

µ
i
f(k)
c

+ σ
ikc i

f(k)
c

ikc
µ
i
f(k)
c

. It is easy to seethat ∆gk+1
ikc

=
∆xk+1

c,i
f(k)
c

λ
i
f(k)
c

= gk+1
ikc

1−ρ
ikc

−ρ
i
f(k)
c

ρ
ikc

ρ
i
f(k)
c

+
σ
ikc i

f(k)
c

ikc

ρ
i
f(k)
c

.The green periods are related aording to D.2. As a result the green periods annot onverge to aasymptote. 177



Eventually sk = switch.3a is not possible beause eventually we satisfy eventually the green periodis long enough to empty all queues (with a �nite maximum queue apaity) during their green period(and therefore no queue in set G2 an be ative anymore):
∀i1 ∈ G1

(

xmax
i1

= ∞∨ gki1 >
xmax
i1

µi1 − λi1

)

.Hene, an in�nite sequene skc → s
f(k)
c → · · · = switch.3a → switch.3a → . . . is not possible.Thus, nC1 (whih is the smallest number for k suh that sk1 is not element of a ombination in the set

C1) is �nite. From Lemma D.4 and Lemma D.1 we know that whenever skc is not part of a ombinationin the set C1 then s
f(k)
c annot be part of a ombination in the set C1. Hene, skc , k ≥ nC1 annot be partof a ombination in the set C1. Thus for ∀k ≥ nC1 two subsequent swith reasons skc → s

f(k)
c annot beboth equal to switch.3a.D.3.2 skc is part of a ombination in the set C2In this setion we onsider the ase where skc is part of a ombination in the set C2.Finite Sequene Using Lemma D.14 we an see that we annot have an in�nite sequene of swithreasons skc where eah swith reason is part of a ombination in the set C2.Restriting Combinations We an prove that when skc is part of a ombination in the set C2 =

{C14}, then s
f(k)
c annot be part of a ombination in the set C1.

s
f(k)
c annot be part of Beause:a ombination in the set:
C1 If sf(k)c is part of a ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. From Lemma D.4 we know that skc → s

f(k)
c →

sk+1
c = switch.2 → switch.3a → switch.3a is not possible.D.3.3 skc is part of a ombination in the set C3In this setion we onsider the ase where skc is part of a ombination in the set C3 = {C14}Finite Sequene From Lemma D.20 we know that whenever skc → s

f(k)
c → sk+1

c → s
f(k)+1
c =

switch.3a → switch.3b → switch.3a → switch.3b then it holds that max
ic∈Gc

∆xk+2
c,ic

= xk+2
c,ic

− xk+1
c,ic

≥ 0.Hene, a maximum of 2 subsequent swith reasons an be part of a ombination in the set C3 = {C14}.Restriting Combinations We an prove that when skc is part of a ombination in the set C3 =

{C14}, i.e. s
f(k)−1
c → skc = switch.3a → switch.3b or skc → s

f(k)
c = switch.3a → switch.3b then s

f(k)
cannot be part of a ombination in the set Ci, i < 3.
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s
f(k)
c annot be part of Beause:a ombination in the set:
C1 If sf(k)c is part of a ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. From Lemma D.4 we know that skc → s

f(k)
c →

sk+1
c = switch.2 → switch.3a → switch.3a is not possible.

C2 From Lemma D.2 we know that sf(k)c annot be part of a ombinationin the set C2 = {C8}.D.3.4 skc is part of a ombination in the set C4In this setion we onsider the ase where skc is part of a ombination in the set C4 = {C11, C15, C18, C19}.Finite Sequene Lets assume that an in�nite sequene of swith reasons exists where eah swithreason is part of a ombination in the set C4.From Lemma D.2 we know that ombination C11 an only our in this in�nite sequene if theombinations C18 and C19 do not our in this in�nite sequene. Further, from Lemma D.14 we knowthat an in�nite sequene of swith reasons where eah swith reason is part of C11 is not possible andthat an in�nite sequene of swith reasons where eah swith reason is part of either C18 or C19 is notpossible. Hene, eventually for an in�nite sequene of swith reasons that are all part of a ombinationin the set G4, the ombination C15 must our. From Lemma D.5 we know that whenever ombination
C15 ours (after another ombination in the set C4) then ombination C11, C18 and C19 an neverour again.Hene, if an in�nite sequene of swith reasons where eah swith reason is part of a ombinationin the set C4 is possible then an in�nite sequene of the ombination C15 must be possible:

skc → s
f(k)
c → sk+1

c → s
f(k)+1
c → · · · = switch.3a → switch.3b → switch.3a → switch.3b → . . .From Lemma D.20 we know that for this in�nite sequene it holds that ∃ic ∈ Gc : ∆xh+1

c,ic
≥

0 ∧ g
µ,f(h)
ic

= g
f(h)
ic

∧ g
f(h)
ic

> gpbtic
for all h > k.Using Lemma D.19 we an see that eah queue ic ∈ Gc either goes empty, i.e. the queue lengthis zero at the end of ghic , h ≥ k or its queue length dereases minimally ∆c(g

h
ic
) > 0. Note that

∆c(g
h
ic
) = ∆c(g

h+1
ic

), h ≥ k beause ghic = gh+1
ic

= g̃max
ic

, h ≥ k. As a result, for an in�nite sequeneof swith reasons that are all part of ombination C15, the queues in the set Gc are eventually emptied(and we swith beause of the reason switch.1a or switch.1b). Hene, an in�nite sequene sequene ofswith reasons that are all part of ombination C15 is not possible.Restriting Combinations We an prove that when skc is part of a ombination in the set C4 then
s
f(k)
c annot be part of a ombination in the setCi, i < 4.
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s
f(k)
c annot be part of Beause:a ombination in the set:
C1 If sf(k)c is part of a ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a is needed. However, from Lemma D.4 we know that
skc → s

f(k)
c → sk+1

c = switch.3b → switch.3a → switch.3a is not possi-ble.
C2 From Lemma D.2 we know that sf(k)c annot be part of a ombinationin the set C2.
C3 From Lemma D.20 we know that sf(k)c annot be part of a ombinationin the set C3.D.3.5 skc is part of a ombination in the set C5In this setion we onsider the ase where skc is part of a ombination in the set C5 = {C17}.Finite Sequene From Lemma D.15 we know that an in�nite sequene is not possible.Restriting Combinations We an prove that when skc is part of a ombination in the set C5 then

s
f(k)
c annot be part of a ombination in the set Ci, i < 5.

s
f(k)
c annot be part of Beause:a ombination in the set:
C1 if s

f(k)
c is part of a ombination in the set C1 then it must holdthat s

f(k)
c = switch.3a. However, from Lemma D.4 we know that

s
f(k)−1
c → skc → s

f(k)
c → sk+1

c = switch.3b → switch.3a → switch.3a isnot possible.
C2 From Lemma D.2 we know that sf(k)c annot be part of a ombinationin the set C2.
C3 From Lemma D.20 we know that sf(k)c annot be part of a ombinationin the set C3.
C4 We an prove that when skc is part of a ombination in the set C5 then

s
f(k)
c annot be part of ombination C11,C15,C18 and C19. From LemmaD.2 we know that sf(k)c annot be part of ombination C11. From LemmaD.20 we know that s

f(k)
c annot be part of ombination C15 and fromLemma D.21 we know that sf(k)c annot be part of ombination C18 or

C19.D.3.6 skc is part of a ombination in the set C6In this setion we onsider the ase where skc is part of a ombination in the set C6 = {C10}.Finite Sequene From Lemma D.15 we know that an in�nite sequene of swith reasons, where eahswith reason is part of ombination C10 is not possible.
180



Restriting Combinations We an prove that when skc is part of a ombination in the set C6 then
s
f(k)
c annot be part of ombination Ci, i < 6.

s
f(k)
c annot be part of Beause:a ombination in the set:
C1 If sf(k)c is part of a ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. However, from Lemma D.4 we know that skc →
s
f(k)
c → sk+1

c = switch.3b → switch.3a → switch.3a is not possible.
C2 From Lemma D.2 we know that sf(k)c annot be part of a ombinationin the set C2.
C3 From Lemma D.20 we know thatsf(k)c annot be part of a ombinationin the set C3.
C4 We an prove that when skc is part of a ombination in the set C6 then

s
f(k)
c annot be part of ombination C11,C15,C18 and C19. From LemmaD.15 we know that s

f(k)
c annot be part of ombination C11. FromLemma D.9 we know that sf(k)c annot be part of ombination C18 andombination C15 beause and from Lemma D.2 we know that sf(k)c an-not be part of ombination C18 and ombination C19.

C5 From Lemma D.2 we know that sf(k)c annot be part of a ombinationin the set C5.D.3.7 skc is part of a ombination in the set C7In this setion we onsider the ase where skc is part of a ombination in the set C7 = {C7}.Finite Sequene From Lemma D.15 we know that an in�nite sequene of swith reasons where eahswith reason is part of ombination C7 is not possible.Restriting Combinations We an prove that when skc is part of a ombination in the set C7 then
s
f(k)
c annot be part of a ombination in the set Ci, i < 8.

s
f(k)
c annot be part of Beause:a ombination in the set:
C1 If sf(k)c is part of a ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. However, from Lemma D.4 we know that skc →
s
f(k)
c → sk+1

c = switch.2 → switch.3a → switch.3a is not possible.
C2 From Lemma D.15 and Lemma D.21 we know that sf(k)c annot be partof a ombination in the set C2.
C3, C4, C5, C6 From LemmaD.2 we know that sf(k)c annot be part of a ombination inthese set.D.3.8 skc is part of a ombination in the set C8In this setion we onsider the ase where skc is part of a ombination in the set C8 = {C9}.
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Finite Sequene Lets assume that an in�nite sequene of swith reasons where eah swith reasonis part of a ombination in the set C8 = {C9} exists:
skc → s

f(k)
c → sk+1

c → s
f(k)+1
c → · · · = switch.2 → switch.3a → switch.2 → switch.3a → . . . , (D.14)where max

ic∈Gc

xh+1
c,ic

≤ 0, ∀h ≥ k.Sine, we stop ghic h ≥ k for the reason switch.3a, the signal ic that reahes its maximum queue (atthe start of gh+1
ic

, h ≥ k) satis�es gµ,hic
= ghic , ∆xh+1

c,ic
≥ 0 (beause ∆xk+1

c,ic
< 0 would imply a queuelength that exeeds the maximum queue length) and gkic > gpbtic

(beause of inequalities (8.1h), (8.1k)).Hene, using Lemma D.18 we an see that eah queue ic ∈ Gc either goes empty, i.e. the queuelength is zero at the end of gf(h)ic
, h ≥ k or its queue length dereases minimally ∆c(g

h
ic
) > 0. Notethat ghic = gh+1

ic
= gmax

ic
, ∀h ≥ k. Hene, eventually all queues ic ∈ Gc are emptied (and we do not stopserving the signals in the set Gc for the reason switch.3a but for the reason switch.1a or switch.1b).Thus, an in�nite sequene where eah swith reason is part of ombination C9 is not possible.Restriting Combinations We an prove that when skc is part of a ombination in the set C8 then

s
f(k)
c annot be part of a ombination in the set Ci, i < 8.

s
f(k)
c annot be part of Beause:a ombination in the set:
C1 If sf(k)c is part of a ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. However, from Lemma D.4 we know that skc →
s
f(k)
c → sk+1

c = switch.2 → switch.3a → switch.3a is not possible.
C2 From Lemma D.5 we know that sf(k)c annot be part of a ombinationin the set C2.
C3 From Lemma D.2 we know that the sequene s

f(k)−1
c → skc → s

f(k)
c =

switch.2 → switch.3a → switch.3b and the sequene skc → s
f(k)
c →

sk+1
c = switch.2 → switch.3a → switch.3b are not possible. FromLemma D.4 we know that the sequene sf(k)−1

c → skc → s
f(k)
c → sk+1

c =
switch.2 → switch.3a → switch.3a → switch.3b is not possible.

C4 We an prove that when skc is part of ombination C10 then s
f(k)
c annotbe part of a ombination in C4 = {C11, C15, C18, C19}. From Lemma D.5we know that sf(k)c annot be part of a ombination C11. Further, sf(k)cannot be part of ombination C15 for the same reason why s
f(k)
c annotbe part of a ombination in the set C3. From Lemma D.2 we know that

s
f(k)
c annot be part of a ombination C18 or C19.

C5 From Lemma D.2 we know thatsf(k)c annot be part of a ombination inthe set C5.
C6, C7 From Lemma D.5 we know that sf(k)c annot be part of a ombinationin the set C6 or a ombination in the set C7.D.3.9 skc is part of a ombination in the set C9In this setion we onsider the ase where skc is part of a ombination in the set C9 = {C5}.182



Finite Sequene From Lemma D.16 we know that an in�nite sequene where eah swith reason ispart of a ombination in the set C9 is not possible.Restriting Combinations We an prove that when skc is part of a ombination in the set C9 then
s
f(k)
c annot be part of a ombination in the set Ci, i < 9.

s
f(k)
c annot be part of Beause:a ombination in the set:
C1 If sf(k)c is part of a ombination in the set C1 then it must hold that

s
f(k)
c = switch.3a. However, from Lemma D.4 we know that skc →
s
f(k)
c → sk+1

c = switch.3b → switch.3a → switch.3a is not possible.
C2 From Lemma D.7 we know that sf(k)c annot be part of a ombinationin the set C2.
C3 From Lemma D.1 we know that sf(k)c annot be part of a ombinationin the set C2.
C4 We an prove that when skc is part of ombination C10 then s

f(k)
c annotbe part of a ombination in C4 = {C11, C15, C18, C19}. From Lemma D.7we know that sf(k)c annot be part of a ombination C11. From LemmaD.1 we know that sf(k)c annot be part of a ombination C15 and fromLemma D.7 we know that sf(k)c annot be part of a ombination C18 or

C19.
C5 From Lemma D.7 we know that sf(k)c annot be part of a ombinationin the set C5.
C6 From Lemma D.2 and Lemma D.10 we know thatsf(k)c annot be partof a ombination in the set C3 ∈ C6. Further, from Lemma D.7 we knowthat sf(k)c annot be part of a ombination in the set C10 ∈ C6.
C7 From Lemma D.7 we know that sf(k)c annot be part of a ombinationin the set C7.D.3.10 skc is part of a ombination in the set C10In this setion we onsider the ase where skc is part of a ombination in the set C10 = {C6}.Finite Sequene From Lemma D.16 we know that an in�nite sequene of swith reasons, where eahswith reason is part of ombination C6 is not possible.Restriting Combinations From Lemma D.7 we know that when skc is part of a ombination in theset C10 then s

f(k)
c annot be part of a ombination Ci, i < 10 whenever k ≥ nC1 .D.3.11 skc is part of a ombination in the set C11In this setion we onsider the ase where skc is part of a ombination in the set C11 = {C1}.Assume an in�nite sequene where eah swith reason is part of a ombination in the set C11:

skc → s
f(k)
c → sk+1

c → s
f(k)+1
c → · · · = switch.1a → switch.1a → switch.1a → switch.1a → . . .183



From Lemma D.22 we know that:
g
f(h)
ic

> gpbtic
, ∀ic ∈ Gc, ∀h ≥ k,

ghic > gpbtic
, ∀ic ∈ Gc, ∀h > k.Further, we know from Lemma D.11 that:

∆g
f(h)+1
ic

= g
f(h)+1
ic

− g
f(h)
ic

≤ max
lc∈Gc,lc∈Gc

ρlc(1 − ρlc − ρlc)

1− ρlc
(gpbtlc,lc

− g
f(h)
lc

) < 0, ∀h ≥ k,

∆gh+1
ic

= gh+1
ic

− ghic ≤ max
lc∈Gc,lc∈Gc

ρlc(1 − ρlc − ρlc)

1− ρlc
(gpbtlc,lc

− ghlc) < 0, ∀h > k.From these two lemmas we an see that for k → ∞ the green times (note that the green times ofthe signals in the set G1 are related to eah other and that the green times of the signals in the set G2are related to eah other) onverge to the smallest green times that satisfy gki1 ≥ gpbti1
, ∀i1 ∈ G1 andsatisfy gki2 ≥ gpbti2

, ∀i2 ∈ G2. Note that for k → ∞, the green times onverge to the smallest green andred times that satisfy the inequalities in (7.14a). Hene, the green times onverge to green times thatare smaller than (or equal to) the green times of the trajetory that we want to follow (for an in�nitesequene of swith reasons equal to switch.1a).When the green time gkic is smaller than the green times for the desired trajetory then we swithfor the reason switch.1b (see setion D.1). If the green times that we onverge to are equal to the greentimes of the desired trajetory we onverge to the desired trajetory.Note that we only have an in�nite sequene where eah swith reason is part of a ombination inthe set C11 whenever the green times of the desired trajetory are the green times that we onverge to.Restriting Combinations When skc is part of ombination C11 then s
f(k)
c annot be part of om-bination Ci, i < 11 beause of Lemma D.12 and Lemma D.1.D.3.12 skc is part of a ombination in the set C12In this setion we onsider the ase where skc is part of a ombination in the set C12.From Lemma D.23 we know that whenever skc = switch.1b then we follow the desired trajetoryfrom the start of the k + 1th yle c. Whenever skc = switch.1b it holds that:

skc = switch.1b, ∀h ≥ k, (D.15)
s
f(h)
c = switch.1b, ∀h ≥ k. (D.16)D.4 LemmasIn this setion we show the di�erent lemmas that we use in the proof of the poliy.
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D.4.1 Lemmas Exluding Sequenes of Swith ReasonsLemma D.1 The sequene skc → s
f(k)
c = switch.1a → switch.3a is not possible.Proof. Whenever s

f(k)
c = switch.3a then there is a queue ic ∈ Gc that was not emptied during

gkic (see Setion D.1 for the de�nition of the swith reason switch.3a). However, when skc = switch.1athis means that all signals in the set Gc are emptied during their green time gkic . Hene, the sequene
skc → s

f(k)
c = switch.1a → switch.3a is not possible.Lemma D.2 skc = switch.3b an our i� shc 6= switch.2, ∀h ≥ 1.Proof. From Lemma D.17 we know that whenever a queue in the set Gc goes from empty to themaximum queue length then all queues in the set Sc will go from empty to the maximum queue length.When skc = switch.3b then this means that a queue goes from empty to the maximum queue lengthbefore the maximum green time is reahed, i.e. ximax

s

λis
− σic,is,ic < gmax

ic
, ic ∈ Gc, is ∈ Sc (see thede�nitions of switch.2 and switch.3b in Setion D.1). Moreover, when skc = switch.2 this means that aqueue annot go from empty to the maximum queue length before the maximum green time is reahed,i.e. ximax

s

λis
−σic,is,ic ≥ gmax

ic
, ic ∈ Gc, is ∈ Sc. Hene skc = switch.3b an our i� shc 6= switch.2, ∀h ≥ 1.Lemma D.3 The sequenes skc → s

f(k)
c → sk+1

c = switch.3b → switch.3a → switch.1a and skc →
s
f(k)
c → sk+1

c = switch.2 → switch.3a → switch.1a are not possible.Proof. The visualization of this proof an be seen in Figure D.8a. In this Figure ic ∈ Gc is thesignal that auses s
f(k)
c = switch.3a, i.e. the queue that is full at the beginning of gk+1

ic
. The signal

ic ∈ Gc ould refer to any signal in the set Gc.PSfrag replaements
x̃max
c,ic

x̃max
c,ic

− λicσic,ic,ic

xic

x̃min
c,ic
x̃min
c,ic

xic x̃max
c,ic

1

2

3

4

5

(a) Visualization of Lemma D.3In this �gure we an see the following setions:1 Between point 1 and point 2, gkic = g̃max
ic

is performed.2 between point 2 and point 3, the setup σic,ic,ic is performed.3 between point 3 and point 4, gf(k)ic
is performed.185



4 Between point 4 and point 5, gk+1
ic

is performed.We were not able empty queue ic during gkic = g̃max
ic

(sine s
f(k)
c = switch.3a) and the queue lengthat the beginning of gk+1

ic
annot be less than the queue length at the beginning of gkic (queue ic is fullat the beginning of gk+1

ic
). Hene, we annot empty queue ic during gk+1

ic
≤ g̃max

ic
. Thus, the sequenes

skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.3a → switch.1a and skc → s

f(k)
c → sk+1

c →
s
f(k)+1
c = switch.2 → switch.3a → switch.1a are not possible.Lemma D.4 skc → s

f(k)
c → sk+1

c = switch.2 → switch.3a → switch.3a and skc → s
f(k)
c → sk+1

c =
switch.3b → switch.3a → switch.3a are not possibleProof. We an see the ase where skc → s

f(k)
c = switch.2 → switch.3a or skc → s

f(k)
c = switch.3b →

switch.3a in Figure D.8. We use ik+1
c for a signal that has a queue length that is equal to the maximumqueue length at the beginning of gk+1
ic

(whih exists beause s
f(k)
c = switch.3a). We use ic for a signal(ould be any sign) in the set Gc.PSfrag replaements
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Figure D.8: Visualization of Lemma D.4We an distinguish the following setions in this �gure:1 between point 1 and point 2, gk
ik+1
c

is performed.2 between point 2 and point 3, gf(k)ic
is performed.3 between point 3 and point 4, the setup σic,i

k+1
c ,ic

is performed.4 between point 4 and point 5, gk+1

ik+1
c

is performed.Beause ∆xk+1

c,ik+1
c

≥ 0 (beause queue ik+1
c is full at the beginning of gk+1

ik+1
c

), gµ,k
ik+1
c

= gk
ik+1
c

(beausebu�er ik+1
c was not emptied during gk

ik+1
c

sine skc = switch.3a) and gk
ik+1
c

> gpbt
ik+1
c

(beause of theinequalities in (8.1h), (8.1k), (8.1n) and (8.1q)) we an use Lemma D.18. From Lemma D.18 it followsthat eah queue ic ∈ Gc either empties, i.e. the queue length is zero at the end of its green time g
f(k)
ic

,or its queue length dereases minimally ∆c(g
k
ic
) > 0 during the kth yle c.186



As a result, for eah signal ic ∈ Gc it holds that the queue length at the start of gk+1

ik+1
c

is not largerthan the queue length at the start of gk
ik+1
c

. Further, beause it holds that gk+1

ik+1
c

≤ g̃max
ic

(beause ofinequality (D.5a)) and gk
ik+1
c

= g̃max
ic

(see the de�nition of g̃max
ic

in Setion D.2) the queue length of queue
ic annot be larger at the end of gk+1

ik+1
c

than it was at the end of gk
ik+1
c

. As a result skc → s
f(k)
c → sk+1

c =

switch.2 → switch.3a → switch.3a and skc → s
f(k)
c → sk+1

c = switch.3b → switch.3a → switch.3a arenot possible.Lemma D.5 If skc → s
f(k)
c = switch.2 → switch.3a or skc → s

f(k)
c = switch.3b → switch.3a then

s
f(k)+1
c = switch.3b is not possible and s

f(k)+1
c = switch.2 is not possible.Proof. The proof of this lemma is shown in Figure D.9aPSfrag replaements
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7(a) Visualization of Lemma D.5In this �gure we use ik+1
c ∈ Gc to refer to a signal in the set Gc whih queue is full at the start of

gk+1
ic

(whih exists beause s
f(k)
c = switch.3a) and ic ∈ Gc ould refer to any signal in the set Gc. Inthis �gure we an see the following setions:1 Between point 1 and point 2, gkic = g̃max

ic
is performed.2 between point 2 and point 3, the setup σic,i

k+1
c ,ic

is performed.3 between point 3 and point 4, gf(k)ic
is performed.4 Between point 4 and point 5, gk+1

ik+1
c

= g̃max
ic

is performed.5 between point 5 and point 6, the setup σic,i
k+1
c ,ic

is performed.6 between point 6 and point 7, gf(k)+1
ic

is performed.First of all point 1 annot be positioned on the right side of point 4 (beause queue ik+1
c is fullat the beginning of gk+1

ic
and otherwise the maximum queue length would be exeeded). Further, itholds that gkic ≥ gk+1

ic
(beause gkic = g̃max

ic
). As a result point 2 annot be positioned on the right ofpoint 5. Hene, it follows that gf(k)+1

ic
≤ g

f(k)
ic

, ∀ic ∈ Gc (beause otherwise queue ic would over�ow).It holds that g
f(k)
ic

< g̃max
ic

(sine s
f(k)
c = switch.3a). Hene, gf(k)+1

ic
≤ g

f(k)
ic

< g̃max
ic

. As a result,
s
f(k)+1
c = switch.3b is not possible and s

f(k)+1
c = switch.2 is not possible.187



Lemma D.6 The following sequenes are not possible:1 skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.1a → switch.2 → switch.22 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.1a → switch.2 → switch.3b3 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.1a → switch.3b → switch.24 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.1a → switch.3b → switch.3bProof. Whenever skc = switch.2 this means that at the start of gf(k)ic

the queue length of queue
ic ∈ Gc satis�es xic (t) ≥ (g̃max

ic
+ σic ,ic,ic)λic beause (g̃max

ic
+ σic,ic,ic)λic is the amount of tra� thatarrived during the red period. During g

f(k)
ic

all queues ic ∈ Gc are emptied (beause sf(k)c = switch.1a).At the beginning of gf(k)+1
ic

the queue length of a queue ic ∈ Gc is exatly xic(t) = (g̃max
ic

+ σic,ic,ic)λic(whih is less than or equal to the queue level at the start of gf(k)ic
). Hene, we an also empty all queuesin the set Gic during g

f(k)+1
ic

before we have to stop for the reason switch.2 or for the reason switch.3b.Lemma D.7 The following sequenes are not possible if k ≥ nC1 + 11 skc → s
f(k)
c → sk+1

c = switch.1a → switch.2 → switch.3b2 skc → s
f(k)
c → sk+1

c = switch.1a → switch.3b → switch.3b3 skc → s
f(k)
c → sk+1

c = switch.1a → switch.2 → switch.24 skc → s
f(k)
c → sk+1

c = switch.1a → switch.3b → switch.25 skc → s
f(k)
c → sk+1

c = switch.1a → switch.2 → switch.3a6 skc → s
f(k)
c → sk+1

c = switch.1a → switch.3b → switch.3aProof. First of all we are going to proof that if the sequene 1,2,3,4,5 or 6 exists then it musthold that sf(k)−1
c = switch.2 if sf(k)c = switch.2 and it must hold that sf(k)−1

c = switch.3b if sf(k)c =
switch.3b.From Lemma D.2 we know that s

f(k)−1
c = switch.3b annot our if sf(k)c = switch.2 and that

s
f(k)−1
c = switch.2 annot our if sf(k)c = switch.3b.From Lemma D.12 we know that it is not possible that s

f(k)−1
c = switch.1a and from LemmaD.23 we know that s

f(k)−1
c = switch.1b is not possible. Further, we also look at sk−1

c to proof that
s
f(k)−1
c = switch.3a is not possible. In the table below we show why s

f(k)−1
c = switch.3a is not possible.

sk−1
c → s

f(k)−1
c equal to not possible when skc → s

f(k)
c → sk+1

c is sequene 1,2,3,4,5 or 6 beause
switch.1a → switch.3a Lemma D.1
switch.1b → switch.3a Lemma D.23
switch.2 → switch.3a Lemma D.3
switch.3a → switch.3a sk−1

c annot be part of a ombinationin the set C1 whenever k ≥ nC1 + 1
switch.3b → switch.3a Lemma D.3Hene, if a sequene 1,2,3,4,5 or 6 exists then it must hold that sf(k)c = switch.2 if sf(k)+1

c = switch.2and that s
f(k)
c = switch.3b if sf(k)+1

c = switch.3b. From Lemma D.6 we an now see that sequenes1,2,3 and 4 are not possible. From Lemma D.8 it follows that sequenes 5 and 6 are not possible.188



Lemma D.8 The following sequenes are not possible:1 skcs
k−1
c → s

f(k)
c → sk+1

c = switch.2 → switch.1a → switch.2 → switch.3a2 skcs
k−1
c → s

f(k)
c → sk+1

c = switch.3b → switch.1a → switch.3b → switch.3aProof. Assume sk+1
c = switch.3a. We use i

f(k)+1
c to refer to the queue that is fulll at the end of

gk+1
ic

see Figure D.9a. It holds that queue i
f(k)+1
c is not emptied during g

f(k)
ic

(beause we otherwise
sk+1
c = switch.3b). We know from inequalities (8.1h), (8.1k), (8.1n) and (8.1q) that gf(k)

i
f(k)+1
c

> gpbt
i
f(k)+1
c

.In Figure D.9a we an see that any queue ic is emptied before queue i
f(k)+1
c is full.Furthermore, using inequalities (8.1j), (8.1m), (8.1p) and (8.1p) and using (D.7a) and (D.7d)) andusing g

µ,f(k)

i
f(k)+1
c

= g
f(k)

i
f(k)+1
c

we an derive that the minimum green times of the signals in Gc are satis�edbefore sk+1
c = switch.3a ours.Furthermore, we know that we satisfy ondition 1.3 (see Setion 8.3.1) before sk+1

c = switch.3aours (otherwise a maximum queue length is exeeded for the desired trajetory). Hene, we swithfor the reason sk+1
c = switch.1a or sk+1

c = switch.1b before we have to swith for the reason sk+1
c =

switch.3a.PSfrag replaements x̃max
c,ic

x̃max
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∆x
f(k)+1
c,ic(a) Situation 1

Lemma D.9 The sequene skc → s
f(k)
c → sk+1

c = switch.2 → switch3b → switch.3a where max
ic∈Gc

∆xk+1
c,ic

≤
0 is not possible.Proof. Beause of swith reason skc = switch.2 and beause of (8.1f) and (8.1g) it holds that:

gkic = gmax
ic , ∀ic ∈ Gc.When max

ic∈Gc

∆xk+1
c,ic

≤ 0, the queue length of every signal ic ∈ Gc annot be greater at the start of
gk+1
ic

than it was at the start of gkic . When we performed the maximum green time gkic = gmax
ic

, no189



maximum queue lengths where exeeded. Hene, when performing a green time gk+1
ic

≤ gmax
ic

againno queue lengths would be exeeded and therefore sk+1
c annot be equal to switch.3a (we reah themaximum green time before we have to swith for the reason sk+1

c = switch.3a).Lemma D.10 The following sequenes are not possible:sequene 1 skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.1a → switch.1a → switch.3bsequene 2 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.1a → switch.1a → switch.2sequene 3 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.1a → switch.1a → switch.3bsequene 4 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.1a → switch.1a → switch.2Proof. Lets assume sequene 1,2,3 or 4 are possible. In these ases it holds that gkic = g̃max

ic
,

∀ic ∈ Gc. Hene, the queue length of queue ic ∈ Gc is at least (g̃max
ic

+ σic,ic,ic)λic = r̃max
ic

λic at thebeginning of gf(k)ic
. The queue length at the beginning of gf(k)+1

ic
is at most (g̃max

ic
+σic,ic,ic)λic (beauseall queues in the set Gc where empty at the end of gf(k)ic

and gk+1
ic

≤ g̃max
ic

).Beause we ould empty all queues ic ∈ Gc during g
f(k)
ic

≤ g̃max
ic

we are also able to empty all queues
ic ∈ Gc during g

f(k)+1
ic

≤ g
f(k)
ic

≤ g̃max
ic

. However, sf(k)+1
c = switch.2 or sf(k)+1

c = switch.3b an onlyour if we are not able to empty all queues during g
f(k)+1
ic

≤ g̃max
ic

(see Setion D.1 for the de�nitionsof the swith reasons switch.2 and switch.3b).Lemma D.11 Whenever, sf(k)−1
c → skc → s

f(k)
c → sk+1

c = switch.1a → switch.1a → switch.1a →
switch.1a then it holds that ∆gk+1

ic
= gk+1

ic
− gkic ≤ max

lc∈Gc,lc∈Gc

ρlc
(1−ρlc−ρlc

)

1−ρlc
(gpbtlc,lc

− g
f(k)
lc

) < 0, ∀ic ∈ GcThe sequene s
f(k)−1
c → skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.1a → switch.1a → switch.1a →

switch.1a → switch.3b and the sequene s
f(k)−1
c → skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.1a →

switch.1a → switch.1a → switch.1a → switch.2 are not possible.Proof. In Figure D.9a we an see the situation where sf(k)−1
c → skc → s

f(k)
c → sk+1

c = switch.1a →
switch.1a → switch.1a → switch.1a. We use ic∗ ∈ Gc for the signal that satis�es gµ,f(k)i∗c

= g
f(k)
i∗c

and
i∗c ∈ Gc for the signal that satis�es gµ,k+1

i∗c
= gk+1

i∗c
(From Lemma D.22 we know these signals exists).In this �gure we an see the following setions:1 Between point 1 and point 2, the setup σi∗

c
,i∗c ,i

∗
c
.2 between point 2 and point 3, gki∗c is performed.3 between point 3 and point 4, gf(k)i∗c

is performed.4 Between point 4 and point 5, the setup σi∗
c
,i∗c ,i

∗
c
.5 between point 5 and point 6, gk+1

i∗c
is performed.Using g

µ,f(k)
i∗
c

= g
f(k)
i∗
c

and gµ,k+1
i∗c

= gk+1
i∗c

and (D.7) we an �nd that:
∆x

f(k)+1
c,i∗c

=
µi∗c

(1 − ρi∗c − ρi∗c )

1− ρi∗c
(gpbti∗c ,i

∗
c
− g

f(k)
i∗c

).From lemma D.22 we know that: 190
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c(a) Visualization of Lemma D.11

g
f(k)
ic

> gpbtic
, ∀ic ∈ Gc.From (D.4) we know:

gpbtic
≥ gpbtic,ic

, ∀ic ∈ Gc, ∀ic ∈ Gc.Hene, it holds that:
∆x

f(k)+1
c,i∗c

=
µi∗

c
(1− ρi∗c − ρi∗

c
)

1− ρi∗c
(gpbti∗c ,i

∗
c
− g

f(k)
i∗c

) < 0.Note that ∆gk+1
i∗c

= gk+1
i∗c

− gki∗c =
∆x

f(k)+1

c,i∗
c

λi∗
c

and thus:
∆gk+1

i∗c
=

ρi∗
c
(1− ρi∗c − ρi∗

c
)

1− ρi∗c
(gpbti∗

c
,i∗c

− g
f(k)
i∗
c

) < 0.The green times are related via (D.2). Therefore, it also holds that:
∆gk+1

ic
= gk+1

ic
− gkic =

ρi∗
c
(1 − ρi∗c − ρi∗

c
)

1− ρi∗c
(gpbti∗c ,i

∗
c
− g

f(k)
i∗c

) < 0, ∀ic ∈ Gc.As a result we an �nd that:
∆gk+1

ic
= gk+1

ic
−gkic =

ρi∗
c
(1− ρi∗c − ρi∗

c
)

1− ρi∗c
(gpbti∗

c
,i∗c
−g

f(k)
i∗
c

) ≤ max
lc∈Gc,lc∈Gc

ρlc(1− ρlc − ρlc)

1− ρlc
(gpbtlc,lc

−g
f(k)
lc

) < 0, ∀ic ∈ Gc.(D.17)191



s
f(k)−2
c → sk−1

c → s
f(k)−1
c → skc → s

f(k)
c → sk+1

c is impossible beause
∗ → switch.1a → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.11
∗ → switch.2 → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.13
switch.1a → switch.3a → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.1
switch.2 → switch.3a → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.3
switch.3a → switch.3a → switch.1a → switch.1a → switch.1a → switch.2 skc annot be part of a ombinationin the set C1 whenever k ≥ nC1 + 1
switch.3b → switch.3a → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.3
∗ → switch.3b → switch.1a → switch.1a → switch.1a → switch.2 Lemma D.13
∗ → ∗ → switch.2 → switch.1a → switch.1a → switch.2 Lemma D.10
∗ → switch.1a → switch.3a → switch.1a → switch.1a → switch.2 Lemma D.1
∗ → switch.2 → switch.3a → switch.1a → switch.1a → switch.2 Lemma D.3
∗ → switch.3a → switch.3a → switch.1a → switch.1a → switch.2 skc annot be part of a ombinationin the set C1 whenever k ≥ nC1 + 1
∗ → switch.3b → switch.3a → switch.1a → switch.1a → switch.2 Lemma D.3
∗ → ∗ → switch.3b → switch.1a → switch.1a → switch.2 Lemma D.10Table D.4: In this table we show that all sequenes sf(k)−2

c → sk−1
c → s

f(k)−1
c → skc → s

f(k)
c → sk+1

c ,where skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.2 are not possible. We do not onsiderthe sequenes where sf(k)−2
c , sk−1

c or sf(k)−1
c is equal to switch.1b. * means that this swith reason anbe either one of the �ve swith reasons (exept for switch.1b)The queue length of queue ic ∈ Gc equals (gkic + σic,ic,ic)λic at the beginning of gf(k)ic

and equals
(gk+1

ic
+σic,ic,ic)λic < (gkic +σic,ic,ic)λic at the beginning of gf(k)+1

ic
. For all signals ic ∈ Gc an amount of

(gkic + σic,ic,ic)λic tra� ould depart during g
f(k)
ic

≤ g̃max
ic

. Hene, an amount of (gk+1
ic

+ σic,ic,ic)λic <

(gkic + σic,ic,ic)λic ould depart during g
f(k)+1
ic

< g̃max
ic

.Thus, the sequene s
f(k)−1
c → skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.1a → switch.1a →

switch.1a → switch.1a → switch.3b and the sequene s
f(k)−1
c → skc → s

f(k)
c → sk+1

c → s
f(k)+1
c =

switch.1a → switch.1a → switch.1a → switch.1a → switch.2 are not possible beause during g
f(k)+1
icwe swith beause of the reason switch.1a or switch.1b before we have to swith beause of the reason

switch.2 or switch.3b.Lemma D.12 The sequenes skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.2 and skc →
s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.3b are not possible for k ≥ nC1 + 1 (in Setion D.3we explain the de�nition of nC1 + 1)Proof. We �rst prove that the sequene skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.2is not possible by also looking at s
f(k)−2
c , sk−1

c and s
f(k)−1
c . We prove that all sequenes s

f(k)−2
c →

sk−1
c → s

f(k)−1
c → skc → s

f(k)
c → sk+1

c , where skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.2are not possible if k ≥ nC1 + 1.First of all, whenever s
f(k)−2
c , sk−1

c or s
f(k)−1
c is equal to switch.1b then skc → s

f(k)
c → sk+1

c =
switch.1a → switch.1a → switch.2 is not possible beause of Lemma D.23. All other possible sequenesare shown in the Table D.4. 192



s
f(k)−2
c → sk−1

c → s
f(k)−1
c → skc → s

f(k)
c → sk+1

c is not possible beause
∗ → switch.1a → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.11
∗ → switch.2 → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.13
switch.1a → switch.3a → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.1
switch.2 → switch.3a → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.3
switch.3a → switch.3a → switch.1a → switch.1a → switch.1a → switch.3b skc annot be part of a ombinationin the set C1 whenever k ≥ nC1 + 1
switch.3b → switch.3a → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.3
∗ → switch.3b → switch.1a → switch.1a → switch.1a → switch.3b Lemma D.13
∗ → ∗ → switch.2 → switch.1a → switch.1a → switch.3b Lemma D.10
∗ → switch.1a → switch.3a → switch.1a → switch.1a → switch.3b Lemma D.1
∗ → switch.2 → switch.3a → switch.1a → switch.1a → switch.3b Lemma D.3
∗ → switch.3a → switch.3a → switch.1a → switch.1a → switch.3b skc annot be part of a ombinationin the set C1 whenever k ≥ nC1 + 1
∗ → switch.3b → switch.3a → switch.1a → switch.1a → switch.3b Lemma D.3
∗ → ∗ → switch.3b → switch.1a → switch.1a → switch.3b Lemma D.10Table D.5: In this table we show that all sequenes sf(k)−2

c → sk−1
c → s

f(k)−1
c → skc → s

f(k)
c → sk+1

c ,where skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.3b are not possible. We do not onsiderthe sequenes where sf(k)−2
c , sk−1

c or sf(k)−1
c is equal to switch.1b. * means that this swith reason anbe either one of the �ve swith reasons (exept for switch.1b)In the same way we an prove that the sequene skc → s

f(k)
c → sk+1

c = switch.1a → switch.1a →
switch.3b is not possible for k ≥ nC1 + 1. We prove that all sequenes s

f(k)−2
c → sk−1

c → s
f(k)−1
c →

skc → s
f(k)
c → sk+1

c , where skc → s
f(k)
c → sk+1

c = switch.1a → switch.1a → switch.3b are not possible if
k ≥ nC1 + 1.First of all, whenever s

f(k)−2
c , sk−1

c or s
f(k)−1
c is equal to switch.1b then skc → s

f(k)
c → sk+1

c =
switch.1a → switch.1a → switch.3b is not possible beause of Lemma D.23.All other possible sequenes are shown in the Table D.5.Lemma D.13 The following sequenes are not possible:1 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c → sk+2

c = switch.2 → switch.1a → switch.1a → switch.1a →
switch.22 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c → sk+2

c = switch.3b → switch.1a → switch.1a → switch.1a →
switch.3bProof. The queue length of a queue ic ∈ Gc at the start of gf(k)ic

is at least (g̃max
ic

+ σic,ic,ic)λic .The queue length of a queue ic ∈ Gc at the start of gf(k)+1
ic

is equal to (gk+1
ic

+ σic,ic,ic)λic ≤ (g̃max
ic

+

σic,ic,ic)λic . Beause we ould empty eah queue ic ∈ Gc during g
f(k)
ic

we are also able to empty eahqueue during g
f(k)+1
ic

≤ g
f(k)
ic

.Further, the queue length at queue ic ∈ Gc is at least (gf(k)ic
+ σic,ic,ic)λic at the beginning of gk+1

ic
.The queue length at queue ic ∈ Gc is equal to (g

f(k)+1
ic

+ σic,ic,ic)λic ≤ (g
f(k)
ic

+ σic,ic,ic)λic at the193



beginning of gk+2
ic

. Thus at eah queue ic ∈ Gc the queue length at the beginning of gk+2
ic

is less than(or equal to) the queue length at the beginning of gk+1
ic

. We ould empty queue ic during a green time
gk+1
ic

≤ g̃max
ic

. Hene, we are also able to empty queue ic during a green time gkic ≤ gk+1
ic

≤ g̃max
ic

.However, sk+2
c = switch.2 or sk+2

c = switch.3b an only our if we are not able to empty all queuesduring gkic ≤ g̃max
ic

(see D.1 for the de�nitions of the swith reasons switch.2 and switch.3b).D.4.2 Lemmas Exluding In�nite Sequenes of Swith ReasonsLemma D.14 The following in�nite sequenes are not possible:sequene 1 An in�nite sequene of swith reasons skc → s
f(k)
c → skc → s

f(k)+1
c → . . . , k > 1 whereeah stop reason is part of ombination C8.sequene 2 An in�nite sequene of swith reasons skc → s

f(k)
c → skc → s

f(k)+1
c → . . . , k > 1 whereeah stop reason is part of ombination C11.sequene 3 An in�nite sequene of swith reasons skc → s

f(k)
c → skc → s

f(k)+1
c → . . . , k > 1 whereeah stop reason is part of ombination C18 or part of ombination C19.Proof. First of all, we know that ghic > gpbtic

, ∀ic ∈ Gc, ∀h ≥ k and that gf(h)ic
> gpbtic

, ∀h ≥ k from(8.1h), (8.1k), (8.1n) and (8.1q).We distinguish the following two types of ombinations:type 1 ombination shc → s
f(h)
c and max

ic∈Gc

∆xh+1
c,ic

> 0, h ≥ k.type 2 ombination shc → s
f(h)
c and max

ic∈Gc

∆xh+1
c,ic

> 0, h ≥ k.This proof goes as follows. If an in�nite sequene of swith reasons (sequene 1, 2 or 3) is possiblethen we an prove that either an in�nite sequene of swith reasons, where all swith reasons are partof a type 1 ombination must be possible or an in�nite sequene of swith reasons, where all swithreasons are part of a type 2 ombination must be possible. We an prove that both are not possible.Hene, we know that sequene 1, sequene 2 and sequene 3 annot our.Lets assume in�nite sequenes 1,2 and 3 are possible. From (D.7b) and (D.7) we an easily see(see also Figure D.9) that whenever ∃ic ∈ Gc, h ≥ k
(

∆xh+1
c,ic

> 0
) for suh an in�nite sequene (in�nitesequenes 1,2 or 3) then it holds that the same queue ic ∈ Gc satis�es ∆xh+1

c,ic
= ∆xh+2

c,ic
> 0, h ≥ kbeause gµ,hic

= ghic = gµ,h+1
ic

= gh+1
ic

and ghic = gh+1
ic

. Hene, when we are given an in�nite sequene(either, sequene 1, sequene 2 or sequene 3) where shc , h ≥ k and s
f(h)
c form a type 1 ombination thenthe swith reason sh+z

c , z ∈ N (N is the set of non-negative integers) and the swith reason s
f(h)+z
cform a type 1 ombination.In Figure D.9, ic ould refer to any signal in the set Gc and ic ∈ Gc is a signal that satis�es∆xh+1

c,ic
> 0.In Figure D.9 we an distinguish the following setions:1 between point 1 and point 2, ghic is performed.2 between point 2 and point 3,the setup σic,ic,ic is performed.3 between point 3 and point 4, gf(h)ic

is performed.4 between point 4 and point 5, gh+1
ic

is performed.5 between point 5 and point 6,the setup σic,ic,ic is performed.6 between point 6 and point 7, gf(h)+1
ic

is performed.194
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Figure D.9: Whenever ∃ic ∈ Gc, h ≥ k
(

∆xh+1
c,ic

> 0
) for in�nite sequenes 1,2 and 3 then it holds thatthe same queue ic ∈ Gc satis�es ∆xh+1

c,ic
= ∆xh+2

c,ic
> 0, h ≥ kHene, whenever for in�nite sequenes 1,2 and 3 a swith reason is part of a type 1 ombinationthen this in�nite sequene ontains an in�nite sequene of swith reasons that are all part of a type 1ombination. On the other hand, whenever for in�nite sequenes 1,2 and 3 no swith reason is part ofa type 1 ombination then this in�nite sequene is an in�nite sequene of swith reasons that are allpart of a type 2 ombination.We an show that an in�nite sequene of swith reasons that are all part of a type 1 ombination isnot possible and that an in�nite sequene of swith reasons that are all part of a type 2 ombination isnot possibleFor an in�nite sequene of swith reasons that are all part of a type 1 ombination we an use LemmaD.19. Using Lemma D.19 we an see that eah queue ic ∈ Gc either empties, i.e. the queue length isequal to zero at the end of its green time, or its queue length dereases minimally ∆c(g

f(h)
ic

) > 0, h ≥ k.Note that ∆c(g
f(h)+1
ic

) = ∆c(g
f(h)
ic

), h ≥ k sine gf(h)ic
= g

f(h)+1
ic

. As a result, for an in�nite sequene ofswith reasons that are part of a type 1 ombination, the queues in the set Gc are eventually all empty(and we swith for the reason switch.1a or switch.1b). Whenever we swith for the reason switch.1aor switch.1b this swith reason annot be part of a ombination C8, C11, C18 or C19. Thus, an in�nitesequene where eah swith reason is part of type 1 ombination is not possible.Now we onsider an in�nite sequene of swith reasons that are all part of a type 2 ombination.We an derive:
xh+1
c,ic

= xh
c,ic

− gµ,hic
(µic − λic ) + r̃max

ic
λic ,where

gµ,hic
= min{g̃max

ic
,
xh
c,ic

− x̃min
c,ic

µic − λic

}.Here gµ,hic
(µic − λic) is the net amount of tra� that is proessed during the green period ghic and

(σic,ic,ic + gmax
ic

)λic is the amount of tra� that arrives during a red period. Note that whenever
gµ,hic

=
xh
c,ic

−x̃min
c,ic

µic−λic
then bu�er ic is emptied during ghic .We an distinguish two types of signals: 195



type 1 a signal that satis�es ic ∈ Gc satis�es g̃max
ic

≥ ρic r̃
max
ic

1−ρictype 2 a signal that satis�es ic ∈ Gc satis�es g̃max
ic

<
ρic r̃

max
ic

1−ρicA signal of type 1 satis�es:
∆xh+1

c,ic
= −gµ,hic

(µic − λic) + r̃max
ic

λic ≤ −gmax
ic

(µic − λic) + r̃max
ic

λic ≤ 0. (D.18)Hene a type 1 signal ic ∈ Gc ould never satisfy ∆xh+1
c,ic

> 0. Hene, if an in�nite sequene of swithreasons that are all part of a type 2 ombination, is possible then it must hold that there is a signal oftype 2.for a type 2 signal we an �nd:
∆x

h+1
c,ic

= r̃
max
ic

λic
− g̃

max
ic

(µic
− λic

) > 0 if g̃
max
ic

≤
xh
c,ic

− x̃min
c,ic

µic
− λic

,

∆x
h+1
c,ic

= −x
h
c,ic

+ x̃
min
c,ic

+ r̃
max
ic

λic
> 0 if g̃

max
ic

>
xh
c,ic

− x̃min
c,ic

µic
− λic

∧ x
h
c,ic

< x̃
min
c,ic

+ r̃
max
ic

λic
,

∆x
h+1
c,ic

= x
h
c,ic

− x̃
min
c,ic

+ (σic,ic,ic
+ g

max
ic

)λic
≥ 0 if g̃

max
ic

>
xh
c,ic

− x̃min
c,ic

µic
− λic

∧ x
h
c,ic

≥ x̃
min
c,ic

+ r̃
max
ic

λicNote that g̃max
ic

>
xh
c,ic

−x̃min
c,ic

µic−λic
∧ xh

c,ic
≥ x̃min

c,ic
+ r̃max

ic
λic annot be satis�ed beause when we �ll in

xh
c,ic

≥ x̃min
c,ic

+ r̃max
ic

λic into g̃max
ic

>
xh
c,ic

−x̃min
c,ic

µic−λic
the result is g̃max

ic
>

ρic r̃
max
ic

1−ρic
. However, a signal of type2 satis�es (by de�nition) g̃max

ic
<

ρic r̃
max
ic

1−ρic
.Note that whenever a type 1 signal satis�es xh

c,ic
< x̃min

c,ic
+ r̃max

ic
λic then it holds that xh+1

c,ic
>

x̃min
c,ic

+ r̃max
ic

λic . Further, when a type 3 signal satis�es xh+1
c,ic

> x̃min
c,ic

+ r̃max
ic

λic then g̃max
ic

= gµ,hic
. Thus,a (type 1) signal ic ∈ Gc satis�es ∆xh+1

c,ic
> 0, ∀h > k and gµ,hic

= g̃max
ic

= ghic , ∀h > k.In the beginning of the proof we showed that ghic > gpbtic
, ∀h ≥ k. Hene, we an use Lemma D.18.From Lemma D.18 it follows that eah queue ic ∈ Gc either empties, i.e. the queue length is zero atthe end of its green time g

f(h)
ic

, h > k, or its queue length dereases minimally ∆c(g
h
ic
) during the hthyle c. Note that ghic = gh+1

ic
= g̃max

ic
, ∀h ≥ k. Hene, eventually all queues ic ∈ Gc are emptied (andwe stop serving the signals in Gc for the reason switch.1a or switch.1b). Whenever we swith for thereason switch.1a or switch.1b this swith reason annot be part of a ombination C8, C11, C18 or C19.Thus, an in�nite sequene of swith reasons where eah swith reason is part of type 2 ombination isnot possible.Lemma D.15 The following sequenes are not possible:sequene 1 An in�nite sequene of stop reasons skc → s

f(k)
c → skc → s

f(k)+1
c → · · · = switch.2 →

switch.2 → switch.2 → switch.2 → . . . , where max
ic∈Gc

∆xk+1
c,ic

≤ 0 ∧ max
ic∈Gc

∆xk+1
c,ic

≤ 0 (note that skcand s
f(k)
c form ombination C7).sequene 2 An in�nite sequene of stop reasons skc → s

f(k)
c → skc → s

f(k)+1
c → · · · = switch.2 →

switch.3b → switch.2 → switch.3b → . . . , where max
ic∈Gc

∆xk+1
c,ic

≤ 0 (note that skc and s
f(k)
c formombination C11).sequene 3 An in�nite sequene of stop reasons skc → s

f(k)
c → skc → s

f(k)+1
c → · · · = switch.3b →

switch.3b → switch.3b → switch.3b → . . . , where max
ic∈Gc

∆xk+1
c,ic

= 0 ∧ max
ic∈Gc

∆xk+1
c,ic

= 0 (note that
skc and s

f(k)
c form ombination C17). 196



Further, we know that:1 When skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.2 → switch.2 → switch.2, where

max
ic∈Gc

∆xk+1
c,ic

≤ 0 ∧ max
ic∈Gc

∆xk+1
c,ic

≤ 0 then it holds that max
ic∈Gc

∆xk+2
c,ic

≤ 0 ∧ max
ic∈Gc

∆xk+2
c,ic

≤ 0.2 When skc → s
f(k)
c → skc → s

f(k)+1
c = switch.2 → switch.3b → switch.2 → switch.3b, where

max
ic∈Gc

∆xk+1
c,ic

≤ 0 then it holds that max
ic∈Gc

∆xk+2
c,ic

≤ 03 When skc → s
f(k)
c → skc → s

f(k)+1
c = switch.3b → switch.3b → switch.3b → switch.3b, where

max
ic∈Gc

∆xk+1
c,ic

= 0 ∧ max
ic∈Gc

∆xk+1
c,ic

= 0 then it holds that max
ic∈Gc

∆xk+1
c,ic

= 0 ∧ max
ic∈Gc

∆xk+2
c,ic

= 0.Proof. Lets assume in�nite sequene 1,2 and 3 are possible. For all these sequenes it holds that:
ghic = g̃max

ic ,∀ic ∈ Gc, ∀h ≥ k, (D.19)
g
f(h)
ic

= g̃max
ic

,∀ic ∈ Gc, ∀h ≥ k. (D.20)Using (D.7a) and (D.7d) we an �nd that the queue length xh+1
c,ic

, h ≥ k an be alulated aordingto the following equation (when assuming in�nite sequene 1, 2 or 3):
xh+1
c,ic

= xh
c,ic

− gµ,hic
(µic − λic ) + r̃max

ic
λic ,where

gµ,hic
= min{g̃max

ic
,
xh
c,ic

− x̃min
c,ic

µic − λic

}.Note that a signal ic ∈ Gc is emptied whenever gµ,hic
=

xh
c,ic

−x̃min
c,ic

µic−λic
. In the proof of Lemma D.14 wehave shown that when g̃max

ic
<

r̃max
ic

ρic

1−ρic
then ∃h ≥ k

(

∆xh+1
c,ic

= r̃max
ic

λic − g̃max
ic

(µic − λic) > 0
). Hene,sequene 1 and sequene 3 an only our if all signals ic ∈ Gc satisfy g̃max

ic
≥ r̃max

ic
ρic

1−ρic
.When a signal ic ∈ Gc satis�es g̃max

ic
≥ r̃max

ic
ρic

1−ρic
then we an �nd:

∆x
h+1
c,ic

= −x
h
c,ic

+ x̃
min
c,ic

+ r̃
max
ic

λic
> 0 if g̃

max
ic

>
xh
c,ic

− x̃min
c,ic

µic
− λic

∧ x
h
c,ic

< x̃
min
c,ic

+ r̃
max
ic

λic
,

∆x
h+1
c,ic

= −x
h
c,ic

+ x̃
min
c,ic

+ r̃
max
ic

λic
< 0 if g̃

max
ic

>
xh
c,ic

− x̃min
c,ic

µic
− λic

∧ x
h
c,ic

> x̃
min
c,ic

+ (σic,ic,ic
+ g

max
ic

)λic
,

∆x
h+1
c,ic

= −x
h
c,ic

+ x̃
min
c,ic

+ r̃
max
ic

λic
= 0 if g̃

max
ic

>
xh
c,ic

− x̃min
c,ic

µic
− λic

∧ x
h
c,ic

= x̃
min
c,ic

+ (σic,ic,ic
+ g

max
ic

)λic
,

∆x
h+1
c,ic

= r̃
max
ic

λic
− g̃

max
ic

(µic
− λic

) < 0 if r̃max
ic

ρic

1 − ρic

< g̃
max
ic

≤
xh
c,ic

− x̃min
c,ic

µic
− λic

,

∆x
h+1
c,ic

= r̃
max
ic

λic
− g̃

max
ic

(µic
− λic

) = 0 if r̃max
ic

ρic

1 − ρic

= g̃
max
ic

≤
xh
c,ic

− x̃min
c,ic

µic
− λic

. (D.21)Note the following things: 197



1 Whenever ∆xh+1
c,ic

≤ 0 then ∆xh+2
c,ic

≤ 0. Hene, it also holds that whenever max
ic∈Gc

∆xh+1
c,ic

≤ 0 then
max
ic∈Gc

∆xh+2
c,ic

≤ 0.2 Whenever ∆xh+1
c,ic

= 0 then ∆xh+2
c,ic

= 0. Hene, it also holds that whenever max
ic∈Gc

∆xh+1
c,ic

= 0 then
max
ic∈Gc

∆xh+2
c,ic

= 0.3 Whenever a queue ic ∈ Gc that satis�es g̃max
ic

>
r̃max
ic

ρic

1−ρic
is emptied during its green time ghic then it isemptied during al subsequent green times, i.e. when g̃max

ic
≥ xh

c,ic
−x̃min

c,ic

µic−λic
then g̃max

ic
≥ xh+1

c,ic
−x̃min

c,ic

µic−λic
.4 All queues ic ∈ Gc that satisfy g̃max

ic
>

r̃max
ic

ρic

1−ρic
are emptied eventually (in �nite time); if xh

c,ic
>

g̃max
ic

(µic − λic)− r̃max
ic

λic then ∆xh+1
c,ic

= r̃max
ic

λic − g̃max
ic

(µic − λic) < 0 and if xh
c,ic

≤ g̃max
ic

(µic −
λic)− r̃max

ic
λic then the queue is emptied (and it is emptied during all its subsequent green times).5 It ould be that a queue ic ∈ Gc is never emptied if g̃max

ic
≥ r̃max

ic
ρic

1−ρic
(reall that for sequene 1 andsequene 3 it annot hold that g̃max

ic
>

r̃max
ic

ρic

1−ρic
)Using (D.7a) and (D.7d) we an �nd that the queue length xh+1

c,ic
, h ≥ k an be alulated aordingto the following equation (when assuming in�nite sequene 1, 2 or 3):

xh+1
c,ic

= xh
c,ic

+ r̃max
ic

λic − g
µ,f(h)
ic

(µic − λic), (D.22)where
g
µ,f(h)
ic

= min{g̃max
ic

,
x
f(h)
c,ic

− x̃min
c,ic

µic − λic

}.When g
µ,f(h)
ic

=
xh
c,ic

−x̃min
c,ic

µic
−λic

then queue ic ∈ Gc will be emptied during g
f(h)
ic

.Using (D.9) we an �nd rewrite (D.22) to:
xh+1
c,ic

= max{xh
c,ic

+ r̃max
ic

λic − g̃max
ic

(µic − λic), x̃
min
c,ic

}. (D.23)Note that when g̃max
ic

<
r̃max
ic

ρic

1−ρic

then it holds that xh
c,ic

+ r̃max
ic

λic > x̃min
c,ic

beause xh
c,ic

≥ x̃min
c,ic(xh

c,ic
< x̃min

c,ic
implies a negative queue length) and r̃max

ic
λic − g̃max

ic
(µic − λic) > 0.As a result it follows that ∆xh+1

c,ic
= r̃max

ic
λic − gµ,hic

(µic − λic) = r̃max
ic

λic − g̃max
ic

(µic − λic) > 0.Hene, sequene 1, sequene 2 and sequene 3 an only our if all signals ic ∈ Gc satisfy g̃max
ic

≥ r̃max
ic

ρic

1−ρic

.Further, we should note that xh
c,ic

< x̃min
c,ic

is not possible sine it implies that queue ic had a negativequeue length.For a signal for whih it holds that g̃max
ic

≥ r̃max
ic

ρic

1−ρic

, we an �nd that:
∆x

h+1
c,ic

= 0 if x
h
c,ic

= x̃
min
c,ic

,

∆x
h+1
c,ic

= 0 if g̃
max
ic

=
r̃max
ic

ρic

1 − ρic

,

∆x
h+1
c,ic

< 0 if x
h
c,ic

> x̃
min
c,ic

∧ g̃
max
ic

>

r̃max
ic

ρic

1 − ρic

.Note the following things: 198



1 Whenever ∆xh+1
c,ic

≤ 0 then ∆xh+2
c,ic

≤ 0. Hene, it also holds that whenever max
ic∈Gc

∆xh+1
c,ic

≤ 0 then
max
ic∈Gc

∆xh+2
c,ic

≤ 0.2 Whenever ∆xh+1
c,ic

= 0 then ∆xh+2
c,ic

= 0. Hene, it also holds that whenever max
ic∈Gc

∆xh+1
c,ic

= 0 then
max
ic∈Gc

∆xh+2
c,ic

= 0.3 Whenever queue ic ∈ Gc is emptied during its green time gf(h)ic
it will be emptied during al subsequentgreen times, i.e. if xh

c,ic
= x̃min

c,ic
then xh+1

c,ic
= x̃min

c,ic
.4 All queues ic ∈ Gc that satisfy g̃max

ic
>

r̃max
ic

ρic

1−ρic

will be emptied eventually (in �nite time); if xh
c,ic

>

g̃max
ic

(µic − λic)− r̃max
ic

λic then ∆xh+1
c,ic

= r̃max
ic

λic − g̃max
ic

(µic − λic) < 0 and if xh
c,ic

≤ g̃max
ic

(µic −
λic)− r̃max

ic
λic then the queue is emptied (and it will be emptied during all its subsequent greentimes).5 It ould be that whenever a queue ic ∈ Gc satis�es g̃max

ic
=

r̃max
ic

ρic

1−ρic

that this queue will never beemptied.Now we know that:1 Whenever max
ic∈Gc

∆xh+1
c,ic

≤ 0 ∧ max
ic∈Gc

∆xh+1
c,ic

≤ 0 then max
ic∈Gc

∆xh+2
c,ic

≤ 0 ∧ max
ic∈Gc

∆xh+2
c,ic

≤ 0. As a result,(for in�nite sequene 1) eah swith reason shc , h ≥ k forms a ombination C7 with swith reason
s
f(h)
c .2 Whenever max

ic∈Gc

∆xh+1
c,ic

≤ 0 then max
ic∈Gc

∆xh+2
c,ic

≤ 0 . As a result, (for in�nite sequene 2) eah swithreason shc , h ≥ k forms a ombination C10 with swith reason s
f(h)
c .3 Whenever max

ic∈Gc

∆xh+1
c,ic

= 0 ∧ max
ic∈Gc

∆xh+1
c,ic

= 0 then max
ic∈Gc

∆xh+2
c,ic

= 0 ∧ max
ic∈Gc

∆xh+2
c,ic

= 0. As a result(for in�nite sequene 3) eah swith reason shc , h ≥ k forms a ombination C17 with swith reason
s
f(h)
c .First lets onsider sequene 1 and sequene 3. Reall that when (g̃max

ic
=

r̃max
ic

ρic

1−ρic

) then it is possiblethat queue ic ∈ Gc is never emptied. In the same way when ∃ic ∈ Gc

(

g̃max
ic

=
r̃max
ic

ρic

1−ρic

) then it is possiblethat this queue is never emptied.However, using (D.6) we an �nd that ∃ic ∈ Gc : g̃
max
ic

≥ r̃max
ic

ρic

1−ρic
and ∃ic ∈ Gc : g̃

max
ic

=
r̃max
ic

ρic

1−ρic

anonly hold whenever ∃ic ∈ Gc, ic ∈ Gc : g̃max
ic

=
σic,ic,icρic

1−ρic−ρic

. However, this does not hold beause of theinequalities (8.1h), (8.1k), (8.1n) and (8.1q). Hene, either all queues in the set Gc empty in a �nitetime or all queues in the set Gc empty in a �nite time. In this ase we do stop beause of the reason
switch.1a or switch.1b. Hene, sequene 1 and sequene 3 are not possible.Now lets onsider sequene 2. Reall that when ∃ic ∈ Gc : g̃max

ic
≥ r̃max

ic
ρic

1−ρic
then it is possible thatthis queue is never emptied. In the same way when ∃ic ∈ Gc : g̃max

ic
=

r̃max
ic

ρic

1−ρic

then it is possible thatthis queue is never emptied.However, using (D.6) we an �nd that ∃ic ∈ Gc : g̃
max
ic

≥ r̃max
ic

ρic

1−ρic
and ∃ic ∈ Gc : g̃

max
ic

=
r̃max
ic

ρic

1−ρic

anonly hold whenever ∃ic ∈ Gc, ic ∈ Gc : g̃max
ic

≤ σic,ic,icρic

1−ρic−ρic

. However, this does not hold beause of theinequalities (8.1h), (8.1k), (8.1n) and (8.1q). Hene, either all queues in the set Gc empty in a �nite199



time or all queues in the set Gc empty in a �nite time. In this ase we do stop beause of the reason
switch.1a or switch.1b. Hene, sequene 2 is not possible.Lemma D.16 The following in�nite sequenes are not possible:sequene 1 skc → s

f(k)
c → sk+1

c → s
f(k)+1
c → · · · = switch.1a → switch.3b → switch.1a → switch.3b →

. . .sequene 2 skc → s
f(k)
c → sk+1

c → s
f(k)+1
c → · · · = switch.1a → switch.2 → switch.1a → switch.2 → . . .Proof. For sequene 1 and sequene 2 it holds that every queue ic ∈ Gc is empty at the end of itsgreen time ghic , h ≥ k. The green period gh+1

ic
, ic ∈ Gc starts r̃max

ic
seonds after the end of ghic . However,the green period gh+1

ic
starts σres

ic
seonds after the start of the h+ 1th yle c. Therefore, the h+ 1thyle c starts r̃max

ic
− σres

ic
after the end of ghic . During this time the queue length inreases with rate

λic . Hene, it holds that:
xh
c,ic

= (r̃max
ic

− σres
ic

)λic , ic ∈ Gc, h > k. (D.24)Hene, it holds that:
∆xh+1

c,ic
= 0, , ic ∈ Gc, h > k. (D.25)We distinguish the following three reasons for shc = switch.1a, h > k (either shc = switch.1a or

shc = switch.1b):reason 1 shc = switch.1 and τ1
ir,fc

= τ1.1
ir,fc

, i.e. we swith immediately at the moment that all queues(in the set that is served) are expeted to empty.reason 2 shc = switch.1 and τ1
ir,fc

= τ1.2
ir,fc

, i.e. we use green times are exatly large enough to satisfy allonstraints on minimum green times.Note that if τ1
i
r,f
c

= τ1.3
i
r,f
c

we swith for the reason switch.1b.Note that for the seond reason, there is a signal ic ∈ Gc where r̃max
ic

λic of tra� ould not departduring a green time that is exatly large enough to satisfy all onstraints on minimum green times.Hene, when swith reason shc , h > k ours for the seond reason then shc , ∀h > k ours for the seondreason as well(for sequene 1 and 2). Hene, when sequene 1 or 2 is possible then either an in�nitesequene where we swith shc , ∀h > k for the �rst reason must be possible or an in�nite sequene wherewe swith shc , ∀h > k for the seond reason. We are going to show that both are not possible must bepossible.First we onsider an in�nite sequene where we swith shc , ∀h > k for the �rst reason. At thebeginning of this proof we have shown that ∆xh+1
c,ic

= 0, ∀ic ∈ Gc, ∀h > k. Further, in this ase
∃ic ∈ Gc : gµ,hic

= ghic , h > k, i.e. there is a signal that we swith to red exatly at the moment thatits queue is emptied. Further, it holds that gf(h)ic
> gpbtic

, ∀ic ∈ Gc, ∀h > k (beause of the inequalities(8.1h), (8.1k), (8.1n) and (8.1q)).Using (D.7a) and (D.7d), g
f(h)
ic

> gpbtic
, ∀ic ∈ Gc, ∀h > k, ∆xh+1

c,ic
= 0, ∀ic ∈ Gc, ∀h > k and

∃ic ∈ Gc : g
µ,h
ic

= ghic we an �nd that ∃ic ∈ Gc : ∆xh+1
c,ic

≥ 0 ∧ gµ,hic
= ghic ∧ ghic > gpbtic

, ∀h > k.200



Hene, we an use lemma D.18 to see that for an in�nite sequene where we swith shc , ∀h > k forthe �rst reason, either queue ic goes empty during g
f(h)
ic

= g̃max
ic

, h > k, i.e. the queue length is zero atthe end of gf(h)ic
or its queue length dereases minimally ∆c(g

h
ic
) > 0. (note that ghic = gh+1

ic
, ∀h > k).Hene, eventually all queues ic ∈ Gc are emptied (and we no longer stop serving the signals in theset Gc beause of the reason switch.3b or switch.2 but beause of the reason switch.1a or switch.1b).Thus, an in�nite sequene where we swith shc , ∀h > k for the �rst reason is not possible.Now we onsider an in�nite sequene where we swith shc , ∀h > k for the seond reason. Using theinequalities (8.1j), (8.1m), (8.1p) and (8.1p) we an see that eah signal ic ∈ Gc an proess less tra�during its (maximum possible) green time than what arrives during its (minimum possible) red time.Hene, eventually all queues ic ∈ Gc are emptied (and we no longer stop serving the signals in the set Gcbeause of the reason switch.3b or switch.2 but beause of the reason switch.1a or switch.1b). Thus,an in�nite sequene where we swith shc , ∀h > k for the seond reason is not possible.D.4.3 Other LemmasLemma D.17 Whenever a queue length of signal ic ∈ Gc goes from empty to full during rkic then itmust hold that ic ∈ Sc, Sc = {ic ∈ Gc :

xmax
ic

λic
−σic,ic,ic = min

lc∈Gc

xmax
lc

λlc
−σlc,ic,lc} and that all queue lengthsof the signals in the set lc ∈ Sc go from empty to full during their red period rklc .Proof. Queue ic ∈ Gc goes from empty to the maximum queue length during rkic whenever rkic =

xmax
ic

λic
. Using (D.1) we an �nd that queue ic ∈ Gc goes from empty to the maximum queue lengthduring rkic whenever:

g
f(k)
ic

=
xmax
ic

λic

− σic,ic,ic . (D.26)Hene, a green time of signal ic an be at most min
lc∈Gc

xmax
ic

λic
− σic,ic,ic seonds, beause otherwisea maximum queue length would be exeeded. Only the queue(s) argmin

lc∈Gc

xmax
ic

λic
− σic,ic,ic an go fromempty to full during its (their) red period(s) beause the other queues need a longer green period gkicto go from empty to the maximum queue length and this is not possible.Whenever a queue ic ∈ Gc goes from empty to the maximum queue length during rki1 , this meansthat gkic = min

lc∈Gc

xmax
ic

λic
− σic,ic,ic . This must mean that all queues lc ∈ Sc go from empty to theirmaximum queue lengths during rklc beause when a queue in this set was not empty at the beginningof rklc its maximum queue length would be exeeded when gkic = min

lc∈Gc

xmax
ic

λic
− σic,ic,ic and if a queue

lc ∈ Sc was empty at the start of rklc it goes from empty to the maximum queue length when gkic =

min
lc∈Gc

xmax
ic

λic
− σic,ic,ic .Lemma D.18 Whenever ∃ic ∈ Gc : ∆xk+1

c,ic
≥ 0 ∧ gµ,kic

= gkic ∧ gkic > gpbtic
then it holds that:1 All signals ic ∈ Gc that satisfy xk

c,ic
< ∆c(g

k
ic
) are empty at the end of the kth yle c. It holds that

∆c(g
k
ic
) > 0. 201



2 All queues ic ∈ Gc that are not empty at the end of the kth yle c, have a queue length (at the endof the kth yle c) that is at least ∆c(g
k
ic
) > 0 lower than the queue length at the beginning of the

kth yle c.where ∆c(g
k
ic
) = (gkic − gpbtic,ic

)
(1−ρic−ρic

)µic

1−ρic
> 0.Proof. Using ∆xk+1

c,ic
≥ 0, gµ,kic

= gkic and (D.7a) until (D.7d) we an �nd that:
∆xk+1

c,ic
≤ −∆c(g

k
ic
) if gµ,mic

= g
f(k)
ic

. (D.27)From this equation it follows that if ∃ic ∈ Gc : ∆xk+1
c,ic

≥ 0 ∧ gµ,kic
= gkic ∧ gkic > gpbtic

then signal
ic ∈ Gc must have a slowmode, i.e. gµ,mic

< g
f(k)
ic

, whenever xk
c,ic

< ∆c(g
k
ic
). This beause otherwise itwould result in an infeasible negative queue length. As a result queue ic empties during g

f(k)
ic

whenever
xk
c,ic

< ∆c(g
k
ic
).Further, note that whenever xk+1

c,ic
> 0, i.e. queue ic ∈ Gc is not emptied during g

f(k)
ic

, then it holdsthat gµ,mic
= g

f(k)
ic

. Thus, whenever a queue is not empty at the end of the kth yle c then the queuelength is at least ∆c(g
k
ic
) > 0 lower than at the beginning of the kth yle c.Lemma D.19 Whenever ∃ic ∈ Gc : ∆xk+1

c,ic
≥ 0 ∧ g

µ,f(k)
ic

= g
f(k)
ic

∧ g
f(k)
ic

> gpbtic
then it holds that:1 All signals ic ∈ Gc that satisfy xk

c,ic
< λic(g

f(k)
ic

+σic,ic,ic )+∆c(g
f(k)
ic

) are empty at the end of the kthyle c. It holds that ∆c(g
f(k)
ic

) > 0.2 All queues ic ∈ Gc that are not empty at the end of the kth yle c, have a queue length (at the endof the kth yle c) that is at least ∆c(g
f(k)
ic

) > 0 lower than the queue length at the beginning ofthe kth yle c.where ∆c(g
f(k)
ic

) = (g
f(k)
ic

− gpbtic,ic
)
(1−ρic−ρic

)µic

1−ρic

> 0.Proof. First of all, note that when ∆xk+1
c,ic

> 0, it holds that g
µ,f(k)
ic

= g
f(k)
ic

, i.e. g
f(k)
ic

ould nothave a slowmode. This beause queue ic is not emptied during g
f(k)
ic

.Further, it must hold that xk+1
c,ic

≥ λic(g
f(k)
ic

+ σic,ic,ic ). This beause, at the end of the kth yle c,signal ic is red for (gf(k)ic
+ σic,ic,ic ).Using (D.7a) until (D.7d), ∆xk+1

c,ic
≥ 0 and g

µ,f(k)
ic

= g
f(k)
ic

, we an �nd that:
∆xk+1

c,ic
≤ −∆c(g

f(k)
ic

) if gµ,f(k)ic
= g

f(k)
ic

. (D.28)The minimum queue length during the kth yle c (at the end of gkic)is equal to xk
c,ic

+ ∆xk+1
c,ic

−
λic(g

f(k)
ic

+σic,ic,ic ). Hene, we an obtain from (D.28) that signal ic ∈ Gc has a slowmode, i.e. gµ,kic
< gkic ,if ∃ic ∈ Gc : ∆xk+1

c,ic
≥ 0 ∧ g

µ,f(k)
ic

= g
f(k)
ic

∧ g
f(k)
ic

> gpbtic
and xk

c,ic
< λic(g

f(k)
ic

+ σic,ic,ic ) + ∆c(g
f(k)
ic

).This beause, if signal ic ∈ Gc does not have a slowmode it would result in an infeasible negative queuelength. This means that queue ic empties gf(k)ic
when xk

c,ic
< λic(g

f(k)
ic

+ σic,ic,ic ) + ∆c(g
f(k)
ic

).Further, whenever xk+1
c,ic

> λic(g
f(k)
ic

+σic,ic,ic ), i.e. the queue ic ∈ Gc is not emptied during gkic , thenit holds that gµ,kic
= gkic . Thus, whenever a queue is not empty at the end of the kth yle c then thequeue length is at least ∆c(g

f(k)
ic

) > 0 lower than at the beginning of the kth yle c.202



Lemma D.20 Whenever s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.3a → switch.3b then it willhold that max

ic∈Gc

∆xk+2
c,ic

≥ 0.Whenever s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.3a → switch.3b then it holds that ∃ic ∈

Gc : ∆xk+2
c,ic

≥ 0 ∧ g
µ,f(k)+1
ic

= g
f(k)+1
ic

∧ g
f(k)+1
ic

> gpbtic
.Proof. Lets onsider the queue i

f(k)+1
c (the queue that has a maximum queue length at the startof its green time g

f(k)+1
c ).Beause s

f(k)
c = s

f(k)+1
c = switch.3b it holds that g

f(k)

i
f(k)+1
c

− g
f(k)

i
f(k)+1
c

= g
f(k)+1

i
f(k)+1
c

= g̃max

i
f(k)+1
c

. We aregoing to show that ∆xk+2

c,i
f(k)+1
c

= xk+2

c,i
f(k)+1
c

− xk+1

c,i
f(k)+1
c

≥ 0 and thus that it holds that max
ic∈Gc

∆xk+2
c,ic

≥ 0.We know that queue i
f(k)+1
c was not emptied during g

f(k)

i
f(k)+1
c

(beause sk+1
c = switch.3a) and thusit holds that g

µ,f(k)

i
f(k)+1
c

= g
f(k)

i
f(k)+1
c

. It also holds that g
µ,f(k)+1

i
f(k)+1
c

= g
f(k)+1

i
f(k)+1
c

(beause we ould not emptyqueue i
f(k)+1
c during g

f(k)

i
f(k)+1
c

and beause queue i
f(k)+1
c is full at the start of gf(k)+1

i
f(k)+1
c

). Further, wean see that xk+1

c,i
f(k)+1
c

≤ xmax

i
f(k)+1
c

− g̃max

i
f(k)+1
c

(µ
i
f(k)+1
c

− λ
i
f(k)+1
c

) + σ
i
f(k)+1
c

,ig,fc
λ
i
f(k)+1
c

and that xk+2

i
f(k)+1
c

=

xmax

i
f(k)+1
c

− g̃max

i
f(k)+1
c

(µ
i
f(k)+1
c

− λ
i
f(k)+1
c

) + σ
i
f(k)+1
c ,ig,fc

λ
i
f(k)+1
c

(sine queue i
f(k)+1
c is full at the start of

g
f(k)+1

i
f(k)+1
c

). Hene, ∆xk+2

c,i
f(k)+1
c

= xk+2

c,i
f(k)+1
c

− xk+1

c,i
f(k)+1
c

≥ 0.During this proof we have already shown that ∆xk+2

c,i
f(k)+1
c

≥ 0 ∧ g
µ,f(k)+1

i
f(k)+1
c

= g
f(k)+1

i
f(k)+1
c

∧ g
f(k)+1

i
f(k)+1
c

>

gpbt
i
f(k)+1
c

.Lemma D.21 Whenever skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.2 → switch.2 →

switch.2 and max
ic∈Gc

∆xk+1
c,ic

≤ 0∧max
ic∈Gc

∆xk+1
c,ic

≤ 0 then it holds that max
ic∈Gc

∆x
f(k)+1
c,ic

≤ 0∧max
ic∈Gc

∆x
f(k)+1
c,ic

≤
0. Whenever skc → s

f(k)
c → sk+1

c → s
f(k)+1
c = switch.3b → switch.3b → switch.3b → switch3b and

max
ic∈Gc

∆xk+1
c,ic

= 0 ∧ max
ic∈Gc

∆xk+1
c,ic

= 0 then it holds that max
ic∈Gc

∆x
f(k)+1
c,ic

= 0 ∧ max
ic∈Gc

∆x
f(k)+1
c,ic

= 0.Proof.Note that in this ase:
gkic = g̃max

ic , ∀ic ∈ Gc,

gk+1
ic

= g̃max
ic , ∀ic ∈ Gc,

g
f(k)
ic

= g̃max
ic

, ∀ic ∈ Gc,

g
f(k)+1
ic

= g̃max
ic , ∀ic ∈ Gc.First we prove that max

ic∈Gc

∆x
f(k)+1
c,ic

≤ 0 if max
ic∈Gc

∆xk+1
c,ic

≤ 0 and that max
ic∈Gc

∆x
f(k)+1
c,ic

= 0 if max
ic∈Gc

∆xk+1
c,ic

=

0 (when skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.2 → switch.2 → switch.2 or skc → s

f(k)
c →

sk+1
c → s

f(k)+1
c = switch.3b → switch.3b → switch.3b → switch.3b). Using (D.6) and (D.7) we an�nd the following expressions for ∆xk+1

c,ic
and ∆x

f(k)+1
c,ic

:203



∆xk+1
c,ic

= −gµ,kic
(µic − λic) + r̃max

ic
λic , (D.29)

∆x
f(k)+1
c,ic

= −gµ,k+1
ic

(µic − λic) + r̃max
ic λic . (D.30)Note that ∆x

f(k)+1
c,ic

is equal to the expression from ∆xk+2
c,ic

. In Lemma D.15 we have shown that forall signals ic ∈ Gc it holds that:1 max
ic∈Gc

∆xk+2
c,ic

≤ 0 if max
ic∈Gc

∆xk+1
c,ic

≤ 02 max
ic∈Gc

∆xk+2
c,ic

= 0 if max
ic∈Gc

∆xk+1
c,ic

= 0Thus, it holds that max
ic∈Gc

∆x
f(k)+1
c,ic

≤ 0 if max
ic∈Gc

∆xk+1
c,ic

≤ 0 and max
ic∈Gc

∆x
f(k)+1
c,ic

= 0 if max
ic∈Gc

∆xk+1
c,ic

= 0Nowwe prove that max
ic∈Gc

∆x
f(k)+1
c,ic

≤ 0 if max
ic∈Gc

∆xk+1
c,ic

≤ 0 and that max
ic∈Gc

∆x
f(k)+1
c,ic

= 0 if max
ic∈Gc

∆xk+1
c,ic

=

0 (when skc → s
f(k)
c → sk+1

c → s
f(k)+1
c = switch.2 → switch.2 → switch.2 → switch.2 or skc → s

f(k)
c →

sk+1
c → s

f(k)+1
c = switch.3b → switch.3b → switch.3b → switch.3b). Using (D.6) , (D.7) we an �ndthe following expressions for ∆xk+1

c,ic
and ∆x

f(k)+1
c,ic

:
∆xk+1

c,ic
= −g

µ,f(k)
ic

(µic − λic ) + r̃max
ic λic , (D.31)

∆x
f(k)+1
c,ic

= −g
µ,f(k)
ic

(µic − λic ) + r̃max
ic λic . (D.32)Note that∆xk+1

c,ic
= ∆x

f(k)+1
c,ic

. As a result max
ic∈Gc

∆x
f(k)+1
c,ic

≤ 0 if max
ic∈Gc

∆xk+1
c,ic

≤ 0 and max
ic∈Gc

∆x
f(k)+1
c,ic

=

0 if max
ic∈Gc

∆xk+1
c,ic

= 0. This onludes this proof.Lemma D.22 Whenever skc → s
f(k)
c = switch.1a → switch.1a then ∃ic ∈ Gc : g

µ,f(k)
ic

= g
f(k)
ic

and itholds that gf(k)ic
> gpbtic

, ∀ic ∈ Gc.Proof. Whenever sf(k)c = switch.1a then it holds that ∃ic ∈ Gc : xic(t) > x♯
ic
, where xic(t) is thequeue length of queue ic ∈ Gc when signal ir,fc swithes to red (during rk+1

ic
, ic ∈ Gc) (see Setion D.1 formore information). The de�nition of x♯

ic
is shown in (8.2). Beause all queues in the set Gc were emptyat the start of rkic (sine skc = switch.1a) this means that ∃ic ∈ Gc : (r

k+1
ic

− σir,fc ,ic
)λic > x♯

ic
, ic ∈ GcUsing (8.2) we an �nd that rk+1

ic
> ric (and thus that g

f(k)
ic

> gic , ∀ic ∈ Gc). Thus, it holdsthat g
f(k)
ic

> gic . Using (7.14), (7.14a) and (D.2) we an �nd that g
f(k)
ic

> gpbtic
, ∀ic ∈ Gc and that

g
f(k)
ic

> gmin
ic

, ∀ic ∈ Gc.Note that (in general) when s
f(k)
c = switch.1a then either ∃ic ∈ Gc : g

f(k)
ic

= gmin
ic

(a signal is servedfor the minimum green time) or ∃ic ∈ Gc : g
µ,f(k)
ic

= g
f(k)
ic

(there is a signal ic ∈ Gc that we swith tored exatly at the moment it is emptied). Beause, when skc → s
f(k)
c = switch.1a → switch.1a it holdsthat gf(k)ic

> gmin
i2c

, ∀ic ∈ Gc it must hold that ∃ic ∈ Gc : g
µ,f(k)
ic

= g
f(k)
ic

(there is a signal ic ∈ Gc that weswith to red exatly at the moment that it is emptied).204



Lemma D.23 Whenever skc = switch.1b then we will follow the trajetory that we want to followfrom the start of the k + 1th yle c. Whenever skc = switch.1b then skc = switch.1b, ∀h ≥ k and
s
f(h)
c = switch.1b, ∀h ≥ k.Proof. We swith beause of the reason skc = switch.1b whenever τ1

i
g,f
c

≤ τ2
i
g,f
c

∧ τ1
i
g,f
c

≤ τ3
i
g,f
c

and
∀ic ∈ Gc : xic (t) ≤ x♯

ic
(see Setion 8.3).We are going to show that whenever skc = switch.1b then it will hold that gkic = gic , ic ∈ Gc and

s
f(k)
c = switch.1b.Whenever skc = switch.1b we an �nd that:

τ1.1
ig,fc

≤ max
ic∈Gc

(
x♯
ic
+ σir,fc ,ic

λic

µic − λic

+ σir,fc ,ic,i
r,f
c

− σir,fc ,ir,f
c

,ir,fc
) + σres

ir,fc

≤ gir,fc
+ σres

ir,fc

, (D.33a)
τ1.2
ig,fc

= max
ic∈Gc

(gmin
ic

+ σir,fc ,ic,i
r,f
c

− σir,fc ,ir,fc ,ir,fc
) + σres

ir,fc

≤ gir,fc
+ σres

ir,fc

, (D.33b)
τ1.3
ig,fc

= min
ic∈Gc

(
x♯
ic

λic

− σ
i
r,f
c ,i

g,f
c

) = g
i
r,f
c

+ σres
ir,fc

, (D.33)
τ2
ig,fc

= gmax
ir,fc

+ σres
ir,fc

≥ gir,fc
+ σres

ir,fc
, (D.33d)

τ3
i
g,f
c

= min
ic∈Gc

(
xmax
ic

λic

− σir,fc ,ig,fc
) ≥ gir,fc

+ σres

i
r,f
c

. (D.33e)We will explain these expressions one by one.For the desired trajetory the queue length of queue ic ∈ Gc equals x♯
ic
+ σ

ir,fc ,ic
λic when the greentime of signal ic starts. For the desired trajetory the amount of tra� that arrives during a red periodan depart during a green period. Hene, it holds that:

x♯
ic
+ σir,fc ,ic

λic

µic − λic

≤ gic , ∀ic ∈ Gc.Further, beause the green times are related aording to (D.2) we an �nd that for the desiredtrajetory it holds that:
max
ic∈Gc

(
x♯
ic
+ σir,fc ,ic

λic

µic − λic

+ σir,fc ,ic,i
r,f
c

− σir,fc ,ir,fc ,ir,fc
) ≤ gir,fc

.Further, to �nd the expression (D.33a) we have used the fat that signal ir,fc is swithed to green
σres
ir,f
c

seonds after signal ig,fc is swithed to green and the fat that eah queues ic ∈ Gc satis�ed thatits queue length xic(t) at the end of gk
ir,fc

is smaller than (or equal to) x♯
ic
(beause skc = switch.1b).Beause the green periods of the signals in the set Gc are related aording to (D.2) and using (7.14)we an �nd that:

max
ic∈Gc

(gmin
ic + σir,fc ,ic,i

r,f
c

− σir,fc ,ir,fc ,ir,fc
) ≤ gir,fc

.Further, to �nd the expression (D.33b) we have used the fat that signal ir,fc is swithed to green
σres
ir,fc

seonds after signal ig,fc is swithed to green.205



Queue ic ∈ Gc reahes a queue length of x♯
ic

when this signal has been red for x
♯
ic

λic

. Signal ig,fcswithes to green σ
i
r,f
c ,i

g,f
c

seonds after signal ig,fc swithed red therefore we �nd that:
τ1.3
ig,fc

= min
ic∈Gc

(
x♯
ic

λic

− σ
i
r,f
c ,i

g,f
c

). (D.34)Using (8.2) and (D.2) we an �nd expression (D.33).We an �nd expression (D.33d) using the relation between maximum green times shown in (8.1f) and(8.1g) and using the fat that signal ir,fc is swithed to green σres
ir,fc

seonds after signal ig,fc is swithedto green.Queue ic reahes a queue length of xmax
ic

when this signal has been red for xmax
ic

λic

. Signal ig,fc swithesto green σir,fc ,ig,fc
seonds after signal ig,fc swithed red. Using (7.14b) results in:

g
ir,fc

≤ min
ic∈Gc

(
xmax
ic

λic

− σ
ir,fc ,ig,fc

).From (D.33) we an see that gf(k)
ir,fc

= g
ir,fc

. Beause all green times in the set Gc are related aordingto (D.2) this means that gf(k)ic
= gic , ∀ic ∈ Gc.From (D.33) we an easily see that:

τ1
ig,fc

≤ τ2
ig,fc

∧ τ1
ig,fc

≤ τ3
ig,fc

, ∀ic ∈ Gc : xic(t) ≤ x♯
ic
.Thus, it holds that sf(k)c = switch.1b.Hene, when switch.1b ours from then on we always swith signals to red beause of the reasons

switch.1b and from then on the green time of every signal is equal to the green time of that signal forthe trajetory that we want to follow.We an easily see that when skc = switch.1b ours then we follow the desired trajetory from thestart of the k + 1th yle c beause it holds for all signals that ic ∈ Gc that the queue length at theend of gf(k)ic
are equal to zero (just like for the desired trajetory) and ∀ic ∈ Gc it holds that the queuelength at the end of gf(k)

ir,fc

is equal to x♯
ic
(just like for the desired trajetory).
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