Controller design for flow networks of switched servers with setup times

Erjen Lefeber
$35^{\text {th }}$ Benelux Meeting on Systems and Control

Switching servers with setup times

/department of mechanical engineering

Switching servers with setup times

Problem

How to control these networks?
Decisions: When to switch, and to which job-type
Goals: Minimal number of jobs, minimal flow time/delay

Switching servers with setup times

Problem

How to control these networks?
Decisions: When to switch, and to which job-type
Goals: Minimal number of jobs, minimal flow time/delay

Current approach

Start from policy, analyze resulting dynamics

Switching servers with setup times

Problem

How to control these networks?
Decisions: When to switch, and to which job-type
Goals: Minimal number of jobs, minimal flow time/delay

Current approach

Start from policy, analyze resulting dynamics
Problem: Even with sufficient capacity, system might become unstable (e.g., re-entrant systems: Kumar-Seidman in IEEE Trans.Autom.Contr.'90)

Switching servers with setup times

Problem

How to control these networks?
Decisions: When to switch, and to which job-type
Goals: Minimal number of jobs, minimal flow time/delay

Current approach

Start from policy, analyze resulting dynamics
Problem: Even with sufficient capacity, system might become unstable (e.g., re-entrant systems: Kumar-Seidman in IEEE Trans.Autom.Contr.'90)

Current status (after 25 years)
Several policies exist that guarantee stability of the network

Different approach

Notions from control theory

1. Generate feasible reference trajectory
2. Design (static) state feedback controller
3. Design observer
4. Design (dynamic) output feedback controller

Different approach

Notions from control theory

1. Generate feasible reference trajectory
2. Design (static) state feedback controller
3. Design observer
4. Design (dynamic) output feedback controller

Parallels with this problem

1. Determine desired system behavior
2. Derive non-distributed/centralized controller
3. Can state be reconstructed?
4. Derive distributed/decentralized controller

Acknowledgements

Research

This work is supported by the Netherlands Organization for Scientific Research (NWO-VIDI grant 639.072.072).

Problem 1: Optimal periodic behavior

- Stijn Fleuren (PhD student at TU/e)

Problem 2: Feedback control

- Varvara Feoktistova (St. Petersburg University)
- Alexey Matveev (St. Petersburg University)

Problem 1: Optimal periodic behavior

Intersection

Problem 1: Optimal periodic behavior

Intersection

Conflict graph:

Problem 1: Optimal periodic behavior

Intersection

Optimal schedule (data from Grontmij: A2/N279)

Problem 1: Optimal periodic behavior

Optimal schedule

Extended graph

/department of mechanical engineering

Event times

i	$t(i)$	$t(i+6)$	$i+6$
1	0.0	31.3	7
2	6.8	31.3	8
3	10.5	35.3	9
4	31.3	35.3	10
5	31.3	6.8	11
6	35.3	5.5	12

Conflict graph

TU/e

Problem 1: Optimal periodic behavior

Data

- Arrival rates: λ_{i}
- Service rates: μ_{i}
- Clearance times: $\sigma_{i, j}$
- Minimal/maximal green time: $g_{i}^{\min }, g_{i}^{\max }$.
- Minimal/maximal period: $T^{\min }, T^{\text {max }}$.
- Conflict graph:

Problem 1: Optimal periodic behavior

Design variables

- $x(i, j)$ fraction of period from event i to event j.
- T^{\prime} reciprocal of duration of period, i.e. $T^{\prime}=1 / T$.

Problem 1: Optimal periodic behavior

Design variables

- $x(i, j)$ fraction of period from event i to event j.
- T^{\prime} reciprocal of duration of period, i.e. $T^{\prime}=1 / T$.

Constraints

- Stable system: $\rho_{i}=\lambda_{i} / \mu_{i} \leq x(i, i+n)$

Problem 1: Optimal periodic behavior

Design variables

- $x(i, j)$ fraction of period from event i to event j.
- T^{\prime} reciprocal of duration of period, i.e. $T^{\prime}=1 / T$.

Constraints

- Stable system: $\rho_{i}=\lambda_{i} / \mu_{i} \leq x(i, i+n)$
- Minimal/maximal green time: $g_{i}^{\min } T^{\prime} \leq x(i, i+n) \leq g_{i}^{\min } T^{\prime}$

Problem 1: Optimal periodic behavior

Design variables

- $x(i, j)$ fraction of period from event i to event j.
- T^{\prime} reciprocal of duration of period, i.e. $T^{\prime}=1 / T$.

Constraints

- Stable system: $\rho_{i}=\lambda_{i} / \mu_{i} \leq x(i, i+n)$
- Minimal/maximal green time: $g_{i}^{\min } T^{\prime} \leq x(i, i+n) \leq g_{i}^{\min } T^{\prime}$
- Clearance time: $\sigma_{i, j} T^{\prime} \leq x(i, j)$

Problem 1: Optimal periodic behavior

Design variables

- $x(i, j)$ fraction of period from event i to event j.
- T^{\prime} reciprocal of duration of period, i.e. $T^{\prime}=1 / T$.

Constraints

- Stable system: $\rho_{i}=\lambda_{i} / \mu_{i} \leq x(i, i+n)$
- Minimal/maximal green time: $g_{i}^{\min } T^{\prime} \leq x(i, i+n) \leq g_{i}^{\min } T^{\prime}$
- Clearance time: $\sigma_{i, j} \boldsymbol{T}^{\prime} \leq x(i, j)$
- Minimal/maximal period: $1 / T^{\max } \leq T^{\prime} \leq 1 / T^{\text {min }}$

Problem 1: Optimal periodic behavior

Design variables

- $x(i, j)$ fraction of period from event i to event j.
- T^{\prime} reciprocal of duration of period, i.e. $T^{\prime}=1 / T$.

Constraints

- Stable system: $\rho_{i}=\lambda_{i} / \mu_{i} \leq x(i, i+n)$
- Minimal/maximal green time: $g_{i}^{\min } T^{\prime} \leq x(i, i+n) \leq g_{i}^{\min } T^{\prime}$
- Clearance time: $\sigma_{i, j} \boldsymbol{T}^{\prime} \leq x(i, j)$
- Minimal/maximal period: $1 / T^{\text {max }} \leq T^{\prime} \leq 1 / T^{\text {min }}$
- Conflict: $x(i, i+n)+x(i+n, j)+x(j, j+n)+x(j+n, i)=1$

Problem 1: Optimal periodic behavior

Design variables

- $x(i, j)$ fraction of period from event i to event j.
- T^{\prime} reciprocal of duration of period, i.e. $T^{\prime}=1 / T$.

Constraints

- Stable system: $\rho_{i}=\lambda_{i} / \mu_{i} \leq x(i, i+n)$
- Minimal/maximal green time: $g_{i}^{\min } T^{\prime} \leq x(i, i+n) \leq g_{i}^{\min } T^{\prime}$
- Clearance time: $\sigma_{i, j} \boldsymbol{T}^{\prime} \leq x(i, j)$
- Minimal/maximal period: $1 / T^{\text {max }} \leq T^{\prime} \leq 1 / T^{\text {min }}$
- Conflict: $x(i, i+n)+x(i+n, j)+x(j, j+n)+x(j+n, i)=1$
- Integer cycle: $\sum_{(i, j) \in C^{+}} x(i, j)-\sum_{(i, j) \in C^{+}} x(i, j)=z_{c}$.

Problem 1: Optimal periodic behavior

Extended graph

Cycle

Cycle: $\{(4,10),(10,2),(12,2),(12,4)\}$

Problem 1: Optimal periodic behavior

Extended graph

Cycle

Cycle: $\{(4,10),(10,2),(12,2),(12,4)\}$
$C^{+}=\{(4,10),(10,2),(12,4)\}$.
$C^{-}=\{(12,2)\}$.

Problem 1: Optimal periodic behavior

Extended graph

Cycle

Cycle: $\{(4,10),(10,2),(12,2),(12,4)\}$
$C^{+}=\{(4,10),(10,2),(12,4)\}$.
$C^{-}=\{(12,2)\}$.
Integer cycle constraint:
$\sum_{(i, j) \in C^{+}} x(i, j)-\sum_{(i, j) \in C^{+}} x(i, j)=z_{C}$.

Problem 1: Optimal periodic behavior

Extended graph

Cycle

Cycle: $\{(4,10),(10,2),(12,2),(12,4)\}$
$C^{+}=\{(4,10),(10,2),(12,4)\}$.
$C^{-}=\{(12,2)\}$.
Integer cycle constraint:
$\sum_{(i, j) \in C^{+}} x(i, j)-\sum_{(i, j) \in C^{+}} x(i, j)=z_{C}$.
Only for cycles from integer cycle base.

Problem 1: Optimal periodic behavior

Extended graph

Objective

Minimize weighted average delay (Fluid, Webster, Miller, v.d. Broek):

$$
\sum_{i=1}^{n} \frac{r_{i}}{2 \lambda_{i}\left(1-\rho_{i}\right) T}\left(r_{i} \lambda_{i}+\frac{s_{i}^{2}}{1-\rho_{i}}+\frac{r_{i} \rho_{i}^{2} s_{i}^{2} T^{2}}{\left(1-\rho_{i}\right)\left(T-r_{i}\right)^{2}\left(\left(1-\rho_{i}\right) T-r_{i}\right)}\right)
$$

Problem 1: Optimal periodic behavior

Concluding remarks for Problem 1

- Mixed integer convex optimization problem.

Problem 1: Optimal periodic behavior

Concluding remarks for Problem 1

- Mixed integer convex optimization problem.
- Data from real intersection in the Netherlands with 29 directions (data from Grontmij):
- Straight forward implementation (solver: SCIP 3.2.0):
- Notebook: Intel i5-4300U CPU 1.90GHZ with 16.0 GB of RAM.

Problem 1: Optimal periodic behavior

Concluding remarks for Problem 1

- Mixed integer convex optimization problem.
- Data from real intersection in the Netherlands with 29 directions (data from Grontmij):
- Straight forward implementation (solver: SCIP 3.2.0):
- Notebook: Intel i5-4300U CPU 1.90GHZ with 16.0GB of RAM.
- Standard group based approach 33.83 seconds
- Our approach 2.27 seconds

Problem 1: Optimal periodic behavior

Concluding remarks for Problem 1

- Mixed integer convex optimization problem.
- Data from real intersection in the Netherlands with 29 directions (data from Grontmij):
- Straight forward implementation (solver: SCIP 3.2.0):
- Notebook: Intel i5-4300U CPU 1.90GHZ with 16.0GB of RAM.
- Standard group based approach 33.83 seconds
- Our approach 2.27 seconds
- Can also quickly solve problem with integer durations

Problem 2: Feedback control

Consider the following periodic schedule:

Resulting steady state periodic wip evolution:

Problem 2: Feedback control

Steady state periodic wip evolution:

- Mode 1: directions 1, 2 and 3 served (steady state: 5.5 - 31.3)
- Mode 2: directions 3, 4 and 5 served (steady state: 31.3 - 35.3)
- Mode 3: directions 5, 6 and 1 served (steady state: 35.3 - 5.5)

NB: In mode 1: directions 2 and 3 are served after setup, and 5 is still served for the first $6.8-5.5=1.3$ seconds.
In mode 2: direction 1 is served after setup.

Problem 2: Feedback control

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let \mathcal{T} be an operator which:

- is piecewise affine, i.e. $\mathcal{T} x=A_{i} x+b_{i}$ for $x \in\left\{P_{i} x \leq q_{i}\right\}$,

then

Problem 2: Feedback control

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let \mathcal{T} be an operator which:

- is piecewise affine, i.e. $\mathcal{T} x=A_{i} x+b_{i}$ for $x \in\left\{P_{i} x \leq q_{i}\right\}$,
- is continuous,
then

Problem 2: Feedback control

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let \mathcal{T} be an operator which:

- is piecewise affine, i.e. $\mathcal{T} x=A_{i} x+b_{i}$ for $x \in\left\{P_{i} x \leq q_{i}\right\}$,
- is continuous,
- is monotone, i.e. $A_{i} \geq 0$,
then

Problem 2: Feedback control

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let \mathcal{T} be an operator which:

- is piecewise affine, i.e. $\mathcal{T} x=A_{i} x+b_{i}$ for $x \in\left\{P_{i} x \leq q_{i}\right\}$,
- is continuous,
- is monotone, i.e. $A_{i} \geq 0$,
- is strictly dominated, i.e. $b_{i}>0$,
then

Problem 2: Feedback control

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let \mathcal{T} be an operator which:

- is piecewise affine, i.e. $\mathcal{T} x=A_{i} x+b_{i}$ for $x \in\left\{P_{i} x \leq q_{i}\right\}$,
- is continuous,
- is monotone, i.e. $A_{i} \geq 0$,
- is strictly dominated, i.e. $b_{i}>0$,
- has a fixed point, i.e. there exists x^{*} such that $x^{*}=\mathcal{T} x^{*}$,
then

Problem 2: Feedback control

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let \mathcal{T} be an operator which:

- is piecewise affine, i.e. $\mathcal{T} x=A_{i} x+b_{i}$ for $x \in\left\{P_{i} x \leq q_{i}\right\}$,
- is continuous,
- is monotone, i.e. $A_{i} \geq 0$,
- is strictly dominated, i.e. $b_{i}>0$,
- has a fixed point, i.e. there exists x^{*} such that $x^{*}=\mathcal{T} x^{*}$, then
- the fixed point is unique, and

Problem 2: Feedback control

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let \mathcal{T} be an operator which:

- is piecewise affine, i.e. $\mathcal{T} x=A_{i} x+b_{i}$ for $x \in\left\{P_{i} x \leq q_{i}\right\}$,
- is continuous,
- is monotone, i.e. $A_{i} \geq 0$,
- is strictly dominated, i.e. $b_{i}>0$,
- has a fixed point, i.e. there exists x^{*} such that $x^{*}=\mathcal{T} x^{*}$,
then
- the fixed point is unique, and
- attracts all solutions of $x_{k+1}=\mathcal{T} x_{k} ; x_{0} \in \mathbb{R}_{+}^{n}$, i.e. $\lim _{k \rightarrow \infty} x_{k}=x^{*}$.

Problem 2: Feedback control

Useful Lemma's

Composition: $\mathcal{T}_{2} \circ \mathcal{T}_{1}: A_{2}\left(A_{1} x+b_{1}\right)+b_{2}=\underbrace{A_{2} A_{1}}_{A} x+\underbrace{A_{2} b_{1}+b_{2}}_{b}$.

Problem 2: Feedback control

Useful Lemma's

Composition: $\mathcal{T}_{2} \circ \mathcal{T}_{1}: A_{2}\left(A_{1} x+b_{1}\right)+b_{2}=\underbrace{A_{2} A_{1}}_{A} x+\underbrace{A_{2} b_{1}+b_{2}}_{b}$.

- Composition of piecewise affine operators is piecewise affine.

Problem 2: Feedback control

Useful Lemma's

Composition: $\mathcal{T}_{2} \circ \mathcal{T}_{1}: A_{2}\left(A_{1} x+b_{1}\right)+b_{2}=\underbrace{A_{2} A_{1}}_{A} x+\underbrace{A_{2} b_{1}+b_{2}}_{b}$.

- Composition of piecewise affine operators is piecewise affine.
- Composition of continuous operators is continuous.

Problem 2: Feedback control

Useful Lemma's

Composition: $\mathcal{T}_{2} \circ \mathcal{T}_{1}: A_{2}\left(A_{1} x+b_{1}\right)+b_{2}=\underbrace{A_{2} A_{1}}_{A} x+\underbrace{A_{2} b_{1}+b_{2}}_{b}$.

- Composition of piecewise affine operators is piecewise affine.
- Composition of continuous operators is continuous.
- Composition of monotone $\left(A_{i} \geq 0\right)$ dominated $\left(b_{i} \geq 0\right)$ operators is monotone dominated.

Problem 2: Feedback control

Useful Lemma's

Composition: $\mathcal{T}_{2} \circ \mathcal{T}_{1}: A_{2}\left(A_{1} x+b_{1}\right)+b_{2}=\underbrace{A_{2} A_{1}}_{A} x+\underbrace{A_{2} b_{1}+b_{2}}_{b}$.

- Composition of piecewise affine operators is piecewise affine.
- Composition of continuous operators is continuous.
- Composition of monotone $\left(A_{i} \geq 0\right)$ dominated $\left(b_{i} \geq 0\right)$ operators is monotone dominated.

Consequence

If $\mathcal{T}_{1}, \mathcal{T}_{2}, \ldots \mathcal{T}_{n}$ are piecewise affine continuous monotone dominated, then $M=\mathcal{T}_{n} \circ \cdots \circ \mathcal{T}_{2} \circ \mathcal{T}_{1}$ is piecewise affine continuous monotone dominated.

Problem 2: Feedback control

Useful Lemma's

Composition: $\mathcal{T}_{2} \circ \mathcal{T}_{1}: A_{2}\left(A_{1} x+b_{1}\right)+b_{2}=\underbrace{A_{2} A_{1}}_{A} x+\underbrace{A_{2} b_{1}+b_{2}}_{b}$.

- Composition of piecewise affine operators is piecewise affine.
- Composition of continuous operators is continuous.
- Composition of monotone $\left(A_{i} \geq 0\right)$ dominated $\left(b_{i} \geq 0\right)$ operators is monotone dominated.

Consequence

If $\mathcal{T}_{1}, \mathcal{T}_{2}, \ldots \mathcal{T}_{n}$ are piecewise affine continuous monotone dominated, then $M=\mathcal{T}_{n} \circ \cdots \circ \mathcal{T}_{2} \circ \mathcal{T}_{1}$ is piecewise affine continuous monotone dominated.
Only need to show that M is strictly dominated and has a fixed point.

Problem 2: Feedback control

Steady state periodic wip evolution:

- Define δ_{i} as duration of $x_{i}^{*}=0$ for $i=1,2,4,6$,
- Define $\delta_{3}+4$ as duration of $x_{3}^{*}=0$,
- Define $\delta_{5}+1.3$ as duration of $x_{5}^{*}=0$,
- Define $\theta_{1}=x_{1}^{*}(5.5) /\left[x_{1}^{*}(35.3)+4 \lambda_{1}\right]$,
- Define $\theta_{5}=x_{5}^{*}(31.3) / x_{5}^{*}(35.3)$.

Problem 2: Feedback control (mode 1)

State at start of mode 1: $X=\left[x_{4}, x_{3}, x_{2}, x_{1}\right]^{\top}\left(t_{0}\right)$.
State at end of mode 1: $\mathcal{T}_{1} X=\left[x_{6}, x_{5}, x_{4}\right]^{T}\left(t_{1}\right)$.
Stay in mode until $x_{1}\left(t_{1}-\delta_{1}\right)=0, x_{2}\left(t_{1}-\delta_{2}\right)=0$ and $x_{3}\left(t_{1}-\delta_{3}\right)=0$.

Problem 2: Feedback control (mode 2)

State at start of mode 2: $X=\left[x_{6}, x_{5}, x_{4}\right]^{T}\left(t_{0}\right)$.
State at end of mode 2: $\mathcal{T}_{2} X=\left[x_{2}, x_{1}, x_{6}, x_{5}\right]^{T}\left(t_{1}\right)$.
Stay in mode until $x_{4}\left(t_{1}-\delta_{4}\right)=0$ and $x_{5}\left(t_{1}\right)=\theta_{5} x_{5}\left(t_{0}\right)$.
NB: Serve x_{5} at arrival rate as soon as $x_{5}=\theta_{5} x_{5}\left(t_{0}\right)$.

$$
\mathcal{T}_{2} X=\left\{\begin{array}{ll}
{\left[\begin{array}{lll}
0 & 0 & \frac{\lambda_{2}}{\mu_{4}-\lambda_{4}} \\
0 & 0 & \frac{\lambda_{1}}{\mu_{4}-\lambda_{4}} \\
1 & 0 & \frac{\lambda_{6}}{\mu_{4}-\lambda_{4}}
\end{array}\right] X+\left[\begin{array}{c}
\lambda_{2} \delta_{4} \\
0
\end{array} \theta_{5}-0\right.} \\
\lambda_{1} \delta_{4} \\
\lambda_{6} \delta_{4} \\
0
\end{array}\right] \quad \text { if } \frac{x_{4}\left(t_{0}\right)}{\mu_{4}-\lambda_{4}}+\delta_{4} \geq \frac{\left(1-\theta_{5}\right) x_{5}\left(t_{0}\right)}{\mu_{5}-\lambda_{5}}
$$

Problem 2: Feedback control (mode 3)

State at start of mode 3: $X=\left[x_{2}, x_{1}, x_{6}, x_{5}\right]^{\top}\left(t_{0}\right)$.
State at end of mode 3: $\mathcal{T}_{3} X=\left[x_{4}, x_{3}, x_{2}, x_{1}\right]^{T}\left(t_{1}\right)$.
End of mode: $x_{5}\left(t_{1}-\delta_{5}\right)=0, x_{6}\left(t_{1}-\delta_{6}\right)=0$ and $x_{1}\left(t_{1}\right)=\theta_{1}\left[x_{1}\left(t_{0}\right)+4 \lambda_{1}\right]$.
NB: Serve x_{1} at arrival rate as soon as $x_{1}=\theta_{1}\left[x_{1}\left(t_{0}\right)+4 \lambda_{1}\right]$.
Then we get for $\mathcal{T}_{3} X$:

Problem 2: Feedback control

Observation

Since \mathcal{T}_{3} is strictly dominated, we have $M=\mathcal{T}_{3} \circ \mathcal{T}_{2} \circ \mathcal{T}_{1}$ is strictly dominated.

Problem 2: Feedback control

Observation

Since \mathcal{T}_{3} is strictly dominated, we have $M=\mathcal{T}_{3} \circ \mathcal{T}_{2} \circ \mathcal{T}_{1}$ is strictly dominated.
Furthermore, the desired periodic behavior is a fixed point.

Problem 2: Feedback control

Observation

Since \mathcal{T}_{3} is strictly dominated, we have $M=\mathcal{T}_{3} \circ \mathcal{T}_{2} \circ \mathcal{T}_{1}$ is strictly dominated.
Furthermore, the desired periodic behavior is a fixed point. Therefore, global convergence towards desired periodic behavior.

Problem 2: Feedback control

Observation

Since \mathcal{T}_{3} is strictly dominated, we have $M=\mathcal{T}_{3} \circ \mathcal{T}_{2} \circ \mathcal{T}_{1}$ is strictly dominated.
Furthermore, the desired periodic behavior is a fixed point.
Therefore, global convergence towards desired periodic behavior.

Even more

Under conditions such as (show only 2 of 18 expressions):

$$
\begin{aligned}
& \left(1-\rho_{1}\right)\left(1-\rho_{3}\right)\left(1-\rho_{5}\right)>\rho_{1} \rho_{3} \rho_{5}\left(1-\theta_{1}\right)\left(1-\theta_{5}\right) \\
& \left(1-\rho_{1}\right)\left(1-\rho_{2}\right)\left(1-\rho_{5}\right)>\rho_{2} \rho_{5}\left(1-\theta_{5}\right)\left(1-\rho_{1} \theta_{1}\right)
\end{aligned}
$$

we can show that a fixed point for M exists.

Problem 2: Feedback control

Observation

Since \mathcal{T}_{3} is strictly dominated, we have $M=\mathcal{T}_{3} \circ \mathcal{T}_{2} \circ \mathcal{T}_{1}$ is strictly dominated.
Furthermore, the desired periodic behavior is a fixed point.
Therefore, global convergence towards desired periodic behavior.

Even more

Under conditions such as (show only 2 of 18 expressions):

$$
\begin{aligned}
& \left(1-\rho_{1}\right)\left(1-\rho_{3}\right)\left(1-\rho_{5}\right)>\rho_{1} \rho_{3} \rho_{5}\left(1-\theta_{1}\right)\left(1-\theta_{5}\right) \\
& \left(1-\rho_{1}\right)\left(1-\rho_{2}\right)\left(1-\rho_{5}\right)>\rho_{2} \rho_{5}\left(1-\theta_{5}\right)\left(1-\rho_{1} \theta_{1}\right)
\end{aligned}
$$

we can show that a fixed point for M exists.
This guarantees robustness against changes in parameters.

Problem 2: Feedback control

Practical problem

End of mode 1: $x_{1}\left(t_{1}-\delta_{1}\right)=0, x_{2}\left(t_{1}-\delta_{2}\right)=0$ and $x_{3}\left(t_{1}-\delta_{3}\right)=0$.
End of mode 2: $x_{4}\left(t_{1}-\delta_{4}\right)=0$ and $x_{5}\left(t_{1}\right)=\theta_{5} x_{5}\left(t_{0}\right)$.
NB: Serve x_{5} at arrival rate as soon as $x_{5}=\theta_{5} x_{5}\left(t_{0}\right)$.
End of mode 3: $x_{5}\left(t_{1}-\delta_{5}\right)=0, x_{6}\left(t_{1}-\delta_{6}\right)=0$ and $x_{1}\left(t_{1}\right)=\theta_{1}\left[x_{1}\left(t_{0}\right)+4 \lambda_{1}\right]$. NB: Serve x_{1} at arrival rate as soon as $x_{1}=\theta_{1}\left[x_{1}\left(t_{0}\right)+4 \lambda_{1}\right]$.

Problem 2: Feedback control

Practical problem

End of mode 1: $x_{1}\left(t_{1}-\delta_{1}\right)=0, x_{2}\left(t_{1}-\delta_{2}\right)=0$ and $x_{3}\left(t_{1}-\delta_{3}\right)=0$.
End of mode 2: $x_{4}\left(t_{1}-\delta_{4}\right)=0$ and $x_{5}\left(t_{1}\right)=\theta_{5} x_{5}\left(t_{0}\right)$.
NB: Serve x_{5} at arrival rate as soon as $x_{5}=\theta_{5} x_{5}\left(t_{0}\right)$.
End of mode 3: $x_{5}\left(t_{1}-\delta_{5}\right)=0, x_{6}\left(t_{1}-\delta_{6}\right)=0$ and $x_{1}\left(t_{1}\right)=\theta_{1}\left[x_{1}\left(t_{0}\right)+4 \lambda_{1}\right]$.
NB: Serve x_{1} at arrival rate as soon as $x_{1}=\theta_{1}\left[x_{1}\left(t_{0}\right)+4 \lambda_{1}\right]$.

Solution

End of mode 1: Minimal duration: τ_{1}^{*}. Furthermore, $x_{1}\left(t_{1}-\delta_{1}\right)=0$, $x_{2}\left(t_{1}-\delta_{2}\right)=0$ and $x_{3}\left(t_{1}-\delta_{3}\right)=0$. End of mode 2: $x_{4}\left(t_{1}-\delta_{4}\right)=0$ and $x_{5}\left(t_{1}\right) \leq \theta_{5} x_{5}\left(t_{0}\right)$. Set $\tau_{3}^{*}=\frac{\theta_{5} x_{5}\left(t_{0}\right)}{\mu_{5}-\lambda_{5}}$
End of mode 3: Minimal duration: τ_{3}^{*}. Furthermore, $x_{5}\left(t_{1}-\delta_{5}\right)=0$, $x_{6}\left(t_{1}-\delta_{6}\right)=0, x_{1}\left(t_{1}\right) \leq \theta_{1}\left[x_{1}\left(t_{0}\right)+4 \lambda_{1}\right]$. Set $\tau_{1}^{*}=\frac{\theta_{1}\left[x_{1}\left(t_{0}\right)+4 \lambda_{1}\right]}{\mu_{1}-\lambda_{1}}$.

Conclusions

Conclusions

- Control of traffic lights can be tackled as two separate problems:
- Determining optimal periodic behavior
- Feedback control towards given periodic behavior
- Optimal periodic behavior can be determined
- Presented feedback controller
- Robust against changes in arrival and service rate.
- Can be implemented in practice.

Future work

- Properly defining modes for large intersections/arbitrary networks
- Proving methodology works for arbitrary networks

Stability constraints

Let $\tau_{1}, \tau_{2}, \tau_{3}$ denote durations of modes.

Stability constraints

Let $\tau_{1}, \tau_{2}, \tau_{3}$ denote durations of modes. Then states evolve as:

Begin Mode 1
$x_{1}: \quad \lambda_{1}\left(\tau_{2}+\tau_{3}\right)-\mu_{1}\left(\tau_{3}-4\right)$
$x_{2}: \quad \lambda_{2}\left(\tau_{2}+\tau_{3}\right)$
x_{3} :
x_{4}
x_{5} :
x_{6} :
$\lambda_{3} \tau_{3}$
$\lambda_{4} \tau_{3}$
0
0

Begin Mode 2
0
0
0

$$
\begin{gathered}
\lambda_{4}\left(\tau_{3}+\tau_{1}\right) \\
\lambda_{5} \tau_{1} \\
\lambda_{6} \tau_{1}
\end{gathered}
$$

Begin Mode 3
$\lambda_{1} \tau_{2}$
$\lambda_{2} \tau_{2}$
0
0
$\lambda_{5}\left(\tau_{1}+\tau_{2}\right)-\mu_{5} \tau_{2}$
$\lambda_{6}\left(\tau_{1}+\tau_{2}\right)$

Stability constraints

Resulting in

$$
\begin{aligned}
\tau_{1} & =\max \left[\frac{\rho_{1} \tau_{2}+4}{1-\rho_{1}}-\tau_{3}+\delta_{1}, \frac{\rho_{2}\left(\tau_{2}+\tau_{3}\right)}{1-\rho_{2}}+\delta_{2}, \frac{\rho_{3} \tau_{3}}{1-\rho_{3}}+\delta_{3}\right] \\
\tau_{2} & =\max \left[\frac{\rho_{4}\left(\tau_{3}+\tau_{1}\right)}{1-\rho_{4}}+\delta_{4}, \frac{\left(1-\theta_{5}\right) \rho_{5} \tau_{1}}{1-\rho_{5}}\right] \\
\tau_{3} & =\max \left[\frac{\rho_{5} \tau_{1}}{1-\rho_{5}}-\tau_{2}+\delta_{5}, \frac{\rho_{6}\left(\tau_{1}+\tau_{2}\right)}{1-\rho_{6}}+\delta_{6}, \frac{\rho_{1}\left(1-\theta_{1}\right)\left(\tau_{2}+4\right)}{1-\rho_{1}}\right] \\
T & =\tau_{1}+\tau_{2}+\tau_{3}
\end{aligned}
$$

Results in

$$
\tau_{1}=\frac{\rho_{3}}{1-\rho_{3}} \frac{\rho_{1}\left(1-\theta_{1}\right)}{1-\rho_{1}} \frac{\left(1-\theta_{5}\right) \rho_{5}}{1-\rho_{5}} \tau_{1}+C
$$

So we need
$\underset{\text { /department of mechanical engineering }}{1-\rho_{3}} \frac{\rho_{3}}{\rho_{1}\left(1-\theta_{1}\right)} \frac{\left(1-\theta_{5}\right) \rho_{5}}{1-\rho_{5}}>0$

Large intersection

/department of mechanical engineering

