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Switching servers with setup times

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time/delay

Current approach

Start from policy, analyze resulting dynamics

Problem: Even with sufficient capacity, system might become unstable
(e.g., re-entrant systems: Kumar-Seidman in IEEE Trans.Autom.Contr.’90)

Current status (after 25 years)

Several policies exist that guarantee stability of the network
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Different approach

Notions from control theory

1. Generate feasible reference trajectory

2. Design (static) state feedback controller

3. Design observer

4. Design (dynamic) output feedback controller

Parallels with this problem

1. Determine desired system behavior

2. Derive non-distributed/centralized controller

3. Can state be reconstructed?

4. Derive distributed/decentralized controller
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Problem 1: Optimal periodic behavior
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Problem 1: Optimal periodic behavior

Optimal schedule

Extended graph
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i t(i ) t(i + 6) i+6
1 0.0 31.3 7
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3 10.5 35.3 9
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6 35.3 5.5 12
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Problem 1: Optimal periodic behavior

Data

I Arrival rates: λi
I Service rates: µi

I Clearance times: σi ,j
I Minimal/maximal green time: gmin

i , gmax
i .

I Minimal/maximal period: Tmin, Tmax.
I Conflict graph:
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Problem 1: Optimal periodic behavior

Design variables

I x(i , j ) fraction of period from event i to event j .
I T ′ reciprocal of duration of period, i.e. T ′ = 1/T .

Constraints

I Stable system: ρi = λi/µi ≤ x(i , i + n)
I Minimal/maximal green time: gmin

i T ′ ≤ x(i , i + n) ≤ gmin
i T ′

I Clearance time: σi ,jT ′ ≤ x(i , j )
I Minimal/maximal period: 1/Tmax

≤ T ′ ≤ 1/Tmin

I Conflict: x(i , i + n)+ x(i + n, j )+ x(j , j + n)+ x(j + n, i ) = 1
I Integer cycle:

∑
(i ,j )∈C+ x(i , j )−

∑
(i ,j )∈C+ x(i , j ) = zC .
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Problem 1: Optimal periodic behavior

Extended graph
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Cycle

Cycle: {(4,10), (10,2), (12,2), (12,4)}

C+ = {(4,10), (10,2), (12,4)}.
C− = {(12,2)}.

Integer cycle constraint:∑
(i ,j )∈C+ x(i , j )−

∑
(i ,j )∈C+ x(i , j ) = zC .

Only for cycles from integer cycle base.

Objective

Minimize weighted average delay (Fluid, Webster, Miller, v.d. Broek):
n∑

i=1

ri
2λi (1− ρi )T

(
riλi +

s2
i

1− ρi
+

riρ2
i s

2
i T

2

(1− ρi )(T − ri )2((1− ρi )T − ri )

)
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Problem 1: Optimal periodic behavior

Concluding remarks for Problem 1

I Mixed integer convex optimization problem.

I Data from real intersection in the Netherlands with 29 directions
(data from Grontmij):

• Straight forward implementation (solver: SCIP 3.2.0):
• Notebook: Intel i5-4300U CPU 1.90GHZ with 16.0GB of RAM.
• Standard group based approach 33.83 seconds
• Our approach 2.27 seconds

I Can also quickly solve problem with integer durations
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Problem 2: Feedback control

Consider the following periodic schedule:

Resulting steady state periodic wip evolution:

0 5 10 15 20 25 30 35 40
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Problem 2: Feedback control

Steady state periodic wip evolution:

I Mode 1: directions 1, 2 and 3 served (steady state: 5.5 – 31.3)
I Mode 2: directions 3, 4 and 5 served (steady state: 31.3 – 35.3)
I Mode 3: directions 5, 6 and 1 served (steady state: 35.3 – 5.5)

NB: In mode 1: directions 2 and 3 are served after setup,
and 5 is still served for the first 6.8-5.5=1.3 seconds.
In mode 2: direction 1 is served after setup.
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Problem 2: Feedback control

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let T be an operator which:
I is piecewise affine, i.e. T x = Aix + bi for x ∈ {Pix ≤ qi },

I is continuous,
I is monotone, i.e. Ai ≥ 0,
I is strictly dominated, i.e. bi > 0,
I has a fixed point, i.e. there exists x∗ such that x∗ = T x∗,

then

I the fixed point is unique, and
I attracts all solutions of xk+1 = T xk ; x0 ∈ Rn

+
, i.e. limk→∞ xk = x∗.
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Problem 2: Feedback control

Useful Lemma’s

Composition: T2 ◦ T1 : A2(A1x + b1)+ b2 = A2A1︸︷︷︸
A

x + A2b1 + b2︸ ︷︷ ︸
b

.

I Composition of piecewise affine operators is piecewise affine.
I Composition of continuous operators is continuous.
I Composition of monotone (Ai ≥ 0) dominated (bi ≥ 0) operators is

monotone dominated.

Consequence

If T1, T2, . . .Tn are piecewise affine continuous monotone dominated,
then M = Tn ◦ · · · ◦ T2 ◦ T1 is piecewise affine continuous monotone
dominated.
Only need to show that M is strictly dominated and has a fixed point.
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x + A2b1 + b2︸ ︷︷ ︸
b

.

I Composition of piecewise affine operators is piecewise affine.
I Composition of continuous operators is continuous.
I Composition of monotone (Ai ≥ 0) dominated (bi ≥ 0) operators is

monotone dominated.

Consequence

If T1, T2, . . .Tn are piecewise affine continuous monotone dominated,
then M = Tn ◦ · · · ◦ T2 ◦ T1 is piecewise affine continuous monotone
dominated.
Only need to show that M is strictly dominated and has a fixed point.
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Problem 2: Feedback control

Steady state periodic wip evolution:

0 5 10 15 20 25 30 35 40

0

1

2

3

4

5

6

7

8

9

10

x1

x2

x3

x4

x5

x6

I Define δi as duration of x∗i = 0 for i = 1,2,4,6,
I Define δ3 + 4 as duration of x∗3 = 0,
I Define δ5 + 1.3 as duration of x∗5 = 0,
I Define θ1 = x∗1(5.5)/[x

∗

1(35.3)+ 4λ1],
I Define θ5 = x∗5(31.3)/x∗5(35.3).
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Problem 2: Feedback control (mode 1)

State at start of mode 1: X = [x4, x3, x2, x1]
T (t0).

State at end of mode 1: T1X = [x6, x5, x4]
T (t1).

Stay in mode until x1(t1 − δ1) = 0, x2(t1 − δ2) = 0 and x3(t1 − δ3) = 0.

T1X =



0 0 0
λ6

µ1−λ1

0 0 0 λ5
µ1−λ1

1 0 0 λ4
µ1−λ1

 X +
[
λ6δ1
λ5δ1
λ4δ1

]
if x1(t0)
µ1−λ1

+ δ1 ≥
x2(t0)
µ2−λ2

+ δ2 ∨
x3(t0)
µ3−λ3

+ δ30 0
λ6

µ2−λ2
0

0 0 λ5
µ2−λ2

0

1 0 λ4
µ2−λ2

0

 X +
[
λ6δ2
λ5δ2
λ4δ2

]
if x2(t0)
µ2−λ2

+ δ2 ≥
x1(t0)
µ1−λ1

+ δ1 ∨
x3(t0)
µ3−λ3

+ δ30
λ6

µ3−λ3
0 0

0 λ5
µ3−λ3

0 0

1 λ4
µ3−λ3

0 0

 X +
[
λ6δ3
λ5δ3
λ4δ3

]
if x3(t0)
µ3−λ3

+ δ3 ≥
x1(t0)
µ1−λ1

+ δ1 ∨
x2(t0)
µ2−λ2

+ δ2



18/25

/w

Problem 2: Feedback control (mode 2)

State at start of mode 2: X = [x6, x5, x4]
T (t0).

State at end of mode 2: T2X = [x2, x1, x6, x5]
T (t1).

Stay in mode until x4(t1 − δ4) = 0 and x5(t1) = θ5x5(t0).
NB: Serve x5 at arrival rate as soon as x5 = θ5x5(t0).

T2X =



0 0 λ2
µ4−λ4

0 0 λ1
µ4−λ4

1 0
λ6

µ4−λ4
0 θ5 0

 X +

[
λ2δ4
λ1δ4
λ6δ4

0

]
if x4(t0)
µ4−λ4

+ δ4 ≥
(1−θ5)x5(t0)
µ5−λ5

0 λ2(1−θ5)
µ5−λ5

0

0 λ2(1−θ5)
µ5−λ5

0

1 λ2(1−θ5)
µ5−λ5

0

0 θ5 0

 X +
[

0
0
0
0

]
if (1−θ5)x5(t0)

µ5−λ5
≥

x4(t0)
µ4−λ4

+ δ4
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Problem 2: Feedback control (mode 3)

State at start of mode 3: X = [x2, x1, x6, x5]
T (t0).

State at end of mode 3: T3X = [x4, x3, x2, x1]
T (t1).

End of mode: x5(t1−δ5)=0, x6(t1−δ6)=0 and x1(t1)=θ1[x1(t0)+4λ1].
NB: Serve x1 at arrival rate as soon as x1 = θ1[x1(t0)+ 4λ1].
Then we get for T3X :


0 0 λ4

µ5−λ5
0

0 0
λ3

µ5−λ5
0

1 0 λ2
µ5−λ5

0

0 θ1 0 0

 X +

[
λ4δ5
λ3δ5
λ2δ5

4θ1λ1

]
if x5(t0)
µ5−λ5

+δ5 ≥
x6(t0)
µ6−λ6

+δ6 ∨
(1−θ1)[x1(t0)+4λ1]

µ1−λ1
0 0 0 λ4

µ6−λ6

0 0 0
λ3

µ6−λ6

1 0 0 λ2
µ6−λ6

0 θ1 0 0

 X +

[
λ4δ6
λ3δ6
λ2δ6

4θ1λ1

]
if x6(t0)
µ6−λ6

+δ6 ≥
x5(t0)
µ5−λ5

+δ5 ∨
(1−θ1)[x1(t0)+4λ1]

µ1−λ10 λ4(1−θ1)
µ1−λ1

0 0

0
λ3(1−θ1)
µ1−λ1

0 0

1 λ2(1−θ1)
µ1−λ1

0 0

0 θ1 0 0

 X +

[
4(1−θ1)λ4
4(1−θ1)λ3
4(1−θ1)λ2
4(1−θ1)λ1

]
if (1−θ1)[x1(t0)+4λ1]

µ1−λ1
≥

x6(t0)
µ6−λ6

+δ6 ∨
x5(t0)
µ5−λ5

+ δ5
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Problem 2: Feedback control

Observation

Since T3 is strictly dominated, we have M = T3 ◦ T2 ◦ T1 is strictly
dominated.

Furthermore, the desired periodic behavior is a fixed point.
Therefore, global convergence towards desired periodic behavior.

Even more

Under conditions such as (show only 2 of 18 expressions):

(1− ρ1)(1− ρ3)(1− ρ5) > ρ1ρ3ρ5(1− θ1)(1− θ5)

(1− ρ1)(1− ρ2)(1− ρ5) > ρ2ρ5(1− θ5)(1− ρ1θ1)

we can show that a fixed point for M exists.

This guarantees robustness against changes in parameters.
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Problem 2: Feedback control

Practical problem

End of mode 1: x1(t1 − δ1) = 0, x2(t1 − δ2) = 0 and x3(t1 − δ3) = 0.

End of mode 2: x4(t1 − δ4) = 0 and x5(t1) = θ5x5(t0).
NB: Serve x5 at arrival rate as soon as x5 = θ5x5(t0).

End of mode 3: x5(t1−δ5)=0, x6(t1−δ6)=0 and x1(t1)=θ1[x1(t0)+4λ1].
NB: Serve x1 at arrival rate as soon as x1 = θ1[x1(t0)+ 4λ1].

Solution

End of mode 1: Minimal duration: τ ∗1 . Furthermore, x1(t1 − δ1) = 0,
x2(t1 − δ2) = 0 and x3(t1 − δ3) = 0.

End of mode 2: x4(t1 − δ4) = 0 and x5(t1) ≤ θ5x5(t0). Set τ ∗3 =
θ5x5(t0)
µ5−λ5

End of mode 3: Minimal duration: τ ∗3 . Furthermore, x5(t1 − δ5) = 0,
x6(t1 − δ6) = 0, x1(t1) ≤ θ1[x1(t0)+4λ1]. Set τ ∗1 =

θ1[x1(t0)+4λ1]

µ1−λ1
.
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.
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Conclusions

Conclusions

I Control of traffic lights can be tackled as two separate problems:
• Determining optimal periodic behavior
• Feedback control towards given periodic behavior

I Optimal periodic behavior can be determined
I Presented feedback controller

• Robust against changes in arrival and service rate.
• Can be implemented in practice.

Future work

I Properly defining modes for large intersections/arbitrary networks
I Proving methodology works for arbitrary networks
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Stability constraints

Let τ1, τ2, τ3 denote durations of modes.

Then states evolve as:
Begin Mode 1 Begin Mode 2 Begin Mode 3

x1: λ1(τ2 + τ3)− µ1(τ3 − 4) 0 λ1τ2

x2: λ2(τ2 + τ3) 0 λ2τ2

x3: λ3τ3 0 0
x4: λ4τ3 λ4(τ3 + τ1) 0
x5: 0 λ5τ1 λ5(τ1 + τ2)− µ5τ2

x6: 0 λ6τ1 λ6(τ1 + τ2)
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Stability constraints

Resulting in

τ1 = max
[
ρ1τ2 + 4
1− ρ1

− τ3 + δ1,
ρ2(τ2 + τ3)

1− ρ2
+ δ2,

ρ3τ3

1− ρ3
+ δ3

]
τ2 = max

[
ρ4(τ3 + τ1)

1− ρ4
+ δ4,

(1− θ5)ρ5τ1

1− ρ5

]
τ3 = max

[
ρ5τ1

1− ρ5
− τ2 + δ5,

ρ6(τ1 + τ2)

1− ρ6
+ δ6,

ρ1(1− θ1)(τ2 + 4)
1− ρ1

]
T = τ1 + τ2 + τ3

Results in

τ1 =
ρ3

1− ρ3

ρ1(1− θ1)

1− ρ1

(1− θ5)ρ5

1− ρ5
τ1 + C

So we need

1−
ρ3

1− ρ3

ρ1(1− θ1)

1− ρ1

(1− θ5)ρ5

1− ρ5
> 0
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Large intersection


