Controller design for flow networks of switched servers with setup times

Erjen Lefeber

35th Benelux Meeting on Systems and Control

Technische Universiteit **Eindhoven** University of Technology

March 22, 2016

Where innovation starts

Switching servers with setup times

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time/delay

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time/delay

Current approach

Start from policy, analyze resulting dynamics

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time/delay

Current approach

Start from policy, analyze resulting dynamics

Problem: Even with sufficient capacity, system might become unstable (e.g., re-entrant systems: Kumar-Seidman in IEEE Trans.Autom.Contr.'90)

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time/delay

Current approach

Start from policy, analyze resulting dynamics

Problem: Even with sufficient capacity, system might become unstable (e.g., re-entrant systems: Kumar-Seidman in IEEE Trans.Autom.Contr.'90)

Current status (after 25 years)

Several policies exist that guarantee stability of the network

Notions from control theory

- 1. Generate feasible reference trajectory
- 2. Design (static) state feedback controller
- 3. Design observer
- 4. Design (dynamic) output feedback controller

Notions from control theory

- 1. Generate feasible reference trajectory
- 2. Design (static) state feedback controller
- 3. Design observer
- 4. Design (dynamic) output feedback controller

Parallels with this problem

- 1. Determine desired system behavior
- 2. Derive non-distributed/centralized controller
- 3. Can state be reconstructed?
- 4. Derive distributed/decentralized controller

Research

This work is supported by the Netherlands Organization for Scientific Research (NWO-VIDI grant 639.072.072).

Problem 1: Optimal periodic behavior

Stijn Fleuren (PhD student at TU/e)

Problem 2: Feedback control

- Varvara Feoktistova (St. Petersburg University)
- Alexey Matveev (St. Petersburg University)

Intersection

6/25

Intersection

6/25

Intersection

Optimal schedule (data from Grontmij: A2/N279)

6/25

Event times

i	<i>t</i> (<i>i</i>)	<i>t</i> (<i>i</i> + 6)	i+6
1	0.0	31.3	7
2	6.8	31.3	8
3	10.5	35.3	9
4	31.3	35.3	10
5	31.3	6.8	11
6	35.3	5.5	12

Conflict graph

Data

- Arrival rates: λ_i
- Service rates: μ_i
- Clearance times: σ_{i,j}
- Minimal/maximal green time: g_i^{\min} , g_i^{\max} .
- ▶ Minimal/maximal period: *T*^{min}, *T*^{max}.
- Conflict graph:

Design variables

- x(i, j) fraction of period from event *i* to event *j*.
- T' reciprocal of duration of period, i.e. T' = 1/T.

9/25

Design variables

- x(i, j) fraction of period from event *i* to event *j*.
- T' reciprocal of duration of period, i.e. T' = 1/T.

Constraints

• Stable system: $\rho_i = \lambda_i / \mu_i \le x(i, i + n)$

Design variables

- x(i, j) fraction of period from event *i* to event *j*.
- T' reciprocal of duration of period, i.e. T' = 1/T.

Constraints

- Stable system: $\rho_i = \lambda_i / \mu_i \le \mathbf{x}(i, i + n)$
- Minimal/maximal green time: $g_i^{\min}T' \le x(i, i + n) \le g_i^{\min}T'$

Design variables

- x(i, j) fraction of period from event *i* to event *j*.
- T' reciprocal of duration of period, i.e. T' = 1/T.

Constraints

- Stable system: $\rho_i = \lambda_i / \mu_i \le \mathbf{x}(i, i + n)$
- Minimal/maximal green time: $g_i^{\min}T' \le x(i, i + n) \le g_i^{\min}T'$
- Clearance time: $\sigma_{i,j}T' \leq x(i,j)$

Design variables

- x(i, j) fraction of period from event *i* to event *j*.
- T' reciprocal of duration of period, i.e. T' = 1/T.

Constraints

- Stable system: $\rho_i = \lambda_i / \mu_i \le x(i, i + n)$
- Minimal/maximal green time: $g_i^{\min}T' \le x(i, i + n) \le g_i^{\min}T'$
- Clearance time: $\sigma_{i,j}T' \leq x(i,j)$
- Minimal/maximal period: $1/T^{max} \le T' \le 1/T^{min}$

Design variables

- ► x(i, j) fraction of period from event *i* to event *j*.
- T' reciprocal of duration of period, i.e. T' = 1/T.

Constraints

- Stable system: $\rho_i = \lambda_i / \mu_i \le x(i, i + n)$
- Minimal/maximal green time: $g_i^{\min}T' \le x(i, i + n) \le g_i^{\min}T'$
- Clearance time: $\sigma_{i,j}T' \leq x(i,j)$
- Minimal/maximal period: $1/T^{max} \le T' \le 1/T^{min}$
- Conflict: x(i, i + n) + x(i + n, j) + x(j, j + n) + x(j + n, i) = 1

Design variables

- ► x(i, j) fraction of period from event *i* to event *j*.
- T' reciprocal of duration of period, i.e. T' = 1/T.

Constraints

- Stable system: $\rho_i = \lambda_i / \mu_i \le x(i, i + n)$
- Minimal/maximal green time: $g_i^{\min}T' \le x(i, i + n) \le g_i^{\min}T'$
- Clearance time: $\sigma_{i,j}T' \leq x(i,j)$
- Minimal/maximal period: $1/T^{max} \le T' \le 1/T^{min}$
- Conflict: x(i, i + n) + x(i + n, j) + x(j, j + n) + x(j + n, i) = 1
- ► Integer cycle: $\sum_{(i,j)\in C^+} x(i,j) \sum_{(i,j)\in C^+} x(i,j) = z_C$.

Cycle

Cycle: $\{(4, 10), (10, 2), (12, 2), (12, 4)\}$

10/25

Cycle

Cycle: {(4, 10), (10, 2), (12, 2), (12, 4)} $C^+ = \{(4, 10), (10, 2), (12, 4)\}.$ $C^- = \{(12, 2)\}.$

10/25

Cycle

Cycle: $\{(4, 10), (10, 2), (12, 2), (12, 4)\}$

 $C^+ = \{(4, 10), (10, 2), (12, 4)\}.$ $C^- = \{(12, 2)\}.$

Integer cycle constraint:

$$\sum_{(i,j)\in C^+} x(i,j) - \sum_{(i,j)\in C^+} x(i,j) = z_C.$$

10/25

Cycle

Cycle: $\{(4, 10), (10, 2), (12, 2), (12, 4)\}$

 $C^+ = \{(4, 10), (10, 2), (12, 4)\}.$ $C^- = \{(12, 2)\}.$

Integer cycle constraint: $\sum_{(i,j)\in C^+} x(i,j) - \sum_{(i,j)\in C^+} x(i,j) = z_C.$

Only for cycles from integer cycle base.

10/25

Cycle

Cycle: $\{(4, 10), (10, 2), (12, 2), (12, 4)\}$

 $C^+ = \{(4, 10), (10, 2), (12, 4)\}.$ $C^- = \{(12, 2)\}.$

Integer cycle constraint: $\sum_{(i,j)\in C^+} x(i,j) - \sum_{(i,j)\in C^+} x(i,j) = z_C.$ Only for cycles from integer cycle base.

Objective

Minimize weighted average delay (Fluid, Webster, Miller, v.d. Broek):

$$\sum_{i=1}^{n} \frac{r_i}{2\lambda_i (1-\rho_i)T} \left(r_i \lambda_i + \frac{s_i^2}{1-\rho_i} + \frac{r_i \rho_i^2 s_i^2 T^2}{(1-\rho_i)(T-r_i)^2((1-\rho_i)T-r_i)} \right)$$

10/25

Concluding remarks for Problem 1

Mixed integer convex optimization problem.

11/25

Concluding remarks for Problem 1

- Mixed integer convex optimization problem.
- Data from real intersection in the Netherlands with 29 directions (data from Grontmij):
 - Straight forward implementation (solver: SCIP 3.2.0):
 - Notebook: Intel i5-4300U CPU 1.90GHZ with 16.0GB of RAM.

Concluding remarks for Problem 1

- Mixed integer convex optimization problem.
- Data from real intersection in the Netherlands with 29 directions (data from Grontmij):
 - Straight forward implementation (solver: SCIP 3.2.0):
 - Notebook: Intel i5-4300U CPU 1.90GHZ with 16.0GB of RAM.
 - Standard group based approach 33.83 seconds
 - Our approach 2.27 seconds

Concluding remarks for Problem 1

- Mixed integer convex optimization problem.
- Data from real intersection in the Netherlands with 29 directions (data from Grontmij):
 - Straight forward implementation (solver: SCIP 3.2.0):
 - Notebook: Intel i5-4300U CPU 1.90GHZ with 16.0GB of RAM.
 - Standard group based approach 33.83 seconds
 - Our approach 2.27 seconds
- Can also quickly solve problem with integer durations

/department of mechanical engineering

Consider the following periodic schedule:

Resulting steady state periodic wip evolution:

TU/e Technische Universiteit Eindhoven University of Technolog

/department of mechanical engineering

Steady state periodic wip evolution:

- Mode 1: directions 1, 2 and 3 served (steady state: 5.5 31.3)
- Mode 2: directions 3, 4 and 5 served (steady state: 31.3 35.3)
- Mode 3: directions 5, 6 and 1 served (steady state: 35.3 5.5)

NB: In mode 1: directions 2 and 3 are served after setup, and 5 is still served for the first 6.8-5.5=1.3 seconds. In mode 2: direction 1 is served after setup.

13/25

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let $\ensuremath{\mathcal{T}}$ be an operator which:

▶ is piecewise affine, i.e. $\mathcal{T}x = A_i x + b_i$ for $x \in \{P_i x \leq q_i\}$,

then

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let $\ensuremath{\mathcal{T}}$ be an operator which:

- ▶ is piecewise affine, i.e. $\mathcal{T}x = A_i x + b_i$ for $x \in \{P_i x \leq q_i\}$,
- ▶ is continuous,

then

14/25

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let $\ensuremath{\mathcal{T}}$ be an operator which:

- ▶ is piecewise affine, i.e. $\mathcal{T}x = A_i x + b_i$ for $x \in \{P_i x \leq q_i\}$,
- is continuous,
- is monotone, i.e. $A_i \ge 0$,

then

14/25

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let ${\mathcal T}$ be an operator which:

- ▶ is piecewise affine, i.e. $\mathcal{T}x = A_i x + b_i$ for $x \in \{P_i x \leq q_i\}$,
- is continuous,
- is monotone, i.e. $A_i \ge 0$,
- ▶ is strictly dominated, i.e. b_i > 0,

then

14/25

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let ${\mathcal T}$ be an operator which:

- ▶ is piecewise affine, i.e. $\mathcal{T}x = A_i x + b_i$ for $x \in \{P_i x \leq q_i\}$,
- is continuous,
- is monotone, i.e. $A_i \ge 0$,
- ▶ is strictly dominated, i.e. b_i > 0,
- ► has a fixed point, i.e. there exists x^* such that $x^* = \mathcal{T} x^*$,

then

14/25

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let ${\mathcal T}$ be an operator which:

- ▶ is piecewise affine, i.e. $\mathcal{T}x = A_i x + b_i$ for $x \in \{P_i x \leq q_i\}$,
- is continuous,
- is monotone, i.e. $A_i \ge 0$,
- ▶ is strictly dominated, i.e. b_i > 0,
- ▶ has a fixed point, i.e. there exists x^* such that $x^* = \mathcal{T} x^*$,

then

the fixed point is unique, and

14/21

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let ${\mathcal T}$ be an operator which:

- ▶ is piecewise affine, i.e. $\mathcal{T}x = A_i x + b_i$ for $x \in \{P_i x \leq q_i\}$,
- is continuous,
- is monotone, i.e. $A_i \ge 0$,
- ▶ is strictly dominated, i.e. b_i > 0,
- ▶ has a fixed point, i.e. there exists x^* such that $x^* = \mathcal{T} x^*$,

then

- the fixed point is unique, and
- ▶ attracts all solutions of $x_{k+1} = \mathcal{T} x_k$; $x_0 \in \mathbb{R}^n_+$, i.e. $\lim_{k\to\infty} x_k = x^*$.

14/21

Useful Lemma's

Composition: $\mathcal{T}_2 \circ \mathcal{T}_1 : A_2(A_1x + b_1) + b_2 = \underbrace{A_2A_1}_{x} x + \underbrace{A_2b_1 + b_2}_{x}$.

15/25

Useful Lemma's

Composition: $\mathcal{T}_2 \circ \mathcal{T}_1 : A_2(A_1x + b_1) + b_2 = \underbrace{A_2A_1}_{A_2}x + \underbrace{A_2b_1 + b_2}_{A_2}$.

Composition of piecewise affine operators is piecewise affine.

15/25

Useful Lemma's

Composition:
$$\mathcal{T}_2 \circ \mathcal{T}_1 : A_2(A_1x + b_1) + b_2 = \underbrace{A_2A_1}_A x + \underbrace{A_2b_1 + b_2}_b$$
.

- Composition of piecewise affine operators is piecewise affine.
- Composition of continuous operators is continuous.

15/25

Useful Lemma's

Composition:
$$\mathcal{T}_2 \circ \mathcal{T}_1 : A_2(A_1x + b_1) + b_2 = \underbrace{A_2A_1}_A x + \underbrace{A_2b_1 + b_2}_b.$$

- Composition of piecewise affine operators is piecewise affine.
- Composition of continuous operators is continuous.
- ► Composition of monotone (A_i ≥ 0) dominated (b_i ≥ 0) operators is monotone dominated.

Useful Lemma's

Composition:
$$\mathcal{T}_2 \circ \mathcal{T}_1 : A_2(A_1x + b_1) + b_2 = \underbrace{A_2A_1}_A x + \underbrace{A_2b_1 + b_2}_b$$
.

- Composition of piecewise affine operators is piecewise affine.
- Composition of continuous operators is continuous.
- ► Composition of monotone (A_i ≥ 0) dominated (b_i ≥ 0) operators is monotone dominated.

Consequence

If $\mathcal{T}_1, \mathcal{T}_2, \dots \mathcal{T}_n$ are piecewise affine continuous monotone dominated, then $M = \mathcal{T}_n \circ \dots \circ \mathcal{T}_2 \circ \mathcal{T}_1$ is piecewise affine continuous monotone dominated.

15/2

Useful Lemma's

Composition:
$$\mathcal{T}_2 \circ \mathcal{T}_1 : A_2(A_1x + b_1) + b_2 = \underbrace{A_2A_1}_A x + \underbrace{A_2b_1 + b_2}_b.$$

- Composition of piecewise affine operators is piecewise affine.
- Composition of continuous operators is continuous.
- ► Composition of monotone (A_i ≥ 0) dominated (b_i ≥ 0) operators is monotone dominated.

Consequence

If $\mathcal{T}_1, \mathcal{T}_2, \dots \mathcal{T}_n$ are piecewise affine continuous monotone dominated, then $M = \mathcal{T}_n \circ \dots \circ \mathcal{T}_2 \circ \mathcal{T}_1$ is piecewise affine continuous monotone dominated.

Only need to show that *M* is strictly dominated and has a fixed point.

- Define δ_i as duration of $x_i^* = 0$ for i = 1, 2, 4, 6,
- Define $\delta_3 + 4$ as duration of $x_3^* = 0$,
- Define $\delta_5 + 1.3$ as duration of $x_5^* = 0$,
- Define $\theta_1 = x_1^*(5.5)/[x_1^*(35.3) + 4\lambda_1]$,
- Define $\theta_5 = x_5^*(31.3)/x_5^*(35.3)$.

16/25

Problem 2: Feedback control (mode 1)

State at start of mode 1: $X = [x_4, x_3, x_2, x_1]^T(t_0)$. State at end of mode 1: $\mathcal{T}_1 X = [x_6, x_5, x_4]^T(t_1)$. Stay in mode until $x_1(t_1 - \delta_1) = 0$, $x_2(t_1 - \delta_2) = 0$ and $x_3(t_1 - \delta_3) = 0$.

$$\mathcal{T}_{1}X = \begin{cases} \begin{bmatrix} 0 & 0 & 0 & \frac{\lambda_{5}}{\mu_{1}-\lambda_{1}} \\ 0 & 0 & 0 & \frac{\lambda_{5}}{\mu_{1}-\lambda_{1}} \\ 1 & 0 & 0 & \frac{\lambda_{6}}{\mu_{1}-\lambda_{1}} \end{bmatrix} & \text{if } \frac{x_{1}(t_{0})}{\mu_{1}-\lambda_{1}} + \delta_{1} \ge \frac{x_{2}(t_{0})}{\mu_{2}-\lambda_{2}} + \delta_{2} \lor \frac{x_{3}(t_{0})}{\mu_{3}-\lambda_{3}} + \delta_{3} \\ \begin{bmatrix} 0 & 0 & \frac{\lambda_{6}}{\mu_{2}-\lambda_{2}} & 0 \\ 0 & 0 & \frac{\lambda_{5}}{\mu_{2}-\lambda_{2}} & 0 \\ 1 & 0 & \frac{\lambda_{4}}{\mu_{2}-\lambda_{2}} & 0 \end{bmatrix} & X + \begin{bmatrix} \lambda_{6}\delta_{2} \\ \lambda_{5}\delta_{2} \\ \lambda_{4}\delta_{2} \end{bmatrix} & \text{if } \frac{x_{2}(t_{0})}{\mu_{2}-\lambda_{2}} + \delta_{2} \ge \frac{x_{1}(t_{0})}{\mu_{1}-\lambda_{1}} + \delta_{1} \lor \frac{x_{3}(t_{0})}{\mu_{3}-\lambda_{3}} + \delta_{3} \\ \begin{bmatrix} 0 & \frac{\lambda_{6}}{\mu_{3}-\lambda_{3}} & 0 \\ 0 & \frac{\lambda_{5}}{\mu_{3}-\lambda_{3}} & 0 \\ 0 & \frac{\lambda_{5}}{\mu_{3}-\lambda_{3}} & 0 \\ 1 & \frac{\lambda_{4}}{\mu_{3}-\lambda_{3}} & 0 \end{bmatrix} & X + \begin{bmatrix} \lambda_{6}\delta_{3} \\ \lambda_{5}\delta_{3} \\ \lambda_{4}\delta_{3} \end{bmatrix} & \text{if } \frac{x_{3}(t_{0})}{\mu_{3}-\lambda_{3}} + \delta_{3} \ge \frac{x_{1}(t_{0})}{\mu_{1}-\lambda_{1}} + \delta_{1} \lor \frac{x_{2}(t_{0})}{\mu_{2}-\lambda_{2}} + \delta_{2} \end{cases}$$

TU/e Technische Universiteit Eindhoven University of Technology

17/25

Problem 2: Feedback control (mode 2)

State at start of mode 2: $X = [x_6, x_5, x_4]^T(t_0)$. State at end of mode 2: $\mathcal{T}_2 X = [x_2, x_1, x_6, x_5]^T(t_1)$. Stay in mode until $x_4(t_1 - \delta_4) = 0$ and $x_5(t_1) = \theta_5 x_5(t_0)$. NB: Serve x_5 at arrival rate as soon as $x_5 = \theta_5 x_5(t_0)$.

$$\mathcal{T}_{2}X = \begin{cases} \begin{bmatrix} 0 & 0 & \frac{\lambda_{2}}{\mu_{4} - \lambda_{4}} \\ 0 & 0 & \frac{\lambda_{1}}{\mu_{4} - \lambda_{4}} \\ 1 & 0 & \frac{\lambda_{6}}{\mu_{4} - \lambda_{4}} \\ 0 & \theta_{5} & 0 \end{bmatrix} \\ X + \begin{bmatrix} \lambda_{2}\delta_{4} \\ \lambda_{6}\delta_{4} \\ 0 \end{bmatrix} & \text{if } \frac{x_{4}(t_{0})}{\mu_{4} - \lambda_{4}} + \delta_{4} \ge \frac{(1 - \theta_{5})x_{5}(t_{0})}{\mu_{5} - \lambda_{5}} \\ \begin{bmatrix} 0 & \frac{\lambda_{2}(1 - \theta_{5})}{\mu_{5} - \lambda_{5}} & 0 \\ 0 & \frac{\lambda_{2}(1 - \theta_{5})}{\mu_{5} - \lambda_{5}} & 0 \\ 0 & \frac{\lambda_{2}(1 - \theta_{5})}{\mu_{5} - \lambda_{5}} & 0 \\ 1 & \frac{\lambda_{2}(1 - \theta_{5})}{\mu_{5} - \lambda_{5}} & 0 \\ 0 & \theta_{5} & 0 \end{bmatrix} \\ X + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} & \text{if } \frac{(1 - \theta_{5})x_{5}(t_{0})}{\mu_{5} - \lambda_{5}} \ge \frac{x_{4}(t_{0})}{\mu_{4} - \lambda_{4}} + \delta_{4} \end{cases}$$

18/2

Problem 2: Feedback control (mode 3)

/de

State at start of mode 3: $X = [x_2, x_1, x_6, x_5]^T(t_0)$. State at end of mode 3: $\mathcal{T}_3 X = [x_4, x_3, x_2, x_1]^T(t_1)$. End of mode: $x_5(t_1 - \delta_5) = 0$, $x_6(t_1 - \delta_6) = 0$ and $x_1(t_1) = \theta_1[x_1(t_0) + 4\lambda_1]$. NB: Serve x_1 at arrival rate as soon as $x_1 = \theta_1[x_1(t_0) + 4\lambda_1]$. Then we get for $\mathcal{T}_3 X$:

$$\begin{cases} \begin{bmatrix} 0 & 0 & \frac{\lambda_4}{\mu_5 - \lambda_5} & 0 \\ 0 & 0 & \frac{\lambda_3}{\mu_5 - \lambda_5} & 0 \\ 1 & 0 & \frac{\lambda_2}{\mu_5 - \lambda_5} & 0 \\ 0 & \theta_1 & 0 & 0 \end{bmatrix} X + \begin{bmatrix} \lambda_4 \delta_5 \\ \lambda_3 \delta_5 \\ \lambda_2 \delta_5 \\ \theta_1 \lambda_1 \end{bmatrix} & \text{if } \frac{x_5(t_0)}{\mu_5 - \lambda_5} + \delta_5 \ge \frac{x_6(t_0)}{\mu_6 - \lambda_6} + \delta_6 \lor \frac{(1 - \theta_1)[x_1(t_0) + 4\lambda_1]}{\mu_1 - \lambda_1} \\ \begin{bmatrix} 0 & 0 & 0 & \frac{\lambda_4}{\mu_6 - \lambda_6} \\ 0 & 0 & 0 & \frac{\lambda_3}{\mu_6 - \lambda_6} \\ 1 & 0 & 0 & \frac{\lambda_2}{\mu_6 - \lambda_6} \end{bmatrix} X + \begin{bmatrix} \lambda_4 \delta_6 \\ \lambda_3 \delta_6 \\ \lambda_2 \delta_6 \\ \theta_1 \lambda_1 \end{bmatrix} & \text{if } \frac{x_6(t_0)}{\mu_6 - \lambda_6} + \delta_6 \ge \frac{x_5(t_0)}{\mu_5 - \lambda_5} + \delta_5 \lor \frac{(1 - \theta_1)[x_1(t_0) + 4\lambda_1]}{\mu_1 - \lambda_1} \\ \begin{bmatrix} 0 & \frac{\lambda_4(1 - \theta_1)}{\mu_1 - \lambda_1} & 0 & 0 \\ 0 & \frac{\lambda_3(1 - \theta_1)}{\mu_1 - \lambda_1} & 0 & 0 \\ 0 & \frac{\lambda_3(1 - \theta_1)}{\mu_1 - \lambda_1} & 0 & 0 \\ 0 & \frac{\lambda_3(1 - \theta_1)}{\mu_1 - \lambda_1} & 0 & 0 \\ 0 & \frac{\lambda_3(1 - \theta_1)}{\mu_1 - \lambda_1} & 0 & 0 \\ 0 & \frac{\theta_1}{\mu_6 - \lambda_6} & 0 & 0 \end{bmatrix} X + \begin{bmatrix} 4(1 - \theta_1)\lambda_4 \\ 4(1 - \theta_1)\lambda_3 \\ 4(1 - \theta_1)\lambda_2 \\ 4(1 - \theta_1)\lambda_1 \end{bmatrix} & \text{if } \frac{(1 - \theta_1)[x_1(t_0) + 4\lambda_1]}{\mu_1 - \lambda_1} \ge \frac{x_6(t_0)}{\mu_6 - \lambda_6} + \delta_6 \lor \frac{x_5(t_0)}{\mu_5 - \lambda_5} + \delta_5 \end{cases}$$

19/25

Since T_3 is strictly dominated, we have $M = T_3 \circ T_2 \circ T_1$ is strictly dominated.

20/25

Since T_3 is strictly dominated, we have $M = T_3 \circ T_2 \circ T_1$ is strictly dominated.

Furthermore, the desired periodic behavior is a fixed point.

20/25

Since T_3 is strictly dominated, we have $M = T_3 \circ T_2 \circ T_1$ is strictly dominated.

Furthermore, the desired periodic behavior is a fixed point.

Therefore, global convergence towards desired periodic behavior.

20/2

Since T_3 is strictly dominated, we have $M = T_3 \circ T_2 \circ T_1$ is strictly dominated.

Furthermore, the desired periodic behavior is a fixed point.

Therefore, global convergence towards desired periodic behavior.

Even more

Under conditions such as (show only 2 of 18 expressions):

$$(1 - \rho_1)(1 - \rho_3)(1 - \rho_5) > \rho_1 \rho_3 \rho_5 (1 - \theta_1)(1 - \theta_5)$$

(1 - \rho_1)(1 - \rho_2)(1 - \rho_5) > \rho_2 \rho_5 (1 - \theta_5)(1 - \rho_4 \theta_4)

we can show that a fixed point for *M* exists.

20/2

Since T_3 is strictly dominated, we have $M = T_3 \circ T_2 \circ T_1$ is strictly dominated.

Furthermore, the desired periodic behavior is a fixed point.

Therefore, global convergence towards desired periodic behavior.

Even more

Under conditions such as (show only 2 of 18 expressions):

$$(1 - \rho_1)(1 - \rho_3)(1 - \rho_5) > \rho_1 \rho_3 \rho_5 (1 - \theta_1)(1 - \theta_5)$$

$$(1 - \rho_1)(1 - \rho_2)(1 - \rho_5) > \rho_2 \rho_5 (1 - \theta_5)(1 - \rho_1 \theta_1)$$

we can show that a fixed point for *M* exists.

This guarantees robustness against changes in parameters.

20/2

Practical problem

End of mode 1: $x_1(t_1 - \delta_1) = 0$, $x_2(t_1 - \delta_2) = 0$ and $x_3(t_1 - \delta_3) = 0$.

End of mode 2: $x_4(t_1 - \delta_4) = 0$ and $x_5(t_1) = \theta_5 x_5(t_0)$. NB: Serve x_5 at arrival rate as soon as $x_5 = \theta_5 x_5(t_0)$.

End of mode 3: $x_5(t_1 - \delta_5) = 0$, $x_6(t_1 - \delta_6) = 0$ and $x_1(t_1) = \theta_1[x_1(t_0) + 4\lambda_1]$. NB: Serve x_1 at arrival rate as soon as $x_1 = \theta_1[x_1(t_0) + 4\lambda_1]$.

Practical problem

End of mode 1: $x_1(t_1 - \delta_1) = 0$, $x_2(t_1 - \delta_2) = 0$ and $x_3(t_1 - \delta_3) = 0$.

End of mode 2: $x_4(t_1 - \delta_4) = 0$ and $x_5(t_1) = \theta_5 x_5(t_0)$. NB: Serve x_5 at arrival rate as soon as $x_5 = \theta_5 x_5(t_0)$.

End of mode 3: $x_5(t_1 - \delta_5) = 0$, $x_6(t_1 - \delta_6) = 0$ and $x_1(t_1) = \theta_1[x_1(t_0) + 4\lambda_1]$. NB: Serve x_1 at arrival rate as soon as $x_1 = \theta_1[x_1(t_0) + 4\lambda_1]$.

Solution

End of mode 1: Minimal duration: τ_1^* . Furthermore, $x_1(t_1 - \delta_1) = 0$, $x_2(t_1 - \delta_2) = 0$ and $x_3(t_1 - \delta_3) = 0$. End of mode 2: $x_4(t_1 - \delta_4) = 0$ and $x_5(t_1) \le \theta_5 x_5(t_0)$. Set $\tau_3^* = \frac{\theta_5 x_5(t_0)}{\mu_5 - \lambda_5}$ End of mode 3: Minimal duration: τ_3^* . Furthermore, $x_5(t_1 - \delta_5) = 0$, $x_6(t_1 - \delta_6) = 0$, $x_1(t_1) \le \theta_1[x_1(t_0) + 4\lambda_1]$. Set $\tau_1^* = \frac{\theta_1[x_1(t_0) + 4\lambda_1]}{\mu_1 - \lambda_1}$.

Conclusions

Conclusions

- Control of traffic lights can be tackled as two separate problems:
 - Determining optimal periodic behavior
 - Feedback control towards given periodic behavior
- Optimal periodic behavior can be determined
- Presented feedback controller
 - Robust against changes in arrival and service rate.
 - Can be implemented in practice.

Future work

- Properly defining modes for large intersections/arbitrary networks
- Proving methodology works for arbitrary networks

Stability constraints

Let τ_1 , τ_2 , τ_3 denote durations of modes.

23/25

Stability constraints

Let τ_1 , τ_2 , τ_3 denote durations of modes. Then states evolve as:			
	Begin Mode 1	Begin Mode 2	Begin Mode 3
<i>x</i> ₁ :	$\lambda_1(\tau_2 + \tau_3) - \mu_1(\tau_3 - 4)$	0	$\lambda_1 \tau_2$
<i>x</i> ₂ :	$\lambda_2(\tau_2+\tau_3)$	0	$\lambda_2 \tau_2$
<i>X</i> ₃ :	$\lambda_3 au_3$	0	0
<i>x</i> ₄ :	$\lambda_4 au_3$	$\lambda_4(\tau_3 + \tau_1)$	0
<i>X</i> ₅ :	0	$\lambda_5 \tau_1$	$\lambda_5(\tau_1+\tau_2)-\mu_5\tau_2$
<i>x</i> ₆ :	0	$\lambda_6 \tau_1$	$\lambda_6(\tau_1+\tau_2)$

Stability constraints

Resulting in

$$\tau_{1} = \max\left[\frac{\rho_{1}\tau_{2} + 4}{1 - \rho_{1}} - \tau_{3} + \delta_{1}, \frac{\rho_{2}(\tau_{2} + \tau_{3})}{1 - \rho_{2}} + \delta_{2}, \frac{\rho_{3}\tau_{3}}{1 - \rho_{3}} + \delta_{3}\right]$$

$$\tau_{2} = \max\left[\frac{\rho_{4}(\tau_{3} + \tau_{1})}{1 - \rho_{4}} + \delta_{4}, \frac{(1 - \theta_{5})\rho_{5}\tau_{1}}{1 - \rho_{5}}\right]$$

$$\tau_{3} = \max\left[\frac{\rho_{5}\tau_{1}}{1 - \rho_{5}} - \tau_{2} + \delta_{5}, \frac{\rho_{6}(\tau_{1} + \tau_{2})}{1 - \rho_{6}} + \delta_{6}, \frac{\rho_{1}(1 - \theta_{1})(\tau_{2} + 4)}{1 - \rho_{1}}\right]$$

$$T = \tau_{1} + \tau_{2} + \tau_{3}$$

Results in

$$\tau_1 = \frac{\rho_3}{1 - \rho_3} \frac{\rho_1 (1 - \theta_1)}{1 - \rho_1} \frac{(1 - \theta_5)\rho_5}{1 - \rho_5} \tau_1 + C$$

So we need

Large intersection

