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Abstract

This paper concerns the optimization of fixed-time schedules for isolated intersections. Such a fixed-

time schedule visualizes when each of the traffic lights is green, amber and red during a repeating

period. We formulate a mixed-integer programming problem that extends the optimization formu-

lation that is proposed in (Fleuren and Lefeber 2016b). Novel to the proposed formulation is that

each traffic light is allowed to have multiple green intervals; the proposed optimization problem op-

timizes simultaneously: the period duration, the number of green intervals of each traffic light, the

durations of these green intervals, and when these green intervals start. We consider three different

objective functions: minimization of the period duration of a fixed-time schedule, maximization

of the capacity of the intersection, and minimization of the delay that road users experience at

the intersection. With a numerical study we assess the effect of multiple green intervals. For the

former two objective function, allowing traffic lights to have multiple green intervals has little to no

effect on the objective functions. The computational results indicate that the delay that road users

experience at the intersection can however possibly decrease substantially by allowing traffic lights

to have multiple green intervals.

Keywords. fixed-time control; isolated intersection; optimization framework; cycle periodicity formu-

lation; mixed-integer programming problem

1 Introduction

In today’s society, the demand for mobility is constantly increasing. Consequences of this increasing

demand for mobility may be congestion, pollution and accidents. An important area where traffic

accumulates is an intersection. Such an intersections is often equipped with traffic lights to safely

guide the different traffic streams across the intersection. It is important that these traffic lights are

controlled such that the discomfort of road users is as little as possible, e.g., by minimizing the waiting

times of traffic at these intersections. Two different types of traffic light control exist that attempt

to minimize discomfort: fixed-time control and vehicle actuated control. Vehicle actuated control uses

sensor information to control the traffic lights. Fixed-time control does not use such sensor information;

for fixed-time control the green, amber and red lights are timed periodically.
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We have a renewed interest in fixed-time control due to the development of intelligent navigation

systems. Traffic lights cause unpredictable delays when navigating through a network of traffic lights.

These intelligent navigation systems can take the future state of the traffic lights into account when

calculating the optimal route, possibly selecting a route for which the road user experiences a green wave.

These intelligent navigation systems may work roughly as follows. As more floating car data becomes

available, this data can be used to predict the future state of traffic lights, see for example (Krijger

2013). As Krijger shows, these future state predictions are especially accurate whenever a fixed-time

controller is used at these intersections. These predictions can be used to give feedback to road users,

who can use this information to adjust their speed accordingly, reduce their waiting time at traffic lights

and save fuel. Furthermore, these predictions can be used by navigation systems to calculate a smart

route, possibly selecting an inventive route for which the road user experiences little delay at traffic

lights.

Other motivations for fixed-time control may be the following. Vehicle actuated control is often

based on a fixed-time controller but is allowed to make some slight changes to the fixed-time controller,

e.g., extend or shorten green intervals depending on the traffic situation. A vehicle-actuated controller

may behave as a fixed-time controller in certain situations. This may for example happen in a heavily

congested situation. Furthermore, it is easier to create harmonizations (green waves) between intersec-

tions when using fixed-time controllers. Such harmonizations can be created by designing a fixed-time

controller for each intersection individually (by considering them in isolation) and, subsequently, syn-

chronising these fixed-time schedules by solving a so called coordination problem, e.g., with (Gartner

et al. 1975) or with (Wünsch and Köhler 1990). Some intersections are not be highly affected by neigh-

bouring intersections. For these intersections it may be convenient and justified to consider them in

isolation. This motivates the topic of this paper fixed-time control at isolated intersections.

A fixed-time controller can be visualized in a fixed-time schedule. Such a schedule visualizes when

each traffic light displays a green, amber and a red light during a repeating period. In (Fleuren

and Lefeber 2016b) an efficient formulation is proposed to find the optimal fixed-time schedule for

an isolated intersection. In that paper each traffic light is assumed to have only one distinct green

interval during a (repeating) period. The starting times and the durations of these green intervals

are optimized simultaneously with the period duration. In (Fleuren and Lefeber 2016b) the proposed

problem formulation is compared to other formulations; the proposed formulation seems to be superior.

In this paper we extend the approach of (Fleuren and Lefeber 2016b) so that it also optimizes the

number of green intervals that each traffic light receives. Thus, in this paper we optimize simultaneously:

the period duration, the number of green intervals that each traffic light receives, the durations of these

green intervals, and when these green intervals start. To the knowledge of the writers, this is the first

work concerning the optimization of fixed-time schedules that allows each traffic light to have multiple

green intervals. Hence, this is also the first work that considers the number of green intervals that

each traffic light receives to be a design variable. Although this paper is self-contained we strongly

recommend to read (Fleuren and Lefeber 2016b) before reading this paper.

Mathematically it suffices to model a traffic light with only two modes: effective green and effective

red, see for example (Gartner et al. 1975); traffic departs during an effective green interval traffic,
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however, it does not depart during an effective red period traffic. A fixed-time schedule that uses

the effective green and effective red modes can easily be transformed into a fixed-time schedule that

uses the actual display colors (and vise versa), see for example (Gartner et al. 1975). To show the

effect of multiple effective green intervals, we consider the same example as the one that was used in

(Fleuren and Lefeber 2016b). We again visualize this T-Junction in Figure 1; for all relevant data of this

intersection we refer to (Fleuren and Lefeber 2016b). When each traffic light is allowed to have only one

effective green interval, then the fixed-time schedule that is given in Figure 2a minimizes the average

(approximated) delay that road users experience at the intersection; for this fixed-time schedule road

users experience an average (approximated) delay of 26.416 seconds. When we allow each traffic light

to have one additional effective green interval, then we obtain the fixed-time schedule that is given in

Figure 2b; this fixed-time schedule can be obtained by solving a mixed-integer (convex) programming

problem. The switching times of this fixed-time schedule are given in Table 1. For this fixed-time

schedule, traffic lights 1 and 4 have two effective green intervals and the average delay that road users

experience is 25.106 seconds; this is an improvement of ∼ 5 percent. In Section 4 we assess the effect

of allowing signal groups to have multiple green intervals in more detail; for some intersections we have

seen a decrease in the average delay that road users experience of over 10 percent.

1

2

34

65

Figure 1: Visualisation of a T-junction. For each traffic light we have given the number of the corresponding

traffic light.

This paper has the following structure. In Section 2, we fix the number of (distinct) effective green

intervals that each traffic light receives. In that section we formulate a mixed-integer programming

problem to find the optimal fixed-time schedule; in contrast to (Fleuren and Lefeber 2016b), this

number of effective green intervals is allowed to exceed one. Subsequently, in Section 3 we adjust

this formulation to also optimize the number of effective green intervals that each traffic light has. In

Section 4 we perform a numerical study and in Section 5 we give our conclusions.

2 Fixed Number of Effective Green Intervals

In this section we consider the number of effective green intervals of each traffic light to be fixed.

First, in Section 2.1 we introduce the inputs that are required to formulate the optimization problem.

Subsequently in Section 2.2 we introduce the real-valued design variables of the optimization problem.
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(a) The fixed-time schedule that minimizes the average delay when each

traffic light is allowed to have only one green interval. This schedule has

a period duration of 94.87 seconds. On average a road user experiences

a delay of 26.416 seconds for this fixed-time schedule.
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(b) The fixed-time schedule that minimizes the average delay when each

traffic light is allowed to have one additional effective green interval. This

schedule has a period duration of 119.58 seconds. On average a road user

experiences a delay of 25.106 seconds for this fixed-time schedule.

Figure 2: Two fixed-time schedules that visualize when each traffic light of the T-junction that is depicted in

Figure 1 is effective green and effective red.

Thereupon, we give the linear constraints of this optimization problem in Section 2.3. Finally, in

Section 2.4 we consider different objective functions.

2.1 Required Inputs

In this section we elaborate on the input data that is required for the optimization of fixed-time sched-

ules.

Signal Groups. The traffic lights at the intersection are divided amongst signal groups. Each two

traffic lights that are part of the same signal groups display the same color at all times. Let S be the

set of signal groups for which we desire an optimized fixed-time schedule. The traffic that is waiting at

the intersection is modelled by using a set of first-in-first-out (FIFO) queues Q. The signal group i ∈ S
controls the access to the intersection for the queues q ∈ Qi.
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traffic light (i) green interval (k) tgi,k (s) tri,k (s)

1
1 0 22.14

2 64.49 77.23

2 1 0 22.14

3 1 83.23 60.49

4
1 26.14 60.49

2 81.23 115.58

5 1 27.14 116.58

6 1 64.49 77.23

Table 1: The times (rounded to hundreds of a second) at which each traffic light i = 1, 2, 3, 4, 5, 6 switches to

effective green (tgi,k), and effective red (tri,k) for the fixed-time schedule that is given in Figure 2b.

Number of Effective Green Intervals. For each signal group i ∈ S we require the number of

effective green intervals Ki that this signal group has.

Arrival Rates and Saturation Flow Rates. For each of the queues q ∈ Q we require the arrival

rate λq, which specifies how much traffic arrives at this queue per second. Moreover, we require the

saturation flow rate μq, q ∈ Q, which specifies how much traffic can depart from queue q per second

during an effective green interval. We define ρq := λq/μq to be the load of queue q ∈ Q.

Conflicts. Some traffic streams cannot safely cross the intersection simultaneously. We call their

corresponding signal groups conflicting. We require a set ΨS of conflicting signal groups.

Minimum Clearance Times. For safety reasons we require minimum clearance times ci,j and cj,i
for each pair of conflicting signal groups {i, j} ∈ ΨS ; signal group j may only become effective green

after conflicting signal group i has been effective red for at least ci,j seconds. In this paper we do allow

such a minimum clearance time to be negative; when ci,j , {i, j} ∈ ΨS is negative, then signal group j

may become effective green at most abs(ci,j) seconds before signal group i becomes effective red, where

abs(x) is the absolute value of x. For a motivation for these negative minimum clearance times we

refer to (Fleuren and Lefeber 2016b). In this paper we use the following terminology. We refer to the

interval between signal group i switching to effective red and a conflicting signal group j switching to

effective green as a clearance interval; we refer to its duration as a clearance time.

Minimum and Maximum Period Duration. The period duration is restricted by a (strictly

positive) lower bound (T > 0) and an upper bound (T ).

Bounds on Effective Green Times and Effective Red Times. Each effective green interval of

signal group i ∈ S is bounded from below by the minimum effective green time g
i

and bounded from

above by the maximum effective green time gi. Similarly, each effective red interval of signal group

i ∈ S is bounded from below by ri > 0 and from above by ri.
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2.2 Real-valued Design Variables

In this section we introduce the real-valued design variables of the optimization problem. Before we

introduce these variables, we first introduce some notation. We define Ki := {1, . . . ,Ki} as the set

of effective green intervals of signal group i ∈ S. Furthermore, we define ΨI as the set of conflicting

effective green intervals:

ΨI := {{(i, k), (j, k′)} | {i, j} ∈ ΨS , k ∈ Ki, k
′ ∈ Kj}.

Signal group i ∈ S has Ki effective green intervals. We number these intervals according to the periodic

order in which they occur, i.e., the effective green intervals of signal group i ∈ S are scheduled in the

periodically repeating order 1, 2, . . . ,Ki. Let i
k

( i
k
) denote the start (end) of effective green interval

k ∈ Ki of signal group i ∈ S, i.e., i
k

( i
k
) represents a switch to effective green (effective red). For

ease of notation we define i
0

:= i
Ki

. We use the following terminology in this paper. We refer to

the interval between the event i
k

and the event i
k

as effective green interval k of signal group i ∈ S.

Similarly we refer to the interval between the event i
k−1

and the event i
k

as effective red interval k

of signal group i ∈ S; note that effective red interval k of signal group i precedes effective green interval

k of signal group i. Define the set of periodic events E as follows:

E = { i
k
| i ∈ S, k ∈ Ki} ∪ { i

k
| i ∈ S, k ∈ Ki}.

Let T be the period duration of the fixed-time schedule. Furthermore, define f(ε) ∈ [0, 1), ε ∈ E as the

time (expressed as a fraction of the period duration) at which the event ε occurs. In Table 2 we give

the values of f(ε), ε ∈ E for the fixed-time schedule that is given in Figure 2b. A fixed-time schedule

is completely specified by the period duration T and the fractions f(ε) ∈ [0, 1), ε ∈ E . We indirectly

optimize these variables by using the following real-valued design variables, which we visualize in bold.

Define γγγ(ε1, ε2) to be the time (expressed as a fraction of the period duration) between an occurrence

of periodic event ε1 and (the previous or the next occurrence of) periodic event ε2, i.e.,

γγγ(ε1, ε2) := f(ε2) − f(ε1) + z(ε1, ε2)

for some integer z(ε1, ε2) ∈ {−1, 0, 1}. We optimize the fractions γγγ(ε1, ε2) that are subject to a safety

constraint. Moreover, we optimize the reciprocal of the period duration T ′ := 1/T . From these fractions

γγγ(ε1, ε2) and the reciprocal T ′ we can obtain a fixed-time schedule, see for example (Fleuren and Lefeber

2016b). Later in this section we prove that the value of each real-valued design variable γγγ(ε, ε) is defined

unambiguously for each fixed-time schedule.

2.3 Linear Constraints

In this section we formulate the linear constraints of the optimization problem. When the number of

effective green intervals of each signal group is fixed, then the optimization problem is very similar to

the one from (Fleuren and Lefeber 2016b). The period duration T is bounded from below by T and

from above by T . Thus, the reciprocal T ′ must satisfy the following constraint:

1/T ≤ T ′ ≤ 1/T . (1a)
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signal group (i) effective green interval (k) f( i
k
) f( i

k
)

1
1 0

11958
2214
11958

2 6449
11958

7723
11958

2 1 0
11958

2214
11958

3 1 8323
11958

6049
11958

4
1 2614

11958
6049
11958

2 8123
11958

11558
11958

5 1 2714
11958

11658
11958

6 1 6449
11958

7723
11958

Table 2: The fractions f(ε), ε ∈ E that are associated with the fixed-time schedule in Figure 2b.

Each effective green time of signal group i is bounded from below and from above:

0 ≤ g
i
T ′ ≤γγγ( i

k
, i

k
) ≤ giT

′, i ∈ S, k ∈ Ki. (1b)

Also each effective red time of signal group i is bounded from below and from above:

0 < riT
′ ≤γγγ( i

k−1
, i

k
) ≤ riT

′, i ∈ S, k ∈ Ki, (1c)

Recall that i
0

:= i
Ki

, which we use in the above constraint. A signal group controls the access to

the intersection for the queues q ∈ Qi. Queue q ∈ Q must be effective green for at least a fraction

ρq := λq/μq of the period duration as, otherwise, its queue length would grow indefintely; when queue q

is effective green for less than a fraction ρq, then the average amount of traffic that arrives at queue q

during one period exceeds the average amount of traffic that could depart from this queue during one

period. To ensure stability for each queue q ∈ Qi, signal group i must be effective green for at least a

fraction ρSGi := maxq∈Qi
ρq > 0 of the period duration:

0 < ρSGi ≤
∑
k∈Ki

γγγ( i
k
, i

k
), i ∈ S. (1d)

Minimum clearance times have to be satisfied for each pair of conflicting effective green intervals

{(i, k), (j, k′)} ∈ ΨI :

ci,jT
′ ≤γγγ( i

k
, j

k′), {(i, k), (j, k′)} ∈ ΨI . (1e)

We allow such a minimum clearance time ci,j to be negative; when ci,j < 0 then signal group j may

become to effective green at most abs(ci,j) seconds before signal group i becomes effective red. However,

to have a well-posed optimization problem we restrict the duration of a negative clearance time:

γγγ( i
k
, i

k
)+γγγ( i

k
, j

k′) ≥ εT ′, {(i, k), (j, k′)} ∈ ΨI , (1f)
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which restricts effective green interval k of signal group i plus the clearance time to effective green

interval k′ of signal group j to be at least ε > 0 seconds. This constraint ensures the inclusion

γγγ( i
k
, j

k′) ∈ (−1, 1). A clearance time γγγ( i
k
, j

k′)T then, as desired, refers to the time between an

occurrence of the event i
k

and the next or the previous occurrence of the event j
k′ depending on

the sign of γγγ( i
k
, j

k′). Moreover, the constraints (1f) ensure that each variable γγγ( i
k
, i

k
) and its

associated integer z( i
k
, i

k
) are defined unambiguously. We prove both statements in Section 2.3.3

The following constraints reduce the symmetry of the proposed mixed-integer programming problem;

for each signal group we assume w.l.o.g. that its first effective red time is the largest:

γγγ( i
Ki

, i
1
) ≥ γγγ( i

k−1
, i

k
), i ∈ S, k ∈ Ki \ {1}. (1g)

This constraint reduces the solution space and reduces the symmetry of the MIP problem. Therefore,

including this last constraint is expected to reduce the computation time that is needed to solve the

optimization problem.

2.3.1 Circuital Constraints.

The variables γγγ(ε1, ε2) are also related via cycle periodicity constraints. For more information on these

cycle periodicity constraints than is given in this section we refer to (Serafini and Ukovich 1989) and

(Fleuren and Lefeber 2016b). The cycle periodicity constraints model the periodicity of the fixed-time

schedule. To formulate these circuital constraints we have to introduce the constraint graph G = (V,A).

This constraint graph is defined as follows:

V = { i
k
| i ∈ S, k ∈ Ki} ∪ { i

k
| i ∈ S, k ∈ Ki},

A = Ag ∪Ar ∪Ac,

where,

Ag := {( i
k
, i

k
) | i ∈ S, k ∈ Ki},

Ar := {( i
k−1

, i
k
) | i ∈ S, k ∈ Ki},

Ac := {( i
k
, j

k′) | {(i, k), (j, k′)} ∈ ΨI}.
The set of vertices V equals the set of events E and, therefore, each vertex represents either a switch

to effective green or a switch to effective red. With each vertex ε ∈ V we can associate the fraction

f(ε). Furthermore, constraint graph G has a directed arc (ε1, ε2) ∈ A for each of the real-valued design

variables γγγ(ε1, ε2); the arcs in Ag represent effective green intervals, the arcs in Ar represent effective

red intervals, and the arcs in Ac represent clearance intervals. See Figure 3 for the constraint graph of

the T-junction in Figure 1 when K1 = K4 = 2 and K2 = K3 = K5 = K6 = 1.

Before we introduce the circuital constraints, we introduce some terminology.

Definition 1 (Walk). A walk is a sequence of vertices v1, v2, . . . , vN ∈ V for which each two subsequent

vertices vk and vk+1 are connected via a directed arc (vk, vk+1) ∈ A.

Where a walk is only allowed to traverse arcs in the forward direction (from tail to head), a path

may also traverse arcs in the backward direction (from head to tail):
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Definition 2 (Path). A path is a sequence of vertices v1, v2, . . . , vN ∈ V for which each two subsequent

vertices vk and vk+1 are connected via either a directed arc (vk, vk+1) ∈ A or a directed arc (vk+1, vk) ∈
A; a path traverses each arc a ∈ A at most once.

A cycle is defined in accordance with (Serafini and Ukovich 1989; Kavitha and Krishna 2009):

Definition 3 (Cycle). A cycle is a closed path, i.e., a path for which v1 = vN .

Thus, a cycle is allowed to traverse arcs in the backward direction. We can represent a cycle by the

sets C+ and C−, which denote the sets of arcs that this cycle traverses in the forward direction (from

tail to head) respectively the set of arcs that this cycle traverses in the backward direction (from head

to tail). Reorienting the arcs in C− results in a closed walk that traverses each arc at most once. We

define C := C+ ∪ C−.

Definition 4 (Circuit). A circuit is a cycle for which the vertices v1, v2, . . . , vN−1 are all distinct, i.e.,

a cycle for which each vertex is visited at most once.

Consider a cycle C in this constraint graph G; this cycle traverses the arcs a ∈ C+ in the forward

direction (from tail to head) and traverses the arcs a ∈ C− in the backward direction (from head to

tail); reorienting the backwards arcs (in C−) results in a closed walk that traverses each arc at most

once. From the periodicity of a fixed-time schedule it follows that for each such cycle the following cycle

periodicity constraint should be satisfied:∑
(ε1,ε2)∈C+

γγγ(ε1, ε2) −
∑

(ε1,ε2)∈C−
γγγ(ε1, ε2) = zzzC , (1h)

where zzzC ∈ Z. Fortunately, it suffices to formulate this constraint only for the cycles in some integral

cycle basis of the constraint graph G (zC is an integral-valued design variable for these cycles); this

constraint is then automatically satisfied for all the cycles in the constraint graph G, see for exam-

ple (Liebchen and Peeters 2002). Such an integral cycle basis consists of only d := |A| − |V | + ν(G) =

2|ΨI |+ ν(G) cycles, where ν(G) is the number of connected components of the graph G; no path exists

between each two vertices that are in different connected components.

For some cycles in the constraint graph G we must fix the value of zzzC . Each two conflicting effective

green intervals {(i, k), (j, k′)} ∈ ΨI must occur within the same period. Therefore, for each pair of

conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI it holds that:

γγγ( i
k
, i

k
) + γγγ( i

k
, j

k′) + γγγ( j
k′ , j

k′) + γγγ( j
k′ , i

k
) = 1, (1i)

which implies that each period consists of effective green interval k of signal group i, a clearance interval

from this effective green interval to effective green interval k′ of signal group j, the k′th effective green

interval of signal group j itself, and a clearance interval back to effective green interval k of signal

group i. Furthermore, the effective green intervals of signal group i ∈ S together with the effective red

intervals of signal group i constitute one period, which implies the following circuital constraint:∑
k∈Ki

(
γγγ( i

k−1
, i

k
) + γγγ( i

k
, i

k
)
)

= 1, i ∈ S. (1j)
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Figure 3: The constraint graph G = (V,A) of the intersection in Figure 1 when K1 = K4 = 2 and K2 = K3 =

K5 = K6 = 1. The white (grey) vertex with the text i, k denotes the event i
k
( i

k
). The white (grey) vertex

with the text i denotes the event i
1
( i

1
). The effective green intervals, effective red intervals and clearance

intervals are visualized in green, red respectively black.

The circuital constraints (1h)–(1j) model the periodicity of the fixed-time schedule. In the next section

we show how to find an integral cycle basis of the constraint graph; the method that we use to find an

integral cycle basis generalizes the method from (Fleuren and Lefeber 2016b).

2.3.2 Obtaining an Integral Cycle Basis.

To formulate the linear constraints (1) we require an integral cycle basis of the constraint graph G; this

integral cycle basis is needed to formulate the cycle periodicity constraints (1h). For some integral cycle

bases the slack in the integral valued design variables zC , C ∈ B is smaller than for others. To reduce

the computation time that is needed to solve the optimization problem, we would like these slacks to be

as small as possible; a smaller slack in the integral-valued design variables zzzC , C ∈ B relates to a smaller

computation time needed to solve the MIP problem, which is motivated by the studies from (Liebchen

2003; Wünsch and Köhler 1990). In this section we attempt to find an integral cycle basis for which the

slack in the integral variables is small. To this end, we construct an integral cycle basis that includes

all the cycles that are associated with the circuital constraints (1i) and (1j); for these cycles the value

for zC is known and equal to one. We construct this integral cycle basis from a strictly fundamental

cycle basis. Before we introduce the definition of a strictly fundamental cycle basis we have to define a

spanning tree and a spanning forest.

Definition 5 (Spanning tree). A spanning tree of a graph G = (V,A) is defined as a subset T ⊆ A

such that the graph G = (V, T ) contains no cycles and has one connected component.
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Such a spanning tree is defined for an undirected graph as well as for a directed graph. When a

graph has multiple connected components, then this graph has no spanning tree. It does however have

a spanning forest:

Definition 6 (Spanning forest). Consider a graph G with ν(G) ≥ 1 connected components. Let Ti be a

spanning tree of connected component i = 1, . . . , ν(G). Then F =
⋃ν(G)

i=1 Ti is a spanning forest of graph

G.

Adding an arc to spanning forest will result in a cycle. Such a cycle is called a fundamental cycle.

A strictly fundamental cycle basis is comprised of all fundamental cycles that are associated with some

spanning forest F :

Definition 7 (Strictly fundamental cycle basis (SFCB)). The set of cycles B = {C1, . . . , Cd} is a strictly

fundamental cycle basis whenever B is the set of all the fundamental cycles that are associated with some

spanning forest F ⊆ A. In other words B = {C1, . . . , Cd} is a strictly fundamental cycle basis whenever

some spanning forest F ⊆ A exists such that B = {CF (a) | a ∈ A\F}, where CF (a) is the unique circuit

in F ∪ {a} that uses the arc a in the forward direction.

We find the spanning forest F from a spanning forest F ′ of the smaller (undirected) conflict graph

G′ = (V ′, A′), which is defined as follows:

V ′ := S,
A′ := ΨS .

In Figure 4a we have depicted the conflict graph for the T-junction that is depicted in Figure 1. We

can obtain a spanning forest F of the constraint graph G from a spanning forest F ′ of the smaller

(undirected) conflict graph G′ = (V ′, A′) with the following equation, see also Figure 4:

F :={( i
k
, j

k′) | {i, j} ∈ F ′, i < j} ∪Ag

∪ {( i
k−1

, i
k
) | i ∈ S, k ∈ Ki \ {1}}.

(2)

Thus, the spanning forest F includes all the arcs that represent effective green interval, for each signal

group i ∈ S it includes Ki − 1 of the Ki arcs that represent red intervals, and it includes an arc that

represents a clearance interval for each arc in F ′. From the spanning forest F we can obtain a strictly

fundamental cycle basis. This SFCB does not necessarily contain all the cycles that are associated

with the circuital constraints (1i) and (1j); it contains the cycle that is associated with the circuital

constraint (1i) of the conflict {(i, k), (j, k′)} ∈ ΨS if and only if k = k′ = 1 and {i, j} ∈ F ′. We

can however use this SFCB to construct an integral cycle basis that does include all these cycles, see

Lemma 1; the resulting integral cycle basis has replaced some of the cycles in the SFCB by cycles that

are associated with the circuital constraint (1i); for these cycles the value of zC is fixed to one.

Lemma 1. Let F ′ be a spanning forest of the conflict graph G′ and let F be the spanning forest of the

constraint graph G that is calculated with (2). Define B = {C1, . . . , Cd} to be the SFCB of graph G that

is defined by spanning forest F , and let B′ be the set of cycles that is obtained from B when, for each

arc ( i
k
, j

k′) �∈ F , i < j, we replace the cycle CF (( j
k′ , i

k
)) by the cycle:

C = C+ = {( i
k
, i

k
), ( i

k
, j

k′), ( j
k′ , j

k′), ( j
k′ , i

k
)}.
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(a) Spanning forest of the conflict graph G′.

Each bold arc is included in the spanning for-

est.

1,1 1,1 1,2 1,2

5,2 5,15,2 5,1

12

12 3

3

4

4
11

11

(b) The spanning forest of the constraint

graph G that is induced by a spanning for-

est of the constraint graph G′. Each bold arc

is included in the spanning forest.

Figure 4: Visualization of the spanning forest of the constraint graph G that is obtained from a spanning forest

of the conflict graph G′. The conflict graph corresponds to the intersection in Figure 1 and the constraint graph

corresponds to K1 = K4 = 2 and K2 = K3 = K5 = K6 = 1.

The set B′ is an integral cycle basis of the constraint graph G that includes all the cycles that are

associated with the circuital constraints (1i) and (1j).

Proof. See Appendix A for the proof.

With Lemma 1 we can construct an integral cycle basis of the constraint graph G. To this end, we

require a spanning forest F ′ of the conflict graph G′; we calculate this spanning forest with the algorithm

of (Amaldi et al. 2004). This algorithm requires a weight for each arc; we take all arc weights to be the

same.

For the constraint graph G that is visualized in Figure 3, the resulting integral cycle basis consists

of 23 cycles. Six of these cycles correspond to circuital constraints (1i) and eleven of them correspond

to circuital constraints (1j). Therefore, six cycles remain for which the value of zzzC is unknown (before

optimization). Therefore, the optimization problem has six integral-valued design variables for this

example.

2.3.3 Well-posedness.

Each variable γγγ(ε1, ε2) can be written as γγγ(ε1, ε2) := f(ε2) − f(ε1) + z(ε1, ε2). We prove that each

real-valued design variable γγγ(ε1, ε2) and its corresponding integer z(ε1, ε2) are defined unambiguously,

i.e., only one value for γγγ(ε1, ε2) and only one value for z(ε1, ε2) can be associated with each fixed-time

schedule.

12



We first prove this unambiguous definition for the arcs that represent effective green and effective red

intervals. We do so by proving the inclusion γγγ( i
k
, i

k
) ∈ [0, 1) and the inclusion γγγ( i

k
, i

k
) ∈ [0, 1);

this would imply that the design variables γγγ( i
k
, i

k
) and γγγ( i

k
, i

k
) (and their associated integers

z(ε1, ε2)) are defined unambiguously. These inclusions follow from the fact that the effective green

intervals and the effective red intervals of signal group i together constitute one period (1j), the non-

negativity of each effective green time (1b), the (strict) positivity of each effective red time (1c), and

the (strict) positivity of the sum of the effective green times of signal group i (1d).

Now we prove the unambiguous definition of each variable γγγ( i
k
, j

k′), {(i, k), (j, k′)} ∈ ΨI ; we do

so by proving the following inclusion:

γγγ( i
k
, j

k′) ∈ (−γγγ( i
k
, i

k
), 1 − γγγ( i

k
, i

k
)).

Since, as already proved, γγγ( i
k
, i

k
) is defined unambiguously, this inclusion would prove that the vari-

able γγγ( i
k
, j

k′) and its corresponding integer z( i
k
, j

k′) are defined unambiguously as well. The de-

sired inclusion follows from the well-posedness constraint (1f) together with the circuital constraint (1i).

This inclusion together with γγγ( i
k
, i

k
) ∈ [0, 1) also implies the inclusion γγγ( i

k
, j

k′) ∈ (−1, 1). As a

consequence, a clearance time from effective green interval k of signal group i to effective green interval

k′ of signal group j refers, as desired, to the time between an occurrence of the event i
k

and the next

or the previous occurrence of the event j
k
.

2.4 Objective Function

In this section we elaborate on three different objective function: minimizing the period duration T ,

maximizing the capacity of the intersection, and minimizing the average weighted delay that road users

experience.

We can minimize the period duration by maximizing its reciprocal T ′. The resulting problem is a

mixed-integer linear programming (MILP) problem. When maximizing the capacity of the intersection,

then we search for the fixed-time schedule for which the largest increase in the arrival rates λq, q ∈ Q
is sustainable. To this end, we multiply the left-hand sides (ρSG

i ) of the stability constraints (1d) by

a growth factor β. The objective is to maximize this growth factor. The resulting problem is also an

MILP problem. Whenever the maximum growth factor βmax is less than one, then this implies that

the intersection is overloaded by (1− βmax)100 percent. On the other hand, when this growth factor is

greater than one, then the intersection has (βmax − 1)100 percent of overcapacity.

The last objective is to minimize the average weighted delay that road users experience at the

intersection:

D =
∑
i∈S

∑
q∈Qi

wqdq,

where dq is the average delay at queue q ∈ Q and wq is the weight factor that is associated with this

queue. We can use the approximations of for example (Miller 1963; van den Broek et al. 2006; Webster

1958) to approximate the delay dq. However, all these approximations assume that a signal group

has a single effective green interval, i.e., these formulae assume Ki = 1. As no better alternative is

13



available at the time of writing, we extend these approximations, in a straightforward manner, to allow

a signal group to have multiple effective green intervals. For the formulae of (Miller 1963; van den Broek

et al. 2006; Webster 1958) the extended approximation is a convex function of the design variables; in

Appendix B we prove this convexity for the approximation of (van den Broek et al. 2006), which is the

approximation that we use in this paper. As a consequence of this convexity, the resulting problem

is a mixed-integer convex programming problem when minimizing the average delay that road users

experience.

For ease of notation we define r′i,k := γγγ( i
k−1

, i
k
) and ri,k := r′i,k/T

′; note that ri,k is the duration

of the kth effective red interval of signal group i. Assume that signal group i receives a single effective

green interval, i.e., Ki = 1, and consider one of its queues q ∈ Qi. The aforementioned approximations

for the delay that road users experience at the queue q ∈ Qi can be split into a deterministic part and

a stochastic part: dq = ddetq + dstochq . For the approximation of (van den Broek et al. 2006) we have:

ddetq :=
r2i,1

2T (1 − ρq)
.

=
r′2i,1

2T ′(1 − ρq)
(3)

dstochq =
ri,1

2λq(1 − ρq)T

(
σ2
q

1 − ρq
+

ri,1ρ
2
qσ

2
qT

2

(1 − ρq)(T − ri,1)2((1 − ρq)T − ri,1)

)
,

=
r′i,1

2λq(1 − ρq)T ′

(
σ2
q

1 − ρq
+

r′i,1ρ
2
qσ

2
qT

′2

(1 − ρq)(T ′ − r′i,1)2((1 − ρq)T ′ − r′i,1)

)
.

In the following sections we extend this deterministic delay term and this stochastic delay term to also

allow Ki > 1.

Extending the Deterministic Delay Term. The deterministic delay term describes the delay

whenever the arrival process and the departure process would be purely deterministic and fluid-like, see

also Figure 5; the amount of waiting traffic increases with a rate of λq during an effective red interval.

During an effective green interval the queue length decreases with a rate of μq −λq as long as the queue

is not emptied. When the queue is emptied then the queue remains empty until the next effective red

interval starts. Consider a queue q ∈ Qi and assume that signal group i ∈ S has a single effective

red interval of ri,1 seconds. The deterministic delay term ddetq can then be computed from the average

queue length xq by using Little’s law (Chhajed and Lowe 2008):

ddet := xq/λq,

:=
r2i,1

2T (1 − ρq)
,

:=
r′2i,1

2T ′(1 − ρq)
.
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This deterministic delay term assumes that the queue is emptied during its effective green interval, i.e.,

it assumes stability. We can extend this deterministic delay term, in a straightforward manner, to the

case of multiple effective green intervals, i.e., to the case Ki ≥ 1. Consider again the deterministic and

fluid-like arrival and departure process. Whenever, for this deterministic system, the queue is emptied

during each effective green interval, then we can find the following expression for the deterministic delay

term:

ddetq =
∑
k∈Ki

r′2i,k
2T ′(1 − ρq)

. (4)

When minimizing the average weighted delay, then we can force the queue to be emptied during each

effective green interval (for this deterministic arrival and departure process) by adding the following

constraints to the mixed-integer programming problem:

(1 − ρSGi )γγγ( i
k
, i

k
) ≥ ρSGi γγγ( i

k−1
, i

k
), i ∈ S, k ∈ Ki. (5)

We only have to include this constraint for the signal groups i ∈ S for which Ki > 1; this inequality is

already implied by the stability constraint (1d) for each signal group i ∈ S with Ki = 1.

Q
u
eu

e 
le

n
gt

h
 

time(s)

1

1
−

ri,1

1

1

gi,1

λq

μq

ri, /(1 − ρq)

λqri,
λq

Figure 5: The queueing of passenger cars for the deterministic and fluid-like queueing system associated with

the deterministic delay term ddetq of a queue q ∈ Qi when signal group i has only one effective green interval.

Remark. Whenever we do not force the queue q to be emptied during each effective green interval

for the deterministic queueing process, then the deterministic delay term ddetq cannot be written as the

sum (4); in Appendix C we show that the deterministic delay term ddetq and also the total delay dq are

then not convex.

Extending the Stochastic Delay Term. The stochastic delay term dstochq corresponds to the

stochastic contributions in the delay, e.g., when the arrivals are stochastic, then the queue might not
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be empty at the end of an effective green interval. When Ki = 1, then this stochastic delay term is a

function of the fraction r′i,1, which is the total red fraction of signal group i, and the (reciprocal of the)

period duration T ′. In case that a signal group has multiple effective green intervals, then we replace

r′i,1 by r′i,1 + . . . ,+r′i,Ki
, which is the total red fraction of signal group i when Ki ≥ 1.

Remark. We do not claim that this straightforward extension of the approximate formulae results in

a very good approximation when Ki > 1; we merely want to show the different objective functions that

we could consider when we allow signal groups to receive multiple effective green intervals. However,

this extended approximation does have some desirable properties. Consider the extended approximation

of (van den Broek et al. 2006). It satisfies the following properties:

• Consider the case that signal group i has a single effective green interval, i.e., Ki = 1. This

extended approximation then reduces to the original approximation of (van den Broek et al.

2006).

• Consider the case that signal group i receives multiple effective green intervals, i.e., Ki > 1.

Let gi,k be the duration of effective green interval k of signal group i. Assume that gi,k = 0

for each effective green interval k ∈ Ki \ {1}. From equation (5) it then follows that ri,k = 0

for each effective green interval k ∈ Ki \ {1}. Therefore, effectively, signal group i has only one

effective green interval (gi,1) and one effective red interval (ri,1). The extended approximation

then reduces to the original approximation of (van den Broek et al. 2006) with an effective red

time of ri,1 seconds and a period duration of gi,1 + ri,1 seconds.

• Consider the case that signal group i receives multiple effective green intervals, i.e., Ki > 1.

Let gi (ri) be the total effective green (effective red) time of signal group i. Assume that signal

group i alternates between an effective green time of gi/Ki seconds and an effective red time of
ri/Ki seconds. The signal timings of signal group i then repeat every ri/Ki + gi/Ki seconds. The

extended approximation then reduces to the original approximation of (van den Broek et al. 2006)

with a period duration of ri/Ki + gi/Ki seconds and a (single) effective red interval of ri/Ki seconds.

3 Variable Number of Effective Green Intervals

In the previous section we have formulated the optimization problem for the situation that the number

of effective green intervals Ki of each signal group i ∈ S is fixed. In this section we consider the number

of effective green intervals Ki of each signal group i ∈ S to be a design variable. To this end, for each

signal group i ∈ S we require a minimum number of effective green intervals Ki ≥ 1 and a maximum

number of effective green intervals Ki.

We adjust the optimization problem that is formulated in Section 2 so that also the number of

effective green intervals is optimized for each signal group i ∈ S. In this section we first elaborate

on the differences with respect to the optimization problem that is proposed in the previous section.

Thereupon, we give the complete mixed-integer programming formulation.
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3.1 Notation

Before we elaborate on the differences with the previously formulated optimization problem, we first

introduce some notation. We define Ki := {1, . . . ,Ki} to be the maximum set of effective green intervals

of signal group i ∈ S. Furthermore, we define Ki := {1, . . . ,Ki} to be the minimum set of effective

green intervals of signal group i ∈ S, and we denote the difference between Ki and Ki by Kd
i , i.e.,

Kd
i := Ki \ Ki. Thus, signal group i ∈ S is certain to have the effective green intervals k ∈ Ki. Via

optimization we decide whether signal group i ∈ S has effective green interval k ∈ Kd
i . We consider the

constraint graph G = (V,A) as defined in Section 2.3 except that we replace the set of effective green

intervals Ki by the maximum set of effective green intervals Ki:

V = { i
k
| i ∈ S, k ∈ Ki} ∪ { i

k
| i ∈ S, k ∈ Ki},

A = Ag ∪Ar ∪Ac,

where,

Ag := {( i
k
, i

k
) | i ∈ S, k ∈ Ki},

Ar := {( i
k−1

, i
k
) | i ∈ S, k ∈ Ki},

Ac := {( i
k
, j

k′) | {(i, k), (j, k′)} ∈ ΨI},
ΨI := {{(i, k), (j, k′)} | {i, j} ∈ ΨS , k ∈ Ki, k

′ ∈ Kj}.
where i

0
is defined to equal i

Ki
and ΨI is a set of conflicting effective green intervals.

3.2 Additional Design Variables

With respect to the optimization problem that was proposed in the previous section, the optimization

problem that is proposed in this section has one additional binary design variable bi,k for each of the

effective green intervals k ∈ Kd
i of signal group i ∈ S; the binary design variable bi,k, k ∈ Kd

i equals

one whenever signal group i has a kth effective green interval and it equals zero otherwise. This implies

that these binary variables are related according to the following constraint:

bi,k+1 ≤ bi,k, i ∈ S, k ∈ Kd
i \ {Ki}. (6a)

This constraint implies that signal group i has no k + 1st effective green interval when it has no kth

effective green interval. We use the binary variable bi,k to ’switch’ effective green interval k of signal

group i ∈ S on (bi,k = 1) or off (bi,k = 0). In other words, we force effective green interval k of signal

group i and its preceding effective red interval to have a duration of zero seconds whenever signal group

i has no such kth effective green interval, i.e., we force γγγ( i
k−1

, i
k
) = 0 and γγγ( i

k
, i

k
) = 0 when

bi,k = 0. As a consequence, signal group i ∈ S practically has no kth effective green interval when

bi,k = 0; from constraint (6a) it then follows that signal group i ∈ S also has no k + 1st effective green

interval, et cetera.

3.3 Modified Constraints

Some constraints of optimization problem (1) may obstruct γγγ( i
k−1

, i
k
) and γγγ( i

k
, i

k
) from becom-

ing zero when bi,k = 0, e.g., the lower bound on each effective green time may prevent γγγ( i
k
, i

k
) from
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becoming zero. Therefore, we modify such constraints so that they allow the variables γγγ( i
k−1

, i
k
)

and γγγ( i
k
, i

k
) to become zero when bi,k = 0. We replace the bounds on the effective green times (1b)

as follows; we distinguish between the (certain) effective green intervals k ∈ Ki and the (uncertain)

effective green intervals k ∈ Kd
i :

g
i
T ′ ≤ γγγ( i

k
, i

k
) ≤ giT

′, i ∈ S, k ∈ Ki, (6b)

g
i
T ′ − (1 − bi,k)L ≤ γγγ( i

k
, i

k
) ≤ giT

′, i ∈ S, k ∈ Kd
i , (6c)

where L is some large number; in this case L = g
i
/T suffices. The latter constraint becomes redundant

when bi,k = 0. Similarly, we replace the bounds on the effective red times (1c):

riT
′ ≤ γγγ( i

k−1
, i

k
) ≤ riT

′, i ∈ S, k ∈ Ki, (6d)

riT
′ − (1 − bi,k)L ≤ γγγ( i

k−1
, i

k
) ≤ riT

′, i ∈ S, k ∈ Kd
i , (6e)

where L = ri/T is sufficiently large. Furthermore, we replace the well-posedness constraint (1f). For

each pair of conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI with k ∈ Ki we have the original

constraint:

γγγ( i
k
, i

k
) + γγγ( i

k
, j

k′) ≥ εT ′. (6f)

However, for each pair of conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI with k ∈ Kd
i we have

the following modified constraint:

γγγ( i
k
, i

k
) + γγγ( i

k
, j

k′) + (1 − bi,k)L ≥ εT ′, (6g)

where L = 1 + ε/T is sufficiently large.

3.4 Additional Constraints

We have modified the constraints that may obstruct the kth effective green interval of signal group

i ∈ S and its preceding effective red interval from having a duration of zero when bi,k = 0. Therefore,

we can now force these durations to become zero when bi,k = 0. We do so with the following additional

constraints:

γγγ( i
k−1

, i
k
) + γγγ( i

k
, i

k
) ≤ bi,kL, i ∈ S, k ∈ Kd

i , (6h)

0 ≤ γγγ( i
k−1

, i
k
), i ∈ S, k ∈ Kd

i , (6i)

0 ≤ γγγ( i
k
, i

k
), i ∈ S, k ∈ Kd

i , (6j)

where L = 1 is sufficiently large. Consider the case that bi,k = 0. The above constraints then force the

following events to occur simultaneously: the end of effective green interval k − 1 ( i
k−1

), the start of

effective green interval k ( i
k
), and the end of effective green interval k ( i

k
). Since the events i

k−1

and i
k

occur simultaneously, this implies the following equality when bi,k = 0:

γγγ( i
k
, j

k′) = γγγ( i
k−1

, j
k′).
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Thus, a clearance time from the kth effective green interval of signal group i to the k′th effective

green interval of signal group j then equals the clearance time from the k−1st effective green interval of

signal group i to the k′th effective green interval of signal group j. Therefore, for each pair of conflicting

effective green intervals {(i, k), (j, k′)} ∈ ΨI with k ∈ Kd
i we include the following constraint:

−bi,kL ≤ γγγ( i
k
, j

k′) − γγγ( i
k−1

, j
k′) ≤ bi,kL, (6k)

where L = 2 is sufficiently large. Moreover, when bi,k = 0 then we can find the following equality for

each conflict {(i, k), (j, k′)} ∈ ΨI , see Figure 6:

γγγ( j
k′ , i

k
) = γγγ( j

k′ , i
k−1

) + γγγ( i
k−1

, i
k−1

),

Therefore, for each conflict {(i, k), (j, k′)} ∈ ΨI with k ∈ Kd
i we include the following constraint:

−bi,kL ≤ γγγ( j
k′ , i

k
) −

(
γγγ( j

k′ , i
k−1

) + γγγ( i
k−1

, i
k−1

)
)
≤ bi,kL. (6l)

where L = 2 is sufficiently large.
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Figure 6: Relation between the clearance times when the optimization has decided that signal group i should not

have a kth effective green interval. The events i
k−1

, i
k
, and i

k
then occur simultaneously.

Remark. The constraints (6k) and (6l) are not crucial to the formulated MIP problem; when we

omit these constraints then we would find the same fixed-time schedule as when these constraints are

included. However, we include these constraints for the following two reasons. First, to speed up the

the computation times. With these additional constraints we improve the quality of the LP relaxations.

Such an LP relaxation relaxes the integral-valued design variables of an MILP problem to be real-

valued design variables. Solving such an LP relaxation results in a lower bound on the corresponding

MILP problem. These LP relaxations are important in for example the solvers: CPLEX (International

Business Machines Corp 2015), GUROBI (Gurobi Optimization, Inc. 2015), and SCIP (Achterberg

2009). A tighter optimization problem (better LP relaxations) is expected to reduce computation

times (Maranas and Zomorrodi 2016). Second, these constraints ensure that each variable γγγ( i
k
, j

k′)

is defined unambiguously. The well-posedness constraints (6f)– (6g) ensure that this variable is defined

unambiguously when bi,k = 1. However, they do not ensure this unambiguous definition when bi,k = 0;

then the constraints (6k)-(6l) ensure this unambiguous definition.
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3.5 Complete MIP Problem

Below we summarize the complete MIP problem for the situation that each signal group i ∈ S is

(possibly) allowed to have multiple effective green intervals.

3.5.1 Objective Function.

We could optimize any of the objective functions that have been introduced in Section 2.4, i.e., we can

minimize the period duration T , maximize the capacity of the intersection, or minimize the average

weighted delay that road users experience. The objective function can be written as follows:

minimize
T ′,γγγ,zzz,b

J(T ′, γγγ,zzz, b), (7a)

where the vector γγγ contains all arc lengths γγγ(ε1, ε2), (ε1, ε2) ∈ A, the vector zzz contains all integral-valued

design variables zzzC , C ∈ B, and the vector b contains all binary variables bi,k, k ∈ Kd
i , i ∈ S.

Remark. When maximizing the capacity of the intersection, then we have an additional (real-valued)

design variable β, which is the growth factor of the arrival rates.

3.5.2 linear Constraints.

The MIP problem has the following constraints.

Bounds on the Period Duration. The period duration is bounded from below and from above:

1/T ≤ T ′ ≤ 1/T . (7b)

Bounds on Effective Green Times and Effective Red Times. Each effective green time is

bounded from below and bounded from above. The lower bound on the duration of the kth effective

green time of signal group i ∈ S becomes redundant whenever bi,k = 0.

g
i
T ′ ≤ γγγ( i

k
, i

k
) ≤ giT

′, i ∈ S, k ∈ Ki, (7c)

g
i
T ′ − (1 − bi,k)L ≤ γγγ( i

k
, i

k
) ≤ giT

′, i ∈ S, k ∈ Kd
i . (7d)

Each effective red time is bounded from below and bounded from above. The lower bounds on the

duration of the kth effective red time of signal group i ∈ S becomes redundant whenever bi,k = 0.

riT
′ ≤ γγγ( i

k−1
, i

k
) ≤ riT

′, i ∈ S, k ∈ Ki, (7e)

riT
′ − (1 − bi,k)L ≤ γγγ( i

k−1
, i

k
) ≤ riT

′, i ∈ S, k ∈ Kd
i . (7f)

Stability. Each signal group needs to be stable. In other words, signal group i needs to be effective

green for at least a fraction ρSGi . This ensures that the average amount of traffic that arrives during

one period at a queue q ∈ Qi can also depart during one period:

0 < ρSGi ≤
∑
k∈Ki

γγγ( i
k
, i

k
), i ∈ S. (7g)
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Minimum Clearance Times. Minimum clearance times need to be satisfied for each pair of con-

flicting effective green intervals. This ensures that all conflicting traffic streams can safely cross the

intersection:

ci,jT
′ ≤γγγ( i

k
, j

k′), {(i, k), (j, k′)} ∈ ΨI . (7h)

Number of Effective Green Intervals. The binary variables bi,k, k ∈ Kd
i are used to optimize the

number of effective green intervals of signal group i. These binary variables are related according to the

following constraints, which imply that signal group i has no k + 1st effective green interval whenever

it has no kth effective green interval:

bi,k+1 ≤ bi,k, i ∈ S, k ∈ Kd
i \ {Ki}. (7i)

This binary variable is used to force effective green interval k and effective red interval k of signal group

i ∈ S to practically not exists whenever bi,k = 0. In other words, we force effective green interval k and

effective red interval k of signal group i ∈ S to have a duration of zero seconds whenever bi,k = 0. We

do so with the following constraints:

γγγ( i
k−1

, i
k
) + γγγ( i

k
, i

k
) ≤ bi,kL, i ∈ S, k ∈ Kd

i , (7j)

0 ≤ γγγ( i
k−1

, i
k
), i ∈ S, k ∈ Kd

i , (7k)

0 ≤ γγγ( i
k
, i

k
), i ∈ S, k ∈ Kd

i . (7l)

Reducing Symmetry. We reduce the symmetry of the MIP problem. To this end, for each signal

group i ∈ S we force its first effective red interval to be the largest:

γγγ( i
Ki

, i
1
) ≥ γγγ( i

k−1
, i

k
), i ∈ S, k ∈ Ki \ {1}. (7m)

Reducing the symmetry of the MIP problem is expected to decrease the time that is needed to solve

the optimization problem.

Cycle Periodicity Constraints. The periodicity of the fixed-time schedule is forced with the cycle

periodicity constraints:

∑
(ε1,ε2)∈C+

γγγ(ε1, ε2)−
∑

(ε1,ε2)∈C−
γγγ(ε1, ε2) = zzzC , ∀C ∈ B, (7n)

where B is an integral cycle basis of the constraint graph G. For some cycles we know the multiplicity zzzC
(and must fix this multiplicity). For each pair of conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI

it holds that:

γγγ( i
k
, i

k
) + γγγ( i

k
, j

k′) + γγγ( j
k′ , j

k′) + γγγ( j
k′ , i

k
) = 1, (7o)
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which implies that effective green interval k of signal group i and effective green interval k′ of conflicting

signal group j should be scheduled within the same period. Furthermore, for each signal group i ∈ S
we have: ∑

k∈Ki

(
γγγ( i

k−1
, i

k
) + γγγ( i

k
, i

k
)
)

= 1, (7p)

which implies that the effective green intervals and the effective red intervals of signal group i ∈ S
together constitute one period.

Well-posedness Constraints. The following constraints ensure that the real-valued design variables

γγγ(ε1, ε2), (ε1, ε2) ∈ A are defined unambiguously. For each pair of conflicting effective green intervals

{(i, k), (j, k′)} ∈ ΨI with k ∈ Ki we have:

γγγ( i
k
, i

k
) + γγγ( i

k
, j

k′) ≥ εT ′, (7q)

and for each pair conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI with k ∈ Kd
i we have:

γγγ( i
k
, i

k
) + γγγ( i

k
, j

k′) + (1 − bi,k)L ≥ εT ′, (7r)

where ε is some small positive value.

Relating Clearance Times. If signal group i ∈ S does not have a kth effective green interval

(bi,k = 0) then the kth effective green interval of signal group i is forced to have a duration of zero

seconds and immediately follow the k − 1st effective green interval of signal group i ∈ S. As a result,

the clearance times associated with the kth effective green interval of signal group i are then related

to the clearance times associated with the k − 1st effective green interval of this signal group. This

relation is expressed in the following constraints. For each pair of conflicting effective green intervals

{(i, k), (j, k′)} ∈ ΨI with k ∈ Kd
i we have:

−bi,kL ≤ γγγ( i
k
, j

k′) − γγγ( i
k−1

, j
k′) ≤ bi,kL. (7s)

Furthermore, for each pair of conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI with k ∈ Kd
i we

have:

−bi,kL ≤ γγγ( j
k′ , i

k
) −

(
γγγ( j

k′ , i
k−1

) + γγγ( i
k−1

, i
k−1

)
)
≤ bi,kL. (7t)

3.5.3 Relation to a Fixed Number of Effective Green Intervals.

Consider a fixed-time schedule for which the number of effective green intervals Ki of each signal group

i ∈ S satisfies Ki ≤ Ki ≤ Ki. In the following lemma we prove that each such fixed-time schedule

satisfies the linear constraints (1) if and only if it satisfies the linear constraints of MIP problem (7).

This implies that when we fix the binary variables bi,k as follows:

bi,k = 0, i ∈ S, k = Ki + 1, . . . ,Ki,

bi,k = 1, i ∈ S, k = Ki + 1, . . . ,Ki,
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then, as desired, the resulting constraints (7) permit the same fixed-time schedules as the constraints (1).

Lemma 2. Consider any fixed-time schedule for which signal group i ∈ S has Ki effective green

intervals. Let MIPfix be the optimization problem (1) that considers the number of effective green

intervals to be fixed and equal to Ki. Furthermore, let MIPvar be the optimization problem (7) that

considers the number of effective green intervals to be a design variable that may be chosen between

Ki ≤ Ki and Ki ≥ Ki. The fixed-time schedule that we consider satisfies the constraints of MIPfix if

and only if it satisfies the constraints of MIPvar, i.e., MIPfix has a solution that results in this fixed-time

schedule if and only if MIPvar has a solution that results in this fixed-time schedule.

Proof. Define Ki := {1, . . . ,Ki}. Signal group i ∈ S has Ki effective green intervals for the fixed-time

schedule that we consider. Therefore, its associated solution to MIPvar satisfies:

bi,k := 1, i ∈ S, k ∈ Ki \ Ki,

bi,k := 0, i ∈ S, k ∈ Ki \ Ki.

When fixing these binary variables as shown above, then the optimization problem MIPvar includes

all the constraints of optimization problem MIPfix. Therefore, any fixed-time schedule that does not

satisfy the constraints of MIPfix also does not satisfy the constraints of MIPvar. As a consequence, what

remains is to prove that each fixed-time schedule that satisfies the constraints of MIPfix also satisfies the

constraints of MIPvar. Consider a solution (γγγfix,T
′
fix, zzzfix) that satisfies the linear constraints of MIPfix.

We construct a solution (T ′, γγγ,zzz, b) to MIPvar that results in the same fixed-time schedule; this would

conclude this proof. First, the period duration of both solutions should be the same:

T ′ := T ′
fix.

Second, all effective green and effective red intervals must have the same duration:

γγγ( i
k
, i

k
) := γγγfix( i

k
, i

k
), i ∈ S, k ∈ Ki,

γγγ( i
k−1

, i
k
) := γγγfix( i

k
, i

k
), i ∈ S, k ∈ Ki.

The remaining effective green and effective red intervals have a duration of zero, which is forced by (7j)–

(7l):

γγγ( i
k
, i

k
) := 0, i ∈ S, k ∈ Ki \ Ki,

γγγ( i
k−1

, i
k
) := 0, i ∈ S, k ∈ Ki \ Ki.

We use the definition of ΨI as defined in Section 3.1, i.e.,

ΨI := {{(i, k), (j, k′)} | {i, j} ∈ ΨS , k ∈ Ki, k
′ ∈ Kj}.

Consider a pair of conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI with k ∈ Ki and k′ ∈ Kj .

The clearance time from effective green interval k of signal group i to effective green interval k′ of signal
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group j are the same for both solutions. Thus, for each pair of conflicting effective green intervals

{(i, k), (j, k′)} ∈ ΨI with k ∈ Ki and k′ ∈ Kj we have:

γγγ( i
k
, j

k′) := γγγfix( i
k
, j

k′).

Consider a pair of conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI with k �∈ Ki and k′ ∈ Kj . It

holds that effective green interval k of signal group i has a duration of zero seconds and directly follows

effective green interval Ki of signal group i. As a result, for each conflict {(i, k), (j, k′)} ∈ ΨI with

k �∈ Ki and k′ ∈ Kj it holds that:

γγγ( i
k
, j

k′) := γγγfix( i
Ki

, j
k′). (8)

Consider a pair of conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI with k′ �∈ Kj . Realization

k′ of signal group j directly follows effective green interval Kj of signal group j. As a result, it holds

that a clearance time to such an effective green interval k′ of signal group j equals a clearance time to

effective green interval Kj of signal group j plus the duration of this effective green interval, i.e., for

each pair of conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI with k ∈ Ki, and k′ �∈ Kj we have:

γγγ( i
k
, j

k′) := γγγfix( i
k
, j

Kj
) + γγγfix( j

Kj
, j

Kj
),

and for each pair of conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI with k �∈ Ki, and k′ �∈ Kj

we have:

γγγ( i
k
, j

k′) := γγγfix( i
Ki

, j
Kj

) + γγγfix( j
Kj

, j
Kj

).

The values of the integral-valued design variables zzzC can be calculated from (7n); their values depend

on the cycle basis that is used. We can verify that the proposed solution indeed satisfies the constraints

of MIPvar, which proves this lemma.

3.5.4 Well-posedness.

Consider a fixed-time schedule for which signal group i has Ki effective green intervals and define

Ki := {1, . . . ,Ki}. We prove that each real-valued design variable γγγ(ε1, ε2) and its associated integer

z(ε1, ε2) are defined unambiguously, i.e., only one value for γγγ(ε1, ε2) (and only one value for z(ε1, ε2))

can be associated with this fixed-time schedule. In Section 2.3.3 we have already proved that the

variables γγγ(ε1, ε2) and the associated integers z(ε1, ε2) are uniquely defined for the variables that are

associated with effective green interval k ∈ Ki of signal group i ∈ S, effective red interval k ∈ Ki of

signal group i ∈ S, and the clearance time between effective green interval k ∈ Ki of signal group i ∈ S
and conflicting effective green interval k′ ∈ Kj of signal group j ∈ S. All other variables γγγ(ε1, ε2) can

only attain one value for this fixed-time schedule and are therefore also defined unambiguously. We

give these values below. For each signal group i ∈ S and each effective green interval k ∈ Ki \ Ki, the

effective green time and the preceding effective red time are forced to be zero by constraints (7j)–(7l).

γγγ( i
k
, i

k
) := 0,
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and

γγγ( i
k−1

, i
k
) := 0.

We use the definition of ΨI as defined in Section 3.1, i.e.,

ΨI := {{(i, k), (j, k′)} | {i, j} ∈ ΨS , k ∈ Ki, k
′ ∈ Kj}.

For each pair of conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI with k �∈ Ki and k′ ∈ Kj we

have:

γγγ( i
k
, j

k′) := γγγ( i
Ki

, j
k′),

which is forced by (7s). Furthermore, for each pair of conflicting effective green intervals {(i, k), (j, k′)} ∈
ΨI with k ∈ Ki and k′ �∈ Kj we have:

γγγ( i
k
, j

k′) := γγγ( i
k
, j

Kj
) + γγγ( j

Kj
, j

Kj
),

which is forced by (7t), and for each pair of conflicting effective green intervals {(i, k), (j, k′)} ∈ ΨI with

k �∈ Ki and k′ �∈ Kj we have:

γγγ( i
k
, j

k′) := γγγ( i
Ki

, j
Kj

) + γγγ( j
Kj

, j
Kj

)

which is forced by (7s) and (7t). Therefore, all variables γγγ(ε1, ε2) and their associated integers z(ε1, ε2)

are defined unambiguously.

4 Numerical Results

In this section we perform an extensive numerical study. To this end, we use the thirteen real-life

intersections from (Fleuren and Lefeber 2016a). These thirteen intersections are categorized by size:

small (S), medium (M) and large (L). The set of small intersections consists of five intersections with

each only six signal groups. The set of medium intersections consists of four intersections that each

have between 9 and 15 signal groups. The set of large intersections consists of four intersections with

27 to 29 signal groups.

For each of these real-life intersections we consider 36 different optimization problems. For all these

optimization problems we fix the minimum number of effective green intervals Ki, i ∈ S to one, i.e.,

each signal group must have at least one effective green interval. We do however vary the maximum

number of effective green intervals Ki, i ∈ S; we consider three variants: we allow the zero, two or four

signal groups with the largest loads ρSGi := maxq∈Qi
ρq to have an additional effective green interval.

We also distinguish between three objective functions: minimizing the period duration, maximizing

the capacity of the intersection and minimizing the average delay that road users experience at this

intersection. When minimizing the period duration, we consider six different scalings of the arrival

rates λq: 1.00, 1.05, 1.10, 1.15, 1.20 and 1.25. Together with the three different values for Ki, i ∈ S
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this constitutes 18 optimization problems that minimize the period duration. When maximizing the

capacity of the intersection, we vary only the values for Ki, i ∈ S and, therefore, three optimization

problems maximize the capacity of the intersection. The remaining 15 optimization problems mini-

mize the average delay that road users experience at the intersection. For each of these optimization

problems we fix the period duration. Let Tmin be the minimum period duration of any feasible fixed-

time schedule for which each signal group has a single effective green interval; we can obtain Tmin by

minimizing the period duration with Ki and Ki both equal to one for each signal group i ∈ S. We

consider five different period durations, which are all scalings of the minimum period duration Tmin:

1.1Tmin, 1.2Tmin, 1.3Tmin, 1.4Tmin, 1.5Tmin. Together with the three variants for the maximum number

of effective green intervals this constitutes 18 optimization problems for each of the thirteen intersection.

We formulate each of the optimization problems that minimizes the delay as a mixed-integer linear

programming problem. We do so as follows. We approximate the delay dq, q ∈ Q with the (extended

version of the) formula of Van den Broek, see Section 2.4; in Section 2.4 we have extended this formula in

a straightforward manner to allow signal groups to have multiple effective green intervals, i.e., Ki > 1.

Recall that the average delay equals:

D =
∑
i∈S

∑
q∈Qi

wqdq =
∑
i∈S

di,

where di is the contribution of signal group i to the average delay, which equals:

di =
∑
q∈Qi

wqdq.

Since we minimize the average delay that road users experience at the intersection, we take wq pro-

portional to the arrival rate λq, i.e., wq = λq/Λ, where Λ :=
∑

q∈Q λq is the total arrival rate at the

intersection.

We approximate di with piecewise linear functions. We distinguish between two cases: Ki = 1 and

Ki > 1. Consider the case that Ki = 1. We then introduce an auxiliary variable di, which represents di.

Let the period duration be fixed to T seconds. The delay di is then only a function of the design variable

γγγ( i
1
, i

1
). We approximate di by a piecewise linear function. To this end, we include inequalities of

the form: di ≥ aγγγ( i
1
, i

1
) + b. We define this piecewise linear function as follows. Note that each

feasible effective red time γγγ( i
1
, i

1
)T must be included in the following interval:

[
max{ri, T − gi}�, �min{ri, T − g
i
}
] ∩ [0, T − max

q∈Qi

ρqT ).

We obtain the approximated delay for each integral-valued effective red time γγγ( i
1
, i

1
)T that is

included in this interval; we approximate the delay linearly between each two such subsequent points.

When signal group i ∈ S possibly receives multiple effective green intervals, i.e., Ki > 1, then we

break di into Ki + 1 different term, see also Section 2.4:

di = ddeti,1 + . . . + ddet
i,Ki

+ dstochi ,
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where

ddeti,k =
∑
q∈Qi

wqγγγ( i
k
, i

k
)2

2T ′(1 − ρq)
,

dstochi =
∑
q∈Qi

wqd
stoch
q .

We approximate each of these Ki + 1 different terms with its own piecewise linear function. The

deterministic delay term ddeti,k , k = 1, . . . ,Ki is only a function of the design variable γγγ( i
k
, i

k
). We

approximate this deterministic delay term with a piecewise linear function by including an auxiliary

variable ddet
i,k , which represents ddeti,k , in the optimization problem and including linear constraints of the

form: ddet
i,k ≥ aγγγ( i

k
, i

k
) + b. We define this piecewise linear function as follows. Note that each

feasible effective red time γγγ( i
k
, i

k
)T must satisfy the following inequalities:

γγγ( i
k
, i

k
)T ≥ 
max{ri, T −Kigi − (Ki − 1)ri}�,

γγγ( i
k
, i

k
)T ≤ �min{ri, T − k′g

i
− (k′ − 1)ri, T − max

q∈Qi

ρlT − (k′ − 1)ri}
.

where k′ := max{k,Ki}. We obtain the approximated delay for each integral-valued effective red time

γγγ( i
k
, i

k
)T that satisfies the above two inequalities; we approximate the delay linearly between each

two such subsequent points. Furthermore, we include a lower bound of zero on the variable ddet
i,k , which

prevents ddet
i,k from becoming negative when bi,k = 0.

The stochastic delay term dstochi is a function of the total effective red fraction: r′i = γγγ( i
1
, i

1
) +

. . . ,+γγγ( i
Ki

, i
Ki

), see Section 2.4. We define this piecewise linear function as follows. Note that

each feasible total effective red time r′iT must be included in the following interval:

[

max{Kiri, T −Kigi}�, �min{Kiri, T −Kigi}


]
∩ [0, T − max

q∈Qi

ρlT ).

We obtain the approximated delay for each integral-valued total effective red time r′iT that is included

in this interval; we approximate the delay linearly between each two such subsequent points.

In Table 3 and Table 4 we give the results for the test cases that minimize the period duration. In

Table 3 we give the objective values of these test cases, and in Table 4 we give the improvement in the

objective value when we allow several signal groups to have multiple effective green intervals. It appears

that for our test cases, allowing signal groups to have multiple effective green intervals did not decrease

the minimum period duration. An exception is the intersection S4; for this intersection the minimum

period duration decreased (up to) 2.9 percent.

In Table 5 we give the objective values for the test cases that maximize the growth factor of the

arrival rates. Furthermore, in this table we give the improvement in the objective value when we allow

several signal groups to have multiple effective green intervals; again only an improvement (of 1.16

percent) is observed for the intersection S4.

In Table 6 and Table 7 we give the results for the test cases that minimize the average delay that

road users experience. In Table 6 we give the objective values of these test cases, and in Table 4
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we give the improvement in the objective value when we allow several signal groups to have multiple

effective green intervals. When minimizing the delay that road users experience, then a substantial

improvement (of often several percent) can be made by allowing multiple signal groups to have multiple

effective green intervals. Note that the delays are relatively small at the larger period durations (of

for example a period duration that equals 1.5Tmin). For these larger period durations, even smaller

delays can be achieved by allowing several signal groups to have multiple effective green intervals; at

these larger period duration, there may be more freedom to schedule the effective green intervals and,

as a consequence, it may for these larger period durations be easier to fit in additional effective green

intervals in the fixed-time schedule. For this test set we allow at most four of the signal groups with the

largest loads to have multiple effective green intervals. This already results in substantial improvements.

By using either expertise or a trail-and-error approach to determine which signal groups should receive

multiple effective green intervals, an even larger improvement may be possible.

In Table 8 we have shown the computation times for the numerical study. We have obtained these

computation times for three different solvers: CPLEX version 12.6.1.0 (International Business Machines

Corp 2015), GUROBI version 6.0.5 (Gurobi Optimization, Inc. 2015) and SCIP version 3.2.0 (Achterberg

2009). To obtain these computation times, we have solved each optimization problem 10 times and

obtained the average computation times over these 10 runs. The results are obtained on a computer

with specifications: Intel i5-4300U CPU @1.90GHZ with 16.0GB of RAM. These computation times are

increasing in the number of signal groups that is allowed to have an additional effective green interval.

This increase in computation times is especially large when minimizing the period duration with the

solver GUROBI. The solver GUROBI especially had difficulty with the following test case: minimizing

the period duration at intersection L3, when the arrival rates are scaled with a factor 1.2, and four

signal groups are allowed to have an additional effective green interval. For this particular test case

GUROBI was unable to finish the optimization within 30 minutes; we have solved this optimization

problem only once (instead of ten times). For this numerical study, it seems that the solver CPLEX is

best able to handle an increase in the number of additional effective green intervals

5 Conclusions

In this paper we have extended the optimization framework that was proposed in (Fleuren and Lefeber

2016b). This extension allows the optimization over the number of effective green intervals of each signal

groups. First, in Section 2 we have considered the number of effective green intervals of each signal

group to be a fixed and given value. In that section we have formulated an optimization problem to

simultaneously optimize: the period duration of the fixed-time schedule, when each of the effective green

intervals starts, and when these effective green interval end. The proposed optimization formulation

then closely resembles the optimization problem that was proposed in (Fleuren and Lefeber 2016b);

however, in contrast to that paper, we do allow signal groups to have multiple effective green intervals.

Possible objective functions of the optimization framework are: minimizing the period duration of the

fixed-time schedule, maximizing the capacity of the intersection, and minimizing the average delay that

road users experience at the intersection. One of the differences with (Fleuren and Lefeber 2016b) is
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Scaling 1.00 1.05 1.10 1.15 1.20 1.25

Ad. inter. 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4

S1 35.9 35.9 35.9 39.3 39.3 39.3 43.5 43.5 43.5 48.7 48.7 48.7 55.3 55.3 55.3 64.0 64.0 64.0

S2 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.8 30.8 30.8 34.3 34.3 34.3

S3 39.1 39.1 39.1 40.7 40.7 40.7 43.1 43.1 43.1 45.7 45.7 45.7 48.7 48.7 48.7 52.0 52.0 52.0

S4 65.8 65.8 65.8 69.0 69.0 69.0 73.0 73.0 72.0 76.8 76.8 74.6 81.2 81.2 78.8 86.2 86.2 83.7

S5 64.1 64.1 64.1 67.5 67.5 67.5 71.3 71.3 71.3 75.5 75.5 75.5 82.9 82.9 82.9 92.4 92.4 92.4

M1 43.7 43.7 43.7 45.6 45.6 45.6 47.7 47.7 47.7 50.0 50.0 50.0 56.3 56.3 56.3 67.9 67.9 67.9

M2 45.5 45.5 45.5 48.1 48.1 48.1 52.2 52.2 52.2 57.2 57.2 57.2 63.2 63.2 63.2 70.5 70.5 70.5

M3 141.0 141.0 141.0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
M4 80.0 80.0 80.0 85.8 85.8 85.8 92.5 92.5 92.5 100.4 100.4 100.4 109.7 109.7 109.7 ∞ ∞ ∞
L1 74.7 74.7 74.7 78.1 78.1 78.1 81.8 81.8 81.8 86.4 86.4 86.4 ∞ ∞ ∞ ∞ ∞ ∞
L2 83.6 83.6 83.6 89.8 89.8 89.8 97.1 97.1 97.1 105.6 105.6 105.6 115.7 115.7 115.7 ∞ ∞ ∞
L3 74.6 74.6 74.6 80.3 80.3 80.3 84.6 84.6 84.6 92.3 92.3 92.3 103.8 103.8 103.8 118.5 118.5 118.5

L4 71.6 71.6 71.6 74.7 74.7 74.7 80.5 80.5 80.5 89.0 89.0 89.0 99.4 99.4 99.4 112.7 112.7 112.7

Table 3: The objective values for each of the 13 × 6 × 3 test cases in the numerical study that minimizes the

period duration. The first column indicates which intersection is considered, the first row indicates which scaling

of the arrival rates is considered, and the second row indicates how many signal groups are allowed to have

an additional effective green interval (Ad. inter.). When this additional number of effective green intervals

equals k = 0, 2, 4 then the k signal groups with the largest loads are allowed to have an additional effective

green interval; for each of these signal groups, the optimization decides whether this signal group should have

one or two effective green intervals. This table contains infinite values; these infinite values indicate that the

corresponding MILP problems are infeasible.
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scaling 1.00 1.05 1.10 1.15 1.20 1.25

Ad. inter. 2 4 2 4 2 4 2 4 2 4 2 4

S1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

S2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

S3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

S4 0.0% 0.0% 0.0% 0.0% 0.0% -1.3% 0.0% -2.8% 0.0% -2.9% 0.0% -2.9%

S5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

M1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

M2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

M3 0.0% - - - - - - - - - - -

M4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% - -

L1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% - - - -

L2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% - -

L3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

L4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 4: Decrease in the objective values when minimizing the period duration and allowing some signal groups

to have an additional effective green interval; these improvements are defined with respect to the case that each

signal group has only one effective green interval. The first column indicates which intersection is considered,

the first row indicates which scaling of the arrival rates is considered, and the second row indicates how many

signal groups are allowed to have an additional effective green interval (Ad. inter.). If this additional number

of effective green intervals equals k = 2, 4, then the k signal groups with the largest loads are allowed to have an

additional effective green interval; for each of these signal groups, the optimization decides whether this signal

group should have one or two effective green intervals.
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Ad. inter. 0 2 4

S1 1.39 1.39 (0.00%) 1.39 (0.00%)

S2 1.56 1.56 (0.00%) 1.56 (0.00%)

S3 1.66 1.66 (0.00%) 1.66 (0.00%)

S4 1.48 1.48 (0.00%) 1.50 (1.16%)

S5 1.35 1.35 (0.00%) 1.35 (0.00%)

M1 1.35 1.35 (0.00%) 1.35 (0.00%)

M2 1.36 1.36 (0.00%) 1.36 (0.00%)

M3 1.02 1.02 (0.00%) 1.02 (0.00%)

M4 1.25 1.25 (0.00%) 1.25 (0.00%)

L1 1.20 1.20 (0.00%) 1.20 (0.00%)

L2 1.21 1.21 (0.00%) 1.21 (0.00%)

L3 1.25 1.25 (0.00%) 1.25 (0.00%)

L4 1.27 1.27 (0.00%) 1.27 (0.00%)

Table 5: The objective values for each of the 13× 3 test cases in the numerical study that maximizes the growth

factor of the arrival rates that is sustainable. In this table, we also visualize (between brackets) the increase

in the objective value with respect to the case that each signal group has only one effective green interval. The

first column indicates which intersection is considered, and the first row indicates how many signal groups are

allowed to have an additional effective green interval (Ad. inter.). When this additional number of effective

green intervals equals k = 0, 2, 4 then the k signal groups with the largest loads are allowed to have an additional

effective green interval; for each of these signal groups, the optimization decides whether this signal group should

have one or two effective green intervals.

the objective function when minimizing the delay that road users experience at the intersection. In that

paper, we could compute the delay dq that road users experience at a queue q ∈ Q with the formulae

of for example (Miller 1963; van den Broek et al. 2006; Webster 1958). However, all these formulae

assume that a signal group receives only one effective green interval. Therefore, we have extended these

approximations, in a straightforward manner, to allow for multiple effective green intervals.

Subsequently, in Section 3 we have considered the number of effective green intervals of each signal

group to be a design variable and formulated an optimization problem to simultaneously optimize: the

period duration of the fixed-time schedule, the number of effective green intervals of each signal group,

when each of these effective green intervals starts, and when these effective green intervals end. This

optimization formulation uses binary variables to optimize the number of effective green intervals of

each signal group. Each such binary variable is used to switch on (or off) a specific effective green

interval; when this binary equals zero, then this effective green interval (and its preceding effective red

time) is forced to have a duration of zero seconds and, as a consequence, this effective green intervals

then practically does not exist.

Finally, in Section 4 we have performed an extensive numerical case study. For this numerical

study, we have concluded that allowing several signal groups to have multiple effective green intervals

had little (or no) effect when minimizing the period duration and also had little (to no) effect when

maximizing the capacity of the intersection. However, results from the numerical case study indicate

that the average delay that road users experience may substantially decrease by allowing signal groups
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scaling 1.1 1.2 1.3 1.4 1.5

Ad. inter. 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4

S1 22.71 22.71 22.71 17.13 17.13 17.13 15.16 15.16 15.16 14.20 14.20 14.20 13.75 13.75 13.72

S2 14.98 14.98 14.98 14.61 14.61 14.61 14.38 14.38 14.38 14.31 14.31 14.31 14.50 14.50 14.50

S3 47.93 47.93 47.94 31.72 31.72 31.72 26.58 26.58 26.58 24.55 24.55 24.55 23.62 23.62 23.62

S4 37.60 37.60 30.80 27.26 27.26 24.80 24.94 24.94 23.35 24.33 24.33 22.36 24.45 23.74 21.36

S5 44.33 44.33 44.33 34.09 34.09 34.09 31.80 31.80 31.80 30.91 30.91 30.91 30.89 30.89 30.89

M1 34.17 34.17 33.53 25.57 25.57 24.85 23.70 23.70 22.98 22.79 22.79 22.08 22.26 22.26 21.59

M2 41.67 41.67 40.70 29.73 29.73 28.85 26.70 26.70 25.88 25.55 25.55 24.78 25.18 25.18 24.46

M3 86.37 86.37 79.53 64.44 64.44 61.65 58.27 58.27 57.54 57.16 57.16 56.66 58.10 56.38 54.51

M4 47.71 47.71 45.70 36.82 36.82 35.19 33.24 33.24 31.93 31.95 31.95 30.79 31.71 30.38 29.74

L1 40.48 40.48 39.79 38.12 37.90 36.45 38.56 38.27 36.68 39.46 39.17 37.39 40.58 40.12 37.95

L2 61.97 61.97 61.97 50.15 50.15 50.15 48.51 48.51 47.30 48.61 48.61 44.82 49.60 48.09 44.30

L3 37.61 37.61 37.61 33.05 33.05 33.05 32.33 32.33 32.33 32.67 32.40 31.49 33.46 33.09 31.53

L4 32.61 31.74 31.74 29.14 28.19 28.19 28.66 27.62 27.42 29.07 27.96 27.65 29.86 28.68 28.32

Table 6: The objective values for each of the 13×5×3 test cases in the numerical study that minimizes the average

delay that road users experience. For each of these test cases, the period duration is fixed to some scaling (> 1)

of the minimum period duration; the minimum period duration can be found in column 2 of Table 3. The first

column indicates which intersection is considered, the first row indicates which scaling of the minimum period

duration is considered, and the second row indicates how many signal groups are allowed to have an additional

effective green interval (Ad. inter.). When this additional number of effective green intervals equals k = 0, 2, 4

then the k signal groups with the largest loads are allowed to have an additional effective green interval; for each

of these signal groups, the optimization decides whether this signal group should have one or two effective green

intervals.
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scaling 1.1 1.2 1.3 1.4 1.5

Ad. inter. 2 4 2 4 2 4 2 4 2 4

S1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.3%

S2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

S3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

S4 0.0% -18.1% 0.0% -9.0% 0.0% -6.4% 0.0% -8.1% -2.9% -12.7%

S5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

M1 0.0% -1.9% 0.0% -2.8% 0.0% -3.1% 0.0% -3.1% 0.0% -3.0%

M2 0.0% -2.3% 0.0% -3.0% 0.0% -3.1% 0.0% -3.0% 0.0% -2.9%

M3 0.0% -7.9% 0.0% -4.3% 0.0% -1.2% 0.0% -0.9% -2.9% -6.2%

M4 0.0% -4.2% 0.0% -4.4% 0.0% -4.0% 0.0% -3.6% -4.2% -6.2%

L1 0.0% -1.7% -0.6% -4.4% -0.7% -4.9% -0.7% -5.3% -1.1% -6.5%

L2 0.0% 0.0% 0.0% 0.0% 0.0% -2.5% 0.0% -7.8% -3.0% -10.7%

L3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.8% -3.6% -1.1% -5.8%

L4 -2.7% -2.7% -3.3% -3.3% -3.6% -4.3% -3.8% -4.9% -3.9% -5.2%

Table 7: Decrease in the objective values when minimizing the average delay that road users experience and

allowing some signal groups to have an additional effective green interval; these improvements are defined with

respect to the case that each signal group has only one effective green interval. For each of these test cases, the

period duration is fixed to some scaling (> 1) of the minimum period duration; the minimum period duration

can be found in column 2 of Table 3. The first column indicates which intersection is considered, the first row

indicates which scaling of the minimum period duration is considered, and the second row indicates how many

signal groups are allowed to have an additional effective green interval (Ad. inter.). If this additional number

of effective green intervals equals k = 2, 4, then the k signal groups with the largest loads are allowed to have an

additional effective green interval; for each of these signal groups, the optimization decides whether this signal

group should have one or two effective green intervals.
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minT maxβ minD

solver intersections 0 2 4 0 2 4 0 2 4

CPLEX

Small 0.07 0.09 0.10 0.08 0.09 0.14 0.09 0.11 0.25

Medium 0.08 0.12 0.18 0.10 0.14 0.26 0.18 0.38 0.84

Large 0.21 0.43 1.00 0.30 0.33 1.17 0.88 2.80 9.05

GUROBI

Small 0.00 0.01 0.04 0.00 0.01 0.06 0.01 0.02 0.12

Medium 0.02 0.10 0.54 0.02 0.08 0.54 0.07 0.33 1.02

Large 0.24 3.21 32.64 0.24 0.66 1.68 0.93 3.67 15.78

SCIP

Small 0.02 0.04 0.09 0.02 0.07 0.23 0.03 0.11 0.38

Medium 0.06 0.18 0.52 0.10 0.37 1.30 0.19 0.65 2.78

Large 0.60 2.77 10.82 1.07 8.51 30.01 2.96 11.37 67.17

Table 8: The (geometric) average computation times (in seconds) needed by the approach that is proposed in

this paper. We have distinguished between three types of optimization problems (minT , maxβ and minD), three

types of intersections (small, medium and large), and three types of solvers (CPLEX 12.6.1.0, GUROBI 6.0.5.

and SCIP 3.2.0). Furthermore, we have varied the number of signal groups that is allowed to have an additional

effective green interval, see the second row of this table. If the number of signal groups that is allowed to have an

additional effective green interval equals k = 0, 2, 4, then the k signal groups with the largest loads are allowed

to have an additional effective green interval; for each of these signal groups, the optimization decides whether

this signal group should have one or two effective green intervals.

to have multiple effective green intervals. For our test case, this decrease was often several percent.

For these test cases we optimize the number of effective green intervals for at most four signal groups

(which are the four signal groups with the largest loads); each of these signal groups is allowed to have

an additional effective green interval. All other signal groups have a single effective green interval. An

even larger decrease is probably possible when we use either expertise or a trail-and-error approach to

determine which signal groups should receive multiple effective green intervals.

In this paper we have extended the approximate formulae for the delay that road users experience at

a traffic light under fixed-time control, in a straight forward manner, to allow each signal group to have

multiple realizations. We recommend to assess the quality of the proposed extended formulae. In what

situations does this approximation perform very well? Are there situations for which its performance is

insufficient? Perhaps this insight results in a better approximation. Recall however that the proposed

extension has the following desirable properties. First, this approximation is convex in the variables T ′

and γγγ. Second, we can break this extended formula into different terms. Each of these terms depends

only one one design variable (or on a sum of design variables). Hence, we need relatively few piece-wise

linear segments to approximate this formula by using piece-wise linear functions. As a consequence, we

can formulate the minimization of the average weighted delay that road users experience as a mixed-

integer programming problems. We also recommend to experiment with different cycle basis to further

reduce the calculation times. Furthermore, it is possible to extend this optimization framework so that

the lane markings can also be optimized; this is the topic of a paper to come.
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A Proof of Lemma 1

To prove Lemma 1 we first introduce the formal definition of an integral cycle basis. This definition

represents each cycle C with a vector C, which we call the cycle-arc incidence vector. For each arc a ∈ A

we have:

C(a) =

⎧⎪⎪⎨
⎪⎪⎩

+1 if a ∈ C+,

0 if a �∈ C,
−1 if a ∈ C−.

An integral cycle basis is defined as follows:

Definition 8 (Integral cycle basis). An integral cycle basis is a set of cycles {C1, . . . , Cd} such that any

cycle C in G can be written as:

C = α1C1 + . . . + αdCd,

where α1, . . . , αd ∈ Z.

Lemma 1. Let F ′ be a spanning forest of the conflict graph G′ and let F be the spanning forest of

the constraint graph G that is calculated with (2). Define B = {C1, . . . , Cd} to be the SFCB of graph G

that is defined by spanning forest F , and let B′ be the set of cycles that is obtained from B when, for

each arc ( i
k
, j

k′) �∈ F , i < j, we replace the cycle CF (( j
k′ , i

k
)) by the cycle:

C = C+ = {( i
k
, i

k
), ( i

k
, j

k′), ( j
k′ , j

k′), ( j
k′ , i

k
)}.

The set B′ is an integral cycle basis of the constraint graph G that includes all the cycles that are

associated with the circuital constraints (1i) and (1j).

Proof. The SFCB B that is obtained from the spanning forest F includes the cycles that are associated

with the circuital constraint (1i); each arc ( i
Ki

, i
1
) is not included in the spanning forest F and

results in one such cycle. However, this SFCB does not include all of the cycles associated with the

circuital constraint (1j). Consider a conflict {(i, k), (j, k′)} ∈ ΨI and assume w.l.o.g. that i < j.

The cycle that is associated with the circuital constraint (1j) of the conflict {(i, k), (j, k′)} ∈ ΨI is

the cycle C = C+ = {( i
k
, i

k
), ( i

k
, j

k′), ( j
k′ , j

k′), ( j
k′ , i

k
)}. This cycle is included in the

SFCB if and only if ( i
k
, j

k′) ∈ F ; this cycle is then the cycle CF (( j
k′ , i

k
)). Consider a conflict

{(i, k), (j, k′)} ∈ ΨI with i < j for which ( i
k
, j

k′) �∈ F . For each such conflict we replace the

cycle CF (( j
k′ , i

k
)) by the cycle C = C+ = {( i

k
, i

k
), ( i

k
, j

k′), ( j
k′ , j

k′), ( j
k′ , i

k
)}. The

resulting set of cycles B′ includes all the cycles associated with the circuital constraints (1i)–(1j).

Furthermore, this set of cycles is an integral cycle basis; we prove this via induction in the remaining

part of this proof.

Let Bk be a set of cycles that is obtained when we have done the replacement (that is described

above) for k conflicts. We use the induction hypothesis that Bk is an integral cycle basis and prove
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that the set Bk+1 then also is an integral cycle basis. Note that B0 := B is a SFCB. Therefore, B0 is by

definition an integral cycle basis.

The set of cycles Bk+1 can be obtained from a set Bk := {C1, . . . , Cd} by performing one additional

replacement. Let {(i, k), (j, k′)} ∈ ΨI with i < j be the pair of conflicting effective green intervals for

which we perform this additional replacement. For such a conflict it holds that ( i
k
, j

k′) �∈ F . As a

consequence, from the definition of B if follows that CF (( i
k
, j

k′)) ∈ B and CF (( j
k′ , i

k
)) ∈ B. The

previous k−1 replacements did not affect these cycles and, as a consequence, CF (( i
k
, j

k′)) ∈ Bk and

CF (( j
k′ , i

k
)) ∈ Bk. Assume w.l.o.g. that Cd−1 := CF (( i

k
, j

k′)) and that Cd := CF (( j
k′ , i

k
)).

We replace the cycle Cd. From the induction hypothesis it follows that Bk := {C1, . . . , Cd} is an integral

cycle basis. Therefore, for each cycle C in the constraint graph G we can find α ∈ Z
d such that:

C = α1C1 + . . . + αdCd.

The cycles Cd−1 and Cd are visualized in Figure 7. Let C′
d be the cycle that is associated with the

circuital constraint (1i) of the conflict {(i, k), (j, l′)} ∈ ΨI , i.e.,

C′
d := C′+

d = {( i
k
, i

k
), ( i

k
, j

k′), ( j
k′ , j

k′), ( j
k′ , i

k
)}.

Note that the cycle-arc incidence vector of the cycle C′
d satisfies C ′

d := Cd−1 +Cd, see Figure 7; each arc

a ∈ C′
d is used in the forward direction by either the cycle Cd−1 or by the cycle Cd (not both) and each

arc a �∈ C′
d that is used by the cycle Cd−1 (Cd) is used by the cycle Cd (Cd−1) in the opposite direction.

Hence, for each cycle C in graph G we can find α ∈ Z
d such that:

C = α1C1 + . . . + αdCd,

= α1C1 + . . . + αd−2Cd−2 + (αd−1 − αd)Cd−1 + αdC
′
d,

= α′
1C1 + . . . + α′

d−1Cd−1 + α′
dC

′
d,

which implies that we can write each cycle C as an integral combination of the cycles in the set Bk+1;

this implies that Bk+1 is an integral cycle basis and concludes the proof.

B Convexity of the approximation of Van den Broek extended

to multiple realizations.

Define r′i,k := γγγ( i
k−1

, i
k
) and define r′i := r′i,1 + . . . + r′i,Ki

. When the formula of (van den Broek

et al. 2006) is extended, in the straightforward manner that is described in Section 2.4, then we obtain:

dq := dstochq +
∑
k∈Ki

ddetq,k ,
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(a) The path P that connects the vertices i
k

and j
k′

P

i,k

j,j,j,k′

i,k

j,j,j,k′

(b) The path P that connects the vertices i
k

and j
k′

P

i,k

j,j,j,k′

i,k

j,j,j,k′

(c) The path P that connects the vertices i
k

and j
k′

P

i,k

j,j,j,k′

i,k

j,j,j,k′

(d) The path P that connects the vertices i
k

and j
k′

Figure 7: These figures visualize the cycles Cd−1 := CF (( i
k
, j

k′)) and Cd := CF (( j
k′ , i

k
)). The white

(grey) vertex with the text i, k denotes the event i
k
( i

k
). The solid black lines visualize the cycle Cd−1 and

the dotted black line visualizes the cycle Cd. Furthermore, the gray lines visualize the relevant arcs of graph G;

the arcs that are in the spanning forest F are visualized in bold. The path P consists of the arcs in the spanning

forest F that both the cycle Cd−1 and the cycle Cd use (in opposite directions). We visualize four different

situations for this path P.

where

ddetq,k :=
r′2i,k

2T ′(1 − ρq)
,

dstochq :=
r′i

2(1 − ρq)ρq

(
σ2
q

μq(1 − ρq)
+

r′iρ
2
qσ

2
q

μq(1 − r′i)2(1 − r′i − ρq)(1 − ρq)

)
.

First, we prove that ddetq,k is convex in r′i,k and T ′ by proving that its Hessian H and its second derivative

to T ′ is non-negative:

∂2ddetq,k

∂T ′2 =
r′2i,k

T ′3(1 − ρq)
≥ 0,

det(H) = 0.
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The stochastic delay term dstochq is only a function of r′i (not of T ′). Hence, we prove its convexity

by proving that the second derivative to r′i is non-negative. The stability constraint (1d), the strictly

positive effective red times (1c), and circuital constraint (1j) together imply 0 < ρq ≤ 1− r′i < 1. Define

αq such that ρq := αq(1 − r′i), where 0 < αq ≤ 1 we then have:

∂2dstochq

∂r′i
2 =

αqσ
2
q

(
((1 − αq) + r′i)

2
+ 2(1 − αq)

2r′i
)

μq(1 − αq)3(1 − αq + r′i)3(1 − r′i)4
≥ 0.

The convexity of ddetq,k , k ∈ Ki and the convexity of dstochq imply the convexity of dq.

C Queue Emptying and Convexity of the Delay Formula

Consider a signal group i ∈ S and a queue q ∈ Qi that is controlled by signal group i. In Section 2.4 we

split the delay in a deterministic delay term and a stochastic delay term. This deterministic delay term

is associated with a purely deterministic and fluid-like arrival and departure process. In that section we

force queue q to be emptied during each effective green interval for this purely deterministic queueing

process. The resulting approximation is then convex, see Appendix B. In this section we prove that

the delay at queue q is not a convex function of the real-valued design variables when we do not force

that queue to be emptied during each effective green interval for this purely deterministic queueing

process. First, we prove that the deterministic delay term is then not necessarily a convex function.

Subsequently we prove that also the approximation of (van den Broek et al. 2006) extended to multiple

realizations (as we did in Section 2.4) is not convex.

C.1 Convexity of Deterministic Term

We show that the deterministic delay term is not convex by using an example. We consider a queue

q ∈ Qi with a load of ρ = 0.5 and an arrival rate of λ = 0.25.

Consider a fixed-time schedule with a period duration of 150 seconds for which signal group i has

two realizations (Ki = 2). The first effective green interval has a duration of zero seconds, and starts

at 50s. The second effective green interval has a duration of 100 seconds and starts at 50 seconds, see

also Figure 8a. Define the deterministic delay term ddetq as:

ddetq :=

Ki∑
k=1

ddetq,k .

This deterministic delay term can be calculated from the average queue length, which equals (0.5·12.5·100)/150 =
25/6, by applying Little’s law (Chhajed and Lowe 2008); this gives a deterministic delay term ddetq of
100/6 seconds.

Consider the similar fixed-time schedule that is visualized in Figure 8b. Its period duration is again

150 seconds and signal group i again has two realizations (Ki = 2). The first effective green interval

has a duration of 8 seconds, and starts at 42 seconds. The second effective green interval has a duration
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of 92 seconds and starts at 58 seconds. For this fixed-time schedule, the deterministic delay term ddetq

can be calculated to be 1186/75 seconds.

Now take the convex combination of the former two fixed-time schedules (each fifty percent). The

resulting fixed-time schedule has a period duration of 150 seconds. The first realization of signal group

i has a duration of 4 second and starts at 46 seconds. The second effective green interval has a duration

of 96 seconds and starts at 54 seconds. If the deterministic delay term would be a convex function,

then the deterministic delay term that is associated with this fixed-time schedule would be at most

0.5 · 100/6 + 0.5 · 1186/75 = 1218/75. However, similar to the previous two cases we can determine that its

deterministic delay term is larger and equal to 1234/75 seconds, which contradicts convexity.
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time(s)
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(a) Signal group i is effective green during the interval [50, 50] and during the interval [50, 150].
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(b) Signal group i is effective green during the interval [42, 50] and during the interval [58, 150].

Figure 8: A queue length evolution of queue q ∈ Qi for a deterministic and fluid-like queueing process when

λq = 0.25 and μq = 0.5.

C.2 Convexity of the Delay

In Section 2.4 we have extended the approximation of (van den Broek et al. 2006) in a straightforward

manner to the case of multiple realizations. This approximation dq can be split into a deterministic

ddetq term and a stochastic delay term dstochq . In this section we prove that this approximation is not

convex whenever the queue is not forced to be emptied during each realization for the deterministic
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and fluid-like queueing process that is associated with the deterministic delay term. To this end, we

consider the same example as in the previous section. Refer to the fixed-time schedules of Figure 8a and

Figure 8b as fixed-time schedule 1 respectively fixed-time schedule 2. Furthermore, refer to their convex

combination (each 50 percent) as fixed-time schedule 3. Let dkq , d
det,k
q and dstoch,kq be the approximated

delay of queue q, the deterministic delay term of queue q, respectively the stochastic delay term of

queue q for the fixed-time schedule k. We have already showed that:

0.5ddet,1q + 0.5ddet,2q < ddet,3q . (9)

Furthermore, we can prove that the stochastic delay term is the same for these three signal groups, i.e.,

0.5dstoch,1q + 0.5dstoch,2q = dstoch,3q . (10)

The equations (9) and (10) together imply:

0.5d1q + 0.5d2q < d3q,

which proves that the approximation dq is not convex. The equality (10) follows from the following

observation. The fixed-time schedules of Figure 8a and Figure 8b (as well as each convex combination

of these fixed-time schedules) have the same period duration and the same total effective red time. The

stochastic delay term depends only on the total effective red time and (possibly) the period duration of

the fixed-time schedule, which implies (10).
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