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Abstract

This thesis addresses the derivation of a vehicle actuated stabilizing control policy for an isolated
intersection. Isolated intersections can be modelled as switched linear hybrid dynamical systems,
assuming traffic flows and traffic processing rates are constant. State-dependent control of such
a system provides a vehicle actuated control strategy. First a Lyapunov function candidate is
derived for an isolated intersection, based on which control actions are then designed. These
control actions are transformed into a control policy. The derived control policy stabilizes the
system in predetermined, optimal periodic behaviour. This optimal behaviour is computed from
a known, optimal, fixed time schedule of the intersection. The theoretical results are illustrated
by means of case studies.
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Summary

Traffic congestion is a notorious problem nowadays, it contributes to the level of greenhouse gases
and delays road users. Traffic control is studied to a great extent in literature, often these studies
aim to optimize traffic control such that congestion can be decreased.
In urban areas merging and crossing roads are in general equally levelled, which creates an
intersection. Usually, intersections in urban and suburban areas are controlled by traffic signals
to provide safe and orderly crossings. Optimizing this traffic control, by tuning the signal settings
for instance, could decrease the overall average waiting time of vehicles at an intersection.

Two main categories of traffic control strategies are discussed; fixed time control and vehicle
actuated control. In fixed time control a cycle is defined in which all queues are served once. The
setting of each traffic signal, if a traffic light is red or green, are denoted in a so called fixed time
schedule. This fixed time schedule states the red and green periods as function of time in one
cycle.
In vehicle actuated control the intersections signal settings depend on real-time measured traffic
data. The implementation of vehicle actuated control could reduce the overall average waiting
time of vehicles at an intersection, provided that this vehicle actuated control is designed correctly.

The research objective is to derive a control policy for an isolated intersection that steers the
system to predefined optimal periodic behaviour, regardless the initial values of the system.
An intersection can be modelled as a switched linear hybrid dynamical system. This abstraction
is possible assuming that the arrival and process rates at the intersection are known and constant.
In this switched linear hybrid dynamical model of an intersection the system states are described
by continuous linear equations. The switch between different signal settings is described by a
discrete relation, the so called switching rules. Such a switched linear hybrid dynamical system is
used in this thesis to model an intersection.

Frequently, in controller design, a control policy is selected first, of which subsequently the resulting
controlled system behaviour is studied. Thereafter, the control policy is modified if the resulting
controlled system behaviour is undesired. This approach fine tunes policies to improve them, but
it does not pave the way to find new policies that might steer the system states to desired system
behaviour.
In [1] a different approach to find a control policy is proposed, this approach deviates from the
previously discussed frequently practised method of controller design. In [1] the derivation of
a control policy starts by studying the desired steady-state behaviour. A Lyapunov function
candidate is then defined, based on the work in the system. The difference between the mean
work in the system in periodic behaviour and the mean work in the system in optimal periodic
behaviour, is defined as the Lyapunov function candidate. A similar approach is used in this
study, but contrary to the Lyapunov function proposed in [1], the Lyapunov function candidate is
defined in the entire state-space of the system.
To find a general control policy, first a candidate Lyapunov function is derived for example systems
of two sizes. Based on these derivations it is assumed that a Lyapunov function candidate can be
found for systems of all sizes, provided that specific requirements are met. However, the derivation
of a Lyapunov function becomes exhaustive when system dimensions are increased, which makes
explicitly denoting a Lyapunov function to find a control policy infeasible.

The control actions are designed with the aim to create a Lyapunov stable controlled system. To
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obtain Lyapunov stability, the Lyapunov function should be non-increasing over time, equal zero
if the system is in optimal behaviour and exceed zero in all other system behaviour. Therefore,
the control actions are designed such that the Lyapunov function value is non-increasing over time
and equals zero in the desired periodic behaviour.
The control actions are transformed into a control policy, which is a function of the current system
states. This transformation of control actions to control policy is discussed for the example systems
described in this thesis. The resulting control policies of the example systems show similarities,
based on these similarities a general definition is derived. This yields a control policy that can be
implemented for systems of various sizes. The resulting control policy is easy to implement and
can directly be obtained from the given fixed time schedule of the particular intersection.

Finally, the above mentioned conclusions are verified by performing two case studies. To verify
that the control policy can directly be obtained from the given fixed time schedule, modes need
to be defined in this given fixed time schedule. The definition of modes is ambiguous, thus the
specific definition of modes used in this thesis requires an explanation. The case studies illustrate
the methodology to define modes based on a fixed time schedule. With the definition of modes a
control policy is successfully derived for both case studies, based on the measured traffic data and
the fixed time schedule of the intersections.

Although the results are promising and the research objective is met in the example intersections,
the Netherlands is a relatively small country with compact infrastructure. The number of intersections
at which flows are not affected by neighbouring intersections is probably not significant. Consequently,
controlling intersections as if they are equivalent to isolated intersections might result in an
unwanted increase of overall average waiting time. An extension of the policy that makes it
applicable in a network of intersections could prevent the unwanted increase of overall average
waiting time. On that account this extension of the vehicle actuated control policy is suggested
as a topic of future research.
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Chapter 1. Introduction

Traffic congestion is a notorious problem nowadays. Apart from the obvious increase in travel time
for road users, congestion affects the accessibility of the road network [2], it increases environmental
pollution and it reduces safety [3]. The latter is contradicting to the aim of the European Union
(EU) to reduce the number of road fatalities in the EU, [2]. Furthermore, the European Union
2030 climate and energy framework states that the EU should reduce its emissions in 2030 by at
least 40% compared to 1990, [4]. To reduce these emissions alternative fuels are upcoming and the
fuel efficiency of vehicles is improving, an additional measure is to decrease traffic congestion, [2].

Traffic congestion occurs if roads with limited capacity are accessed by a large number of road
users, [3]. To reduce traffic congestion the road capacity needs to be enhanced. There are
various ways to improve road capacity. The most straightforward solution, modifying the road
network, takes many years to plan, build and equip [2], is expensive and can be constrained by
environmental or spatial limitations. Other attempts to decrease traffic congestion are stimulating
public transport or employing road pricing systems in urban areas, [5, 6, 7, 8, 9]. Bottlenecks in
the infrastructure are the main cause of congested roads in urban and suburban areas. Addressing
the bottlenecks of the infrastructure might result in a less expensive and plain solution to increase
the road capacity.

In urban and suburban areas road crossings are in general equally levelled, which creates an
intersection. At a signalized intersection traffic flows are controlled by traffic lights, this enables
road users to move safely and orderly. Traffic control by traffic signals can be used to maximize
intersection capacity and to minimize vehicle delays. The former limitations in the application
of traffic lights are eliminated by progression in electronic technology. Currently, signalized
intersections are a frequently used strategy to control traffic intersections, because of the the
simplicity and reliability of a traffic signal system, [10].

In Section 1.1 previous studies on traffic control are summarized. These studies are conducted at
Eindhoven University of Technology (TU/e) and define the basis of this study. In Section 1.2 the
research objective is explained. The methodology to achieve this research objective is described
in Subsection 1.2.1. The field of application of the theory studied in this thesis is discussed in
Section 1.3, it includes a detailed description of the terminology used. Finally, an outline of the
remainder of this thesis is presented in Section 1.4.

1.1 Previous Work

Previous studies on signalized intersections conducted at the TU/e, [11, 12, 13, 14, 15], primarily
focus on optimizing fixed time control of isolated intersections. Fixed time control is a time-dependent
control method, at each point in time the controller specifies which queue is served. The server
switches between processing different queues, by switching the colours of the traffic signals. In
Section 1.3 the fixed time schedule and corresponding terminology is explained in detail.
The majority of previous studies consider optimizing the fixed time schedule of an isolated intersection,
but there are differences. In [11] the number of vehicles queuing in front of a traffic light is
approximated by deterministic fluid flow, whereas in [12] a stochastic approximation of the fluid
flow is considered to determine the queue. In [14] the start of an ongoing research is shown, a tool
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Chapter 1. Introduction 3

is developed that computes an optimal fixed time schedule for intersections for which the arrival
and process rates are predetermined. Whether a system is optimal, depends on the value of one
or multiple set performance indicators. In [16] the performance of the tool developed from the one
discussed in [14], is compared to the traffic control technology used in practice.

The research on optimizing fixed time control is extended to a network of intersections in [15, 16].
Optimal fixed time control is implemented per intersection with a time shift between the control
of all intersections, to minimize the average waiting time for all vehicles.
Furthermore, optimized fixed time control is used as source to find a traffic controller that depends
on the queues in front of the traffic lights. In [13, 16, 17] control based on an optimal fixed time
schedule of switched single servers with multiple queues is investigated. In [16] a controller is
designed consists of fixed blocks and depends on the queue lengths. The sequence of these fixed
blocks is automatically derived from the fixed time schedule. This sequence defines the order in
which the traffic lights switch signal.

1.2 Research Objective

As summarized in the previous section optimizing the fixed time control of isolated signalized
intersections is studied extensively. Studies on queue dependent control policies are currently less
extensive.
The aim of this study is to start developing a control policy that dynamically controls the traffic at
an intersection, autonomously. The queue lengths at each traffic light should be bounded, so the
system should be stabilized. In the derivation of a fixed time control policy, an optimum periodic
system behaviour is established. This optimal behaviour depends on set performance indicators.
Since the optimal behaviour is predetermined, the desire is to find a controller that stabilizes the
system in this optimal periodic behaviour, regardless the initial values of the number of vehicles
queued. Concluding, the research objective is:

Derive a control policy that steers the system such that it stabilizes in predefined optimal periodic
behaviour, regardless the initial values. The system being an isolated intersection.

The focus is on isolated intersections in this study. It should be noted that in urban and suburban
areas approximating traffic networks in isolated intersections might lead to underestimating the
overall average waiting time at an intersection.

1.2.1 Methodology

Literature on traffic control is studied to gain general knowledge on traffic control. The subject
system of this research, isolated intersections, are modelled as switched linear hybrid dynamical
systems with setup times. Therefore, literature on the topic of hybrid dynamical systems and the
corresponding control methods is studied. One of the approaches suggested in literature is chosen
to derive a control policy for the subject system of this research.

The method used to derive a stabilizing controller requires a Lyapunov function candidate, which
is derived first. Subsequently control actions are designed based on this candidate Lyapunov
function. Finally, the designed controller is transformed into a control policy. This control policy
combines all control actions such that a list in words contains all actions. The derived control
policy is then verified by applying the control policy in case studies.
To ensure the developed method to find a stabilizing control policy holds for systems with
increasing complexity, various system sizes are studied. Starting with a simple system and
increasing the systems size,

• intersection of two directions,
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• intersection of three directions,

• case studies.

1.3 Field of application

The example systems throughout this thesis are signalized intersections. However, the control
theory discussed in this thesis is applicable to different manufacturing systems. This section gives
a clear impression of the field of application suggested in this thesis. The section can be used as
a work of reference when reading the remainder of this thesis.

1
2

8
9

10 12

Figure 1.1: Example of an intersection.

λ1

λ2

λ8

λ9

λ10

λ12

server

Figure 1.2: Figure 1.1 as manufacturing system.

Figure 1.1 shows a schematic representation of an intersection, throughout this thesis an isolated
signalized intersection is modelled as a manufacturing system. An elementary outline of an
intersection as a manufacturing system is a system with one server and multiple buffers. In
Figure 1.2 the intersection of Figure 1.1 is visualized as a manufacturing system. Other topologies
of manufacturing systems can be designed that model the intersection given in Figure 1.1, however
Figure 1.1 is the most intuitive. Figure 1.2 does not exactly match the system in Figure 1.1,
constraints should be listed to complete the manufacturing system model of an intersection. These
constraints depend on the topology of the intersection, and state which buffers can not be served
simultaneously, as is explained below.

A combination of directions at an intersection can be conflicting or non-conflicting. Depending
on the topology of the intersection, one or multiple directions are non-conflicting and can be
served simultaneously. Conflicting directions are directions that need to cross or merge at the
intersection. This creates collision probability if the directions are processed simultaneously. For
instance in Figure 1.1, direction 9 and direction 2 are conflicting flows, they have to cross paths if
served simultaneously. Only non-conflicting directions are allowed to be processed simultaneously
by the server.

1.3.1 Terminology

A direction from which vehicles arrive at traffic light i with equal destination, is referred to as
flow i. A flow equals a combination of an originating, and a destination direction. The different
flows of the example system are schematically represented by numbered arrows in Figure 1.1.
The numbering of flows at an intersection is standard, it starts at the top right of the intersection
at the right turn with number 1. Each possible flow is numbered, even if the flow is not present
at the intersection. For instance in Figure 1.1 no north to south flow exists, thus number 11 is
omitted.
N is a set of natural numbers consisting of all flow numbers, i, in the system. The number of
flows in the system is determined by the amount of elements in N .
The vehicles queued in buffer i at time t, are represented by xi(t), the buffer content. Although
this buffer content is a function of time, it is often shortened to xi to improve the readability of
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the equations.
The items in the buffer are called lots, representing the queued vehicles. Lots of type i arrive at
buffer i with constant arrival rate λi. When buffer i is served, lots are processed at process rate µi
unless buffer i is empty. In case buffer i is served when xi = 0, lots are processed at their arrival
rate, λi.
A mode m is a part of the fixed time schedule cycle in which the combination of processed flows
does not change. If the system is processing a lot type at its arrival rate in mode m this is
called slow mode. A fixed time schedule can contain a slow mode if this results in a lower overall
WIP-level of the system. Work in progress (WIP) is the total number of lots in the system. A
slow mode can lead to a lower overall average steady-state WIP-level, if arrival and service rates
differ significantly per flow.
Work in a buffer is defined as the time it takes to clear the buffer; the number of items in the
buffer xi divided by the process rate. The work in the system, (1.1), equals the sum of the work
in all buffers of the system.

W =
∑
i∈N

xi
µi
. (1.1)

The assumptions that hold for each intersection discussed in this thesis are presented in detail in
Appendix A. Unless explicitly stated otherwise, in this thesis briefly the following assumptions
hold for each intersection:

1. All vehicle routes are predetermined.

2. Arrival rates and process rates are known and constant.

3. Given the fact that an optimal fixed time schedule is given, the system has sufficient capacity
to serve all arriving lots.

The optimum sequence, combination and duration of red and green signals at an intersection is
denoted in a schedule. This schedule is called a fixed time schedule if the schedule is predetermined
and only influenced by the elapsed time. For the intersection in Figure 1.1, with given arrival and
process rates, the optimal fixed time schedule is presented in Figure 1.3. The duration of one
complete sequence of the operation of traffic signals listed in the fixed time schedule, is called the
period or cycle of the fixed time schedule. A period or cycle equals T time units.
In a fixed time schedule the time each flow is processed per cycle is denoted by a grey bar. The
time per period each flow is not served, is denoted by a black bar in the fixed time schedule. The
fixed time schedule contains no amber time, the amber time is approximated as explained in for
instance [11, 14]. The amber time is modelled to be part of either the red time, the green time or
a combination of both. This results in a fixed time schedule that simply lists the effective green
time and effective red time, as shown in Figure 1.3.
Switching from flow p to flow q takes setup time, σp,q. Because of the time it takes to clear the
intersection of vehicles, the clearance time, the setup time is non-negative when flow p and q are
conflicting. In setup of mode B for instance, setup from flow 12 to flow 8, σ12,8 = 2, equals the
setup time of mode B. Although according to Figure 1.1 flow 12 and flow 10 are also conflicting
with flow 2, Figure 1.3 shows that immediately when flow 10 and flow 12 switch to red, flow 2
switches to green. Meaning the setup times from flow 10 to flow 2, and from flow 12 to flow 2 do
not determine the duration of B .

The fixed time schedule contains more information, the server can be in one of three modes, in
setup of, or processing in mode A, B or C. If the server is in setup of mode m this is denoted
as m . Whilst m refers to serving in mode m.
The remaining setup time of the system is denoted as x0. Consequently, x0 = 0 if the system is
processing in mode m. When the system is in m with x0 > 0, the server is setting up to serve
one of the buffers in m .
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Which part of what mode the system is in, and the value of x0, are denoted in the control action
as u0, with u0 ∈ { A , A , B , B , C , C }. Thi u0 is the first term of the control action, the
remaining part of the control action determines at what rate each of the buffers is served. For
instance, the server action of the system presented in Figure 1.1 is denoted by (u0, u1, u2, u8, u9, u10, u12),
meaning the server is in u0 and buffer i is served at rate ui.

12
10
9
8
2
1

0 2 4 8 9 11 14

AB CA B C

time, t

fl
o
w

,
i

Figure 1.3: Fixed time schedule of the system in Figure 1.1.

1.4 Thesis Outline

Chapter 2 discusses two main strategies to control signalized intersections. Signalised intersections
can be classified as a specific class of hybrid dynamical systems, so additionally the chapter
elaborates on switched hybrid dynamical systems. Different methods to find a controller for
switched linear hybrid systems are reviewed. After Chapter 2, this thesis focusses on the application
and extension of one of the control methods reviewed in Chapter 2.
The body of this thesis is organized as follows. Chapter 3 discusses the first step of the method
used to find a control policy for a signalized intersection. It describes how candidate Lyapunov
functions are derived for systems of various sizes. Chapter 4 defines the control actions that
stabilize the system, based on the candidate Lyapunov functions derived in the preceding chapter.
Chapter 5 focusses on the transformation of the control actions into a control policy. Additionally
in this chapter, a method to directly determine a control policy based on the fixed time schedule
is illustrated by case studies.
Finally, in Chapter 6, the research’s conclusions are listed and some interesting achievements are
summarized. The chapter is finished by recommendations to consider in future research.



Chapter 2. Literature Review

The literature review given in this chapter is twofold. The first part presents an overview of
studies on road traffic control. The rapidly increasing number of vehicles, and the importance of
transportation, makes traffic control a research topic of interest. The overview gives an impression
of how traffic control has progressed over decades and a prospect of ongoing and future research.
Section 2.1 focusses on traffic control in urban areas, as this is the field of application of this
thesis’ subject system. Furthermore, in Subsection 2.1.3, data acquisition is discussed briefly, as
data acquisition is of importance for each control strategy.
As stated in Chapter 1, an intersection can be modelled as a switched linear hybrid dynamical
system with setup times, a specific class of hybrid dynamical systems (HDS). Modelling intersections
as switched linear hybrid dynamical systems creates an interest in control strategies for this type
of systems. Hence, hybrid dynamical systems and their controllers are the second topic reviewed
in this chapter. A concise overview of different strategies to control and analyse hybrid dynamical
systems is given in Subsection 2.2.2 and Subsection 2.2.3 respectively.

Whenever the results from the discussed literature is used in the body of this thesis, the content of
that study is summarized, thereby enhancing the self-containment of this thesis. The overview of
literature on both topics is by no means a complete overview of all existing material, it is limited
to references that were found and showed resemblance with this thesis research topic.

2.1 Traffic Control

Although traffic lights were originally invented to guarantee safely and orderly crossing of conflicting
flows, currently traffic lights are mainly used to control traffic in urban areas. As traffic volumes
increased the last decades, it was noticed that traffic control by signalization could lead to
increasingly or decreasingly efficient capacity use, [3]. Thus, there is an optimal control strategy to
be established, a control policy that optimizes the performance according to specified performance
indicators. For instance, a performance indicator could be the overall average time spent by
vehicles at an intersection. The performance of the system can then be analysed by for example,
setting the optimization goal to be the minimum of the performance indicator.

Figure 2.1 illustrates a basic control loop inspired on Figure 1 of [3]. The dashed grey box
represents the intersection. It consists of the traffic signals, these are the control devices of the
system, and the detectors, which act as the systems sensors. The latter provide data input for the
control strategy. With the gathered data, the control strategy computes the optimal traffic signal
setting, based on some pre-determined optimization goal. The efficiency of the overall control
system is mainly determined by the efficiency of the control strategy. Hence, the control strategy
should be chosen wisely. The final components of the control loop are the inputs that can not be
manipulated. Although arrivals can be predictable over a time horizon or even measurable, the
arrivals can not be modified. Incidents or priority vehicles for example, are a source of disturbances
which can naturally not be influenced but do have an effect on the traffic flow.

Different traffic control strategies can be classified as fixed time strategies or as traffic responsive
strategies, according to [3]. For each intersection fixed time strategies could be derived that depend
on the time of day, based on historical traffic data. If real time measurement data is used to

7
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Figure 2.1: Basic control loop of an intersection.

determine traffic light settings, the control method is a type of traffic responsive strategies. This
type of control method is often referred to as vehicle actuated strategies. Subsection 2.1.1 and
Subsection 2.1.2 respectively elaborate on different fixed time strategies and on vehicle actuated
control studies.
Control strategies can be categorized in more detail, in [3] traffic control strategies are classified
as isolated strategies, if the control strategies are applied to a single intersection. If an urban
area network of multiple intersections is controlled, the control strategies are referred to as
coordinated strategies or control of networks of intersections in [15, 16]. The travel time between
intersections and the possible formation of platoons, a group of vehicles that is combined by on of
the preceding intersections, becomes of interest when networks of intersections are controlled, [3,
15, 16]. Networks of intersections are outside the scope of this project and therefore not discussed in
detail in this literature review. However, to determine the applicability of any isolated intersection
strategy, notion of the existence and possible effects of these parameters is of great importance.

If vehicle queues, that are created during the red time of a period time of a signalizing schedule, can
be dissolved during the effective green time of a flow, the traffic conditions are called undersaturated
in literature, [3]. However if vehicle queues, built during the red period of a signalizing cycle, can
not be dissolved in the effective green time of each of the flows, the traffic conditions are called
oversaturated. The majority of the discussed strategies in this section suit undersaturated traffic
conditions, few strategies are applicable to oversaturated traffic conditions.

2.1.1 Fixed Time Strategies

There are different strategies to determine a fixed time schedule (FTS) of isolated intersections.
In [3] these strategies are subdivided in two main categories. The first category contain strategies
that optimize the green time of each flow in every mode, and optimize the overall period T of
the fixed time schedule. The optimization is based on minimizing the delay at an intersection or
maximizing the capacity of an intersection for example. The second category contains strategies
in which apart from optimizing the green times of each flow in every mode, and optimizing the
overall period of the fixed time schedule, the specification of modes is optimized.
The main advantages of fixed time control methods are that no additional hardware or complex
control strategies are required. Fixed time control is easy to implement, especially because it
is based on previously acquired data, instead of depending on real time data measurements.
However, the lack of real time data can also be a disadvantages of fixed time strategies. Fixed
time strategies are based on the simplification that traffic flows are deterministic, in practice
though, traffic flows are not constant at a specific time-of-day, can vary over days and might
be influenced by disturbances. This variation in traffic data could result in outdated optimized
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settings in the fixed time schedule, [3].
In peak hours traffic congestion can be prevented by fixed time control, if the fixed time control
is based on the correct optimized settings. But peak hours are not the only cause of congestion in
urban areas, traffic interference such as accidents or constructions can be a source of congestion.
Additionally, differences in driving velocity can cause traffic congestion, [18, 19]. These sources of
congestion is unaccounted for in fixed time schedules, therefore traffic congestion could be increased
by fixed time control methods. Vehicle actuated control strategies could prevent outdated optimized
settings from occurring. Therefore, vehicle actuated control strategies are potentially more efficient,
if designed correctly, [3].

2.1.2 Vehicle Actuated Strategies

In [3] vehicle actuated control (VAC) methods are referred to as traffic responsive strategies.
Vehicle actuated strategies use real time measurement data, in which the data is collected by
sensors. The detection method and sensors can differ, for more detailed information on different
detection methods see Subsection 2.1.3. Besides the advantages of being vehicle actuated, costly
disadvantages of vehicle actuated control do exist. A vehicle actuated control method requires
installation and maintenance of sensors, which need to be operating properly for the system to
function as designed.

One of the least complex vehicle actuated control methods, as explained in [3], is the vehicle
interval method. This method is applicable to intersections for which two modes can be defined.
For both modes minimum green times are determined, if no vehicle is detected during the minimum
green time of a mode the controller switches to the next mode. If however a vehicle is detected
in the minimum green time a critical interval is set. During this interval each detected vehicle
leads to an extension of the green time. For each vehicle a new critical time is created until the
maximum green time is reached, if no vehicle is detected in the critical interval the controller
switches to the next mode. In [20] an extension to this control method is presented, it takes into
account the traffic flow at directions that are not served in the systems current mode to determine
if the system should switch to the next mode. Every pre-set value, c time units, the controller
determines to either switch to the next mode based on the traffic data of all flows, or postpones
the switch by c time units.

Vehicle actuated traffic control collects real time vehicle arrival data to adjust the traffic signal
setting, however the conventional VAC strategies do not evaluate the performance indicators in
real time, [21]. In [21] a general dynamic programming algorithm is proposed that optimizes one
of the possible performance indicators; total delay time at the isolated intersection, maximum
queue length or total number of stops. An advantage of this method is that optimizing the
performance indicator automatically yields the optimal mode sequencing. The vehicle actuated
control method presented in [22] is a control strategy applicable in oversaturated traffic conditions.
It is a combination of a dynamic control algorithm that determines the traffic light settings, taking
into account the current and projected queue lengths, and a so called disutility function. The
latter measures the system performance by comparing the current performance to pre-set system
performance goals. The system is designed for traffic conditions varying each period, resulting
in a method that generates suitable traffic light settings to respond to priorities and extensively
varying traffic data.
Most classic VAC strategies use classic vehicle detectors at an intersection, detection at a fixed
position. A new traffic control algorithm, based on a vehicle detection method using the technology
of Wireless Sensor Network (WSN), is developed in [23]. The proposed algorithm results in efficient
traffic control regarding the average vehicle waiting time at an isolated intersection. Furthermore
the duration of a mode can be determined exactly as the system states are measured dynamically.
Another traffic control method, that gathers traffic data via a WSN, is described in [24]. The
controller consists of a communication algorithm and a signal manipulation algorithm. The
manipulation algorithm determines the system settings such that the average queue length and
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the average waiting time are minimal. Combined the communication and signal manipulation
algorithm provide an adaptive traffic estimation and dynamic change in the traffic light sequencing
and signal settings. For an isolated intersection the efficiency of the proposed controller is
illustrated by simulation results.
The development of various real time control strategies is enabled by the improvement in sensor
and wireless networks technology, [18]. A traffic control method that results in smooth traffic
flows at intersections, is proposed in [18]. The algorithm computes traffic volumes and the degree
of congestion, by assigning vehicles to the group of each direction at an intersection. The data
needed for this procedure is gathered via vehicle to vehicle communication, by creating Vehicular
Ad-hoc Networks (VANETs). The traffic data acquired using VANETs results in a more accurate
queue length calculation than loop detector methods. The algorithm determines period time, T ,
and the green times for each flow, based on the estimated queue length, thereby creating a real
time traffic control system.

Traffic responsive control methods make it possible to consider priority vehicles in traffic control.
In [25] bus priority is adopted in an adaptive traffic control approach. This approach determines
the duration of a mode and the sequence of modes in a non fixed order. The objective of this
approach is increasing the bus system performance by putting a minor toll on vehicles that are not
prioritized. The difference in optimization approach compared to conventional control strategies is,
rather than optimizing the average waiting time of vehicles, the average waiting time of passengers
is concerned. The method is developed under the assumption that communication techniques are
available to collect real time data.
Prioritized vehicles are also the topic in [26]. In this case it is assumed that WSN is the input
source of the controller. Although very basic, in theory it extends the existing dynamic traffic
control algorithm and thereby effectively controls prioritized vehicles in all possible modes of the
system and even proposes a solution in deadlock condition.
In [27] a model called Signal Priority Procedure for Optimization in Real Time (SPPORT),
is developed and evaluated. The influence of public transport vehicles blocking roads when
boarding or disembarking passengers is taken into account in the model. It quantifies the effects
of prioritizing public transport vehicles on other vehicles. The rule based optimization policy
serves queues and platoons, and copes with prioritized vehicles. It is executed such that the traffic
control is adapting to current traffic conditions. The algorithm results in reduced overall delay for
most traffic conditions, when compared to fixed time and classic vehicle actuated control.

Vehicle Actuated Control in Networks of Intersections

Strategies to control networks of intersections are often affected by adding intersections, the
exponential increase in complexity leads to extended computational demands. A model providing
an accuracy comparable to standard macroscopic models is proposed in [28]. In this model a
linear computational demand is added per intersection and it describes the effect of queues at
nearby intersections. Based on this model a hierarchical control method is presented in [28], it
significantly reduces traffic congestion in urban areas compared to ordinary decentralized control.
Another extension to the traditional fully actuated control is an adaptive control model based
on a Markov decision process, presented in [29]. The model finds an optimal decision for the
controlled Markov process, considering a platoon dispersion model describing the traffic between
intersections in the network. The resulting strategy indicates to be more efficient than the fully
actuated control when traffic flow values are high. The disadvantage of the strategy is the effect
of dimensionality, the dimensions of the model increase rapidly as the number of intersections in
the network increases, affecting the computational velocity.
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2.1.3 Detection Methods

In vehicle actuated traffic control accurate detection of vehicles and acquiring this data is of utmost
importance. Currently inductive loop detectors, the sensors positioned in the road, are widely used
to detect vehicles. The main disadvantage of this detectors type is the hardware, in particular
its costly and inconvenient maintenance [18]. There are various types of detection methods using
different types of sensors, radio frequency identification, the previously mentioned WSN or image
processing units. Wireless Sensor Network technology provides a new vehicle detection method
that can monitor vehicles dynamically, as in [23]. The method provides accurate measurements of
the number of vehicles and measures the speed of vehicles in real time.
In VANET systems the estimation of vehicle density is useful. In [19] a method is presented that
does not require information about the vehicle locations and does not need exchange of information
between vehicles. Therein a different approach to predicting vehicle density that solely depends
on the mobility pattern of vehicles is developed.
Image detection methods are improving continuously, [30] compares two shadow detection approaches.
Image detection algorithms are designed to prevent moving shadows being mistaking for objects
or parts of objects. A shadow detection approach to image processing improves the accuracy of
the object localization by avoiding merging of objects. Video and image processing methods to
compute traffic density are also discussed as a traffic detection method in [31]. A strategy is
presented to use feeds from live video monitoring cameras for real time traffic density calculation.
It has as main feature that the distance among vehicles can be determined more accurately.
Another detection method is radio frequency identification, using this method as a form of traffic
flow detection is proposed in [32]. This method of detection is comparable to the method to detect
vehicles used in highway toll systems.

Finally, in this first part of the literature study, data processing is discussed. Even though it
is technically not a direct detection method, it is important for both fixed time and vehicle
actuated control. Incorrect processing could result in a less efficient traffic control or even incorrect
traffic control parameters. In [33] fundamental relationships are derived. Different expressions are
found for undersaturated traffic conditions, congested traffic conditions and oversaturated traffic
conditions. The relations for the non-congested conditions are functions of the utilization or
the average queue length. The number of delayed vehicles increases over time when the traffic
conditions are congested. So in that case, it is concluded that the average travel time depends on
utilization as well as on the average vehicle queue. Despite the congested traffic conditions traffic
control can improve the average travel time by taking the arrival of vehicles into consideration.
The result from [33] implies that the measured fundamental diagrams from urban traffic flows
can be understood systematically. Furthermore, the existence of this type of studies and the
in [33] discussed prior used expressions and diagrams, emphasizes the importance of correct data
processing for all traffic control systems.

2.2 Hybrid Dynamical Systems

The essence of hybrid dynamical systems (HDS) is captured in the interaction between discrete
and continuous dynamics. In these type of systems there are variables from a continuous set, as
well as variables from a discrete set. This occurs a lot in technological systems where physical
processes are controlled by logic decision makers [34]. The main feature in the representation
and definition of a hybrid system is the interaction between discrete and continuous dynamics
[35]. Hybrid systems are represented in different scientific areas, each with their own approach
on hybrid systems. In control technology a discrete decision part and a continuous system layer
create a hybrid system. Hybrid dynamical systems can be given as a general description of a
system. A specification in a subclass of hybrid systems is required to derive specific system
characteristics, [35]. The specific class of interest in this thesis is switched linear hybrid dynamical
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Tr ≤ Tmax
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Tr ≤ Tmin

Figure 2.2: Simple HDS, model of a room climate regulator (Figure 1.2 in [34])

systems. Linear refers to the fact that, as described in [1, 14, 15], the continuous time plant of
the system is approximated by ordinary differential equations (ODEs) based on a fluid model
approach. Furthermore, the emphasis is on single server systems, there exist only one server in
the system that switches between the buffers and switching takes setup time.

An example of linear hybrid control is a continuous time plant with states described by differential
equations, controlled by a regulator [36]. There are many examples of switched linear hybrid
dynamical systems. One simple, clarifying example often mentioned in literature is the regulation
of temperature in a room [34, 35, 36]. The system is graphically represented in Figure 2.2, the
figure is adopted from [34]. Simplifying the heating system results in a heater controlled by the
thermostat which is either switched on or off, the discrete state the system is in. Thus the system
can be in two modes, mode on or mode off. The evolution of room temperature Tr, is described by
a differential equation depending on this mode. The discrete state q therefore affects the evolution
of the temperature, the continuous state. Switching between the modes, on or off, is controlled
by a controller, a logical device, in this case the thermostat. Hence the system state is hybrid, it
depends on the discrete state q ∈ {on, off} and the continuous state value Tr ∈ R, which results in
the hybrid state (q, Tr). Even though technically q and Tr are functions of the time t, this is often
omitted in denotations to shorten the expressions. This case is an example of state dependent
switching. The value of the temperature Tr combined with pre set conditions, trigger the change
of the discrete state.

2.2.1 Hybrid Dynamic Model of an Intersection

As briefly mentioned in amongst others [1, 13, 14, 15, 37], an intersection can be modelled as a
switched hybrid dynamical system by approximating it using a fluid model. The system receives
incoming items, vehicles, and stores these lots in internal buffers. The server is able to process lots,
by moving the lots from the buffer to the destination at a prescribed process rate. The location
of the server determines which item type is, or what types are, being processed. Changing the
location of the server takes a non negative setup time.

The parameters used throughout this thesis and the framework for the model is adopted from
[1]. Herein it is mentioned how an intersection can be modelled as a hybrid dynamical system.
Basically a switched linear hybrid system is a system that consists of a finite number of all linear
subsystems combined with logical rules that manage switching among the subsystems. Consider
the simplest intersection possible, an intersection where two directions, i ∈ {1, 2}, need to cross
paths. A simple control policy for this intersection is a clearing policy: clear the currently served
buffer and switch to the next buffer. The switched linear hybrid dynamical model is graphically
represented in Figure 2.3, using the same method as for the heating system. To create this graphical
representation the simple control policy is combined with the system dynamics described next.

The system state at time t consists of the buffer content corresponding to direction i = 1 at time
t, the content of buffer i = 2 at time t and the mode the system is in. The system is either in
mode A or B, respectively serving or setting up for direction 1, 2. The final part of the system
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Ẋ (t, B )
x0 = 0
x2 > 0

x1 = 0
x0 = σ1,2 x0 = 0

x2 = 0
x0 = σ2,1

x0 = 0

Figure 2.3: HDS model of a simple two way intersection

state is the remaining setup time x0, which only equals zero if the server is processing items.
The input of the system is a discrete input, it can take a finite number of values. The value of u0
determines the action of the server at the moment, u0 ∈ { A , A , B , B }. The value of ui is the
process rate of direction i, which equals zero if the direction is not served in the current mode. If
the served buffer i is empty, ui equals the arrival rate. The value of ui equals the service rate µi, if
direction i is served and the buffer is not empty. So the discrete event dynamics can be described
by the inputs and:

x0(t) :=

{
σ2,1 if u0 = A and m = B,

σ1,2 if u0 = B and m = A,
(2.1)

m :=

{
A if u0 ∈

{
A , A

}
and m = B,

B if u0 ∈
{
B , B

}
and m = A,

(2.2)

the hybrid dynamical system model of the intersection is completed by adding the continuous
dynamics listed below.

ẋ0(t) =

{
−1 if u0 ∈

{
A , B

}
,

0 if u0 ∈
{
A , B

}
.

(2.3)

Ẋ(t, u0) =

[
ẋ1(t, u0)
ẋ2(t, u0)

]
=



[
λ1 − u1(t)

λ2

]
if u0 = A ,

[
λ1

λ2 − u2(t)

]
if u0 = B ,

[
λ1

λ2

]
if u0 ∈

{
A , B

}
.

(2.4)
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2.2.2 Control of Hybrid Dynamical Systems

There are two different types of switching, the system can switch time-driven or event-driven [13].
A time dependent controller, switches depending on the value of time. In an event-driven switch,
also referred to as state dependent switching, whether a switch occurs depends on the system
state values. The main research question is how to derive a controller for a switched linear hybrid
dynamical system as presented in Figure 1.2. The approach to find a solution differs for each class
of hybrid systems. With differences in the formulation of the control problem, as well as different
approaches to the optimizing and solution method. A variety of literature considering stabilizing
control of switched linear hybrid dynamical systems using Lyapunov arguments and linear matrix
inequalities is available, in this review a sample of this literature is cited.

In [36] two main control policies are proposed. A cyclic control policy, which starts with emptying
the currently served buffer then switches to the next, subsequently empties this buffer, and moves
on to the next buffer, repeating this process cyclically. The second type of strategy is referred to as
clear the largest buffer level policy, it clears the buffer with the largest scaled content and switches
to the next buffer with the largest scaled content. It either starts at the buffer that is served at
t = 0 or it immediately switches to the buffer with the largest scaled content depending on the
specific setting of the strategy. As mentioned in [1, 36] these control methods are not necessarily
stable policies.
A different method of switched linear systems control is mentioned in [34], an approach based
on model predictive control (MPC). Each time the system states are sampled an optimal control
problem is solved repeatedly via numerical optimization. The control problem and optimization
are based on given constraints, weights and the prevailing state values as initial conditions, the
latter are either measured or estimated.
In addition to continuous-time hybrid models, discrete-time hybrid models are examined in literature.
An off-line method to determine optimal control rules for discrete-time linear hybrid systems is the
main result of [38]. Optimal control rules are determined based on the minimization of performance
indicators subject to linear constraints on states and inputs. The focus is on piecewise affine
models in discrete-time, such as discrete-time switching systems where the dynamic behaviour of
the system is described by linear models and logic rules for switching between these models.
Most studies described in literature assume the detection of states and switching signals is instant,
but in real systems detection does not occur instantly. In [39] a design method is given for a
stabilizing state feedback controller of switched linear systems, the method includes time-delay in
detection of switching signals. When the controller is started there is no feedback added to the
system. When the value of the switching signal is received the corresponding feedback is added. If
a change in the signal is detected the state feedback is adjusted accordingly based on the current
state data and the current feedback values. Apart from the in-line state feedback controller that
is designed an off-line version is given as well, meaning all state feedback values can be computed
beforehand.

Based on Phase Dynamical Operators

In [37] and the literature therein it is mentioned that clearing policies and clear a fraction policies do
not necessarily stabilize the subject systems. Often, the proposed policies start as an algorithm and
the resulting system behaviour is studied. This type of control limits optimization to fine tuning
parameters of a predetermined policy. Optimal scheduling of systems with setups is extensively
discussed in literature, however the focus is on open-loop schedules, which do not cope well with
disturbances. Therefore, in [37] a general approach is considered in which an optimal steady-state
periodic behaviour is determined for a fluid queueing network, after which a feedback policy is
designed that over time ensures convergence to the desired periodic behaviour. The designed
feedback controller should result in globally attracting periodic behaviour. Deriving a set of phase
control rules is the main topic of the research. Phase control rules are rules that determine which
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mode the system is in, until when it stays in that mode, and the next mode the system should
switch to. The operator that maps the system states at the beginning of a mode to the system
states at the end of a mode is called the phase dynamical operator. A specific set of properties
are required for the phase dynamical operator, compositions of these phase dynamical operators
inherit the properties. The composition of all phase dynamical operators of the entire cycle
of modes is called the monodromy operator. Because the composition of the phase dynamical
operators inherit the required properties, the properties automatically hold for the monodromy
operator. The required properties are determined such that if they hold for the monodromy
operator, global stability of the desired periodic behaviour is ensured.

Based on the results of [37] a different control policy can be proposed. A policy that creates
phase dynamical operators holding the required properties, thus making the desired steady-state
behaviour globally attractive. In this policy not only the buffer contents of the buffer to clear
per mode are taken into account, but the buffer levels of all other served buffers per mode in the
system are of interest. Based on the desired periodic behaviour, threshold values for the other
served buffers are provided. If the threshold value is reached for a served buffer that does not
need to be cleared during that mode, the buffer is served at the arrival rate. This ensures that the
buffer content remains at the threshold value. For unserved buffers the threshold value determines
whether switching should be postponed for the buffer to receive more items, or if the buffer
content exceeds the threshold value and switching can occur. This policy has a corresponding
monodromy operator that meets all the requirements, which means the system is asymptotically
stable. Although the policy stabilizes the system in the desired steady-state behaviour, the process
rate of traffic cannot be restricted. Vehicles controlled by drivers can only be forced to a certain
extend to approach an intersection at a certain rate. Therefore, this controller is not suitable for
this thesis subject system.

Based on Lyapunov Functions

Often in controller design the system behaviour, as a result of applying a specific control policy, is
studied. If this behaviour is not the desired system behaviour, the policy is changed or adjusted.
The approach of [1] is to start by studying the desired steady-state behaviour, then derive a control
policy based on this desired periodic behaviour. In [1] this approach is successfully performed for
some feasible part of the domain, the feasible part of the domain is not the complete domain.

The example system in [1] contains non zero setup times, hence the steady state of the system is not
a fixed point but a periodic cycle. A solution is searched to the problem of controlling the system
states to equal the desired given optimal periodic cycle. Given this desired periodic cycle and the
system, a controller needs to be designed. The design is based on Lyapunov’s direct method. The
basic idea of Lyapunov’s direct method is that, if a Lyapunov function is continuously decreasing
over time, the system states move towards their equilibrium value. In a mechanical system such a
function is almost always based on a type of energy function, as energy is continuously decreasing
over time when the system moves towards an equilibrium.

To use Lyapunov’s direct method, a candidate Lyapunov function that can be associated with
the system should be found. Apart from being continuously decreasing when moving towards
the equilibrium states, a candidate Lyapunov function should equal zero at the equilibrium value.
Furthermore, for all state values that are unequal to the equilibrium value, the Lyapunov function
value should be larger than zero. As an energy function cannot be computed for a manufacturing
system it is suggested in [1] to take a function with similar properties, namely the additional
amount of mean work in the system in periodic behaviour. Work in this case does not refer to the
amount of items in the system, but the time it takes the server to clear all items. With additional
amount of mean work being the average amount of work in the system in periodic behaviour,
compared to the average amount of work in the system during the desired steady-state behaviour.
The value of the extra mean work in the system equals the minimum mean work in the system
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during periodic behaviour. This minimum mean work in the system depends on the duration of
the first mode when the fixed time schedule is repeatedly executed. The minimum mean work in
the system is achieved when the duration of the first mode is chosen such that, the extra mean
work in the system in periodic behaviour is as low as possible for the starting values. The extra
work is then defined as the difference between the minimum mean work in the system, and mean
work in the system in the optimal periodic behaviour.
The definition of work in the system means the extra work in the system is always larger than
zero unless the states are in the periodic cycle. Whether the function is continuously decreasing
depends on the input of the system. The input can be chosen such that the extra work is always
decreasing. Since the input depends on the current state the resulting controller is a feedback
controller.

The candidate Lyapunov function is only defined for a large subset of the state space. An extension
is needed to design a controller for the complete domain. Finally it is shown that the derived
controller makes the system converge to the periodic cycle. For more details on the approach or
results, the interested reader is referred to [1].

2.2.3 Analysis of Hybrid Dynamical Systems

The most important part in the analysis of hybrid dynamical systems is studying the stability of
the system. An unstable open loop system can be stabilized by adding a feedback control action.
A systematic procedure to derive hybrid feedback stabilization methods does currently not exist.
Thinking of LaSalle’s extension to Lyapunov stability theory; along trajectories the value of the
Lyapunov function should always be non-increasing and an invariant set should exist where the
Lyapunov function value remains constant. When taking this Lyapunov approach the difficulty is
proving that the energy of the system is indeed in all cases non-increasing and that in the end all
energy is dissipated [35].

In [40] a basic systematic approach to stability analysis of a controlled hybrid system is taken.
The transient behaviour of the controlled system can be reviewed by a graphical representation of
the modes. In the modes graph each mode is presented as a circle with the mode labelled in it and
the state values. The arrows between the modes represent possible transitions between modes,
it is a graphical method of representing maps and images. Studying this graph repeatedly one
might conclude that after a while some modes cannot be entered any more ending up with periodic
behaviour, if this periodic behaviour is the desired periodic behaviour the system is converging.

It is known that different switching policies result in different system behaviour, hence different
switching strategies can result in different system performance [41]. If there exist periodic behaviour
that attracts all trajectories the system is called globally periodic [36], in that case the system
is called stabilizable. In case the switched linear system is force free [41] shows that asymptotic
stabilizability, exponential stabilizability and switched convergence are equivalent for switched
linear systems. Furthermore, for a variety of cost indices it is shown in [41] that reaching a finite
optimum for the cost in the infinite-time horizon optimization problem is equivalent to the system
being asymptotically stabilizable.
In theory very fast switching between modes could lead to stabilization of the system, imagine
holding a stick on your finger and trying to balance it. This phenomena, stabilizing by fast
switching is called chattering. Contrary to the before mentioned example, this phenomena is
generally undesired system behaviour. There are different methods to prevent chattering [35],
however these are not discussed in this review. Due to the setup times, the non zero time needed
to switch between modes, chattering is automatically suppressed.
Finally, in [42] an overview of studies on stability of switched linear systems is given. This paper
outlines various switching stabilization methods given in literature. It also reviews the multiple
Lyapunov function theory and the stability analysis based on that. A rather intuitive example of
such a theory is a stabilizable system of which stabilizability is determined based on a multiple
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Lyapunov theory. This is a system is stabilizable if the Lyapunov like function decreases when
the mode this function corresponds to, is active.

From the literature review presented in this chapter, it is concluded that vehicle actuated control
policies are potentially more efficient than fixed time control strategies. However, fixed time
control strategies are applicable in congested situations. An ideal solution would be to have a
control policy that converges to the optimal fixed time control policy over time. Based on the
hybrid dynamical model of an intersection discussed in this chapter, an attempt is made to derive
such a policy in this thesis. In Chapter 3, the method discussed as ’Based on Lyapunov Functions’
is used to derive candidate Lyapunov functions of example intersections.



Chapter 3. Lyapunov Function Candidate

A subsection of Subsection 2.2.2 briefly summarized the approach proposed in [1] to derive a
control policy. The candidate Lyapunov function derived in [1] is defined for a large subset of the
state space. To find a candidate Lyapunov function that covers the entire domain, an adjustment
is made to the candidate Lyapunov function derivation in this chapter. Furthermore, this chapter
indirectly illustrates the complexities when the system dimensions are increased.
Basically a similar approach as mentioned in [1] is used to derive a candidate Lyapunov function.
The derivation of a candidate Lyapunov function is explained by discussing an illustrative example
system for each system. A less intuitive result is the algorithm of finding a candidate Lyapunov
function for a general system of two directions is presented in Appendix C.

In Section 3.1 a candidate Lyapunov function is derived for an example of an intersection of two
directions. In Section 3.2 the dimension of the example system is increased by adding a direction
to the intersection. The derivation of a candidate Lyapunov function for the three direction system
is discussed relatively concisely, since the derivation of a candidate Lyapunov function is similar to
the derivation explained in Section 3.1. However, the derivation is explained in more detail when
the complexity of the derivation grows or significantly deviates from the derivation presented in
Section 3.1. Finally, the observed effects of the increase in system size are discussed.

3.1 Intersection of Two Directions

The system discussed in this section equals the first example system discussed in [1]. The system
can be visualized as a simple intersection of two conflicting flows, as illustrated in Figure 3.1. The
optimal fixed time schedule that corresponds to this system is given in Figure 3.2 and defines
the desired steady-state behaviour. The fixed time schedule is an optimal schedule for the given
arrival and service rates, which equal λ1 = 3, λ2 = 1, µ1 = 8 and µ2 = 9 in this particular example
system.

The total number of flows in the example system equals two, N = {1, 2}. Vehicles corresponding
to direction i = 1 or i = 2 are respectively referred to as type 1 and type 2. Switching from
processing type 1 to processing type 2 requires σ B = 3 time units, whereas switching vice versa
takes σ A = 1 time unit.
The server is in one of two modes, in m = A performing setup or processing type 1, or in m = B
performing setup or processing type 2. Flow 1 and flow 2 are conflicting flows, as illustrated in
Figure 3.1. Hence the server can only serve one type at the time when processing. If the server is
in setup of a mode, it can process neither type 1, nor type 2.

The definition of work in the system, priorly stated in (1.1), is a function of the buffer contents
xi. The optimal work in the system as function of time is computed and illustrated in Figure 3.3.
This figure is used as a reference throughout this section. Notice that during the slow mode of A

the total amount of items in the system increases, as can be seen from t = 4 to t = 5 in Figure 3.3.

It is assumed that the arrival and process rates are constant, and equivalent to the rates for
which the fixed time schedule is designed. If this assumption holds, repeatedly executing the fixed
time schedule stabilizes the system in some periodic behaviour, the proof of which can be found in
Appendix B. The steady-state behaviour obtained by repeatedly executing the fixed time schedule,

18
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i = 1

i = 2

Figure 3.1: Example intersection, N = {1, 2}.
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Figure 3.2: Fixed time schedule, N = {1, 2}.

does not necessarily equal the desired steady-state behaviour. Boundedness of the buffer contents
as a system property is however achieved by executing the fixed time schedule repeatedly.
In Figure 3.4 the desired buffer contents are plotted as function of time, the values are computed
from the fixed time schedule. The buffer contents of Figure 3.4 are illustrated as periodic cycle
in Figure 3.5. These buffer contents in the desired steady-state are referred to as optimal buffer
contents. At the start of setup in a mode or processing in a mode, the values of x1, x2 can

be denoted as xs∗1 , xs∗2 , with s ∈ { A , A , B , B }. For instance, x
A ∗
1 = 15 and x

A ∗
2 = 1, other

values of xs∗1 , xs∗2 can straightforwardly be obtained from Figure 3.5. The plots, and all upcoming
illustrations in this section, are based on example specific values. These values are computed with
data from the fixed time schedule and the system parameters of the illustrative example.

Remark 1. In the remainder of this chapter the periodic cycle determined by the fixed time
schedule is referred to as the optimal periodic cycle or, optimal steady-state behaviour. Although
it might not be the actual optimal periodic behaviour for some performance indicators, it is the
desired steady-state behaviour computed based on the given optimal fixed time schedule. Therefore,
it is stated to be the optimal periodic cycle.

The value of the candidate Lyapunov function V (s, x1, x2), is defined as the minimum mean extra
work in the system in steady-state. Extra work is defined as the difference between mean work in
steady-state obtained when the fixed time schedule is executed repeatedly, and the mean work in
optimal periodic behaviour.
The steady-state used in the derivation of the candidate Lyapunov function is obtained by repeatedly
executing the fixed time schedule. Repeatedly executing the fixed time schedule is an action that
can be performed in several ways. In any derivation of a candidate Lyapunov function in this
thesis the following is meant. The system starts in a given mode, it can either stay in this start-up
mode or switch to the successive mode listed in the fixed time schedule. The time spent in each
mode, subsequent to the start-up mode, is defined in the fixed time schedule and does not depend
on the buffer contents. Except for the start-up mode, the server is obliged to stay in a mode for
the duration of the mode registered in the fixed time schedule.
Furthermore, repeatedly executing the fixed time schedule is performed such that the slow mode
is performed for at least the duration of the slow mode listed in optimal periodic behaviour. The
duration of the slow mode equals the duration of x1 = 0 in A or x2 = 0 in B in Figure 3.4.
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Figure 3.3: Optimal work in the system, N = {1, 2}.
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Figure 3.4: xi in optimal cycle, N = {1, 2}.
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Figure 3.5: Optimal cycle, N = {1, 2}.

The duration of the slow mode is extended in case the minimum duration of the slow mode has
elapsed, whilst the time spent in the entire mode is still unequal to the duration of the mode
denoted in the fixed time schedulee. The maximum duration of the slow mode in m = A or
m = B respectively equals the duration of A , B registered in the fixed time schedule. If the
system is not in (extended) slow mode, the served buffer content xi is processed at rate µi. Thus
the slow mode is required to be executed for at least the duration of the slow mode in optimal
periodic behaviour. This completes the definition of repeatedly executing the fixed time schedule.

When the fixed time schedule is started, the server starts in setup or processing of one of the
systems modes. The start-up mode refers to the system settings when the server is started.
The first time instant the server is switched on, there is no knowledge of the elapsed time. Hence,
the remaining time to spend in the start-up mode is yet to be determined. Therefore, it can be
chosen such that the resulting steady-state contains the least extra work in the system possible.
However, the time spent in start-up mode needs to match the fixed time schedule. For instance,
if the start-up mode is A , the time to stay in that mode can be set to any value between zero
and the duration of A registered in the fixed time schedule. An example is given below to clarify
what is meant by choosing the optimal remaining time in the start-up mode.
Assume the server started in A , with x1 = 15 and x2 = 1, this start is represented by the black
dot and arrow in Figure 3.6. If the remaining time in A is set to four time units, the systems
steady-state is equivalent to the optimal periodic cycle. The black line in Figure 3.6 illustrates
the desired steady-state behaviour with corresponding candidate Lyapunov function value,

V
(
A , 15, 1

)
=
x1 − x A ∗

1

µ1
=

15− 15

8
= 0. (3.1)

If the remaining time in A was set to two time units, executing the fixed time schedule repeatedly
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Figure 3.6: Visualisation of time spent in the start-up mode.
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first yields the grey gradient line in Figure 3.6. This grey gradient line illustrates the transient
behaviour of the system states. The system stabilizes in a periodic cycle represented by the grey
solid line in Figure 3.6. The extra items in buffer 1 determine the extra work in periodic behaviour.
Therefore, the candidate Lyapunov function equals,

V
(
A , 0, 15, 1

)
=
x1 − x A ∗

1

µ1
=

20− 15

8
=

5

8
. (3.2)

This example illustrates the fact that the time spent in start-up mode, influences the candidate
Lyapunov function value. The optimal choice of the time spent in start-up mode is the time that
minimizes the extra work in the system in periodic behaviour. In this particular example, the
optimal choice of the time spent in start-up mode is four time units.
The value of the candidate Lyapunov function is derived in mode A in Subsection 3.1.1 and for
mode B in Subsection 3.1.2, for all values of {x1, x2} ∈ R2

+, with the subscript + referring to the
all non-negative values. The mean extra work in the system in steady-state is derived for the time
spent in start-up mode as explained above.

3.1.1 Mode A, N = {1, 2}

First the candidate Lyapunov function is derived for x1, x2 and a start-up in A . The candidate
Lyapunov function depends on the start values, {x1, x2} ∈ R2

+, different start values result in
different candidate Lyapunov function values. Figure 3.7 is presented to visualize the different
domain parts of the candidate Lyapunov function in A . The boundaries are a result of the
candidate Lyapunov function derivation, and explicitly denoted in (3.3).

D I for x1 ≥ 15, x2 ≥ 1,
D II for x1 ≥ 15, x2 ≤ 1,
D IIIa for 40

37 ≤ x1 ≤ 15, x2 ≥ 5,
D IIIb for x1 ≤ 15, 4− 1

5x1 ≤ x2 ≤ 4 + 37
40x1 ≤ 5,

D IV for x1 ≤ 40
37 , x2 ≥ 5,

DV for x1 ≤ 40
37 , 4 + 37

40x1 ≤ x2 ≤ 5,
DVI for x1 ≤ 15, x2 ≤ 4− 1

5x1.

(3.3)

The derivation of a Lyapunov function candidate is started in D I of A . Studying the work
in Figure 3.3 and varying the duration of the start-up mode results in Figure 3.8. This figure
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Figure 3.7: Domain parts in A .
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visualizes that the duration of the start-up mode that results in minimum mean extra work in
steady-state, is the maximum duration of A . A similar figure is found in [1]. The dashed line in
Figure 3.8 is the result of a non-optimal choice for the time spent in the start-up mode. The black
line represents the result of the optimal value of the time spent in the start-up mode. The grey
line represents the work in the desired periodic behaviour.
Neither x1 nor x2 with start values in D I of A , becomes zero when the fixed time schedule is
executed repeatedly. Which leaves to conclude that the system is immediately in its steady-state.
The mean extra work in steady-state depends on the values of x1 and x2, hence (3.4) states the
Lyapunov function candidate in D I of A .

D I : V
(
A , x1, x2

)
= x1−15

8 + x2−1
9 for x1 ≥ 15, x2 ≥ 1. (3.4)

In D II of A the minimum mean extra work in periodic behaviour is obtained if the time in start-up
mode is set to the duration of A registered in the fixed time schedule. The mean extra work in the
system depends on the excess content of buffer 1, as illustrated in Figure 3.9. The plot in Figure 3.9
starts in x1 = 16 and x2 = 0. The system states progress, illustrated by the grey gradient line,
until it stabilizes in the periodic behaviour, illustrated by the black line in Figure 3.9. This figure
also visualizes that x2 reaches optimal periodic behaviour. Thus, the content of buffer 2 does not
contribute to the extra work in periodic behaviour, and the candidate Lyapunov function in D II

of A equals (3.5).

D II : V
(
A , x1, x2

)
= x1−15

8 for x1 ≥ 15, x2 ≤ 1. (3.5)

The line x2 = 4− 1
5x1 defines the boundary between D IIIb and DVI, as shown in Figure 3.7. DVI

is not a part of the feasible domain in [1], the derivation of [1] is adjusted to derive a Lyapunov
function candidate in the entire domain. DVI consists of two parts, the part where x2 ≥ 1 and
the part where x2 ≤ 1. For both parts it is possible to set the time spent in the start-up mode
such that the resulting steady-state always equals the desired periodic cycle. Both starting values,
x2 ≤ 1 and x2 ≥ 1, result in optimal periodic behaviour as illustrated in Figure 3.10. The black
line in this figure represents the steady-state, the transient behaviour for both starting values is
given in a grey gradient line. For all values of x1, x2 in DVI of A , the steady-state equals the
desired periodic cycle, the corresponding candidate Lyapunov function is (3.6).

DVI : V
(
A , x1, x2

)
= 0 for x1 ≤ 15, x2 ≤ 4− 1

5x1. (3.6)

The yet unexamined part of the domain requires thorough examination. The existence of a slow
mode introduces extra complexity in the derivation of a candidate Lyapunov function in this part
of the domain. Figure 3.3 illustrates that the work in the system increases during slow mode
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Figure 3.8: Work depending on the duration of the start-up mode.
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Figure 3.9: A periodic cycle in D II of A .
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Figure 3.10: A periodic cycle in DVI of A .

of A . Which implies that if the value of x1 becomes small enough, immediately progressing to B

might result in minimum mean extra work in steady-state. The domains D IIIa , D IIIb , D IV and
DV are studied merged as D III. Hereby the domain splits automatically appear in the derivation
of a candidate Lyapunov function.
First the part of D III where x2 ≥ 5 is examined. The candidate Lyapunov function is derived
for cases the system starts and continues in A , the resulting periodic behaviour is illustrated in
Figure 3.11. This figure illustrates that the optimal duration of the start-up mode, equals the time
it takes for x1 to become equal to zero, plus the minimum duration of the slow mode. This results
in the optimal periodic value of x1. Buffer 2 preserves the extra amount of work it contained when
the server started. The candidate Lyapunov function if the system starts and continues in A , is
given in (3.7).
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Figure 3.11: Periodic cycles for A , D III.

Another option in D III with x2 ≥ 5 is that the system starts in A but immediately switches to
B . In that case the duration of the start-up mode equals zero. Because of the fact that x2 ≥ 5
and the time spent in the start-up mode equals zero, the system is in its steady-state from the
start. The value of x1 increases and decreases by 15 items each cycle, so the start value of x1
equals the extra content in buffer 1. If x2 = 5 the content of buffer 2 does not contribute to the
mean extra work in the system, whereas in all other cases x2 does contribute to the value of work
in periodic behaviour. Thus, the candidate Lyapunov function in D III with x2 ≥ 5 equals (3.8),
when the system starts in A and immediately switches to B .
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D IIIa : Vprocess
(
A , x1, x2

)
=

x2−(4− 1
5x1)

9 =
x2+

1
5x1−4
9 for x1 ≤ 15, x2 ≥ 5. (3.7)

Vsetup
(
A , x1, x2

)
= x1

8 + x2−5
9 for x1 ≤ 15, x2 ≥ 5. (3.8)

Equation (3.7) and (3.8) are compared to determine the values of x1, x2 ≥ 5 in D III, for which
immediately switching to setup results in less mean extra work in the system in periodic behaviour.
If x1 ≤ 40

37 switching to mode B results in equal or less mean extra work in steady-state. Which
defines a split in D III with x2 ≥ 5. The part of D III with x1 ≤ 40

37 , x2 ≥ 5 is referred to as D IV.
The part of D III where x1 ≥ 40

37 , x2 ≥ 5 is called D IIIa . The candidate Lyapunov function in D IIIa

and D IV respectively equal (3.9) and (3.10).

D IIIa : V
(
A , x1, x2

)
=

x2+
1
5x1−4
9 for 40

37 ≤ x1 ≤ 15, x2 ≥ 5. (3.9)

D IV : V
(
A , x1, x2

)
= x1

8 −
x2−5

9 for x1 ≤ 40
37 , x2 ≥ 5. (3.10)

Figure 3.7 shows two more domain parts in D III for values that meet x2 ≤ 5. If the system starts
and continues in A the candidate Lyapunov function is equal to the candidate Lyapunov function
in D III with x2 ≥ 5, which yields (3.11). When x2 ≤ 5 in D III and the server immediately switches
to B , optimal periodic behaviour is obtained for x2. The mean extra work in the system in periodic
behaviour is determined by the content of buffer 1, the corresponding candidate Lyapunov function
equals (3.12).
The domain parts D IIIb and DV are defined by comparing (3.11) and (3.12). Based on that
comparison the candidate Lyapunov function of D IIIb and DV are (3.13) and (3.14) respectively.

Vprocess
(
A , x1, x2

)
=

x2+
1
5x1−4
9 for x1 ≤ 15, 4− 1

5x1 ≤ x2 ≤ 5. (3.11)

Vsetup
(
A , x1, x2

)
= x1

8 for x1 ≤ 15, 4− 1
5x1 ≤ x2 ≤ 5. (3.12)

D IIIb : V
(
A , x1, x2

)
=

x2+
1
5x1−4
9 for x1 ≤ 15, 4− 1

5x1 ≤ x2 ≤
37
40x1 + 4 ≤ 5. (3.13)

DV : V
(
A , x1, x2

)
= x1

8 for x1 ≤ 15, 37
40x1 + 4 ≤ x2 ≤ 5. (3.14)

This completes the derivation of a candidate Lyapunov function in case the system starts in A .
The final part of the domain in mode A are the values in A . A different definition is used than
the definition given in [1] if the system starts in setup of mode A. In [1] when the server starts
in setup, it is stated there is only one possible periodic cycle. This definition is adjusted in this
study to reach optimal periodic behaviour, as time efficiently as possible.
The candidate Lyapunov function in setup is set equal to the candidate Lyapunov function value
x0 time units later in A . The values of x1 and x2 are replaced in the candidate Lyapunov function
of A , by their values x0 time units later. During setup both x1 and x2 are not served, thus the
candidate Lyapunov function when the system is in setup of mode A equals (3.15).

V
(
A , x1, x2

)
= V

(
A , x1 + 3x0, x2 + x0

)
. (3.15)

This completes the candidate Lyapunov function for all values of x1, x2 in mode A. A similar
derivation is performed for mode B in the next subsection.
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3.1.2 Mode B, N = {1, 2}

Similar to mode A, the complete domain {x1, x2} ∈ R2
+ is divided in parts. Figure 3.12 visualizes

the different domain parts in mode B. The domain part boundaries are explicitly denoted in
(3.16). The domain parts have equivalent subscripts in mode A and mode B if they have similar
properties in both modes. This notation emphasizes the structure of the candidate Lyapunov
function derivation.
Mode B does not contain a slow mode, which significantly shortens and simplifies the derivation
of a candidate Lyapunov function. D IIIa and D IIIb are merged into D III whilst D IV and DV of
mode A do not have an equivalent in mode B.

D I for x1 ≥ 9, x2 ≥ 8,
D II for x1 ≤ 9, x2 ≥ 8,
D III for x1 ≥ 12− 3

8x2, x2 ≤ 8,
DVI for x1 ≤ 12− 3

8x2, x2 ≤ 8.

(3.16)

The derivation of a candidate Lyapunov function is started in the domain part with the most
straightforward result, D I of B . From Figure 3.3 it is concluded that the mean extra work
in periodic behaviour is minimized, if the duration of the start-up mode equals the maximum
duration of B . Therefore, the candidate Lyapunov function in D I of B equals (3.17).

D I : V
(
B , x1, x2

)
= x1−9

8 + x2−8
9 for x1 ≥ 9, x2 ≥ 8. (3.17)

Figure 3.3 leaves to conclude that in D II of B the mean extra work is minimized if the time in the
start-up mode is set to the maximum duration of B . This is emphasized by the plot in Figure 3.13.
This figure illustrates the transient behaviour to steady-state if the duration of the start-up mode
is zero, which yields Vmax. If the time spent in the start-up mode equals the maximum duration
of B , Vmin is obtained via transient behaviour.
Figure 3.13 illustrates that the value of x1 does not contribute to the extra work in the system
in D II. The candidate Lyapunov function in D II of B equals (3.18), a function of the content of
buffer 2.

D II : V
(
B , x1, x2

)
= x2−8

9 for x1 ≤ 9, x2 ≥ 8. (3.18)

In DVI of B the time in start up mode is set such that a slow mode of B gives x1 = 12 exactly
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Figure 3.12: Domain parts in B .
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Figure 3.14: Periodic cycles in D III, B .

when A starts. Therefore, there is no extra work in the system during steady-state and the
candidate Lyapunov function in DVI of B equals (3.19).

DVI : V
(
B , x1, x2

)
= 0 for x1 ≤ 12− 3

8x2, x2 ≤ 8. (3.19)

The final domain part to study is D III of B . From Figure 3.3 it is concluded that the work is
continuously decreasing when the server is processing x2 at rate µ2. However, when the server
starts processing at rate λ2 when x2 = 0 the derivative of W becomes (3.20). The work in the
system start to increase if the system is in slow mode. Thus the time spent in the start-up mode
should equal the time it takes to empty buffer 2.
Figure 3.14 illustrates the mathematical derivation given in (3.20). In this figure the grey line
represents the resulting periodic behaviour if the time in the start-up mode is set to the duration
of B . The black line shows the resulting periodic behaviour if the server switches immediately
to setup when x2 = 0. The latter clearly results in less mean extra work in steady-state. The
candidate Lyapunov function in D III of B equals (3.21), it is a function of the extra content of
buffer 1.

Ẇ =
3

8
> 0, (3.20)

D III : V
(
B , x1, x2

)
=

x1−(12− 3
8x2)

8 =
x1+

3
8x2−12
8 for x1 ≥ 12− 3

8x2, x2 ≤ 8. (3.21)

In setup an equivalent definition is chosen for the candidate Lyapunov function as was in mode A.
Listing the candidate Lyapunov function during setup in mode B, (3.22), completes the derivation
of a candidate Lyapunov function in the two direction example system. In the upcoming subsection
the derived candidate Lyapunov function for the entire state space is presented at once.

V
(
B , x1, x2

)
= V

(
B , x1 + 3x0, x2 + x0

)
. (3.22)
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3.1.3 Candidate Lyapunov Function, N = {1, 2}

Combining expressions of the candidate Lyapunov function for all domain parts in A , A , B and
B , yields an expression for the candidate Lyapunov function in the entire state-space. Although
the derivation is extensive, a relatively concise expression of V (s, x1, x2), (3.23) is obtained when
the derived equations are combined.
The Lyapunov function candidate given in [1] when the system is processing in the feasible part
of the domain is equivalent to (3.23). The difference between (3.23) and the result of [1], is the
definition of the candidate Lyapunov function in setup. The fact that both results are equivalent
for processing in a mode proves that a generalisation of the approach proposed in [1] is established;
a candidate Lyapunov function is defined in the entire domain.



x1−15
8 + max

(
x2−1

9 , 0
)

for A , x1 ≥ 15,

min
(
x2+

1
5x1−4
9 , x1

8 + x2−5
9

)
for A , x1 ≤ 15, x2 ≥ 5,

min
(
x2+

1
5x1−4
9 , x1

8

)
for A , x1 ≤ 15, 4− 1

5x1 ≤ x2 ≤ 5,

0 for A , x1 ≤ 15, x2 ≤ 4− 1
5x1,

x1+3x0−15
8 + max

(
x2+x0−1

9 , 0
)

for A , x1 ≥ 15− 3x0,

min
(
x2+

8
5x0+

1
5x1−4

9 , x1+3x0

8 + x2+x0−5
9

)
for A , x1 ≤ 15− 3x0, x2 ≥ 5− x0,

min
(
x2+

8
5x0+

1
5x1−4

9 , x1+3x0

8

)
for A , x1 ≤ 15− 3x0, 4− 1

5x1 −
8
5x0 ≤ x2 ≤ 5− x0,

0 for A , x1 ≤ 15− 3x0, x2 ≤ 4− 1
5x1 −

8
5x0,

x2−8
9 + max

(
0, x1−9

8

)
for B , x2 ≥ 8,

max
(

0,
x1+

3
8x2−12
8

)
for B , x2 ≤ 8,

x2+x0−8
9 + max

(
0, x1+3x0−9

8

)
for B , x2 ≥ 8− x0,

max
(

0,
x1+

27
8 x0+

3
8x2−12

8

)
for B , x2 ≤ 8− x0.

(3.23)

3.2 Intersection of Three Directions

An intersection of three directions consists of three flows. Two directions are served simultaneously
in all modes, except when the server is performing setup, then only one direction is served. All
items that arrive in one cycle, are cleared in that cycle. The fixed time schedule of this example
system, Figure 3.15, shows that all flows are conflict free. Therefore, it is possible to serve
all directions simultaneously. Because of that, the fixed time schedule in Figure 3.15 does not
correspond to an actual traffic setting. The system is merely of interest for research purposes.
The results of the derivation of this example system demonstrate the effect on the derivation of a
candidate Lyapunov function when the system size is increased.

3
2
1

0 1 2 3 8 9 10

A A B B C C

time, t

fl
o
w

,
i

Figure 3.15: Fixed time schedule, N = {1, 2, 3}.

In this section two new definitions are used, the primarily and secondary served buffers. The
primarily served buffer of a mode, is the buffer that was already served in the preceding mode



Chapter 3. Lyapunov Function Candidate 28

and needs to be cleared during this mode. The secondary served buffer refers to the buffer that
is served for the first time in the current mode, of which the service is continued in the successive
mode. As can be concluded from Figure 3.15, one buffer per mode is not defined yet. The buffer
that is not served in a mode is referred to as the unserved buffer of that mode. During A , B ,
C , the lots in the primarily and secondary served buffers are processed. In setup of a mode,
u0 ∈ { A , B , C } the system is in setup to process respectively x1, x2, x3. Processing the content
of the primarily served buffer of the mode is continued in setup.

An extension is needed to the definition of slow mode used in the intersection of two directions,
to make the definition of slow mode unambiguous in the intersection of three directions. In the
two flow example system slow mode was defined as the served buffer of the mode m being served
at its arrival rate. In this example system multiple buffers are served during a mode. Either
the primarily served buffer, the secondary served buffer, or both buffers can be in slow mode.
Therefore, slow mode is specified as a slow mode of buffer i of mode m. Herein i equals the flow
served at its arrival rate and m represents the mode the system is in.

To shorten the expressions of the candidate Lyapunov function in this section, the equations omit
V (s, x1, x2, x3) =, with s ∈ { A , A , B , B , C , C }. However, the symbols corresponding to the
parts of the domain are listed prior to the equation of the candidate Lyapunov function in each
part of the domain, this emphasizes the similarities within modes and between the two flow system
and the three flow system. The candidate Lyapunov function described in this section, is derived
according to the method explained in detail for the two flow system. Domain parts in which
the candidate Lyapunov function derivation is not extended, or did not become more complex
compared to the intersection of two directions, are not discussed in this section as they do not
provide more insight. The derivation of the candidate Lyapunov function in the complete domain
is found in Appendix E.

The system parameters and the fixed time schedule are designed such that each mode contains a
slow mode of the primarily served buffer. Although it is not a necessary condition it is possible
that the secondary served buffer is cleared during a mode.
The arrival rates are assumed to be constant and known; λ1 = 1, λ2 = 2 and λ3 = 1. As are the
process rates; µ1 = 2, µ2 = 3 and µ3 = 4. In Table 3.1, the buffer contents are listed at each
time instant the service rate values change, during optimal periodic behaviour. These values are
important in the candidate Lyapunov function derivation. The stars indicate that these values are
the optimal buffer content at the start of setup, or start of processing in a mode.

Figure 3.16 is a graphical representation of the work in the system in optimal periodic behaviour
as function of time. Although it is not the case in this example system, it is a possibility that the
work in the system decreases during setup since the server continues processing one of the buffers
in setup.

Table 3.1: Buffer contents in optimal behaviour.

t (x1,x2,x3)
t A

∗ 0 (2, 0, 4)
t A

∗ 1 (3, 2, 1)
t A

∗
0

4
3

(
8
3 ,

8
3 , 0
)

t B
∗ 2 (2, 4, 0)

t B
∗ 3 (1, 6, 1)

t B
∗
0

4 (0, 5, 2)

t C
∗ 8 (0, 1, 6)

t C
∗ 9 (1, 0, 7)

t C
∗
0

10 (2, 0, 4)
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Figure 3.16: Optimal work in the system, N = {1, 2, 3}.

3.2.1 Mode A, N = {1, 2, 3}

The start values of the buffer contents can be in the complete domain, which in an intersection
with three directions equals {x1, x2, x3} ∈ R3

+. Based on the results of the previously discussed
example it can be concluded that the candidate Lyapunov function differs depending on the values
of x1, x2 and x3. The differences in the candidate Lyapunov function result in domain partitioning.

In D I and D II the derivation is not extended. The first part of the domain in which the analogy
with the two direction system requires additional explanation is D III. In the two flow example
system the candidate Lyapunov function in D III, D IV, DV, depended on the optimal time to spent
in the start-up mode. Only one buffer was served in each mode in the two flow example system,
so the optimal time spent in the start-up mode was the time needed to clear the served buffer.
In the intersection of three directions, during each mode two buffers are served instead of one,
this results in another subdivision of domain parts. For instance during A , it is not only possible
for x1 to be less than the optimal value, but x3 ≤ 1 is a possibility as well. The duration of
the start-up mode depends on x1 − 1 or x3, based on which buffer content becomes its respective
optimal value in the least amount of time. The buffer content that the time spent in the start-up
mode is based on, is denoted in the subscript of the part of the domain.
In the intersection of two directions the extra content of the unserved buffer in D III, D IV and DV,
was a function of the distance between the content in the unserved buffer and the boundary line
that described the correlation between the served and unserved buffer. The general approach to
derive a correlation between the buffer contents during m , is found in Appendix D. Implementing

Appendix D in A , results in the three flow equivalent of the boundary between the unserved and
served buffers.

As in the two direction system, the correlation between the unserved and served buffers determine
the boundary between created the boundary between D III and DVI. In the latter part of the
domain the candidate Lyapunov function value equals zero, however the domain boundaries depend
on which buffer content the time spent in the start-up mode is based. If x1 defines the duration
of the start-up mode, Appendix D yields 3x1 ≥ x3 + 8, 2x1 + x2 ≤ 8 with x1 ≤ 3 and x3 ≤ 1.
Hence, the candidate Lyapunov function in DVI

1 , (3.24). If x3 determines the remaining time in
the start-up mode, Appendix D gives 3x1 ≤ x3 + 8, 3x2 + 2x3 ≤ 8 should hold, with x1 ≤ 3,
x3 ≤ 1, the candidate Lyapunov function in DVI

3 equals (3.25).

DVI
1 : 0 for A , 8

3 ≤ x1 ≤ 3, x2 ≤ 8− 2x1, x3 ≤ 3x1 − 8 ≤ 1. (3.24)

DVI
3 : 0 for A , 8

3 ≤ x1 ≤ 3, x2 ≤ 8
3 −

2
3x3, 3x1 − 8 ≤ x3 ≤ 1. (3.25)

When x1 ≤ 3 and x3 ≥ 1 in the three flow equivalent of D III in the two direction system, the value
of x2 should exceed the boundary created by the correlation between x1 and x2, 2x1 + x2 ≥ 8.
Since x1 ≤ 3, buffer 1 stabilizes in the desired optimal periodic behaviour, x2 and x3 contribute
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to the extra work in the system. The time spent in the start-up mode is based on the value of
x1, yielding the candidate Lyapunov function in D III

1 , (3.26). With Appendix D the boundaries
can be computed for the parts of the domain D III where either x1 is less than its optimal value,
x3 is less than its optimal value, or both. If both the content buffer 1 and buffer 3 are less than
the optimal value, the start-up mode duration can depend on x1 or x3, the buffer content that is
defining is listed first in the subscript of the domain part. This completes the candidate Lyapunov
function in D III, (3.26) to (3.29).

D III
1 : x2−8+2x1

3 + x3−1
4 for A , 8

3 ≤ x1 ≤ 3, x2 ≥ 8− 2x1, x3 ≥ 1. (3.26)

D III
3 : x1−3

2 +
x2− 8

3+
2
3x3

3 for A , x1 ≥ 3, x2 ≥ 8
3 −

2
3x3, x3 ≤ 1. (3.27)

D III
1,3 : x2−8+2x1

3 + x3+8−3x1

4 for A , 8
3 ≤ x1 ≤ 3, x2 ≥ 8− 2x1, 3x1 − 8 ≤ x3 ≤ 1.

(3.28)

D III
3,1 :

x1− 8
3−

1
3x3

2 +
x2− 8

3+
2
3x3

3 for A , 8
3 + 1

3x3 ≤ x1 ≤ 3, x2 ≥ 8
3 −

2
3x3, x3 ≤ 1.

(3.29)

The split presented above is based on which buffer content defines the remaining time in the
start-up mode, it structures the method to derive a candidate Lyapunov function but a review of
the results is required. If x1 = 3 and x3 > 0, the work in the system decreases when the server
continues in the start-up mode. The server switches if the time spent in the mode equals the
maximum duration of A . This gives a correction for the candidate Lyapunov function in D III

1

and D III
1,3. Because x1 does not terminate the start-up mode, (3.26), (3.28) become respectively

(3.30) and (3.31).

D III
1 : x2−2

3 + x3−1
4 for A , 8

3 ≤ x1 ≤ 3, x2 ≥ 8− 2x1, x3 ≥ 1. (3.30)

D III
1,3 :

x2− 8
3+

2
3x3

3 for A , 8
3 ≤ x1 ≤ 3, x2 ≥ 8

3 −
2
3x3, 3x1 − 8 ≤ x3 ≤ 1. (3.31)

The work in the system increases during the slow mode of buffer 3 in A , see Figure 3.16. If
the value of x1 becomes small enough, immediate switching to B instead of starting in A could
minimize the mean extra work in the system during periodic behaviour, as explained in the
derivation of the candidate Lyapunov function of the intersection of two directions. Therefore,
an additional review of the results of the candidate Lyapunov function in D III is required. A
similar review to the one performed in the derivation of the candidate Lyapunov function of the
intersection of two directions that lead to the existence of D IV.
In the domain parts D III

1 , D III
3 , D III

1,3 and D III
1,3 the candidate Lyapunov function value is determined

if the server immediately switches to setup. For instance in D III
1 , switching to setup of the

subsequent mode, the content of x3 contributes to the mean extra work of buffer 3. If x1 ≤ 2
and x2 ≤ 4, the buffer contents of buffer 1 and buffer 2 do not contribute to the mean extra
work in the system during periodic behaviour. The candidate Lyapunov function in case the
system immediately switches to B in D III

1 is (3.32). To determine if immediately switching to
setup minimizes the mean extra work in the system, (3.26) is compared to (3.32). This further
subdivides the domain, the candidate Lyapunov function in D III

1 is described by (3.33) to (3.37).
This review between switching to setup and continuing in the current mode is performed for the
remainder of D III. In D III

3 immediately switching to mode B never results in less mean extra
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work in the system during periodic behaviour, thus the candidate Lyapunov function is correctly
given in (3.27). Similar to D III

1 , D III
1,3 is divided in multiple parts, which subdivides the candidate

Lyapunov function in multiple expressions for this part of the domain. Finally, in D III
3,1 immediately

switching to mode B results in less mean extra work in the system during periodic behaviour for
some system values. Hence, D III

3,1 is divided in several parts, with a corresponding split in the
candidate Lyapunov function.

D III
1,setup : max

(
0, x1−2

2

)
+ max

(
0, x2−4

3

)
+ x3

4 for A , x1 ≤ 3, x2 ≥ 8− 2x1,
3x1 − 8 ≤ x3 ≥ 1.

(3.32)

D IIIa
1 : x2−2

3 + x3−1
4 for A , 17

6 ≤ x1 ≤ 3, x2 ≥ 8− 2x1 ≥ 4, 3x3 ≥ 1. (3.33)

D IIIb
1 : x2−2

3 + x3−1
4 for A , 2 ≤ x1 ≤ 3, x2 ≤ 3

2x1 + 1
4 , x2 ≤ 4, x3 ≥ 1. (3.34)

D IVa
1 : x1−2

2 + x2−4
3 + x3

4 for A , 2 ≤ x1 ≤ 17
6 , x2 ≥ 8− 2x1 ≥ 4, x2 ≤ 4, x3 ≥ 1.

(3.35)

D IVb
1 : x2−4

3 + x3

4 for A , x1 ≤ 2, x2 ≥ 8− 2x1 ≥ 4, x2 ≤ 4, x3 ≥ 1. (3.36)

DV
1 : x1−2

2 + x3

4 for A , 2 ≤ x1 ≤ 3, 3
2x1 + 1

4 ≤ x2 ≤ 4, x2 ≤ 4, x3 ≥ 1. (3.37)

3.2.2 Mode B, N = {1, 2, 3}

Although B contains a slow mode, the work in the system decreases when buffer 1 is in slow
mode, see Figure 3.16. When the server starts in mode B, immediately switching in the start-up
mode to mode C, does not decrease the mean extra work in the system in periodic behaviour.
Thus in mode B the three flow equivalent of D III, is not divided in D IIIa , D IIIb , D IV and DV.
This subsection discusses the derivation of the candidate Lyapunov function in mode B in D III,
as the derivation is not straightforward in this part of the domain.

In D III with x1 ≤ 1 and x2 ≥ 6, x3 needs to exceed the boundary created by the correlation
between buffer 1 and buffer 3, particularly x3 ≥ 2 − x1. Buffer 1 shows the desired behaviour
when in steady-state since x1 ≤ 1. The value of the excess content of x2 and x3, depends on the
time spent in the start-up mode. Thus the candidate Lyapunov function in D III

1 equals (3.38).
If the value of x2 defines the duration of the start-up mode, x1 ≥ 1 and x2 ≤ 6, the boundary
that determines the extra content regarding the optimal periodic behaviour in buffer 3 becomes
x3 ≥ 7 − x2. This results in mean extra work in the system during periodic behaviour in D III

2

equal to (3.39).

When buffer 1 and buffer 2 contain less than their respective optimal values, and x1 determines
the duration of the start-up mode, both x3 ≥ 2 − x1 and x1 ≤ x2 − 5 hold. The extra content
of buffer 2 and buffer 3 depend on the duration of the start-up mode and candidate Lyapunov
function equals (3.40). However, when the content of buffer 2 determines the duration of the
start-up mode, with Appendix D it is concluded that x2 ≤ x1 + 5 ≤ 6 and x3 ≥ 7 − x2. The
candidate Lyapunov function in D III

2,1 then equals (3.41).

D III
1 : x2−6

3 + x3+x1−2
4 for B x1 ≤ 1, x2 ≥ 6, x3 ≥ 2− x1. (3.38)
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D III
2 : x1−1

2 + x3+x2−7
4 for B x1 ≥ 1, x2 ≤ 6, x3 ≥ 7− x2. (3.39)

D III
1,2 : x2−x1−5

3 + x3+x1−2
4 for B x1 ≤ 1, x1 + 5 ≤ x2 ≤ 6, x3 ≥ 2− x1. (3.40)

D III
2,1 : x1−x2+5

2 + x3+x2−7
4 for B x1 ≤ 1, x2 ≤ x1 + 5 ≤ 6, x3 ≥ 7− x2. (3.41)

Starting the derivation of the candidate Lyapunov function in D III with subdividing the domain
based on which buffer content defines the duration of the start-up mode, structures the derivation.
Structuring is useful when the system size is extended. However, the results need to be reviewed
to determine if the derived function is complete and correct.
From Figure 3.16 it can be concluded that if x1 = 0 and x2 > 0, the work is continuously
decreasing, so the system should continue processing if the time spent in the start-up mode is less
than the maximum duration of B stated in the fixed time schedule. If x2 = 6 and x1 > 0 and
the system continues in B , the derivative of work in the system equals (3.42) which proves the
work in the system is decreasing. The mean extra work in the system in periodic behaviour is
minimized when the server continues in B as long as possible and the value of x2 never defines
the end of mode B. A correction is needed in D III

2 and D III
2,1, the candidate Lyapunov function

respectively becomes (3.43) and (3.44).

Ẇ =
λ1 − µ1

µ1
+
λ2 − µ2

µ2
+
λ3
µ3

=
−1

2
+
−1

3
+

1

4
< 0, (3.42)

D III
2 : x1−1

2 + x3−1
4 for B x1 ≥ 1, x2 ≤ 6, x3 ≥ 7− x2. (3.43)

D III
2,1 : x3+x1−2

4 for B x1 ≤ 1, x2 ≤ 6, x3 ≥ 2− x1. (3.44)

3.2.3 Mode C, N = {1, 2, 3}

At t = 9 in the fixed time schedule the slow mode of buffer 2 in mode C starts. Figure 3.16
illustrates that the work in the system decreases when the system is in slow mode of buffer 2.
Furthermore, the properties of mode C are slightly different than the properties of mode A and
B. In mode C the primarily served buffer is cleared during C instead of during C .
Because the buffer contents are positive by definition, the boundaries of different domain parts
are different compared to the boundaries in mode A and mode B, x2 ≤ 0 becomes x2 = 0.
Even though mode C has different properties, the derivation of a candidate Lyapunov function
is performed in a similar structure as used for mode A and B. The successful derivation of the
candidate Lyapunov function of mode C, implies that the definition of mean extra work in the
system to derive a candidate Lyapunov function discussed in this chapter is applicable to systems
with mode properties equivalent to the properties of mode C. In addition to the candidate
Lyapunov function derivation of D III, in this subsection the derivation of the candidate Lyapunov
function in DVI is discussed. Because there is a difference compared to the candidate Lyapunov
function derivation in DVI of mode A and B. This difference arises due to the non existence of
the boundary x2 ≤ 0.

In DVI the content of both served buffers are x2 = 0 and x3 ≤ 7, the value of x1 is less than the
correlation that determines the boundary between DVI and D III. Mode A and mode B showed
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two options in this part, in mode C the same strategy is used. When the x2 defines the remaining
time in the start-up mode C , the result of Appendix D is 3x2 ≤ x3 − 7 otherwise the value of x3
would determine the duration of the mode. If x3 determines the duration of the start-up mode,
then x3 ≤ 3x2 + 7 ≤ 7, x2 = 0 and 3x1 ≤ 10− x3. Since the only possible value of x2 is zero both
options result in the same part of the domain and an equal candidate Lyapunov function, (3.45).
There is no correction needed in this part of the domain, as mentioned at the start of this subsection
when x2 = 0 the work is still decreasing.

DVI : 0 for C , x1 ≤ 1, x2 = 0, x3 = 7. (3.45)

Starting the derivation of D III for values of x2 and x3 that fulfil x2 ≤ 0 and x3 ≥ 7. In case
x1 ≥ 1−x2 the content of buffer 2 is optimal. The mean extra work in the system during periodic
behaviour depends on x1 and x3, the candidate Lyapunov function in D III

2 equals (3.46). When
the content of buffer 3 determines the time spent in the start-up mode, x2 ≥ 0, x3 ≤ 7 and
3x1 ≥ 10− x3, the candidate Lyapunov function equals 3.47.
If both x2 and x3 are less than their respective optimal values, x2 ≤ 0 and x3 ≤ 7, the duration
of the start-up mode can be defined by either x2 or x3. When the value of x2 defines the duration
of the start-up mode, both 3x2 ≤ x3 − 7 and x1 ≥ 1 should hold. Because x2 = 0 the value of x3
should fulfil 7 ≤ x3 ≤ 7 and becomes x3 = 7 which yields the the candidate Lyapunov function in
D III

2,3, (3.48). If the content of buffer 3 determines the time spent in the start-up mode, x3 ≤ 3x2+7

and x1 ≥ 10
3 −

1
3x3 should hold, the candidate Lyapunov function in D III

3,2 equals (3.49).

D III
2 : x1−1

2 + x3−7
4 for C , x1 ≥ 1, x2 = 0, x3 ≥ 7. (3.46)

D III
3 :

x1+
1
3x3− 10

3

2 + x2

3 for C , x1 ≥ 10
3 −

1
3x3, x2 ≥ 0, x3 ≤ 7. (3.47)

D III
2,3 : x1−1

2 + x3−7
4 for C , x1 ≥ 1, x2 = 0, x3 = 7. (3.48)

D III
3,2 :

x1+
1
3x3− 10

3

2 for C , x1 ≥ 1, x2 = 0, x3 ≤ 7. (3.49)

The previously discussed subdivision in parts of D III is based on the buffer content that defines
the time spent in the start-up mode. A correction might be necessary if the work in the system is
increasing when either of the served buffers reaches its optimal value. Figure 3.16 illustrates that
the work in the system is decreasing when x2 = 0 and x3 > 0. In (3.50) the derivative of the work
in the system is presented for x2 > 0 and x3 = 7. This shows the work in the system is decreasing
when x2 > 0 and x3 = 7, so the content of buffer 3 never defines the end of the start-up mode.
The corrected candidate Lyapunov function in D III

3 and D III
3,2 is respectively given in (3.51) and

(3.52).
Directly switching to setup never minimizes the mean extra work in the system, as the work in
the system is decreasing in slow mode of buffer 2 and in slow mode of buffer 3. Hence, the domain
parts D IV and DV do not exist in mode C.

Ẇ =
λ1
µ1

+
− (µ2 − λ2)

µ2
+
− (µ3 − λ3)

µ3
=

1

2
+
−1

3
+
−3

4
< 0. (3.50)

D III
3 : x1−1

2 + x2

3 for C , x1 ≥ 1, x2 ≥ 0, x3 ≤ 7. (3.51)

D III
3,2 : x1−1

2 for C , x1 ≥ 1, x2 = 0, x3 ≤ 7. (3.52)
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3.2.4 Candidate Lyapunov Function, N = {1, 2, 3}

The setup of all modes is the final part of the complete domain of the three flow example system.
In case the server starts in setup, the definition equals the definition given in the example of an
intersection of two directions. The value of the mean extra work in the system during periodic
behaviour when the server starts in A , B or C , equals the value of V (s, x1, x2, x3) in respectively
A , B , C x0 time units later. The functions of x1, x2, x3 at x0 time units later, are listed in
Table 3.2. The functions are more complicated than the functions of x1, x2 in the two flow system,
because in the three direction system one buffer is served during setup, and the buffer contents
are by definition non-negative.

This completes the derivation of the candidate Lyapunov function in the complete domain of
the three flow example system. Combining the equations for different parts of the domain if
possible yields a simplified expression of the candidate Lyapunov function V (s, x1, x2, x3), (3.53).
The candidate Lyapunov function in setup of all modes is not denoted explicitly, to shorten the
expression.
The number of equations and the complexity of the equations to derive (3.53), show the effect
of adding one flow and one mode to the intersection of two directions. Comparing the candidate
Lyapunov function derivation discussed in this section, to the example presented in the previous
section, leaves to conclude that adding an extra mode to the system does not have a significant
effect. Apart from needing to examine one more mode needs to derive a candidate Lyapunov
function.
On the contrary, changing the composition of the mode, by for instance adding an extra direction
that is served in a mode, makes the derivation more cumbersome. Furthermore, it changes the
amount of subdivisions in the domain significantly, which results in a more complex candidate
Lyapunov function. This observation stresses the convenience of establishing a general policy of
which stability is implied without the need of explicitly deriving a candidate Lyapunov function
of the system.

Table 3.2: Buffer contents after setup.

A B C

x1 x1 + λ1x0 max (0, x1 − (µ1 − λ1)x0) x1 + λ1x0
x2 x2 + λ2x0 x2 + λ2x0 max (0, x2 − (µ2 − λ2)x0)
x3 max (0, x3 − (µ3 − λ3)x0) x3 + λ3x0 x3 + λ3x0

Based on the results presented in this chapter, it is expected that a candidate Lyapunov function
can be found for every system of which an optimal fixed time schedule is known and modes can
be defined. Although it is an assumption that an explicit candidate Lyapunov function can be
derived for a system of any size, actually performing the derivation is undesired. In the upcoming
chapter the candidate Lyapunov functions of this chapter, are used to derive the control actions
for each of the example systems.
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x1−3
2 + max

(
0, x2−2

3

)
+ x3−1

4 for A , x1 ≥ 3, x3 ≥ 1,

min
(
x2−2

3 + x3−1
4 ,max

(
0, x1−2

2

)
+ x2−4

3 + x3

4

)
for A , x1 ≤ 3, x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1,

min
(
x2−2

3 + x3−1
4 , x1−2

2 + x3

4

)
for A , 2 ≤ x1 ≤ 3, x2 ≤ 4, x3 ≥ 1,

x1−3
2 +

x2− 8
3+

2
3x3

3 for A , x1 ≥ 3, x2 ≥ 8
3 −

2
3x3, x3 ≤ 1,

min
(
x2− 8

3+
2
3x3

3 , x1−2
2 + x2−4

3 + x3

4

)
for A , x1 ≤ 3, x2 ≥ 4, 3x1 − 8 ≤ x3 ≤ 1,

min
(
x2− 8

3+
2
3x3

3 , x1−2
2 + x3

4

)
for A , x1 ≤ 3, 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 ≤ 1,

min
(
x1− 8

3−
1
3x3

2 +
x2− 8

3+
2
3x3

3 , x1−2
2 + x2−4

3 + x3

4

)
for A , 83 + 1

3x3 ≤ x1 ≤ 3, x2 ≥ 4, x3 ≤ 1,

min
(
x1− 8

3−
1
3x3

2 +
x2− 8

3+
2
3x3

3 , x1−2
2 + x3

4

)
for A , 83 + 1

3x3 ≤ x1 ≤ 3, x2 ≤ 4, x3 ≤ 1,

0 for A , x1 ≤ 3, x2 ≤ 8− 2x1, x3 ≤ 3x1 − 8 ≤ 1,

0 for A , x1 ≤ 3, x2 ≤ 8
3 −

2
3x3, 3x1 − 8 ≤ x3 ≤ 1

V
(
A , x1 + x0, x2 + 2x0,max (0, x3 − 3x0)

)
for A ,

x1−1
2 + x2−6

3 + max
(
0, x3−1

4

)
for B , x1 ≥ 1, x2 ≥ 6,

x2−6
3 + x3+x1−2

4 for B , x1 ≤ 1, x2 ≥ 6, x3 ≥ 2− x1,
x1−1

2 + x3−1
4 for B , x1 ≥ 1, x2 ≤ 6, x3 ≥ 7− x2,

max
(
0, x2−x1−5

3

)
+ x3+x1−2

4 for B , x1 ≤ 1, x2 ≤ 6, x3 ≥ 2− x1,
0 for B , x1 ≤ 1, x2 ≤ x1 + 5 ≤ 6, x3 ≤ 2− x1,
0 for B , x1 ≤ 1, x1 + 5 ≤ x2 ≤ 6, x3 ≤ 7− x2,
V
(
B ,max (0, x1 − x0) , x2 + 2x0, x3 + x0

)
for B ,

max
(
0, x1−1

2

)
+ x2

3 + max
(
0, x3−7

4

)
for C ,

V
(
C , x1 + x0,max (0, x2 − x0) , x3 + x0

)
for C .

(3.53)
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Traffic signals at an intersection are controlled by a server that performs control actions, as
explained in detail in Section 1.3. A control action states if the server is in setup of a mode or
processing in a mode. Additionally, the control actions list the rates at which the buffers are
served.
In this chapter it is explained how control actions are designed. The control actions are derived
from the result of Chapter 3, and the theory of Lyapunov-like functions, Theorem 4.1 and
Theorem 4.2. To clearly explain the methodology of control action design, control actions of the
example systems in Chapter 3 are designed in this chapter. However, the derivation of control
actions concerns a general approach that is applicable to any derived candidate Lyapunov function.

The switched nature of the system provides multiple possibilities of control actions to perform.
The first possible control action, is the option in which the server continues in the current mode.
The second possibility is that the server performs setup, to start processing in the successive
mode, referred to as: the server switches modes. The server should move the system states in
the direction of steepest descent. Thus the control action to be chosen, corresponds to the option
that minimizes the candidate Lyapunov function derivative.

In Section 4.1 the candidate Lyapunov function derivative of the intersection with two directions is
designed. This design is based on the candidate Lyapunov function of the two flow system, (3.23).
Based on the derivative of (3.23) it is decided if the server should continue in its current mode, or
if the server should switch modes.
Section 4.2 explains the control action design of the example intersection of three directions. The
results are simply posed, as the approach is already explained in Section 4.1.

4.1 Control Actions Design, N = {1, 2}
The candidate Lyapunov function of the two direction system is used to design the server
actions (u0, u1, u2) in each part of the domain. The control actions are designed such that the
value of the Lyapunov function candidate is non-increasing over time. Furthermore, time-efficient
convergence to optimal periodic behaviour is desired, this is realized when the candidate Lyapunov
function derivative V̇ (s, x1, x2) is minimized. If the derivative is minimized by switching to the
subsequent mode, the control action becomes to switch to the subsequent mode. Otherwise, the
server should continue in its current mode, and the control action is to continue in its current mode.

The derivative of the candidate Lyapunov function, V̇ (s, x1, x2), is discussed Subsection 4.1.1.
The control actions are derived in Subsection 4.1.2. Finally, a simplification of the control actions
is discussed in Subsection 4.1.3. If the reader is exclusively interested in the final definition of the
control actions, it is suggested to proceed to Subsection 4.1.3.

4.1.1 Candidate Lyapunov Function Derivative, N = {1, 2}
The candidate Lyapunov function derivative is determined based on the general definition of the
derivative given in (4.1). By definition, the candidate Lyapunov function value is constant during
setup of a mode, V̇ (s, x1, x2) = 0 for s ∈ { A , B }, in all parts of the domain.
The candidate Lyapunov function derivative of the two direction system is explicitly defined by

36
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computing the result of (4.1). The buffer content values at an infinitesimal small time increment
later than t, the values at t+ ε, are listed in Table 4.1. These values are a function of the arrival
rates and the process rates. The buffer contents at t+ ε, are implemented in (4.1) for each part of
the domain, which yields the candidate Lyapunov function derivative V̇ (s, x1, x2). For example,
when the system is in A with x1 ≥ 15 and x2 ≥ 1, the candidate Lyapunov function derivative
becomes (4.2).

The complete candidate Lyapunov function derivative for the option in which the server continues
in its current mode, is listed in (4.3). Mark the difference between the boundaries in (3.23)
and (4.3). The candidate Lyapunov function derived in Chapter 3 is continuous: there are no
jumps in values at the domain boundaries. The only jumps in the candidate Lyapunov function
value occur when the system switches modes.

Although the candidate Lyapunov function is continuous at the domain boundary, the function
in each of the domain parts is different. This difference leads to a different value of the candidate
Lyapunov function derivative. Only one of the candidate Lyapunov function derivative values
is used to design the control action, which results in the modified domain boundaries. The
definition of the candidate Lyapunov function derivative at the boundary, is straightforward.
If the server continues in its current mode, and the system values equal the boundary of a
domain, continuing in its current mode results in entering a different domain part. Therefore, the
candidate Lyapunov function derivative used equals the value the system enters when the server
continues in its current mode.

An example is given to clarify this statement. If the system is in A with x1 ≤ 15, 4 − 1
5x1 ≤

x2 ≤ 37
40x1 + 4 ≤ 5, the domain part shares a boundary with A , x1 ≤ 15, 37

40x1 + 4 ≤ x2 ≤ 5. If
x1 = 0, the next time instant the system values enter the latter mentioned domain part. Hence,
the candidate Lyapunov function derivative in A with x1 = 0 and 37

40x1 + 4 ≤ x2 ≤ 5, is the

candidate Lyapunov function derivative in A , x1 = 0, 37
40x1 + 4 ≤ x2 ≤ 5. This method is used

in the complete domain, which yields the modified boundaries in (4.3).

The candidate Lyapunov function derivative is different if the system starts in a mode and
switches to setup of the successive mode. When the server switches to setup, the complete setup
time needs to be performed. For instance, if the server is in A and switches to B , the value
of the remaining setup time equals x0 = 3. The candidate Lyapunov function derivative in case
the server switches to setup of the successive mode, are the solution of (4.4) and the solution
of (4.5) combined. This candidate Lyapunov function is referred to as the Lyapunov function at
switching instants.

Due to the different domain part boundaries in both modes, additional expressions arise and the
boundaries change. This significantly increases the length of the derivation. Hence, the derivation
of V̇ (s, x1, x2) at switching instants is listed in Appendix F. This appendix also includes a
derivation of the candidate Lyapunov function derivative in case the system starts in setup, and
switches to setup of the successive mode.

Table 4.1: Buffer contents x1, x2 at t+ ε.

x1 (t+ ε) x2 (t+ ε)

A x1 (t)− (µ1 − λ1) ε ∀x1 > 0 x2 (t) + λ2ε
x1 (t) ∀x1 = 0

A , B x1 (t) + λ1ε x2 (t) + λ2ε
B x1 (t) + λ1ε x2 (t)− (µ2 − λ2) ε ∀x2 > 0

x2 (t) ∀x2 = 0
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lim
ε→0

V (s, x1 (t+ ε) , x2 (t+ ε))− V (s, x1 (t) , x2 (t))

ε
. (4.1)

lim
ε→0

x1 − (µ1 − λ1) ε− 15

8ε
+
x2 + λ2ε− 1

9ε
− x1 − 15

8ε
− x2 − 1

9ε
= −37

9
< 0. (4.2)



x1−(µ1−λ1)ε−15
µ1ε

+ x2+λ2ε−1
µ2ε

− x1−15
µ1ε

− x2−1
µ2ε

= − 37
72 for A , x1 > 15, x2 ≥ 1,

x1−(µ1−λ1)ε−15
µ1ε

− x1−15
µ1ε

= − 5
8 for A , x1 > 15, x2 ≤ 1,

x2+λ2ε+
1
5 (x1−(µ1−λ1)ε)−4

µ2ε
− x2+

1
5x1−4
µ2ε

= 0 for A , 4037 < x1 ≤ 15, x2 ≥ 5,
x1−(µ1−λ1)ε

µ1ε
+ x2+λ2ε−5

µ2ε
− x1

µ1ε
− x2−5

µ2ε
= − 37

72 for A , 0 < x1 ≤ 40
37 , x2 ≥ 5,

x2+λ2ε−5
µ2ε

− x2−5
µ2ε

= 1
9 for A , x1 = 0, x2 ≥ 5,

x1−(µ1−λ1)ε
µ1ε

− x1

µ1ε
= − 5

8 for A , 0 < x1 ≤ 15, 3740x1 + 4 < x2 < 5,
x1

µ1ε
− x1

µ1ε
= 0 for A , x1 = 0, 4 ≤ x2 < 5,

x2+λ2ε+
1
5 (x1−(µ1−λ1)ε)−4

µ2ε
− x2+

1
5x1−4
µ2ε

= 0 for A , 0 < x1 ≤ 15, 4− 1
5x1 < x2 <

37
40x1 + 4 < 5,

0− 0 = 0 for A , x1 ≤ 15, x2 ≤ 4− 1
5x1,

0 for A ,
x1+λ1ε−9

µ1ε
+ x2−(µ2−λ2)ε−8

µ2ε
− x1−9

µ1ε
− x2−8

µ2ε
= − 37

72 for B , x1 ≥ 9, x2 > 8,
x2−(µ2−λ2)ε−8

µ2ε
− x2−8

µ2ε
= − 8

9 for B , x1 ≤ 9, x2 > 8,
x1+λ1ε+

3
8 (x2−(µ2−λ2)ε)−12

µ1ε
− x1+

3
8x2−12
µ1ε

= 0 for B , x1 ≥ 12− 3
8x2, 0 < x2 ≤ 8,

x1+λ1ε−12
µ1ε

− x1−12
µ1ε

= 3
8 for B , x1 ≥ 12− 3

8x2, x2 = 0,

0− 0 = 0 for B , x1 ≤ 12− 3
8x2, x2 ≤ 8,

0 for B .

(4.3)

lim
ε→0

V
(
B , 3− ε, x1 (t+ ε) , x2 (t+ ε)

)
− V

(
A , 0, x1 (t) , x2 (t)

)
ε

. (4.4)

lim
ε→0

V
(
A , 1− ε, x1 (t+ ε) , x2 (t+ ε)

)
− V

(
B , 0, x1 (t) , x2 (t)

)
ε

. (4.5)

4.1.2 Control Actions, N = {1, 2}
In the previous subsections the candidate Lyapunov function derivative is defined for the entire
state-space. V̇ (s, x1, x2) is minimized if either the server continues processing or if the server
switches to setup of the successive mode. The option that minimizes V̇ (s, x1, x2) becomes the
control action. In the vast majority of the domain the previously suggested method provides the
control actions as function of the system states. In the domain parts where V̇ (s, x0, x1, x2) = 0
regardless if the server switches or continues in its current, the control actions are undetermined.
The control actions to perform in these specific undetermined domain parts, are addressed in
Appendix G. The control action that results from Appendix G, is based on the most time efficient
solution to obtain optimal periodic behaviour. The result of Appendix G and the other control
actions completes the definition of the control actions in the entire domain, which is a long
expression. To improve the readability, the control actions are first defined in case the server
is in processing of a mode, so in A or B . After which, the control actions when the server is in
setup of a mode are listed.
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Control Actions when Processing

The derivative listed in (4.3) holds in case the server is in A or B and continues processing
in this mode. This equation is compared to the derivative corresponding to the case of the
server switches to setup of the successive mode, which is given in (F.59). This yields (4.6), the
expression of control actions (u0, u1, u2), in A , B . In setup of a mode no buffers are served, thus
u1 = 0 and u2 = 0, irrespective of the specific domain part or the value of u0.

(u0, u1, u2) =



(
A , µ1, 0

)
if A , x1 ≥ 15,(

A , µ1, 0
)

if A , 0 < x1 ≤ 15, x2 ≥ 5,(
B , 0, 0

)
if A , x1 = 0, x2 ≥ 5,(

B , 0, 0
)

if A , 0 < x1 ≤ 15, 3740x1 + 4 < x2 < 5,(
A , λ1, 0

)
if A , x1 = 0, 4 ≤ x2 < 5,(

B , 0, 0
)

if A , 0 < x1 <
15
8 −

3
8x2 < 15, 4− 1

5x1 < x2 <
37
40x1 < 5,(

B , 0, 0
)

if A , 0 < 15
8 −

3
8x2 < x1 <

5
8x2 −

605
296 < 15, 4− 1

5x1 < x2 <
37
40x1 < 5,(

A , µ1, 0
)

if A , 0 < 15
8 −

3
8x2 <

5
8x2 −

605
296 < x1 < 15, 4− 1

5x1 < x2 <
37
40x1 < 5,(

A , µ1, 0
)

if A , 158 −
3
8x2 ≤ x1 < 15, x2 ≤ 4− 1

5x1,(
A , µ1, 0

)
if A , 0 < x1 < 3x2 <

15
8 −

3
8x2 < 15, x2 < 4− 1

5x1,(
A , λ1, 0

)
if A , 0 < x1 ≤ 3x2 <

15
8 −

3
8x2 < 15, x2 < 4− 1

5x1,(
B , 0, 0

)
if A , 3x2 < x1 <

15
8 −

3
8x2 < 15, x2 < 4− 1

5x1,(
B , 0, µ2

)
if B , x2 ≥ 8,(

B , 0, µ2

)
if B , x1 < 12− 3

8x2, 0 <
12
5 −

1
5x1 ≤ x2 < 8,(

A , 0, 0
)

if B , x1 < 12− 3
8x2, 0 < x2 <

12
5 −

1
5x1 < 8,(

A , 0, 0
)

if B , x1 ≥ 12− 3
8x2, x2 = 0,(

B , 0, µ2

)
if B , 12− 3

8x2 ≤ x1 < 12 + 5
8x2, 4 ≤ x2 < 8,(

A , 0, 0
)

if B , 12− 3
8x2 ≤ 12 + 5

8x2 ≤ x1, 4 ≤ x2 < 8,(
A , 0, 0

)
if B , 12− 3

8x2 ≤ x1, 0 < x2 <
12
5 −

1
5x1 ≤ x2 < 8,(

B , 0, µ2

)
if B , x1 < 12− 3

8x2, 0 <
12
5 −

1
5x1 < x2 < 8,(

B , 0, λ2
)

if B , x1 < 12− 3
8x2,

12
5 −

1
5x1 < 0 = x2 < 8,(

A , 0, 0
)

if B , x1 < 12− 3
8x2,

1
5 < x2 = 12

5 −
1
5x1 < 8,(

B , 0, µ2

)
if B , x1 < 12− 3

8x2, 0 < x2 = 12
5 −

1
5x1 <

1
5 < 8,(

A , 0, 0
)

if B , x1 < 12− 3
8x2,

1
3x1 < x2 <

12
5 −

1
5x1 < 8,(

A , 0, µ2

)
if B , x1 < 12− 3

8x2, 0 < x2 <
12
5 −

1
5x1 ≤

1
3x1 < 8,(

A , 0, λ2
)

if B , x1 < 12− 3
8x2, 0 = x2 <

12
5 −

1
5x1 ≤

1
3x1 < 8.

(4.6)

Control Actions when in Setup

If the server is in setup, the comparison between the derivative if the server continues in its current
mode or switches to setup of the successive mode is less complex. If the server continues in setup
the candidate Lyapunov function derivative value equals zero, so by studying (F.60) the control
actions are immediately found. The server should continue in its current setup for all domain parts
where (F.60) equals ∞. If (F.60) equals −∞, the server should switch to setup of the successive
mode. In parts of the domain where (F.60) equals 0, the control action is undefined and the result
from Appendix G is added. All these results combined give the control actions if the server starts
in setup, (4.7).
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(u0, u1, u2) =



(
A , 0, 0

)
if A , x1 ≥ 104

37 , x2 ≥ 5,(
B , 0, 0

)
if A , x1 <

104
37 , x2 ≥ 5,(

A , 0, 0
)

if A , 158 −
3
8x2 ≤

5
8x2 −

93
296 ≤ x1 < 12, 125 −

1
5x1 ≤ x2 < 5,(

B , 0, 0
)

if A , 158 −
3
8x2 ≤ x1 <

5
8x2 −

93
296 < 12, 125 −

1
5x1 ≤ x2 < 5,(

A , 0, 0
)

if A , x1 <
15
8 −

3
8x2 < 12, 125 −

1
5x1 ≤ x2 < 5,(

A , 0, 0
)

if A , 158 −
3
8x2 ≤ x1 < 12, x2 <

12
5 −

1
5x1,(

A , 0, 0
)

if A , x1 <
15
8 −

3
8x2 < 12, x2 <

12
5 −

1
5x1,(

A , 0, 0
)

if A , x1 ≤ 3x2 <
15
8 −

3
8x2 < 12, x2 ≤ 12

5 −
1
5x1,(

A , 0, 0
)

if A , 3x2 < x1 <
15
8 −

3
8x2 < 12, x2 <

12
5 −

1
5x1,(

A , 0, 0
)

if B , x1 ≥ 104
37 , x2 ≥ 5,(

B , 0, 0
)

if B , x1 <
104
37 , x2 ≥ 5,(

A , 0, 0
)

if B , x1 ≥ 12, x2 < 5,(
B , 0, 0

)
if B , 158 −

3
8x2 ≤ x1 < 12, 125 −

1
5x1 ≤

93
185 + 8

5x1 ≤ x2 < 5,(
A , 0, 0

)
if B , 158 −

3
8x2 ≤ x1 < 12, 125 −

1
5x1 ≤ x2 <

93
185 + 8

5x1 < 5,(
B , 0, 0

)
if B , x1 <

15
8 −

3
8x2 < 12, 125 −

1
5x1 ≤ x2 < 5,(

A , 0, 0
)

if B , 158 −
3
8x2 ≤ x1 < 12, x2 <

12
5 −

1
5x1,(

B , 0, 0
)

if B , x1 <
15
8 −

3
8x2 < 12, x2 <

12
5 −

1
5x1,(

B , 0, 0
)

if B , 3x2 < x1 ≤ 15
8 −

3
8x2 < 12, x2 <

12
5 −

1
5x1,(

B , 0, 0
)

if B , x1 <
15
8 −

3
8x2 < 3x2 < 12, x2 <

12
5 −

1
5x1,

(4.7)

The control actions derived in this subsection are more complex than the controller presented
in [1], even when the parts of the domain that are not taken into account in [1] are omitted.
The complexity shows in the parts of the domain referred to as D IIIb and DV. The extension
made in this study was including the domain part referred to as DVI, which should not lead
to differences in the controller outside this domain part. An additional difference between the
candidate Lyapunov function proposed in [1] and the Lyapunov function candidate derived in this
thesis, is the definition of V in setup. Because of that it is assumed the complexity is increased
due to the definition of the candidate Lyapunov function in setup. In Appendix H this assumption
is examined.

4.1.3 Simplified Control Actions, N = {1, 2}
Defining the control actions as shown in the previous section, is cumbersome. Furthermore,
Appendix H shows that the complexity can not entirely be dedicated to the difference in definition
of the candidate Lyapunov functions. The goal is to derive a control policy that is easy to
implement. If control actions are derived analogously to the two direction system for a larger
system, a significant increase in the complexity of the control action expression arises. The
objective to prove stability of the controlled system only restricts on the candidate Lyapunov
function derivative value from increasing. If the time it takes to obtain periodic behaviour is of
less importance, the server could simply continue in its current mode when V is non-increasing.
So if the constraint of finding the most efficient solution is relaxed, a simpler expression of the
control actions is found. Additionally, switching between setups is only of interest during the
first time instant the server is started. The server switches modes if necessary after the setup is
finished. Finally, if V̇ = 0 holds for the candidate Lyapunov function derivative, continuing in
the current mode does not increase the value of V .

Although the simplified control actions might not converge the system as quickly as possible, the
derivation of control actions significantly simplifies. The above mentioned adjustments results in
the simplified expression of the control actions, (4.8).
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(u0, u1, u2) =



(
A , µ1, 0

)
if A , x1 > 15,(

A , µ1, 0
)

if A , 0 < x1 ≤ 15, x2 ≥ 5,(
B , 0, 0

)
if A , x1 = 0, x2 ≥ 5,(

A , µ1, 0
)

if A , x0 = 0, 0 < x1 ≤ 15, 4− 1
5x1 ≤ x2 < 5,(

A , λ1, 0
)

if A , x0 = 0, x1 = 0, 4 ≤ x2 < 5,(
A , µ1, 0

)
if A , x0 = 0, 0 < x1 ≤ 15, x2 < 4− 1

5x1,(
A , λ1, 0

)
if A , x0 = 0, x1 = 0, x2 < 4− 1

5x1,(
A , 0, 0

)
if A ,(

B , 0, µ2

)
if B , x0 = 0, x2 > 8,(

B , 0, λ2
)

if B , x0 = 0, 0 < x2 ≤ 8,(
A , 0, 0

)
if B , x1 ≥ 12, x2 = 0,(

B , 0, λ2
)

if B , x1 < 12− 3
8 , x2 = 0,(

B , 0, 0
)

if B .

(4.8)

The control actions in (4.8) are defined based on the candidate Lyapunov function derivative.
The result can straightforwardly be transformed in, (4.9). The control actions in (4.9) are equal
to those presented in [1]. In the upcoming section the simplification of the design of control
actions is immediately applied to the example intersection of three directions. This derivation
clearly shows the simplification of the control action design.

(u0, u1, u2) =



(
A , µ1, 0

)
if A , x1 > 0,(

A , λ1, 0
)

if A , x1 = 0, x2 < 5,(
B , 0, 0

)
if A , x1 = 0, x2 ≥ 5,(

A , 0, 0
)

if A ,(
B , 0, µ2

)
if B , x2 > 0,(

B , 0, λ2
)

if B , x1 < 12, x2 = 0,(
A , 0, 0

)
if B , x1 ≥ 12, x2 = 0,(

B , 0, 0
)

if B , x0 > 0.

(4.9)

4.2 Design of Control Actions, N = {1, 2, 3}
In this section the conclusions of the previous section are used in the design of the control actions.
Based on the simplifications listed in the previous section, the control action is to continue in the
current mode if possible. In which if possible refers to the fact that the Lyapunov function value
should be non-increasing.
First the candidate Lyapunov function derivative if the server continues in its current mode is
derived. Then the candidate Lyapunov function in case the server switches to setup is derived.
But this derivation is only required for the parts of the domain where V increases, if the server
continues in its current mode. If the candidate Lyapunov function derivative equals zero, the
control action is to continue in the current mode. Because of that, a three direction system
equivalent of Appendix G is excluded.
The curse of dimensionality becomes obvious when the derivative is defined for (3.53). The final
expressions of the candidate Lyapunov function derivative elongate significantly and the derivation
is cumbersome. The method to derive the candidate Lyapunov function derivative is equivalent
to the derivation in the two direction system. Hence, the derivation of the candidate Lyapunov
function derivative is simply attached in Appendix E.
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4.2.1 Control Actions, N = {1, 2, 3}
The control actions are based on the results of the derivation presented in Appendix E. While the
candidate Lyapunov function is non-increasing, the server continues in its current mode. When the
candidate Lyapunov function derivative becomes positive the server switches to the subsequent
mode. The subsequent mode is the successive mode denoted in the fixed time schedule. This
restriction endorses the desired steady-state behaviour is obtained. The resulting control actions
(u0, u1, u2, u3) equal (4.10). The base for this equation is found in Appendix E. The expression of
control actions for the three flow system illustrates the effect of an increase in system dimension.
The number of options increases, which yields the extensive expression in (4.10).

(u0, u1, u2, u3) =



(
A , µ1, 0, µ3

)
if A , x1 > 0, x3 > 0,(

A , λ1, 0, µ3

)
if A , x1 = 0, x3 > 0,(

A , µ1, 0, λ3
)

if A , x1 > 2, x3 = 0,(
B , µ1, 0, 0

)
if A , 0 < x1 ≤ 2, x3 = 0,(

B , λ1, 0, 0
)

if A , x1 = 0, x3 = 0,(
A , 0, 0, µ3

)
if A , x3 > 0.(

A , 0, 0, λ3
)

if A , x3 = 0.(
B , µ1, µ2, 0

)
if B , x1 > 0, x2 > 0,(

B , µ1, λ2,
)

if B , x1 > 0, x2 = 0,(
B , λ1, µ2, 0

)
if A , x1 = 0, x2 > 1(

C , 0, µ2, 0
)

if A , x1 = 0, 0 < x2 ≤ 1(
C , 0, λ2, 0

)
if A , x1 = 0, x2 = 0(

B , µ1, 0, 0
)

if B , x1 > 0.(
B , λ1, 0, 0

)
if B , x1 = 0.(

C , 0, µ2, µ3

)
if C , x2 > 0, x3 > 0,(

C , 0, µ2, λ3
)

if C , x2 > 0, x3 = 0,(
C , 0, λ2, µ3

)
if C , x2 = 0, x3 > 4,(

A , 0, 0, µ3

)
if C , x2 = 0, 0 < x3 ≤ 4,(

A , 0, 0, λ3
)

if C , x2 = 0, x3 = 0,(
C , 0, µ2, 0

)
if C , x2 > 0.(

C , 0, λ2, 0
)

if C , x2 = 0.

(4.10)

4.3 Stability of the Controlled System

The final requirement on the control actions to address, is the fact that the control actions
are required to stabilize the system. Preferably, the systems steady-state behaviour equals the
optimal periodic behaviour. The control actions are derived based on the idea of proving stability
with the Lyapunov-like function, Theorem 4.1, for which stability is defined in Theorem 4.2. This
proves the stability of the controlled system in the feasible domain of [1], so the entire domain
with the exception of the so called DVI domain part. However, in DVI the candidate Lyapunov
function value equals zero, which triggers the idea of a LaSalle like extension.

In continuous systems LaSalle’s theorem, an invariance principle, proves stability of the system
if the value of the Lyapunov function is only negative semidefinite in specific cases, [43]. This
implies an extension to hybrid systems of this invariance principle, could prove the stability of
the controlled system.

Theorem 4.1. A family of Lyapunov-like functions such that each vector field has its own
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Lyapunov function is used. The particularity of Lyapunov-like functions is that the decay of the
function is required only when the system is active. A multiple Lyapunov-like function satisfies
the following conditions, [34]:

• Vj (x) > 0 ∀x 6= x∗, j ∈ s
• Vj (x) = 0 ∀x = x∗, j ∈ s
• The derivative of each Vj (x) satisfies the relation

V̇j (x) ≤ 0 ∀j ∈ s (4.11)

when the j-th subsystem is active.

Theorem 4.2. This theorem states the requirement for a switched system in the context of
multiple Lyapunov-like functions, Theorem 4.7 in [34]. Consider a family of Lyapunov-like
functions Vj, each associated with a vector field Ajx. For k < m, let tk < tm be the switching
times for which j (tk) = j (tm). If there exists a γ > 0 such that

Vj (tm) (x (tm+1))− Vj (tk) (x (tk+1)) ≤ −γ‖x (tk+1)‖2, (4.12)

then the switched system is stable.

The candidate Lyapunov function equals zero for buffer contents in periodic behaviour. However,
buffer contents in the domain parts referred to as DVI, the candidate Lyapunov function also
equals zero. Invariance principles are derived for switched systems and for hybrid systems, for
instance Theorem 8.2 of [44], and [45, 46, 47]. In [45] LaSalle’s invariance principle is extended
to certain classes of hybrid systems. It is shown how asymptotic stability is proven with multiple
Lyapunov functions whose Lie derivatives are only negative semi-definite. The Lie derivatives
of the different Lyapunov function parts are all negative semi-definite, which means that by the
strategy suggested in [45] asymptotic stability of the controlled system is proven. This proves the
system approaches the desired optimal periodic behaviour for all starting values in the state-space.
However, the existence of a nonzero slow mode in a system is an additional requirement for the
system to converge in optimal periodic behaviour for all starting values.

The control actions designed in this chapter, form the foundation to establish a control policy in
Chapter 5. Comparing the control actions for the two and three flow example systems, leaves to
conclude that the control actions of the three flow system are more extensive than the expression
for the control actions of the two flow system. However, this is only due to the extra mode and
flow, the derived control actions are straightforward. Furthermore, the control actions stabilize the
system in optimal periodic behaviour, as required. The convergence might not be as time-efficient
as possible, as some concessions were made to create control actions that are easy to implement.
In Chapter 5 the expressions of the control actions are transformed into a control policy. This
simplifies the expression of the controller, especially for large dimension systems.
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The curse of dimensionality shows in Chapter 3 and Chapter 4. When the system dimension
increases, the derivation of control actions becomes cumbersome which leads to extensive
expressions for the control actions. Control actions can be listed in words as a set of decision
rules. In this chapter control policies are defined for system of various sizes, the derivation of a
control policy is explained in this chapter. The process of transforming control actions to a set of
decision rules is referred to as transforming the control actions into a control policy.

In Section 5.1 the control actions discussed in Chapter 4, are transformed into control policies.
A strategy to determine a control policy for systems of all sizes is proposed in Section 5.2,
provided that specific system requirements are met. The strategy is demonstrated by an illustrative
example, which is designed such that defining modes of the system appears to be straightforward.
Finally, case studies are presented to illustrate that defining modes in an actual fixed time schedule
to obtain a control policy is possible.

5.1 Transform Control Actions

The expression of the control actions of a system can be transformed into a set of decision rules.
The decision depends on the current state values of the system. An additional term is introduced
to shorten the expression of the control policy, namely processing at maximum rate. Processing
at maximum is defined as processing xi at rate µi if xi > 0, and processing xi at rate λi if xi = 0.
This definition shortens the expression of the control policy, whilst all the information is preserved.

The transformation of the control actions listed in (4.9), into a control policy is straightforward
as is illustrated below. Part of the expressions of (4.9) are repeated in this chapter to illustrate
the process of obtaining a control policy. The control actions in A of the two flow system are
listed in (5.1). Studying the first two lines of the control actions in A , it is concluded that x1 is
processed as long as x2 < 5. This can be transformed in words: When in A with x2 < 5 process
x1 at maximum rate. The next line of the control action in (5.1) can be explained in words as:
When in A with x2 ≥ 5 and x1 = 0 switch to B .

(u0, u1, u2) =


(
A , µ1, 0

)
if A , x1 > 0,(

A , λ1, 0
)

if A , x1 = 0, x2 < 5,(
B , 0, 0

)
if A , x1 = 0, x2 ≥ 5.

(5.1)

Similar transformations are performed for the remainder of (4.9), which yields the control policy
of the two flow system:

• When in A :
◦ continue processing at x1 at maximum rate
◦ switch to B if x1 = 0, x2 ≥ 5.

• When in B :
◦ continue processing x2 at maximum rate
◦ switch to A if x2 = 0, x1 ≥ 12.

44
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• When in A or B :
◦ continue for x0 time units, then start processing in the successive mode.

The complexity of the control policy presented above, is similar to the complexity of the control
actions. However, the advantage of transforming the control actions into a control policy shows
in systems of increased dimension, which is illustrated by transforming the control actions of the
three flow example. The control policy is created by performing similar transformations as in the
two flow example. The resulting control policy, corresponding to the control actions (4.10), equals:

• When in A :
◦ continue processing x1 and x3 at their maximum rate.
◦ switch to B if both x1 ≤ 0 and x3 = 0.

• When in B :
◦ continue processing x1 and x2 at their maximum rate.
◦ switch to B if both x1 = 0 and x2 ≤ 1.

• When in C :
◦ continue processing x2 and x3 at their maximum rate.
◦ switch to B if both x2 = 0 and x3 ≤ 4.

• When in A :
◦ continue processing x3 at maximum rate for x0 time units, then switch to A .

• When in B :
◦ continue processing x1 at maximum rate for x0 time units, then switch to B .

• When in C :
◦ continue processing x2 at maximum rate for x0 time units, then switch to C .

The control policy of the three flow system presented above, significantly shortens the expression
of a controller for the three flow system. Similarities between the control policy of the two and
three flow system appear when comparing the previously derived control policies. Furthermore,
the control policy of the intersection of three directions is repetitive, which is of convenience in
deriving a general control policy. The derivation of a general control policy is explained in the
upcoming section.

5.2 Control Policy

In the previous section a control policy is derived for the example systems discussed in Chapter 3
and Chapter 4. Studying the control policies the repetitive nature of the policies is striking.
However, the two policies also show differences. This difference is interesting, even though the
control actions are derived from a similarly defined candidate Lyapunov function, the resulting
control policy differs. In the two flow policy the switch between modes occurs when the served
buffer is emptied and the unserved buffer reaches its threshold value. In the three flow policy
however, a switch occurs when the primarily served buffer is emptied and the secondarily served
buffer does not exceed its threshold value. The unserved buffer is of no importance in the control
policy of the three flow system.
This difference is assumed to be the effect of the required slow modes. In the two flow system
no other buffer is served, so the threshold on the unserved buffer value ensures the slow mode is
performed in optimal periodic behaviour. In the three flow system another buffer is served which
needs to be empty enough to progress to the next mode. This buffer simultaneously defines that
the slow mode is performed in optimal periodic behaviour. Therefore, it is not necessary to take
into account the value of the unserved buffers.

A general control policy of a system in mode m is determined, based on the previously discussed
conclusions and the control policy of the three flow system. This general control policy holds
for systems with modes that serve more than one direction at the time in a mode. The general
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control policy is given in Lemma 5.3.
Lemma 5.3 enables to derive a control policy for each system of which a fixed time schedule
is known. More specifically, a control policy can directly be derived from the optimal fixed
time schedule, if modes can be defined, and the optimal periodic behaviour is computed. This
assumption is examined in the case studies of the next section.

Lemma 5.3. For a system that meets the requirements of Appendix A with a given optimal fixed
time schedule in which more than one buffer is served in a mode, the control policy in mode m
can directly be derived from the fixed time schedule.

Let m be the mode the system is currently in, with n its successive mode. The buffer contents at

the mode switch in optimal periodic behaviour are defined as x
n
∗

i . The set of buffers served during
setup of mode n is called b. Let s equal the set of all served buffers in mode m, except for the
primarily served buffers. Let p represent the set of primarily served buffers and x0 the remaining
setup time, in that case the control policy equals:

• When in m :
◦ continue processing xi at its maximum rate, ∀i ∈ s.
◦ switch to n if xi ≤ x n

∗

i ∀i ∈ s and xj = 0 ∀j ∈ p.
• When in n :

◦ continue processing xi ∀i ∈ b at maximum rate for x0 time units, then switch to n .

5.4 Case Studies

Two cases are studied to examine if the conclusion stated in the previous section is correct. Is it
possible to define a control policy for a system of any size with Lemma 5.3, provided that the
requirements are met, the system parameters are known, and an optimal fixed time schedule is
known. To examine this statement modes are required to be defined in the fixed time schedule.
The definition of mode is ambiguous. Therefore, first the process of defining modes used in this
thesis is explained, after which the optimal periodic behaviour is computed. The derived modes,
the fixed time schedule and the optimal behaviour can be combined with Lemma 5.3 which
provides a control policy. This control policy is expected to be stabilizing, based on the results of
the two and three flow example.

5.4.1 Intersection A2N279

Defining modes in a fixed time schedule is crucial in the determination process of a control
policy. The modes can not be determined unambiguously based on the fixed time schedule itself,
additional intersection data is needed. As mentioned in Section 1.3, the setup time σ of a mode
depends on the clearance time needed. The time that is needed to switch from processing one
flow, to processing the subsequent flow. In case of a larger system however, multiple flows might
switch simultaneously. The question arises which clearance time determines the duration of the
setup of a mode.

To explain how modes are defined first some terminology is introduced. Section 1.3 mentions
clearance time, the time needed to switch between two conflicting flows. All these clearance times
can be denoted in a so called conflict matrix, Σ. The matrix rows and columns represent all
flows in the system, thus the matrix contains the squared number of elements in N . The row
number, p of the matrix represents the flow given as pth element in N , the column number, q of
the matrix corresponds to the qth element in N . An element of the conflict matrix is empty if
there is no conflict between the flow represented by the row number and the flow represented by
the column number. If there exists a conflict between the flows corresponding to the row and
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column number of the matrix, the element value equals the clearance time duration. A conflict is
called active if the time between the end of a green period of one flow, and the start of the green
period of a conflicting flow, exactly equals the clearance time denoted in the conflict matrix.
These active conflicts are listed in the so called active conflict matrix, logically having equally
located non-empty elements as the conflict matrix. The active conflict matrix elements equal 1 if
the conflict corresponding to the element is active, and a zero if the conflict is not active.

The modes in a fixed time schedule can be derived with the definitions of conflict matrix and
active conflict matrix. To illustrate the definition of modes a fixed time schedule of an existing
intersection in the Netherlands is studied. The optimal fixed time schedule corresponding to a
specific time-of-day of this intersection is shown in Figure 5.1 and the conflict matrix is given
in (5.2). First all active conflicts in the fixed time schedule are determined, the flows in the
system are N = {1, 2, 8, 9, 10, 12}. As the conflict matrix states, switching from flow 1 to flow 9
takes a setup time of zero. From the fixed time schedule in Figure 5.1, it can be concluded that
the time between the end of green period of flow 1 and the start of green period of flow 9 does
not exceed the clearance time, which means the conflict is active. Performing this review for each
flow, yields the active conflict matrix, (5.3).
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Figure 5.1: Fixed time schedule, A2N279

Σ =



0
0 0 0

0
4 3 0

0
1 5 3


(5.2) Σa =



1
1 1 0

1
1 0 1

1
1 1 0


(5.3)

Studying the active conflict matrix shows that when the green period of for instance flow 2
ends, multiple conflicts are active. The control policy needs to ensure that all clearance times
are performed. Hence, the setup time is set to the active constraint with the largest clearance
time. To clarify this definition, the constraints that determine the setup time, referred to as
defining active conflicts, are emphasized in the active constraint matrix by bold numbers. Two
bold numbers mean that there is no distinction between the active conflicts, both active conflicts
require equal setup time.

Table 5.1 lists the time at the end of setup, based on the defining conflicts in the system. This
table shows the setup of direction 10 and direction 12 overlap. The setup times are grouped which
yields the duration of B . By grouping the following is meant: the minimum end of the green
period of flow 10 and 12 provides the start of B , and the maximum end of setup of flow10, 12
represents the finish of setup. This method is used to define all setup zones in the fixed time
schedule of the A2N279 intersection, which results in Figure 5.2.
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Table 5.1: Computation setup zones, A2N279.

i t@end green setup time t@end setup group gT,i rT,i
1 31.3 0 31.3 C 31.3 8
2 31.3 0 31.3 C 24.5 14.8
8 35.3 0 35.3 A 24.8 14.5
9 35.3 4 39.3 A 4 35.3
10 6.8 0 6.8 B 14.8 24.5
12 5.5 5 10.5 B 9.5 29.5
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Figure 5.2: Fixed time schedule, A2N279

Control Policy

With the modes of the system defined, the control policy can be determined. As implied in
Section 3.1, the specific values found in the control policy can easily be derived from the fixed
time schedule and the intersection data. This final step to define a control policy for the A2N279
intersection is discussed below. The intersection data, the arrival and process rates of each flow,
are used to compute the optimal buffer contents as function of time with the assumption that
each buffer is emptied once during a cycle. The intersection data is given in Appendix I.
The duration of the green period of flow i, gT,i, can be read in the fixed time schedule. The
duration of the red period of flow i, rT,i is then easily computed with (5.4). The optimal content
of buffer i is computed as function of time, based on the red and green periods and the arrival
and service rates of flow i. For instance, gT,1 = 31.3 yields rT,1 = 39.3 − 31.3 = 8, this means
during the red period λ1 ∗ 8 vehicles arrive. These vehicles are then cleared in 8λ1

µ1−λ1
time units.

This computation for each of the flows at the A2N279 intersection, results in Figure 5.3, the
optimal buffer contents of the A2N279 intersection. It is noticed that the actual buffer contents
are integers, since this is an approximation the computed buffer contents in real numbers are
used as it is assumed that this will provide a more accurate control policy.

Based on the knowledge gained in the analytically derived control policies a straightforward
control policy for this case study is expected. The server should serve all buffers in a mode that
need to be served in that mode, at maximum rate. The server continues to process in a mode
until the threshold values are reached for all served buffers. When this occurs the server should
switches to setup of the successive mode, before starting to serve in that mode. The previously
suggested control policy is exactly the result of Lemma 5.3.

rT,i = T − gT,i. (5.4)
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Figure 5.3: Buffer content in optimal periodic cycle.

Table 5.2: Buffer contents

t x1 x2 x8 x9 x10 x12

A * 0 5.01 2.57 2.74 0.14 0.33 1.79
B * 5.5 3.52 4.46 6.51 0.34 0 0
B * 10.5 2.16 2.20 9.93 0.51 0.45 0.98
C 31.3 0 0 0 1.25 2.95 4.61
A * 35.3 2.50 1.32 0 0 1.64 5.27

5.4.2 Intersection ’s Gravendijkwal

Deriving a control policy for this intersection is important, it is considered a relatively large
intersection. If a stabilizing control policy can be derived for this intersection, it implies a control
policy can be defined for an intersection of any size. With the definitions introduced in the
previous section, modes of the ’s Gravendijkwal intersection system are defined. Due to the
increase in system size, there is an extension needed to the previously mentioned algorithm, this
is explained in detail in the mode definition of this example. The fixed time schedule of the
intersection studied in this section is shown in Figure 5.4. The corresponding conflict matrix is
given in condensed form in Table I.3, due to the system size this table is only attached in the
appendix.

The number of flows in the system increased significantly, compared to the previously studied
intersection. The same method as used in the previous section is used to determine the modes in
this fixed time schedule. First the conflict matrix is studied, in condensed form given in Table I.3.
The active conflicts are derived and given in Table I.4. Determining the largest clearance times
per direction as setup time, the setup time to perform when the corresponding buffer is emptied,
yields the setup times given in Table 5.3. Applying all the active conflicts as setup times show
overlap in grouped setup times, as shows in Table 5.3. To cope with all these setup times, the
setup times are merged in case they overlap. The group containing the largest setup time values
become the setup of the first mode, the smallest of the second mode and the other setup times
become setup of the final mode. The minimum and maximum value of the setup times in a group,
emphasized by bold numbers in Table 5.3, determine respectively the start and end of setup.
This method results in three setup zones, and thus three modes, as shown in Figure 5.5.
Now in this system a problem occurs, as can be seen in Figure 5.5 some flows are only served
during setup. This means that if the content of these buffers is exceptionally much, the green
time can not be extended to clear these buffers. Therefore, an extension is suggested to the
methodology of mode definition. If a direction is only served during setup, the end of the
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Figure 5.4: Fixed time schedule, ’s Gravendijkwal

green time of these buffers create an additional mode. The duration of that mode equals zero,
so effectively the server subsequently performs two setups if the system is in optimal periodic
behaviour. This solves the unlikely problem that the buffer contents are exceptionally much and
can not be processed.

To explicitly define the control policy of the ’s Gravendijkwal intersection, the optimal buffer
contents are derived. It concerns a large intersection, so the computation of the optimal buffer
contents is exhaustive. The computation contains no new theories and is therefore only attached
in Appendix I. The resulting buffer contents at the end of each mode are listed in Table 5.4.
From the table and Lemma 5.3 a control policy is found for this system.

The method presented in this chapter results in a control policy for a system of various sizes.
The resulting control policies are plain and easy to implement. The convergence to the desired
periodic behaviour is based on the results of the two and three flow example, with no mathematical
proof being provided. The absence of rigorous proof is intended because avoiding cumbersome
computations is the goal of creating a general control policy. Although the definition of the
modes in the system requires some derivation, it contains far less expressions than the analytical
derivation of a control policy for large system sizes.
With the definition of a general control policy this study is finished. The upcoming chapter
concludes on the results of this thesis. Furthermore, some recommendations are made to be
considered in further research.
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Table 5.3: Computation setup zones, ’s Gravendijkwal.

i t@end green setup time t@end setup group gT,i rT,i
1 13.8 4 17.8 B 13.8 63.1
2 35.8 6 41.8 C 27.1 49.8
3 43.1 3 46.1 C 28.7 62.5
4 75.9 0 75.9 A 40.7 35.2
5 75.9 1 76.9 A 27.8 49.1
6 7.7 2 9.7 B 13.4 63.5
7 9.7 6 15.7 B 14.4 62.5
8 28.7 6 34.7 C 21 55.9
9 45.1 3 48.1 C 9.3 67.6
11 71.2 1 72.2 A 25.1 51.8
12 6.7 2 8.7 B 7.7 69.2
21 74.9 2 76.9 A 29.8 47.1
22 40.7 0 40.7 C 7 69.9
23 37.7 3 40.7 C 28 48.9
24 28.7 0 28.7 C 16 60.9
25 70.2 2 72.2 A 23 53.9
26 71.2 0 71.2 A 30.4 46.5
27 43.1 3 46.1 C 34.4 42.5
28 35.8 0 35.8 C 19 57.9
31 64.9 12 76.9 A 19.8 57.1
32 40.7 0 40.7 C 6 70.9
33 28.7 12 40.7 C 19 57.9
34 23.7 5 28.7 C 8 68.9
35 61.2 11 72.2 A 14 62.9
36 71.2 0 71.2 A 29.4 47.5
37 33.1 13 46.1 C 24.4 52.5
38 27.8 8 35.8 C 10 66.9
81 40.7 0 40.7 C 6 70.9
82 76.9 0 76.9 A 33.8 43.1

Table 5.4: Buffer contents in optimal periodic behaviour.
t x1 x2 x3 x4 x5 x6 x7 x8 x9 x11 x12 x21 x22 x23 x24 x25 x26 x27 x28 x31 x32 x33 x34 x35 x36 x37 x38 x81 x82

A
∗

0 4.38 4.56 4.69 0.08 0.33 1.8 3.03 5.35 1.77 1.89 1.46 0.01 0.14 0.09 0.11 0.02 0.02 0.09 0.11 0.17 0.5 0.67 0.74 0.22 0.08 0.61 0.68 0.4 0

B
∗

6.7 1.94 5.31 5.62 0.64 2.56 0 0 6.1 2.14 4.13 0 0.03 0.17 0.1 0.12 0.04 0.03 0.11 0.13 0.26 0.6 0.76 0.83 0.31 0.17 0.7 0.77 0.48 0.07

B
∗

17.8 0.28 1.74 7.16 1.57 6.26 0.7 0.9 1.72 2.75 7.83 0.31 0.08 0.21 0 0 0.07 0.07 0 0 0.41 0.75 0 0 0.47 0.33 0 0.93 0.6 0.2

C
∗

23.7 0.69 0 7.98 2.06 8.23 1.11 1.56 0 3.08 9.79 0.47 0.1 0.23 0 0 0.08 0.08 0 0 0.5 0.83 0 0 0.55 0.41 0 0 0.67 0.26

C
∗

48.1 2.38 1.37 0.69 0.6 16.37 2.81 4.27 2.16 0.17 14.96 1.15 0 0.03 0.02 0.04 0 0 0.01 0.03 0 0.1 0.27 0.34 0 0 0.21 0.28 0.08 0

A
∗

61.2 3.29 2.82 2.51 0 6.91 3.72 5.72 3.61 0.89 0 1.51 0 0.08 0.05 0.07 0 0 0.05 0.07 0 0.28 0.45 0.52 0 0 0.39 0.46 0.23 0
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Figure 5.5: Fixed time schedule with modes, ’s Gravendijkwal



Chapter 6. Conclusion

Thanks to beneficial application of control methods any improvements of traffic congestion
might be countered by an increased capacity demand, as is also noted in [3]. Although the
results presented in this thesis are theoretical and do not directly reduce traffic congestion, some
interesting achievements are made.

A candidate Lyapunov function is derived for example systems of two sizes based on the approach
proposed in [1]. The candidate Lyapunov function of the two and three flow system is defined
in the entire domain, instead of in some feasible part of the domain. The resulting candidate
Lyapunov function on the feasible part of the domain presented in [1] is equivalent to the
expression of the candidate Lyapunov function given in [1]. Hence, a generalisation is established
of the Lyapunov function in [1].
Furthermore, the derivation of a candidate Lyapunov function is structured, as illustrated in
Chapter 3. Because of this structure, it is assumed based on the derived functions that a
candidate Lyapunov function can be found for systems of various sizes. This assumption holds
provided that the system meets the requirements in Appendix A.
It is concluded that the complexity of the candidate Lyapunov function derivation significantly
increases when the system dimensions are increased, thus explicitly denoting the Lyapunov
function for large system dimensions is infeasible.

The candidate Lyapunov functions described in Chapter 3 are the basis of the control actions.
The control actions are derived based on the derivative of the candidate Lyapunov functions.
The Lyapunov function should be non-increasing over time to possibly achieve stable system
behaviour. The control actions chosen to be performed are the control actions that move the
system states in the direction of steepest descent. The control actions minimize the candidate
Lyapunov function derivative in each part of the domain, thus move the system in the direction
of steepest descent.
The expression of the control actions resulting from the derivation are rather complex. If the
requirement of quick convergence is relaxed, the expression of the control actions significantly
simplifies. The definition of the control actions provides a non-increasing Lyapunov function,
the Lyapunov function derivative is negative or zero. For the infeasible part of the domain, the
Lyapunov function value equals zero. Therefore the stability proof of the controlled system is
extended with an invariance principle, which proves the stability of the example systems.

The control actions of Chapter 4 are transformed into a control policy for the example systems.
The resulting control policies can straightforwardly be implemented. The two flow system control
policy and three flow system control policy are compared. From the repetitive nature of the
policies a general control policy is derived. With this definition of a general control policy, a
control policy can directly be obtained from the given fixed time schedule of an intersection.
A methodology to define modes in the system is derived so combined with the general control
policy and the fixed time schedule, a control policy can be found for an intersection of any size.
This conclusion is verified by performing two case studies. The mode definition requires some
derivations but these are insignificant compared to the derivations needed to derive a control
policy from the candidate Lyapunov function. With the measured traffic data of the case studies
intersections, the fixed time schedules of these intersections and the defined modes a control
policy can be found for both case studies.
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Concluding, the research objective is met for the two flow system and for the three flow system.
An easy to implement control policy is found based on derived candidate Lyapunov functions.
Furthermore, it is proven that the derived control policies stabilize the two and three flow system
in their optimal periodic behaviour.
For systems of increased dimension a method is developed to define modes in a fixed time
schedule, and a general control policy is derived. With these tools a control policy for an
intersection is established based on the data of the specific intersection.

Currently the control policy forces switching through modes in the predefined order. Due to the
setup times this means that a signal might switch green when its corresponding queue is empty.
The duration of transient behaviour could be shortened by allowing the server to switch to an
arbitrary mode. For instance, in a situation where the buffer contents of each of the flows are
highly unequally distributed, it is likely that switching in a non predetermined order is beneficiary
for the convergence speed of the controlled system.

Apart from the fact that the results are promising and the research objective is met for specific
example systems, the number of intersections at which flows are not affected by neighbouring
intersections might not be significant. After all, the Netherlands is a relatively small country
with compact infrastructure. If flows at intersections are affected by neighbouring intersections,
controlling these intersections as if they are isolated might result in an increase of overall average
waiting time. Communication between intersections to prevent intersections from counteracting
could be a solution, as in network setting arriving vehicles often arrive in platoons. However, a
decentralized controller is desired for the speed of computation and convergence. On that account
an extension of a vehicle actuated control policy is suggested as a topic of future research, such
that the policy is applicable for a network of intersections.
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[38] F. Borrelli, M. Baotić, A. Bemporad, and M. Morari. Dynamic programming for constrained
optimal control of discrete-time linear hybrid systems. Automatica, 41:1709–1721, 2005.

[39] G. Xie and L. Wang. Stabilization of switched linear systems with time-delay in detection of
switching signal. Journal of Mathematical Analysis and Applications, 305:277–290, 2005.

[40] J. Selen. Dynamics of an abstract production system. Bachelor’s Thesis, Eindhoven University
of Technology, The Netherlands, 2010.

[41] Z. Sun. Stabilization and optimization of switched linear systems. Automatica, 42:783–788,
2006.

[42] H. Lin and P.J. Antsaklis. Stability and stabilizability of switched linear systems: A survey
of recent results. IEEE Transactions on Automatic Control, 54:308–322, 2009.

[43] H.K. Khalil. Nonlinear systems, third edition. Prentice-Hall, Upper Saddle River, New Jersey,
2000.

[44] R. Goebel, R.G. Sanfelice, and A.R. Teel. Hybrid Dynamical Systems, Modeling, Stability,
and Robustness. Princeton University Press, 41 William Street, Princeton, New Jersey, 2012.

[45] J.P. Hespanha. Uniform stability of switched linear systems: Extensions of lasalle’s invariance
principle. IEEE Transactions on Automatic Control, 49:470–482, 2004.

[46] R. Goebel, R.G. Sanfelice, and A.R. Teel. Invariance principles for switching systems via
hybrid system techniques. Systems & Control Letters, 57:980–986, 2008.

[47] R. Goebel, R.G. Sanfelice, and A.R. Teel. Invariance principles for hybrid systems with
connections to detectability and asymptotic stability. IEEE Transactions on Automatic
Control, 52:2282–2297, 2007.



Appendix A. System Requirements

Any intersection or system considered in this thesis is assumed to meet the requirements given in
this appendix. Requirements 1 and 2 are physical system requirements, they regard the system
parameters and other limits. Requirements 3 to 7, are requirements that are assumed to be met
by the fixed time schedule.
In this appendix n equals the minimum number of buffers served in processing of all modes. Let
sp be a set of the total number of buffers that is processed in each processing part of a mode, then
n = min (sp). For instance, in the three flow example system in A x1 and x3 are processed, in B

x1 and x2 are processed and in C x2 and x3 are processed. This gives sp = {2, 2, 2} and n = 2.
In this example the number of buffers served during processing is equal for all modes. However
this is not a necessary condition, in example ’s Gravendijkwal, Figure 5.5, sp = {4, 10, 10} and
n = 4.

The following requirements are assumed to be met for a system:

1. The arrival rates, λi ∀i ∈ N , are constant and known.
2. The process rates, µi ∀i ∈ N , are constant and known.
3. An optimal fixed time schedule is given that can be associated with the system.*

4. The amber time is modelled as partially red, and partially green time in the fixed time
schedule.

5. All items that have arrived during one cycle of the fixed time schedule, are processed in that
cycle. That is in optimal behaviour, each buffer is emptied at least once during the cycle of
the fixed time schedule.

6. All buffers are served at least once in a cycle of the given fixed time schedule. (Follows
indirectly from previously mentioned requirement.)

7. The machine utilization is smaller than one. Thus, if one buffer is served in each mode and
all buffers are served once in a cycle, ∑

i∈N

λi
µi

= ρi < 1. (A.1)

Or in general (also applicable when multiple buffers are served simultaneously in a mode),
if all buffers are served once in a cycle, ∑

i∈N

λi
µi

< n. (A.2)

* “Can be associated with” refers to the fact that, the actual arrival and process rates of the
system equal the arrival and process rates the fixed time schedule design is based on. Furthermore
this fixed time schedule provides requirement 5.
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Appendix B. Stability Fixed Time
Control

In this appendix stability theorems for fixed time control are proven. The first section describes
the situation when fixed time control is applied and all buffers are served at maximum rate, a
situation comparable to a real applied fixed time schedule. Section B.2 presents a stability theorem
in case fixed time control is executed such that at least the minimum slow mode is executed, this
proof is important in the derivation of the candidate Lyapunov function of systems.
Some parameters of interest in the proof of the theorems are recapitulated or introduced. The
parameter ti,sm represents the duration of the slow mode of buffer i. The minimum duration of
slow mode for direction i, is the duration of slow mode for buffer i in optimal periodic behaviour.
The symbol o refers to the mode subsequent to the start-up mode, where o can be setup or
processing in a mode, xi, o ∗ refers to the value of xi at the start of o in optimal periodic behaviour.
The time spent in the start-up mode, tsu meets 0 ≤ tsu ≤ tm if the system starts in setup of mode
m and 0 ≤ tsu ≤ tm if the system starts in x0 = 0 and mode m.
The total red time of direction i in a cycle is represented by tr,i, the total green time of a direction
in one cycle is tg,i.
With these parameters defined the proof of stable periodic behaviour when the fixed time schedule
is executed repeatedly, is presented in the upcoming sections.

B.1 Stability, Serve Buffers at Maximal Rate

Theorem B.1. Executing the fixed time schedule repeatedly, processing buffer contents at
maximum rate if a buffer is served, stabilizes the system in a periodic orbit in a finite amount
of time, provided that the system meets al requirements listed in Appendix A. More specifically
all buffers i that have a slow mode of duration ti,sm > 0 and all buffers for which xi,as ≤ xi, o ∗ ,
stabilize in optimal periodic behaviour.

Proof. Let X0 be the vector of buffer contents xi at the time the fixed time control starts,
t = t0. After tsu time units the start-up mode is finished. When the start up mode is finished
the buffer contents equal X(tsu), with xi(tsu) = xi,0 + λitsu if buffer i is not served and
xi(tsu) = max (0, xi,0 − (µi − λi) tsu) if buffer i is served. From tsu on the time spent in each
mode equals the time given in the fixed time schedule. Let Xa be the vector of the added buffer
content during red time xi,a, in one cycle of the fixed time schedule. The number of items arriving
at buffer i during red time of a cycle equals, xi,a = tr,iλi . Let Xd be the vector of maximum
content of all buffers that can be processed during green time of these buffers, in one cycle. The
content of buffer i that can be processed during green time in one cycle equals xi,d = tg,iµi.
Requirement 5 in Appendix A states that Xa ≤ Xd.

After the start-up mode is finished there are two options for each buffer content either
xi(tsu) > xi, o ∗ or xi(tsu) ≤ xi, o ∗ . This gives four different cases of system behaviour.

1. If xi(tsu) ≤ xi, o ∗ , because of Xa ≤ Xd at least all items that arrive in the upcoming cycle are
processed during that cycle. If xi(tsu) < xi, o ∗ the buffer is emptied earlier than in optimal
periodic behaviour. This means the duration of the slow mode, tsm, is increased. Hence
xi(tsu + T ) = xi(tsu), the arrival and process rates are constant so the buffer is in periodic
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behaviour after tsu + T .
2. If xi(tsu) ≤ xi, o ∗ , because of Xa ≤ Xd at least all items that arrive in the upcoming cycle

are processed during that cycle. If xi(tsu) = xi, o ∗ the buffer is emptied exactly at the time
instant provided by the optimal periodic behaviour. Hence xi(tsu + T ) = xi(tsu), given the
arrival and process rates are constant, the buffer is in periodic behaviour after tsu.

3. If xi(tsu) > xi, o ∗ and if xi,a = xi,d, exactly all items that arrive in buffer i during the
upcoming cycle are processed in that cycle. As xi,a = xi,d, the excess buffer content xi(tsu)−
xi, o ∗ , is never cleared. This means xi(tsu +T ) = xi(tsu), given the arrival and process rates
are constant, buffer i is in periodic behaviour after tsu.

4. If xi(tsu) > xi, o ∗ and if xi,a < xi,d, the number of items that arrive at buffer i during a
cycle are less than the number of items that can be processed in a cycle. The extra content
of buffer i decreases each cycle with min

(
xi (tsu+ nT )− xi, o ∗ , xi,d − xi,a

)
, in which n is

the number of executed cycles. This means that after⌈
xi(tsu)− xi, o ∗

xi,d − xi,a

⌉
(B.1)

cycles, xi is in optimal periodic behaviour.

In case of option 1, 2 and 4 buffer i stabilizes in optimal periodic behaviour. If option 3 holds,
the excess buffer content of buffer i is bounded to xi(tsu)− xi, o ∗ . In the latter, the buffer content
stabilizes in periodic behaviour but not optimal periodic behaviour.

Let R be the vector of cycles it takes to stabilize each buffer i in periodic behaviour, then

max (R) ∗ T (B.2)

equals the maximum amount of time for which the fixed time schedule needs to be executed before
all buffers stabilized in periodic behaviour. Since the buffer contents are finite, the maximum
amount of time resulting from B.2 is finite.

Concluding, periodic behaviour is reached for all buffers in a finite amount of time. Furthermore,
all buffers i that contain a slow mode of a duration exceeding zero, or buffers i for which xi(tsu) ≤
xi, o ∗ , stabilize in optimal periodic behaviour.

B.2 Stability, Serve Buffers with Slow Mode

Theorem B.2. Executing the fixed time schedule repeatedly, stabilizes the system in periodic
behaviour in a finite amount of time. In this case executing the fixed time schedule repeatedly
means processing buffer the content of buffer i at maximum rate, except for the minimum duration
of slow mode of buffer i then buffer i is processed at rate λi.The slow mode is required to be
executed, even if the buffer content is unequal to zero. More specifically executing the fixed time
schedule as such, stabilizes the system in maximum duration of the start-up mode and one full
cycle.

Proof. Let X0 be the vector of buffer contents xi at the time the fixed time control starts,
t = t0. After tsu time units the start-up mode is finished. When the start up mode is finished
the buffer contents equal X(tsu), with xi,0 = xi(t0) + λitsu if buffer i is not served and
xi(tsu) = max (0, xi,0 − (µi − λi) (max (0, tsu − ti,sm))) if buffer i is served. From tsu on the
time spent in each mode equals the time given in the fixed time schedule. Let Xa be the vector
of the added buffer content during red time xi,a, in one cycle of the fixed time schedule. The
number of items arriving at buffer i during red time of a cycle equals, xi,a = tr,iλi . Let Xp

be the vector of content of all buffers that is processed during green time of these buffers, in
one cycle. The content of buffer i that can be processed during green time in one cycle equals
xi,p = (tg,i − tsm)µi. By definition, Xa = Xp holds for the buffer content in optimal periodic
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behaviour.

After the start-up mode is finished there are two options for each buffer content either
xi(tsu) > xi, o ∗ or xi(tsu) ≤ xi, o ∗ . This gives four different cases of system behaviour.

1. If xi(tsu) ≤ xi, o ∗ , because Xa = Xp all items that arrive in the upcoming cycle, are processed
during that cycle. If xi(tsu) < xi, o ∗ the buffer is emptied earlier than in optimal periodic
behaviour. This means the duration of the slow mode, tsm, is increased, which is allowed
since the minimum slow mode is executed. Thus xi(tsu + T ) = xi(tsu), the arrival and
process rates are constant so the buffer is in periodic behaviour after tsu + T .

2. If xi(tsu) ≤ xi, o ∗ , because Xa = Xp all items that arrive in the upcoming cycle, are processed
during that cycle. If xi(tsu) = xi, o ∗ the buffer is emptied exactly at the time instant provided
by the optimal periodic behaviour. Hence xi(tsu+T ) = xi(tsu), given the arrival and process
rates are constant, the buffer is in periodic behaviour after tsu.

3. If xi(tsu) > xi, o ∗ , because Xa = Xp all items that arrive in buffer i during the upcoming
cycle, are processed in that cycle. As xi,a = xi,p, the excess buffer content at time tsu,
xi(tsu) − xi, o ∗ , is never cleared. This means xi(tsu + T ) = xi(tsu), given the arrival and
process rates are constant, buffer i is in periodic behaviour after tsu.

In case of option 1, 2 buffer i stabilizes in optimal periodic behaviour after respectively tsu + T ,
tsu time units. If option 3 holds, the excess buffer content of buffer i is bounded to xi(tsu)−xi, o ∗

and the buffer content is periodic after tsu time units. In case option 3 is true, the buffer content
stabilizes in periodic behaviour but not optimal periodic behaviour.

Concluding, periodic behaviour is reached for all buffers in a finite amount of time, which is tsu+T
time units at most. Furthermore, buffers i for which xi(tsu) ≤ xi, o ∗ , stabilize in optimal periodic
behaviour.



Appendix C. General Lyapunov
Function Candidate, N = {1, 2}

This appendix presents a less intuitive derivation of the candidate Lyapunov function of an
intersection of two directions. The candidate Lyapunov function in each mode is determined
when the algorithm presented in this chapter is executed. Combining the results for all modes
provides the candidate Lyapunov function for an intersection of two directions. The algorithm
only provides a correct result if the system meets the requirements presented in Appendix A.
The general optimal fixed time schedule corresponding to an intersection of two directions is
shown in Figure C.1.

2
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Figure C.1: General fixed time schedule, N = {1, 2}.

The candidate Lyapunov function value equals the mean extra work in the system in steady-state.
This steady-state is obtained by repeatedly executing the fixed time schedule. The definition of
repeatedly executing the fixed time schedule is explained in Section 3.1, and briefly recapitalized
below.
In any derivation of a candidate Lyapunov function in this thesis the following is meant by
repeatedly executing the fixed time schedule. The system starts in a given mode, it can either
stay in this start-up mode or switch to the successive mode listed in the fixed time schedule. The
time spent in each mode, subsequent to the start-up mode, is defined in the fixed time schedule
and does not depend on the buffer contents. Except for the start-up mode, the server is obliged
to stay in a mode for the duration of the mode registered in the fixed time schedule.
Furthermore, repeatedly executing the fixed time schedule is performed such that the slow mode
is performed for at least the duration of the slow mode listed in optimal periodic behaviour. The
duration of the slow mode equals the duration of x1 = 0 in A or x2 = 0 in B in Figure 3.4. The
duration of the slow mode is extended in case the minimum duration of the slow mode has elapsed,
whilst the time spent in the entire mode is still unequal to the duration of the mode denoted in
the fixed time schedulee. If the system is not in (extended) slow mode, the content of the served
buffer xi, is processed at rate µi. Thus the minimum duration of the slow mode equals the value
given in the desired periodic behaviour. The maximum duration of the slow mode in m equals
the duration of m registered in the fixed time schedule.
The work in the system in optimal periodic behaviour equals (C.1),

W (x1, x2) =
x1(t)

µ1
+
x2(t)

µ2
, (C.1)

in which x1(t) and x2(t) equal the buffer contents corresponding to the value of x1 and x2 in
optimal periodic behaviour at time t. The extra work in the system in steady-state is defined as
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the difference between the work in the system in steady state and (C.1).
In this appendix mode m refers to the mode the candidate Lyapunov function in processing is
derived for, mode n is its subsequent mode registered in the fixed time schedule. Let q refer to the
unserved direction of mode m and p refer to the served buffer in mode m. The arrival and process
rates of type p, q are respectively λp, λq and µp, µq. A mode contains a slow mode if (C.2) holds.
Section C.1 provides a description of the strategy to determine a candidate Lyapunov function if
the mode does not contain a slow mode. Section C.2 describes the algorithm to find a candidate
Lyapunov function if the mode contains a slow mode.
Note that all buffer contents are larger than or equal to zero by definition.

(T − Tg,p)λp
µp − λp

< Tg,p. (C.2)

C.1 Mode m without a Slow Mode

The buffer contents in optimal periodic behaviour are listed in Table C.1. These values are
determined with the fixed time schedule in Figure C.1 and the system parameters. The buffer
content at the start in each part of a mode in optimal periodic behaviour, are fundamental in the
derivation of a candidate Lyapunov function. The subscript of the time t presents the start of
which mode is considered and the star refers to the fact that it is the content in optimal periodic
behaviour. This subscript is used as superscript for the buffer contents if it concerns the specific
buffer contents listed in C.1. The buffer contents in Table C.1 are general, computing the value
provides mode and system specific optimal buffer contents.

Table C.1: Buffer contents in optimal periodic behaviour.

t (xp, xq)
tm ∗ (

(
T − Tg,p − σm

)
λp,0)

tm ∗ ((T − Tg,p)λp,σm λq)
t n ∗ (0,

(
Tg,p + σm

)
λq)

Mode m does not contain a slow mode, which means that the domain is split in four parts. The
different domain parts and corresponding boundaries are listed in (C.3).

D I for xp ≥ x
m ∗
p , xq ≥ x

m ∗
q ,

D II for xp ≥ x
m ∗
p , xq ≤ x

m ∗
q ,

D III for xp ≤ x
m ∗
p , x

n ∗
q − x

n ∗
q −x

m ∗
q

x
m ∗
p

xp ≤ xq,

DVI for xp ≤ x
m ∗
p , x2 ≤ x n ∗

q − x
n ∗
q −x

m ∗
q

x
m ∗
p

xp.

(C.3)

The candidate Lyapunov function is derived per part of the domain. In D I the mean extra
work in the system is minimized if the server processes in the start-up mode for a time equal to
the duration of m in the fixed time schedule. The candidate Lyapunov function in the system
is (C.4).
The same duration of the start-up mode as used in D I, minimizes the mean extra work in the
system in D II. In this case the unserved buffer shows optimal periodic behaviour in steady-state,
the candidate Lyapunov function becomes (C.5).

D I : V (m , xp, xq) =
xp−x

m ∗
p

µp
+

xq−x
m ∗
q

µq
for xp ≥ x

m ∗
p , xq ≥ x

m ∗
q . (C.4)
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D II : V (m , xp, xq) =
xp−x

m ∗
p

µp
for xp ≥ x

m ∗
p , xq ≤ x

m ∗
q . (C.5)

The next part of the domain is D III, in this part the value of xq exceeds the value of xq determined
by the correlation between xp and xq. This correlation is the boundary between D III and DVI.

If x
n ∗
q − x

n ∗
q −x

m ∗
q

x
m ∗
p

xp ≤ xq the mean extra work in the system is minimized when the time spent

in the start-up mode equals the time to empty xp, when empty the system should switch. This
results in optimal periodic behaviour for xp, the extra work is determined by the distance between

xq and x
n ∗
q − x

n ∗
q −x

m ∗
q

x
m ∗
p

xp. Which yields the candidate Lyapunov function in D III, (C.6).

The final part of the domain, DVI, is the part where xp ≤ x
m ∗
p and x2 ≤ x

n ∗
q − x

n ∗
q −x

m ∗
q

x
m ∗
p

xp. In

this case the time spent in the start-up mode can be set such that the steady-state equals the
optimal periodic behaviour, with corresponding extra work in the system of zero. Hence the
candidate Lyapunov function in DVI equals (C.7).

D III : V (m , xp, xq) =

xq−x
n ∗
q +

x
n ∗
q −x

m ∗
q

x
m ∗
p

xp

µq
for xp ≤ x

m ∗
p , x

n ∗
q − x

n ∗
q −x

m ∗
q

x
m ∗
p

xp ≤ xq.
(C.6)

DVI : V (m , xp, xq) = 0 for xp ≤ x
m ∗
p , x2 ≤ x n ∗

q − x
n ∗
q −x

m ∗
q

x
m ∗
p

xp. (C.7)

Setup is the final part of mode m to determine a candidate Lyapunov function in. The definition
of the candidate Lyapunov function in setup is that it is equal to the candidate Lyapunov function
in processing after setup is finished. In an intersection of two directions no flows are served during
setup. Which yields the candidate Lyapunov function in m ,

V (m , xp, xq) = V (m , xp + x0λp, xq + x0λq). (C.8)

C.2 Mode m with Slow Mode

If the work in the system decreases during slow mode, the extra domain parts D IV, DV do not
exist. The extra work in the system is minimized if the duration in the start up mode equals the
registered in the fixed time schedule. Which means the strategy discussed in the previous section
can simply be used, as the results of both strategies are equal.
The strategy discussed in this section becomes of interest when the work in the system increases
during slow mode, but the mode contains a slow mode in optimal periodic behaviour. If

the value of xp ≤ x
m ∗
p the candidate Lyapunov function could be minimized by immediately

switching to setup of the subsequent mode. The buffer contents in optimal periodic behaviour
are listed in Table C.2. The subscript of the time t presents the start of which mode is
considered and the star refers to the fact that it is the content in optimal periodic behaviour.
The extra addition to the subscript 0 when the time refers to the time in optimal periodic
behaviour the slow mode starts, so the first occurrence of xp = 0. The subscripts are used as
superscript for the buffer contents if it concerns the specific buffer contents listed in Table C.2. The
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Table C.2: Buffer contents in optimal periodic behaviour.

t (xp, xq)
tm ∗ (

(
T − Tg,p − σm

)
λp,0)

tm ∗ ((T − Tg,p)λp,σm λq)

tm
0
∗ (0,

(
σm +

(T−Tg,p)λp

µp−λp

)
λq)

t n ∗ (0,
(
Tg,p + σm

)
λq)

values are general, computing the value provides mode and system specific optimal buffer contents.

The derivation of the candidate Lyapunov function is started by presenting an overview of the
resulting domain parts. The domain parts and their boundaries are explicitly denoted in (C.9).

D I for xp ≥ x
m ∗
p , xq ≥ x

m ∗
q ,

D II for xp ≥ x
m ∗
p , xq ≤ x

m ∗
q ,

D IIIa for 40
37 ≤ xp ≤ x

m ∗
p , xq ≥ x n ∗

q ,

D IIIb for xp ≤ x
m ∗
p , x

n 0∗
q − x

n 0∗
q −xm ∗

q

x
m ∗
p

xp ≤ x2 ≤ 4 + 37
40x1 ≤ x

n ∗
q ,

D IV for xp ≤ 40
37 ≤ x

m ∗
p , x2 ≥ x n ∗

q ,

DV for xp ≤ 40
37 ≤ x

m ∗
p , x

n 0∗
q − x

n 0∗
q −xm ∗

q

x
m ∗
p

xp ≤ 4 + 37
40x1 ≤ x2 ≤ x

n ∗
q ,

DVI for xp ≤ x
m ∗
p , x2 ≤ x

n 0∗
q − x

n 0∗
q −xm ∗

q

x
m ∗
p

xp.

(C.9)

Next the candidate Lyapunov function is derived in each part of the domain listed in (C.9),
starting in D I. In D I the mean extra work in the system is minimized if the server processes
in the start-up mode for a time equal to the duration of m in the fixed time schedule. The
candidate Lyapunov function in the system is (C.10).
The same duration of the start-up mode as used in D I, minimizes the mean extra work in the
system in D II. In this case the unserved buffer shows optimal periodic behaviour in steady-state,
the candidate Lyapunov function becomes (C.11).

D I : V (m , xp, xq) =
xp−x

m ∗
p

µp
+

xq−x
m ∗
q

µq
for xp ≥ x

m ∗
p , xq ≥ x

m ∗
q . (C.10)

D II : V (m , xp, xq) =
xp−x

m ∗
p

µp
for xp ≥ x

m ∗
p , xq ≤ x

m ∗
q . (C.11)

In D III the derivation becomes more complicated, yielding a split of D III in multiple parts. If
the value of xp becomes small enough, immediately progressing to n could result in minimum
mean extra work in the stabilized system. By means of clarifying the origin of the domain split
introduced before, first the domains D IIIa , D IIIb , D IV and DV are studied merged as D III.

The part of D III where xq ≥ x
m ∗
q is examined. The optimal duration of the start-up mode equals

the time it takes for xp to become zero, plus the minimum duration of the slow mode. This results
in the optimal periodic value of xp, but buffer q preserves the extra amount of work it contained
when the server started. The candidate Lyapunov function if the server remains in m instead of
immediately switching to n in the start-up mode, is given in (C.12).
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D IIIa : V (m , xp, xq) =

xq−x
n 0∗
q +

x
n 0∗
q −x

m ∗
q

x
m ∗
p

xp

µq
for xp ≤ x

m ∗
p , xq ≥ x

m ∗
q .

(C.12)

Additionally, the candidate Lyapunov function is derived for cases the the server immediately
switches to n . If the server immediately starts setup, instead of continuing processing in m , the

duration of the start-up mode equals zero. Because xq ≥ x
m ∗
q and the time spent in the start-up

mode equals zero, the system starts in its steady-state. The start value of xp equals the extra

content in buffer p. If xq = x
m ∗
q the content of buffer q does not contribute to the mean extra

work in the system, whereas in all other cases xq does contribute to the value of work in periodic
behaviour. This results in the candidate Lyapunov function when the system starts in m and
immediately switches to n , (C.13).

V (m , xp, xq) =
xp

µp
+

xq−x
m ∗
q

µq
for xp ≤ x

m ∗
p , xq ≥ x

m ∗
q . (C.13)

xp ≤ for xp ≤ x
m ∗
p , xq ≥ x

m ∗
q . (C.14)

Setup is the final part of mode m to determine a candidate Lyapunov function in. The definition
of the candidate Lyapunov function in setup is that it is equal to the candidate Lyapunov function
in processing after setup is finished. In an intersection of two directions no flows are served during
setup. Which yields the candidate Lyapunov function in m ,

V (m , xp, xq) = V (m , xp + x0λp, xq + x0λq). (C.15)



Appendix D. Parametrization

The correlation between all buffer contents in optimal periodic behaviour can be determined based
on the evolution of the buffer content in optimal periodic behaviour for all directions.
The evolution of the buffer content of all directions i that are served during mode m can be
described by:

xi(t) = (λi − µi) t+ x
m ∗
i . (D.1)

The evolution of the buffer content of all directions j that are not served during mode m can be
described by:

xj(t) = λjt+ x
m ∗
j . (D.2)

The relation between all buffer contents can now be found by removing the time dependency of the
evolution by using the time dependency of another buffer evolution. This gives that the correlation
between buffers can be found using:

λjxi = (µi − λi)xj = λjx
m ∗
i + (µi − λi)x

m ∗
j . (D.3)

The equation above describes the correlation between the buffer contents in mode m in optimal
periodic behaviour and is indeed based on the evolution of the buffer contents in the periodic
behaviour.
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Appendix E. Intersection of Three
Directions

This appendix is partially a recapitulation of Chapter 3 and Chapter 4. The recap is given to make
this appendix self-contained. Section E.1, presents a complete explanation of candidate Lyapunov
function for the three flow example system. In Section E.2 the base for the control action design
is discussed, this base is the candidate Lyapunov function derivative.

E.1 Derivation of a Candidate Lyapunov Function

An intersection of three directions consists of three flows. Two directions are served simultaneously
in all modes, except when the server is performing setup, then only one direction is served. The
design of the fixed time schedule is such that all items arrived in one cycle, are cleared in that
cycle. The fixed time schedule of this example system, Figure E.1, shows that all flows are conflict
free. Therefore it would be possible to serve all directions simultaneously. Because of that the
fixed time schedule in Figure E.1, will not occur in an actual traffic setting. For research objectives
however, such a system is of interest. The results of the derivation of this example system are used
to examine the changes in deriving a candidate Lyapunov function. It demonstrates the effect on
the derivation of a candidate Lyapunov function when a flow and a mode are added to the system
of two directions.

3
2
1

0 1 2 3 8 9 10

A A B B C C

time, t

fl
o
w

,
i

Figure E.1: Fixed time schedule, N = {1, 2, 3}.

In this section two new definitions are used, the primarily and secondary served buffers. The
primarily served buffer of a mode, is the buffer that was already served in the preceding mode,
and needs to be cleared during this mode. The secondary served buffer refers to the buffer that is
served for the first time in the current mode, of which the service is continued in the subsequent
mode. As can be concluded from Figure E.1, one buffer per mode is not defined yet. The buffer
that is not served in a mode, is referred to as the unserved buffer of that mode. The items in
the primarily and secondary served buffers, are processed during A , B , C . In setup of a mode,
u0 ∈ { A , B , C }, the system is in setup to process respectively x1, x2, x3. Processing the content
of the primarily served buffer of a mode is continued in setup of the subsequent mode.
An extension is needed in the definition of slow mode, used in the intersection of two directions,
to make the definition slow mode unambiguous in the intersection of three directions. In the two
flow example system, slow mode was defined as the served buffer of the mode m being served at
its arrival rate. In this example system multiple buffers are served during a mode. Thus, either
the primarily served, the secondary served, or both buffers can be in slow mode. Therefore, in
the three direction system, slow mode is specified as a slow mode of buffer i in mode m. Herein i
equals the flow served at its arrival rate, and m represents the mode the system is in.
To shorten the expressions of the candidate Lyapunov function, the equations omit
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0
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time, t
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Figure E.2: Buffer contents as function of time.

Table E.1: Buffer content in
optimal periodic behaviour.

t (x1 x2 x3)
A * 0 (2,0,4)
A * 1 (3,2,1)
A

4
3 ( 8

3 , 83 ,0)
B * 2 (2,4,0)
B * 3 (1,6,1)
B 4 (0,5,2)
C * 8 (0,1,6)
C * 9 (1,0,7)
C 10 (2,0,4)

V (s, x1, x2, x3) =, with s ∈ { A , A , B , B , C, C }. However, the symbols corresponding to the
parts of the domain are listed prior to the equation of the candidate Lyapunov function in each
part of the domain. This emphasizes the similarities within modes, and the resemblance between
the two and three direction system. The candidate Lyapunov function described in this section is
derived according the method explained in detail for the intersection of two directions, discussed
in Section 3.1.
The system parameters and the fixed time schedule are designed such that each mode contains a
slow mode of the primarily served buffer. Although it is not a necessary condition it is possible
that the secondary served buffer is cleared during a mode.
The arrival rates are assumed to be constant and known, λ1 = 1, λ2 = 2 and λ3 = 1, as are the
process rates, µ1 = 2, µ2 = 3 and µ3 = 4. Figure E.2 shows the buffer contents as function of
time when the system is in the desired periodic behaviour, the figure illustrates that all buffers are
cleared once during a cycle. In Table E.1, the buffer contents are listed at each time instant of the
fixed time schedule the service rate values change. These values are important in the candidate
Lyapunov function derivation, the stars indicate that these values are the optimal buffer content
at the start of setup, or start of processing in a mode.
Figure 3.16 is a graphical representation of the work in the system in optimal periodic behaviour
as function of time. Although it is not the case in this example system, it is a possibility that the
work in the system decreases during setup since the server continues processing one of the buffers
in setup.

E.1.1 Mode A, N = {1, 2, 3}
Similar to the example of an intersection with two directions, the start values of the buffer contents
can be in the complete domain. Based on the results of the previously discussed example it can be
concluded that depending on the values of x1, x2 and x3 the candidate Lyapunov function differs,

0 1 2 3 4 8 9 10

1

2

3

CCBBA A

time, t

w
o
rk

,
W

Figure E.3: Work in the system, N = {1, 2, 3}, during the optimal periodic cycle.
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which results in subdivisions inside the complete domain.
In D I, x1, x2 and x3 all exceed their respective optimal values at t = 1 listed in Table E.1,
x1 ≥ 3, x2 ≥ 2 and x3 ≥ 1. Studying Figure 3.16, the optimal time spent in the start-up mode
is the maximum duration of A . During periodic behaviour, achieved by executing the fixed time
schedule repeatedly, yields candidate Lyapunov function in D I, (E.1).
In the three flow system equivalent of D II, x1 ≥ 3 and x3 ≥ 1, for the unserved buffer x2 ≤ 2
holds. This means the content of buffer 2 shows the desired periodic behaviour, the extra work in
the system during periodic behaviour depends on the excess content of buffer 1 and buffer 3. The
candidate Lyapunov function in D II equals (E.2).

D I : x1−3
2 + x2−2

3 + x3−1
4 for A , x1 ≥ 3, x2 ≥ 2, x3 ≥ 1. (E.1)

D II : x1−3
2 + x3−1

4 for A , x1 ≥ 3, x2 ≤ 2, x3 ≥ 1. (E.2)

The first part of the domain in which the analogy with the two direction system requires additional
explanation is D III. In the two flow example system the candidate Lyapunov function in D III,
D IV, DV, depended on the optimal time to spent in the start-up mode. Only one buffer was
served in each mode in the two flow example system, so the optimal time spent in the start-up
mode was the time needed to clear the served buffer. In the intersection of three direction, during
each mode two buffers are served instead of one, this results in another subdivision of domain
parts. For instance during A , it is not only possible for x1 to be less then the optimal value but
x3 ≤ 1 is a possibility as well. The duration of the start-up mode depends on x1 − 1 or x3, based
on which buffer content becomes its respective optimal value in the least amount of time. The
buffer content that the time spent in the start-up mode is based on, is denoted in the subscript of
the part of the domain.
In the intersection of two directions the extra content of the unserved buffer in D III, D IV and DV,
was a function of the distance between the content in the unserved buffer and the boundary line
that described the correlation between the served and unserved buffer. The general approach to
derive a correlation between the buffer contents during m , is found in Appendix D. Implementing

Appendix D in A results in the three flow equivalent of the boundary between the unserved and
served buffers.
As in the two direction system, the correlation between the unserved and served buffers determine
the boundary between created the boundary between D III and DVI. In the latter part of the
domain the candidate Lyapunov function value equals zero, however the domain boundaries depend
on which buffer content the time spent in the start-up mode is based. If x1 defines the duration
of the start-up mode, Appendix D yields 3x1 ≥ x3 + 8, 2x1 + x2 ≤ 8 with x1 ≤ 3 and x3 ≤ 1.
Hence, the candidate Lyapunov function in DVI

1 , (E.3). If x3 determines the remaining time in the
start-up mode, Appendix D gives 3x1 ≤ x3 + 8, 3x2 + 2x3 ≤ 8 should hold, with x1 ≤ 3, x3 ≤ 1,
the candidate Lyapunov function in DVI

3 equals (E.4).

DVI
1 : 0 for A , 8

3 ≤ x1 ≤ 3, x2 ≤ 8− 2x1, x3 ≤ 3x1 − 8 ≤ 1. (E.3)

DVI
3 : 0 for A , 8

3 ≤ x1 ≤ 3, x2 ≤ 8
3 −

2
3x3, 3x1 − 8 ≤ x3 ≤ 1. (E.4)

When x1 ≤ 3 and x3 ≥ 1 in the three flow equivalent of D III in the two direction system, the value
of x2 should exceed the boundary created by the correlation between x1 and x2, 2x1 + x2 ≥ 8.
Since x1 ≤ 3, buffer 1 stabilizes in the desired optimal periodic behaviour, x2 and x3 contribute
to the extra work in the system. The time spent in the start-up mode is based on the value of x1,
yielding the candidate Lyapunov function in D III

1 , (E.5).
When x1 ≥ 3 and x3 ≤ 1, the duration of the start-up mode is defined by the content of buffer 3.
The boundary that determines the amount of extra work due to the excess content of buffer 2,
becomes 3x2 + 2x3 ≥ 8. This part of the domain is referred to as D III

3 , in this part the candidate
Lyapunov function equals (E.6).
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It is a possibility that both x1 and x3 are less than their respective optimal values. The duration
of the start up mode is determined by either x1 − 8

3 or x3. When x1 − 8
3 defines the duration of

the start-up mode, both 2x1 + x2 ≥ 8 and 3x1 ≤ 8 + x3 should hold. This gives the candidate
Lyapunov function in D III

1,3, (E.7). The subscript for this domain part refers to the fact that buffer 1
determines the duration of the start up mode and both buffer 1 and buffer 3 are less than their
respective optimal values.
If not x1 − 8

3 but x3 determines the duration of the start up mode, then x3 ≤ 3x1 − 8 ≤ 1 and
8
3 + 1

3x3 ≤ x1 ≤ 3. The excess content of x2 is defined by the correlation 3x2 + 2x3 ≥ 8, which
gives the candidate Lyapunov function in D III

3,1, (E.8).

D III
1 : x2−8+2x1

3 + x3−1
4 for A , 8

3 ≤ x1 ≤ 3, x2 ≥ 8− 2x1, x3 ≥ 1. (E.5)

D III
3 : x1−3

2 +
x2− 8

3+
2
3x3

3 for A , x1 ≥ 3, x2 ≥ 8
3 −

2
3x3, x3 ≤ 1. (E.6)

D III
1,3 : x2−8+2x1

3 + x3+8−3x1

4 for A , 8
3 ≤ x1 ≤ 3, x2 ≥ 8− 2x1, 3x1 − 8 ≤ x3 ≤ 1.

(E.7)

D III
3,1 :

x1− 8
3−

1
3x3

2 +
x2− 8

3+
2
3x3

3 for A , 8
3 + 1

3x3 ≤ x1 ≤ 3, x2 ≥ 8
3 −

2
3x3, x3 ≤ 1.

(E.8)
The split presented above is based on which buffer content defines the remaining time in the
start-up mode, it structures the method to derive a candidate Lyapunov function but a review of
the results is required. If x1 = 3 and x3 > 0, the work in the system decreases when the server
continues in the start-up mode. The server switches if the time spent in the mode equals the
maximum duration of A . This gives a correction for the candidate Lyapunov function in D III

1

and D III
1,3. Because x1 does not terminate the start-up mode, the candidate Lyapunov function for

D III
1 depends on the maximum duration of the fixed time schedule, which results in (E.9).

A similar motivation holds for the part of the domain where both x1 and x3 are less than their
respective optimal values but the unserved buffer contains more than its optimal value. Again x1
does not define the end of A , the correct candidate Lyapunov function in D III

1,3 is (E.10).

D III
1 : x2−2

3 + x3−1
4 for A , 8

3 ≤ x1 ≤ 3, x2 ≥ 8− 2x1, x3 ≥ 1. (E.9)

D III
1,3 :

x2− 8
3+

2
3x3

3 for A , 8
3 ≤ x1 ≤ 3, x2 ≥ 8

3 −
2
3x3, 3x1 − 8 ≤ x3 ≤ 1. (E.10)

The work in the system increases during the slow mode of buffer 3 in A , see Figure 3.16. If
the value of x1 becomes small enough, immediate switching to B instead of starting in A could
minimize the mean extra work in the system during periodic behaviour, as explained in the
derivation of the candidate Lyapunov function of the intersection of two directions. Therefore
an additional review of the results of the candidate Lyapunov function in D III is required, a
similar review to the one performed in the derivation of the candidate Lyapunov function of the
intersection of two directions that lead to the existence of D IV.
In the domain parts D III

1 , D III
3 , D III

1,3 and D III
1,3 the candidate Lyapunov function value is determined

if the server immediately switches to setup. In D III
1 , switching to setup of the subsequent mode,

the content of x3 contributes to the mean extra work of buffer 3. If x1 ≤ 2 and x2 ≤ 4, the buffer
contents of buffer 1 and buffer 2 do not contribute to the mean extra work in the system during
periodic behaviour. The candidate Lyapunov function in case the system immediately switches
to B in D III

1 is (E.11). To determine if immediately switching to setup minimizes the mean
extra work in the system, (3.26) is compared to (3.32). This further subdivides the domain, the
candidate Lyapunov function in D III

1 is described by (E.12) to (E.16).
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D III
1,setup : max

(
0, x1−2

2

)
+ max

(
0, x2−4

3

)
+ x3

4 for A , x1 ≤ 3, x2 ≥ 8− 2x1, 3x1 − 8 ≤ x3 ≥ 1.
(E.11)

D IIIa
1 : x2−2

3 + x3−1
4 for A , 17

6 ≤ x1 ≤ 3, x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1. (E.12)

D IIIb
1 : x2−2

3 + x3−1
4 for A , 2 ≤ x1 ≤ 3, x2 ≤ 3

2x1 + 1
4 , x3 ≥ 1. (E.13)

D IVa
1 : x1−2

2 + x2−4
3 + x3

4 for A , 2 ≤ x1 ≤ 17
6 , x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1. (E.14)

D IVb
1 : x2−4

3 + x3

4 for A , x1 ≤ 2, x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1. (E.15)

DV
1 : x1−2

2 + x3

4 for A , 2 ≤ x1 ≤ 3, 3
2x1 + 1

4 ≤ x2 ≤ 4, x3 ≥ 1. (E.16)

In D III
3 immediately switching to B , results in mean extra work in the system in steady-state

equal to (E.17). Comparing (3.27) and (E.17) concludes that immediately switching to setup of
mode B never results in less mean extra work in the system in periodic behaviour. Thus the
candidate Lyapunov function in (3.27) is correct.
In D III

1,3 switching to mode B instead of processing in the start-up mode results in the candidate
Lyapunov function given in (E.18). The comparison of (3.31) and (E.18), results in multiple parts
of D III

1,3, of which the candidate Lyapunov function is listed in (E.19) to (E.22).

D III
3,setup : x1−2

2 + max
(
0, x2−4

3

)
+ x3

4 for A , x1 ≥ 3, x2 ≥ 8
3 −

2
3x3, x3 ≤ 1. (E.17)

D III
1,3,setup : x1−2

2 + max
(
0, x2−4

3

)
+ x3

4 for A , x1 ≤ 3, x2 ≥ 8− 2x1, 3x1 − 8 ≤ x3 ≤ 1.
(E.18)

D IIIa
1,3 :

x2− 8
3+

2
3x3

3 for A , 26
9 −

1
18x3 ≤ x1 ≤ 3, x2 ≥ 4, 3x1 − 8 ≤ x3 ≤ 1. (E.19)

D IIIb
1,3 :

x2− 8
3+

2
3x3

3 for A , 2
3x2 −

1
18x3 + 2

9 ≤ x1 ≤ 3, 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 ≤ 1.

(E.20)

D IV
1,3 : x1−2

2 + x2−4
3 + x3

4 for A , x1 ≤ 26
9 −

1
18x3, 8− 2x1 ≤ x2 ≤ 4, x2 ≥ 4, 3x1 − 8 ≤ x3 ≤ 1.

(E.21)

DV
1,3 : x1−2

2 + x3

4 for A , x1 ≤ 2
3x2 −

1
18x3 + 2

9 , 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 ≤ 1.
(E.22)

The final part of the domain in mode A to examine is D III
3,1, in this part immediately switching to

B yields (E.23). Comparing (E.23) with (3.29), divides D III
3,1 in several parts with corresponding

candidate Lyapunov functions, (E.24) to (E.27).

D III
3,1,setup : x1−2

2 + max
(
0, x2−4

3

)
+ x3

4 for A , 8
3 + 1

3x3 ≤ x1 ≤ 3, x2 ≥ 8
3 −

2
3x3, x3 ≤ 1.

(E.23)
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D IIIa
3,1 :

x1− 8
3−

1
3x3

2 +
x2− 8

3+
2
3x3

3 for A , 8
3 + 1

3x3 ≤ x1 ≤ 3, x2 ≥ 8
3 −

2
3x3 ≥ 4, 4

7 ≤ x3 ≤ 1.

(E.24)

D IIIb
3,1 :

x1− 8
3−

1
3x3

2 +
x2− 8

3+
2
3x3

3 for A , 8
3 + 1

3x3 ≤ x1 ≤ 3, x2 ≤ 7
12x3 + 11

3 ≤ 4, x3 ≤ 1.

(E.25)

D IV
3,1 : x1−2

2 + x2−4
3 + x3

4 for A , 8
3 + 1

3x3 ≤ x1 ≤ 3, x2 ≥ 4, x3 ≤ 4
7 . (E.26)

DV
3,1 : x1−2

2 + x3

4 for A , 8
3 + 1

3x3 ≤ x1 ≤ 3, 7
12x3 + 11

3 ≤ x2 ≤ 4, x3 ≤ 1. (E.27)

E.1.2 Mode B, N = {1, 2, 3}
Although B contains a slow mode, the work in the system decreases when buffer 1 is in slow
mode, see Figure 3.16. When the server starts in mode B, immediately switching in the start-up
mode to mode C, does not decrease the mean extra work in the system in periodic behaviour.
Thus in mode B the three flow equivalent of D III, is not divided in D IIIa , D IIIb , D IV and DV.
In D I, where x1 ≥ 1, x2 ≥ 6 and x3 ≥ 1, the candidate Lyapunov function is a function of all
buffer contents, (E.28). Figure 3.16 shows that the work is continuously decreasing whilst the
system is in B , evidently the minimum mean extra work in the system is reached if the time
spent in the start-up mode equals the maximum duration of B .
D II gives x1 ≥ 1, x2 ≥ 6, whereas for the unserved buffer, x3 ≤ 1 holds. The optimal time spent
in the start-up mode is again the maximum duration of B , as explained in more detail in the two
flow example system. Since x3 ≤ 1, buffer 3 does not contribute to the mean extra work in the
system, so the candidate Lyapunov function in D II equals (E.29).

D I : x1−1
2 + x2−6

3 + x3−1
4 for B , x1 ≥ 1, x2 ≥ 6, x3 ≥ 1. (E.28)

D II : x1−1
2 + x2−6

3 for B , x1 ≥ 1, x2 ≥ 6, x3 ≤ 1. (E.29)

In DVI both served buffers are less than the optimal value at the start of B , the value of x3 does
not exceed the correlation that determines the boundary between DVI and D III. In the three flow
system two buffer contents can define the end of the start-up mode, either the remaining time in
the start up mode depends on x1, or it depends on x2. The value of x1 defines the time spent in
the start-up mode if buffer 1 is cleared before x2 = 1. With Appendix D it can be concluded that
x1 ≥ x2−5 should hold, otherwise x1 would not determine the duration of the start-up mode. The
correlation that determines the boundary equals x3 ≤ 2− x1, if x1 ≤ 1 and x2 ≤ 6 the candidate
Lyapunov function in DVI

1 is (E.30).
If the content of buffer 2 defines the time spent in the start-up mode, by Appendix D it is concluded
that x1 + 5 ≤ x2 ≤ 6 and x3 ≤ 7 − x2, if x1 ≤ 1 and the candidate Lyapunov function equals
(E.31). This completes the derivation of the candidate Lyapunov function in DV I in B , of the
three direction example system.

DVI
1 : 0 for B , x1 ≤ 1, x2 ≤ x1 + 5 ≤ 6, x3 ≤ 2− x1. (E.30)

DVI
2 : 0 for B , x1 ≤ 1, x1 + 5 ≤ x2 ≤ 6, x3 ≤ 7− x2. (E.31)

In D III with x1 ≤ 1 and x2 ≥ 6, x3 needs to exceed the boundary created by the correlation
between buffer 1 and buffer 3, particularly x3 ≥ 2 − x1. Buffer 1 shows the desired behaviour
when in steady-state since x1 ≤ 1. The value of the excess content of x2 and x3, depends on the
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time spent in the start-up mode. Thus the candidate Lyapunov function in D III
1 equals (E.32).

If the value of x2 defines the duration of the start-up mode, x1 ≥ 1 and x2 ≤ 6, the boundary
that determines the extra content regarding the optimal periodic behaviour in buffer 3 becomes
x3 ≥ 7 − x2. This results in mean extra work in the system during periodic behaviour in D III

2

equal to (E.33).
When buffer 1 and buffer 2 contain less than their respective optimal values and x1 determines
the duration of the start-up mode, both x3 ≥ 2 − x1 and x1 ≤ x2 − 5 hold. The extra content
of buffer 2 and buffer 3 depend on the duration of the start-up mode and candidate Lyapunov
function equals (E.34). However when the content of buffer 2 determines the duration of the
start-up mode, with Appendix D it is concluded that x2 ≤ x1 + 5 ≤ 6 and x3 ≥ 7 − x2. The
candidate Lyapunov function in D III

2,1 then equals (E.35).

D III
1 : x2−6

3 + x3+x1−2
4 for B x1 ≤ 1, x2 ≥ 6, x3 ≥ 2− x1. (E.32)

D III
2 : x1−1

2 + x3+x2−7
4 for B x1 ≥ 1, x2 ≤ 6, x3 ≥ 7− x2. (E.33)

D III
1,2 : x2−x1−5

3 + x3+x1−2
4 for B x1 ≤ 1, x1 + 5 ≤ x2 ≤ 6, x3 ≥ 2− x1. (E.34)

D III
2,1 : x1−x2+5

2 + x3+x2−7
4 for B x1 ≤ 1, x2 ≤ x1 + 5 ≤ 6, x3 ≥ 7− x2. (E.35)

Starting the derivation of the candidate Lyapunov function in D III with subdividing the domain
based on which buffer content defines the duration of the start-up mode, structures the derivation.
Structuring is useful when the system size is extended. However the results need to be reviewed to
determine if the derived function is complete and correct. From Figure 3.16 it can be concluded
that if x1 = 0 and x2 > 0, the work is continuously decreasing, so the system should continue
processing if the time spent in the start-up mode is less than the maximum duration of B stated
in the fixed time schedule. If x2 = 6 and x1 > 0 and the system continues in B , the derivative
of work in the system equals (E.36) which proofs the work in the system is decreasing. The mean
extra work in the system in periodic behaviour is minimized when the server continues in B as
long as possible and the value of x2 never defines the end of mode B. A correction is needed in
D III

2 and D III
2,1, the candidate Lyapunov function respectively becomes (E.37) and (E.38).

Ẇ =
λ1 − µ1

µ1
+
λ2 − µ2

µ2
+
λ3
µ3

=
−1

2
+
−1

3
+

1

4
< 0, (E.36)

D III
1,2 : x1−1

2 + x3−1
4 for B x1 ≥ 1, x2 ≤ 6, x3 ≥ 7− x2. (E.37)

D III
2,1 : x3+x1−2

4 for B x1 ≤ 1, x2 ≤ 6, x3 ≥ 2− x1. (E.38)

E.1.3 Mode C, N = {1, 2, 3}
At t = 9 in the fixed time schedule the slow mode of buffer 2 in mode C starts. Figure 3.16
illustrates that the work in the system decreases when the system is in slow mode of buffer 2.
Furthermore the properties of mode C are slightly different than the properties of mode A,B. In
mode C the primarily served buffer is cleared during C instead of during C .
Because the buffer contents are positive by definition, the boundaries of different domain parts
are different compared to the boundaries in mode A and mode B, x2 ≤ 0 becomes x2 = 0.
Even though mode C has different properties, the derivation of a candidate Lyapunov function
is performed in a similar structure as used for mode A and B. The successful derivation of the
candidate Lyapunov function of mode C, implies that the definition of mean extra work in the
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system to derive a candidate Lyapunov function discussed in this chapter is applicable to systems
with mode properties equivalent to the properties of mode C. To emphasize the structure to
derive a candidate Lyapunov function, the same methodology is used in mode C as for mode A
and mode B, even if this produces the same result multiple times.
In D I the candidate Lyapunov function is distinct, the values of the buffer contents equal x1 ≥ 1,
x2 ≥ 0 and x3 ≥ 7. None of the buffer contents achieve the desired periodic behaviour, so the
candidate Lyapunov function depends on all buffer contents, (E.39).
The next part of the domain is where the primarily and secondary served buffers content exceed
their optimal value, x2 ≥ 0 and x3 ≥ 7, but x1 ≤ 1. The maximum duration of the start-up
mode, minimizes the mean extra work in the system during periodic behaviour. Because x1 ≤ 1,
x1 does not contribute to the extra work, the candidate Lyapunov function in D II equals (E.40).

D I : x1−1
2 + x2

3 + x3−7
4 for C , x1 ≥ 1, x2 ≥ 0, x3 ≥ 7. (E.39)

D II : x2

3 + x3−7
4 for C , x1 ≤ 1, x2 ≥ 0, x3 ≥ 7. (E.40)

In DVI the content of both served buffers are x2 = 0 and x3 ≤ 7, the value of x1 is less than the
correlation that determines the boundary between DVI and D III. Mode A and mode B showed
two options in this part, in mode C the same strategy is used. When x2 defines the remaining
time in C , Appendix D gives 3x2 ≤ x3 − 7, otherwise the value of x3 would determine the
duration of the mode. If furthermore x1 ≤ 1 − x2 and x2 = 0, the candidate Lyapunov function
of DVI

2 can be written as (E.41). If the value of x3 determines the duration of the start-up mode,
then x3 ≤ 3x2 + 7 ≤ 7, x2 = 0 and 3x1 ≤ 10 − x3. The first two statements yield x3 = 7, which
leaves to conclude that the candidate Lyapunov function of DVI

3 equals (E.42). This function
exactly equals (E.41), since x2 = 0 is the only possible value.
There is no correction needed in this part of the domain, when x2 = 0 the work is still decreasing,
as mentioned at the start of this subsection.

DVI
2 : 0 for C , x1 ≤ 1, x2 = 0, x3 = 7. (E.41)

DVI
3 : 0 for C , x1 ≤ 1, x2 = 0, x3 = 7. (E.42)

Starting the derivation of D III for values of x2 and x3 that fulfil x2 ≤ 0 and x3 ≥ 7. In case
x1 ≥ 1 − x2 ⇒ x1 ≥ 1 the content of buffer 2 is optimal. The mean extra work in the system
during periodic behaviour depends on x1 and x3, the candidate Lyapunov function in D III

2 equals
(E.43). When the content of buffer 3 determines the time spent in the start-up mode, x2 ≥ 0,
x3 ≤ 7 and 3x1 ≥ 10− x3, the candidate Lyapunov function equals E.44.
If both x2 and x3 are less than their respective optimal values, x2 ≤ 0 and x3 ≤ 7, the duration
of the start-up mode can be defined by either x2 or x3. When the value of x2 defines the duration
of the start-up mode, both 3x2 ≤ x3 − 7 and x1 ≥ 1 should hold. Because x2 = 0 the value
of x3 should fulfil 7 ≤ x3 ≤ 7 and becomes x3 = 7 which yields the the candidate Lyapunov
function in D III

2,3, (E.45). If the content of buffer 3 determines the time spent in the start-up mode,

x3 ≤ 3x2+7 and x1 ≥ 10
3 −

1
3x3 should hold, the candidate Lyapunov function in D III

3,2 equals (E.46).

D III
2 : x1−1

2 + x3−7
4 for C , x1 ≥ 1, x2 = 0, x3 ≥ 7. (E.43)

D III
3 :

x1+
1
3x3− 10

3

2 + x2

4 for C , x1 ≥ 10
3 −

1
3x3, x2 ≥ 0, x3 ≤ 7. (E.44)

D III
2,3 : x1−1

2 + x3−7
4 for C , x1 ≥ 1, x2 = 0, x3 = 7. (E.45)
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D III
3,2 :

x1+
1
3x3− 10

3

2 for C , x1 ≥ 1, x2 = 0, x3 ≤ 7. (E.46)

The previously discussed subdivision in parts of D III is based on the buffer content that defines
the time spent in the start-up mode. A correction might be necessary if the work in the system is
increasing when either of the served buffers reaches its optimal value. Figure 3.16 illustrates that
the work in the system is decreasing when x2 = 0 and x3 > 0. In (E.47) the derivative of the work
in the system is presented for x2 > 0 and x3 = 7. This shows the work in the system is decreasing
when x2 > 0 and x3 = 7, so the content of buffer 3 never defines the end of the start-up mode.
The corrected candidate Lyapunov function in D III

3 and D III
3,2 is respectively given in (E.48) and

(E.49).
Directly switching to setup never minimizes the mean extra work in the system, as the work in
the system is decreasing in slow mode of buffer 2 and in slow mode of buffer 3. Hence there are
the domain parts D IV and DV do not exist in mode C.

Ẇ =
λ1
µ1

+
− (µ2 − λ2)

µ2
+
− (µ3 − λ3)

µ3
=

1

2
+
−1

3
+
−3

4
< 0. (E.47)

D III
3 : x1−1

2 + x2

3 for C , x1 ≥ 1, x2 ≥ 0, x3 ≤ 7. (E.48)

D III
3,2 : x1−1

2 for C , x1 ≥ 1, x2 = 0, x3 ≤ 7. (E.49)

E.1.4 Candidate Lyapunov function example system, N = {1, 2, 3}
The setup of all modes is the final part of the complete domain of the three flow example system.
In case the server starts in setup, the definition equals the definition given in the example of an
intersection of two directions. The value of the mean extra work in the system during periodic
behaviour when the server starts in A , B , C , equals the value of V (s, x1, x2, x3) in respectively
A , B , C x0 time units later. The functions of x1, x2, x3 at x0 time units later, are listed in
Table E.2. The functions are more complicated than the functions of x1, x2 in the two flow
system, because in the three direction system one buffer is served during setup and the buffer
contents are by definition non-negative.

Table E.2: Buffer contents after setup.

A B C

x1 x1 + λ1x0 max (0, x1 − (µ1 − λ1)x0) x1 + λ1x0
x2 x2 + λ2x0 x2 + λ2x0 max (0, x2 − (µ2 − λ2)x0)
x3 max (0, x3 − (µ3 − λ3)x0) x3 + λ3x0 x3 + λ3x0

The derivation of the candidate Lyapunov function is finished by determining the candidate
Lyapunov function during A , B , C , respectively (E.50), (E.51) and (E.52).

V
(
A , x1, x2, x3

)
= V

(
A , x1 + x0, x2 + 2x0, x3 − 3x0

)
. (E.50)

V
(
B , x1, x2, x3

)
= V

(
B ,max (0, x1 − x0) , x2 + 2x0, x3 + x0

)
. (E.51)

V
(
C , x1, x2, x3

)
= V

(
C , x1 + x0,max (0, x2 − x0) , x3 + x0

)
. (E.52)
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x1−3
2 + max

(
0, x2−2

3

)
+ x3−1

4 for A , x1 ≥ 3, x3 ≥ 1,

min
(
x2−2

3 + x3−1
4 ,max

(
0, x1−2

2

)
+ x2−4

3 + x3

4

)
for A , x1 ≤ 3, x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1,

min
(
x2−2

3 + x3−1
4 , x1−2

2 + x3

4

)
for A , 2 ≤ x1 ≤ 3, x2 ≤ 4, x3 ≥ 1,

x1−3
2 +

x2− 8
3+

2
3x3

3 for A , x1 ≥ 3, x2 ≥ 8
3 −

2
3x3, x3 ≤ 1,

min
(
x2− 8

3+
2
3x3

3 , x1−2
2 + x2−4

3 + x3

4

)
for A , x1 ≤ 3, x2 ≥ 4, 3x1 − 8 ≤ x3 ≤ 1,

min
(
x2− 8

3+
2
3x3

3 , x1−2
2 + x3

4

)
for A , x1 ≤ 3, 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 ≤ 1,

min
(
x1− 8

3−
1
3x3

2 +
x2− 8

3+
2
3x3

3 , x1−2
2 + x2−4

3 + x3

4

)
for A , 83 + 1

3x3 ≤ x1 ≤ 3, x2 ≥ 4, x3 ≤ 1,

min
(
x1− 8

3−
1
3x3

2 +
x2− 8

3+
2
3x3

3 , x1−2
2 + x3

4

)
for A , 83 + 1

3x3 ≤ x1 ≤ 3, x2 ≤ 4, x3 ≤ 1,

0 for A , x1 ≤ 3, x2 ≤ 8− 2x1, x3 ≤ 3x1 − 8 ≤ 1,

0 for A , x1 ≤ 3, x2 ≤ 8
3 −

2
3x3, 3x1 − 8 ≤ x3 ≤ 1

V
(
A , x1 + x0, x2 + 2x0,max (0, x3 − 3x0)

)
for A ,

x1−1
2 + x2−6

3 + max
(
0, x3−1

4

)
for B , x1 ≥ 1, x2 ≥ 6,

x2−6
3 + x3+x1−2

4 for B , x1 ≤ 1, x2 ≥ 6, x3 ≥ 2− x1,
x1−1

2 + x3−1
4 for B , x1 ≥ 1, x2 ≤ 6, x3 ≥ 7− x2,

max
(
0, x2−x1−5

3

)
+ x3+x1−2

4 for B , x1 ≤ 1, x2 ≤ 6, x3 ≥ 2− x1,
0 for B , x1 ≤ 1, x2 ≤ x1 + 5 ≤ 6, x3 ≤ 2− x1,
0 for B , x1 ≤ 1, x1 + 5 ≤ x2 ≤ 6, x3 ≤ 7− x2,
V
(
B ,max (0, x1 − x0) , x2 + 2x0, x3 + x0

)
for B ,

max
(
0, x1−1

2

)
+ x2

3 + max
(
0, x3−7

4

)
for C ,

0 for C , x1 ≤ 1, x2 = 0, x3 = 7,

V
(
C , x1 + x0,max (0, x2 − x0) , x3 + x0

)
for C .

(E.53)
This completes the derivation of the candidate Lyapunov function in the complete domain of
the three flow example system. Combining the equations for different parts of the domain if
possible yields a simplified expression of the candidate Lyapunov function V (s, x1, x2, x3), (E.53).
The candidate Lyapunov function in setup of all modes is not denoted explicitly, to shorten the
expression.
The number of equations and the complexity of the split in domains used to derive (E.53), shows
the effect of adding one flow and one mode to the intersection of two directions. Comparing the
candidate Lyapunov function derivation discussed in this section, to the example presented in the
previous section, leaves to concludes that adding an extra mode to the system does not have an
significant effect. Besides making the derivation of a candidate Lyapunov function more exhaustive
because one more mode needs to be examined. On the contrary, changing the composition of the
mode, by for instance adding an extra direction that is served in a mode, makes the derivation more
cumbersome. Furthermore it changes the amount of subdivisions in the domain significantly, which
results in a more complex candidate Lyapunov function. This observation stresses the convenience
of establishing a general policy of which stability is implied without the need of explicitly deriving
a candidate Lyapunov function of the system.
Based on the results presented in this chapter, it is expected that a candidate Lyapunov function
can be found for every system of which an optimal fixed time schedule is known and modes can
be defined. Although it is an educatedly guess that an explicit candidate Lyapunov function can
be derived for a system of any size, actually performing the derivation is undesired.
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E.2 Design of Control Actions, N = {1, 2, 3}
In Section 4.1 control actions are derived based on the candidate Lyapunov function derivative.
Determining control actions in the three flow system is equivalent, but the number of expressions
that combined define the candidate Lyapunov function derivative increases significantly. The
candidate Lyapunov function derivative is derived explicitly, based on (4.1).
This section presents all candidate Lyapunov function derivative equations, which combined result
in E.92. The order of derivation is equal to the order the candidate Lyapunov function expressions
are presented in the previous section. Due to the definition of the candidate Lyapunov function
the function value is constant during setup, this means the candidate Lyapunov function derivative
equals zero in setup.

E.2.1 Derivative if Server in Processing

The candidate Lyapunov function value depends on the evolution of the buffer contents, when a
buffer is emptied the buffer content is processed at the arrival rate which means the evolution of
the buffer content changes. The buffer content at time instant t+ ε for all buffers in all modes is
listed in Table E.3. It should be noted that the expressions given in this table are for the specific
example system, as is the candidate Lyapunov function derivative.

Table E.3: Buffer contents at time instant t+ ε, three flow intersection.

In A In B In C

x1 (t+ ε) If x1 > 0, If x1 > 0, x1 (t) + λ1ε.
x1 (t)− (µ1 − λ1) ε. x1 (t)− (µ1 − λ1) ε.
If x1 = 0, If x1 = 0,
x1 (t) x1 (t)

x2 (t+ ε) x2 (t) + λ2ε. If x2 > 0, If x2 > 0,
x2 (t)− (µ2 − λ2) ε. x2 (t)− (µ2 − λ2) ε.
If x2 = 0, If x2 = 0,
x2 (t) x2 (t)

x3 (t+ ε) If x3 > 0, x3 (t) + λ3ε. If x3 > 0,
x3 (t)− (µ3 − λ3) ε. x3 (t)− (µ3 − λ3) ε.
If x3 = 0, If x3 = 0,
x3 (t) . x3 (t) .

The derivation of the candidate Lyapunov function derivative if the server is processing, is
described per mode in the upcoming subsections. If the evolution of the buffer contents changes,
the candidate Lyapunov function derivative changes as well, as was the case in the two direction
example. This results in extra expressions and adjustments to the domain boundaries, when
either one of the buffer contents equals zero.

Mode A

D I : x1−(µ1−λ1)ε−3
2ε + x2+λ2ε−2

3ε + x3−(µ3−λ3)ε−1
4ε − x1−3

2ε −
x2−2
3ε −

x3−1
4ε = − 7

12 < 0,
for A , x1 ≥ 3, x2 ≥ 2, x3 ≥ 1.

(E.54)

D II : x1−(µ1−λ1)ε−3
2ε + x3−(µ3−λ3)ε−1

4ε − x1−3
2ε −

x3−1
4ε = − 5

4 < 0,
for A , x1 ≥ 3, x2 ≤ 2, x3 ≥ 1.

(E.55)

DVI
1 : = 0,

for A , 8
3 ≤ x1 ≤ 3, x2 ≤ 8− 2x1, x3 ≤ 3x1 − 8 ≤ 1.

(E.56)
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DVI
3 : = 0,

for A , 8
3 ≤ x1 ≤ 3, x2 ≤ 8

3 −
2
3x3, 3x1 − 8 ≤ x3 ≤ 1.

(E.57)

Because (E.55) is not a function of x2 there is no additional expression needed if x2 = 0. Similar
motivation holds for (E.56) and (E.57), if either one of the buffer contents in the domain becomes
zero the candidate Lyapunov function derivative does not change.

D IIIa
1 : x2+λ2ε−2

3ε − x3−(µ3−λ3)−1
4ε − x2−2

3ε −
x3−1
4ε = − 1

12 < 0,
for A , 17

6 ≤ x1 ≤ 3, x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1.
(E.58)

D IIIb
1 : x2+λ2ε−2

3ε + x3−(µ3−λ3)ε−1
4ε − x2−2

3ε −
x3−1
4ε = − 1

12 < 0,
for A , 2 ≤ x1 ≤ 3, x2 ≤ 3

2x1 + 1
4 , x3 ≥ 1.

(E.59)

D IVa
1 : x1−(µ1−λ1)ε−2

2ε + x2+λ2ε−4
3ε + x3−(µ3−λ3)ε

4ε − x1−2
2ε −

x2−4
3ε −

x3

4ε = − 7
12 < 0,

for A , 2 ≤ x1 ≤ 17
6 , x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1.

(E.60)

D IVb
1 : x2+λ2ε−4

3ε + x3−(µ3−λ3)ε
4ε − x2−4

3ε −
x3

4ε = − 1
12 < 0,

for A , x1 ≤ 2, x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1.
(E.61)

DV
1 : x1−(µ1−λ1)ε−2

2ε + x3−(µ3−λ3)ε
4ε − x1−2

2ε −
x3

4ε = − 5
4 < 0,

for A , 2 ≤ x1 ≤ 3, 3
2x1 + 1

4 ≤ x2 ≤ 4, x3 ≥ 1.
(E.62)

D III
3 : x1−(µ1−λ1)ε−3

2ε +
x2+λ2ε− 8

3+
2
3 (x3−(µ3−λ3)ε)

3ε − x1−3
2ε −

x2− 8
3+

2
3x3

3ε = − 1
2 < 0,

for A , x1 ≥ 3, x2 ≥ 8
3 −

2
3x3, 0 < x3 ≤ 1.

(E.63)

If in (E.63) the value of x3 becomes zero than the buffer content evolution changes. In that case
the candidate Lyapunov function derivative equals (E.64).

D III
3 : x1−(µ1−λ1)ε−3

2ε +
x2+λ2ε− 8

3+
2
3x3

3ε − x1−3
2ε −

x2− 8
3+

2
3x3

3ε = 1
6 > 0,

for A , x1 ≥ 3, x2 ≥ 8
3 , x3 = 0.

(E.64)

D IIIa
1,3 :

x2+λ2ε− 8
3+

2
3 (x3−(µ3−λ3)ε)

3ε − x2− 8
3+

2
3x3

3ε = 0,

for A , 26
9 −

1
18x3 ≤ x1 ≤ 3, x2 ≥ 4, 3x1 − 8 ≤ x3 ≤ 1.

(E.65)

D IIIb
1,3 :

x2+λ2ε− 8
3+

2
3 (x3−(µ3−λ3)ε)

3ε − x2− 8
3+

2
3x3

3ε = 0,

for A , 2
3x2 −

1
18x3 + 2

9 ≤ x1 ≤ 3, 8− 2x1 ≤ x2 ≤ 4, 0 < 3x1 − 8 ≤ x3 ≤ 1.
(E.66)

If in (E.66) and x3 = 0 then the buffer content evolution changes. In that case the candidate
Lyapunov function derivative equals (E.67).

D IIIb
1,3 :

x2+λ2ε− 8
3+

2
3x3

3ε − x2− 8
3+

2
3x3

3ε = 2
3 > 0,

for A , 2
3x2 −

1
18x3 + 2

9 ≤ x1 ≤ 3, 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 = 0.
(E.67)

D IV
1,3 : x1−(µ1−λ1)ε−2

2ε + x2+λ2ε−4
3ε + x3−(µ3−λ3)ε

4ε − x1−2
2ε −

x2−4
3ε −

x3

4ε = − 7
12 < 0,

for A , x1 ≤ 26
9 −

1
18x3, 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 ≤ 1.

(E.68)

DV
1,3 : x1−(µ1−λ1)ε−2

2ε + x3−(µ3−λ3)ε
4ε − x1−2

2ε −
x3

4ε = − 5
4 < 0,

for A , x1 ≤ 2
3x2 −

1
18x3 + 2

9 , 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 ≤ 1.
(E.69)
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D IIIa
3,1 :

x1−(µ1−λ1)ε− 8
3ε−

1
3 (x3−(µ3−λ3)ε)

2ε +
x2+λ2ε− 8

3+
2
3 (x3−(µ3−λ3)ε)

3ε − x1− 8
3−

1
3x3

2ε − x2− 8
3+

2
3x3

3ε = 0,

for A , 8
3 + 1

3x3 ≤ x1 ≤ 3, x2 ≥ 8
3 −

2
3x3 ≥ 4, 4

7 ≤ x3 ≤ 1.
(E.70)

D IIIb
3,1 :

x1−(µ1−λ1)ε− 8
3ε−

1
3 (x3−(µ3−λ3)ε)

2ε +
x2+λ2ε− 8

3+
2
3 (x3−(µ3−λ3)ε)

3ε − x1− 8
3−

1
3x3

2ε − x2− 8
3+

2
3x3

3ε = 0,

for A , 8
3 + 1

3x3 ≤ x1 ≤ 3, x2 ≤ 7
12x3 + 11

3 ≤ 4, x3 ≤ 1.
(E.71)

D IV
3,1 : x1−(µ1−λ1)ε−2

2ε + x2+λ2ε−4
3ε + x3−(µ3−λ3)ε

4 − x1−2
2ε −

x2−4
3ε −

x3

4ε = − 7
12 < 0,

for A , 8
3 + 1

3x3 ≤ x1 ≤ 3, x2 ≥ 4, x3 ≤ 4
7 .

(E.72)

DV
3,1 : x1−(µ1−λ1)ε−2

2ε + x3−(µ3−λ3)ε
4ε − x1−2

2ε −
x3

4ε = − 5
4 < 0,

for A , 8
3 + 1

3x3 ≤ x1 ≤ 3, 7
12x3 + 11

3 ≤ x2 ≤ 4, x3 ≤ 1.
(E.73)

V̇P2P =



< 0 for A , x1 ≥ 3, x3 ≥ 1.

< 0 for A , 176 ≤ x1 ≤ 3, x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1,

< 0 for A , 2 ≤ x1 ≤ 3, x2 ≤ 3
2x1 + 1

4 , x3 ≥ 1,

< 0 for A , 2 ≤ x1 ≤ 17
6 , x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1,

< 0 for A , x1 ≤ 2, x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1,

< 0 for A , 2 ≤ x1 ≤ 3, 32x1 + 1
4 ≤ x2 ≤ 4, x3 ≥ 1,

< 0 for A , x1 ≥ 3, x2 ≥ 8
3 −

2
3x3, 0 < x3 ≤ 1,

> 0 for A , x1 ≥ 3, x2 ≥ 8
3 , x3 = 0,

0 for A , 269 −
1
18x3 ≤ x1 ≤ 3, x2 ≥ 4, 3x1 − 8 ≤ x3 ≤ 1,

0 for A , 23x2 −
1
18x3 + 2

9 ≤ x1 ≤ 3, 8− 2x1 ≤ x2 ≤ 4, 0 < 3x1 − 8 ≤ x3 ≤ 1,

> 0 for A , 23x2 −
1
18x3 + 2

9 ≤ x1 ≤ 3, 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 = 0,

< 0 for A , x1 ≤ 26
9 −

1
18x3, 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 ≤ 1,

< 0 for A , x1 ≤ 2
3x2 −

1
18x3 + 2

9 , 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 ≤ 1,

0 for A , 83 + 1
3x3 ≤ x1 ≤ 3, x2 ≥ 8

3 −
2
3x3 ≥ 4, 47 ≤ x3 ≤ 1,

0 for A , 83 + 1
3x3 ≤ x1 ≤ 3, x2 ≤ 7

12x3 + 11
3 ≤ 4, x3 ≤ 1,

< 0 for A , 83 + 1
3x3 ≤ x1 ≤ 3, x2 ≥ 4, x3 ≤ 4

7 ,

< 0 for A , 83 + 1
3x3 ≤ x1 ≤ 3, 7

12x3 + 11
3 ≤ x2 ≤ 4, x3 ≤ 1,

0 for A , 83 ≤ x1 ≤ 3, x2 ≤ 8− 2x1, x3 ≤ 3x1 − 8 ≤ 1,

0 for A , 83 ≤ x1 ≤ 3, x2 ≤ 8
3 −

2
3x3, 3x1 − 8 ≤ x3 ≤ 1.

(E.74)

Mode B

D I : x1−(µ1−λ1)ε−1
2ε + x2−(µ2−λ2)ε−6

3ε + x3+λ3ε−1
4ε − x1−1

2ε −
x2−6
3ε −

x3−1
4ε = − 7

12 < 0,
for B , x1 ≥ 1, x2 ≥ 6, x3 ≥ 1.

(E.75)

D II : x1−(µ1−λ1)ε−1
2ε + x2−(µ2−λ2)ε−6

3ε − x1−1
2ε −

x2−6
3ε = − 5

6 < 0,
for B , x1 ≥ 1, x2 ≥ 6, x3 ≤ 1.

(E.76)

DVI
1 : = 0,

for B , x1 ≤ 1, x2 ≤ x1 + 5 ≤ 6, x3 ≤ 2− x1.
(E.77)
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DVI
2 : = 0,

for B , x1 ≤ 1, x1 + 5 ≤ x2 ≤ 6, x3 ≤ 7− x2.
(E.78)

D III
1 : x2−(µ2−λ2)ε−6

3ε + x3+λ3ε+x1−(µ1−λ1)ε−2
4ε − x2−6

3ε −
x3+x1−2

4ε = − 1
3 < 0,

for B , x1 ≤ 1, x2 ≥ 6, x3 ≥ 2− x1.
(E.79)

D III
1,2 : x1−(µ1−λ1)ε−1

2ε + x3+λ3ε−1
4ε − x1−1

2ε −
x3−1
4ε = − 1

4 < 0,

for B , x1 ≤ 1, x2 ≤ 6, x3 ≥ 7− x2.
(E.80)

D III
1,2 : x2−(µ2−λ2)ε−(x1−(µ1−λ1)ε)−5

3ε + x3+λ3ε+x1−(µ1−λ1)ε−2
4ε − x2−x1−5

3ε − x3+x1−2
4ε = 0,

for B , x1 ≤ 1, x1 + 5 ≤ x2 ≤ 6, x3 ≥ 2− x1.
(E.81)

D III
2,1 : x3+λ3ε+x1−(µ1−λ1)ε−2

4ε − x3+x1−2
4ε = 0,

for B , x1 ≤ 1, x2 ≤ 6, x3 ≥ 2− x1.
(E.82)

V̇P2P =



< 0 for B , x1 ≥ 1, x2 ≥ 6, x3 ≥ 1,

< 0 for B , x1 ≥ 1, x2 ≥ 6, x3 ≤ 1,

< 0 for B , x1 ≤ 1, x2 ≥ 6, x3 ≥ 2− x1,
< 0 for B , x1 ≥ 1, x2 ≤ 6, x3 ≥ 7− x2,
0 for B , x1 ≤ 1, x1 + 5 ≤ x2 ≤ 6, x3 ≥ 2− x1,
0 for B , x1 ≤ 1, x2 ≤ 6, x3 ≥ 2− x1,
0 for B x1 ≤ 1, x2 ≤ x1 + 5 ≤ 6, x3 ≤ 2− x1,
0 for B , x1 ≤ 1, x1 + 5 ≤ x2 ≤ 6, x3 ≤ 7− x2,

(E.83)

Mode C

D I : x1λ1ε−1
2ε + x2−(µ2−λ2)ε

3ε + x3−(µ3−λ3)ε−7
4ε − x1−1

2ε −
x2

3ε −
x3−7
4ε = − 7

12 < 0,
for C , x1 ≥ 1, x2 ≥ 0, x3 ≥ 7.

(E.84)

D II : x2−(µ2−λ2)ε
3ε + x3−(µ3−λ3)ε−7

4ε − x2

3ε −
x3−7
4ε = − 13

12 < 0,
for C , x1 ≤ 1, x2 ≥ 0, x3 ≥ 7.

(E.85)

DVI
2 : = 0,

for C , x1 ≤ 1, x2 = 0, x3 = 7.
(E.86)

D III
2 : x1+λ1ε−1

2ε + x3−(µ3−λ3)ε−7
4ε − x1−1

2ε −
x3−7
4ε = − 7

12 < 0,
for C , x1 ≥ 1, x2 = 0, x3 ≥ 7.

(E.87)

D III
3 : x1+λ1ε−1

2ε + x2−(µ2−λ2)ε
3ε − x1−1

2ε −
x2

3ε = 1
6 > 0,

for C , x1 ≥ 1, x2 ≥ 0, x3 ≤ 7.
(E.88)

D III
2,3 : x1+λ1ε−1

2ε + x3−(µ3−λ3)ε−7
4ε − x1−1

2ε −
x3−7
4ε = − 7

12 < 0,
for C , x1 ≥ 1, x2 = 0, x3 = 7.

(E.89)

D III
3,2 : x1+λ1ε−1

2ε − x1−1
2ε = 1

2 > 0,
for C , x1 ≥ 1, x2 = 0, x3 ≤ 7.

(E.90)

V̇P2P =



< 0 for C , x1 ≥ 1, x2 ≥ 0, x3 ≥ 7,

< 0 for C , x1 ≤ 1, x2 ≥ 0, x3 ≥ 7,

< 0 for C , x1 ≥ 1, x2 = 0, x3 ≥ 7,

> 0 for C , x1 ≥ 1, x2 ≥ 0, x3 ≤ 7,

> 0 for C , x1 ≥ 1, x2 = 0, x3 ≤ 7,

0 for C , x1 ≤ 1, x2 = 0, x3 = 7.

(E.91)
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Derivative in Process

Combining the derivatives in process of mode gives an expression for the candidate Lyapunov
function derivative if the server is processing, namely (E.92)

V̇P2P =



< 0 for A , x1 ≥ 3, x2 ≥ 2, x3 ≥ 1.

< 0 for A , x1 ≥ 3, x2 ≤ 2, x3 ≥ 1,

< 0 for A , x1 ≤ 2, x2 ≥ 8− 2x1 ≥ 4, x3 ≥ 1,

< 0 for A , 2 ≤ x1 ≤ 3, x2 ≤ 4, x3 ≥ 1,

< 0 for A , x1 ≥ 3, x2 ≥ 8
3 −

2
3x3, 0 < x3 ≤ 1,

> 0 for A , x1 ≥ 3, x2 ≥ 8
3 , x3 = 0,

0 for A , 269 −
1
18x3 ≤ x1 ≤ 3, x2 ≥ 4, 3x1 − 8 ≤ x3 ≤ 1,

0 for A , 23x2 −
1
18x3 + 2

9 ≤ x1 ≤ 3, 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 ≤ 1,

> 0 for A , 23x2 −
1
18x3 + 2

9 ≤ x1 ≤ 3, 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 = 0,

< 0 for A , x1 ≤ 26
9 −

1
18x3, 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 ≤ 1,

< 0 for A , x1 ≤ 2
3x2 −

1
18x3 + 2

9 , 8− 2x1 ≤ x2 ≤ 4, 3x1 − 8 ≤ x3 ≤ 1,

0 for A , 83 + 1
3x3 ≤ x1 ≤ 3, x2 ≥ 8

3 −
2
3x3 ≥ 4, 47 ≤ x3 ≤ 1,

0 for A , 83 + 1
3x3 ≤ x1 ≤ 3, x2 ≤ 7

12x3 + 11
3 ≤ 4, x3 ≤ 1,

< 0 for A , 83 + 1
3x3 ≤ x1 ≤ 3, x2 ≥ 4, x3 ≤ 4

7 ,

< 0 for A , 83 + 1
3x3 ≤ x1 ≤ 3, 7

12x3 + 11
3 ≤ x2 ≤ 4, x3 ≤ 1,

0 for A , 83 ≤ x1 ≤ 3, x2 ≤ 8− 2x1, x3 ≤ 3x1 − 8 ≤ 1,

0 for A , 83 ≤ x1 ≤ 3, x2 ≤ 8
3 −

2
3x3, 3x1 − 8 ≤ x3 ≤ 1,

< 0 for B , x1 ≥ 1, x2 ≥ 6, x3 ≥ 1,

< 0 for B , x1 ≥ 1, x2 ≥ 6, x3 ≤ 1,

< 0 for B , x1 ≤ 1, x2 ≥ 6, x3 ≥ 2− x1,
< 0 for B , x1 ≥ 1, x2 ≤ 6, x3 ≥ 7− x2,
0 for B , x1 ≤ 1, x1 + 5 ≤ x2 ≤ 6, x3 ≥ 2− x1,
0 for B , x1 ≤ 1, x2 ≤ 6, x3 ≥ 2− x1,
0 for B x1 ≤ 1, x2 ≤ x1 + 5 ≤ 6, x3 ≤ 2− x1,
0 for B , x1 ≤ 1, x1 + 5 ≤ x2 ≤ 6, x3 ≤ 7− x2,
< 0 for C , x1 ≥ 1, x2 ≥ 0, x3 ≥ 7,

< 0 for C , x1 ≤ 1, x2 ≥ 0, x3 ≥ 7,

< 0 for C , x1 ≥ 1, x2 = 0, x3 ≥ 7,

> 0 for C , x1 ≥ 1, x2 ≥ 0, x3 ≤ 7,

> 0 for C , x1 ≥ 1, x2 = 0, x3 ≤ 7,

0 for C , x1 ≤ 1, x2 = 0, x3 = 7.

(E.92)
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Due to the number of domain parts, the candidate Lyapunov function derivative in setup at
switching instants is comprehensive. The interest of this derivation is debatable. The only time
instant the resulting control action can occur is when the server is starts in setup. In all other
situations the server would not have switched mode, if the candidate Lyapunov functions direction
of steepest descent was the mode it switched out of. However, for the purpose of completeness, the
candidate Lyapunov function derivative at switching instant in setup is explained in this appendix.
The reader is referred to Section 4.1, if the interested is in the origin of the equations.

F.1 Derivative if Server Switches to Setup

The control action to perform depends on the candidate Lyapunov function derivative. If the
derivative is minimized by switching to the subsequent mode, the control action should be to
switch. Otherwise, the server should continue in its current mode.
The server is required to move the system states in the direction of steepest descent of the candidate
Lyapunov function, thereby stabilizing the system as time efficiently as possible. The candidate
Lyapunov function derivative is listed in (4.3), for cases the server continues in its current mode.
The candidate Lyapunov function derivative derived in this section, is the derivative in case the
server starts in a mode and switches to setup of the subsequent mode. Notice that, if the server
switches to setup, the complete setup time needs to be performed. For instance, if the server is
in A and switches to B , the value of the remaining setup time becomes: x0 = 3. The candidate
Lyapunov function derivative is now defined via (F.1).

F.1.1 Mode A

Implementing the buffer content values at t+ ε in case the server switches to setup in (F.1), gives
the candidate Lyapunov function derivative at switching instants in A . The resulting candidate
Lyapunov function derivative at switching instants, is presented for the entire domain in A in
(F.2) to (F.16). The candidate Lyapunov function derivative at switching instants in B , is given
by (F.19) to (F.30). It should be noted that additional expressions arise and the boundaries are
shifted, due to the difference in domain parts of both modes.

lim
ε→0

V
(
B , 3− ε, x1 (t+ ε) , x2 (t+ ε)

)
− V

(
A , 0, x1 (t) , x2 (t)

)
ε

. (F.1)

D I : x1+λ1ε+3(3−ε)−9
µ1ε

+ x2+λ2ε+3−ε−8
µ2ε

− x1−15
µ1ε

− x2−1
µ2ε

= 167
72ε →∞, if ε→ 0,

for A , x1 ≥ 15, x2 ≥ 5.
(F.2)

D I :
x1+λ1ε+

27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− x1−15
µ1ε

− x2−1
µ2ε

= −37x2+1009
576ε →∞, if ε→ 0,

for A , x1 >≥ 15, 1 ≤ x2 < 5.
(F.3)

D II :
x1+λ1ε+

27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− x1−15
µ1ε

= 3x2+105
64ε →∞, if ε→ 0,

for A , x1 ≥ 15, x2 < 1.
(F.4)

D IIIa : x1+λ1ε+3(3−ε)−9
µ1ε

+ x2+λ2ε+(3−ε)−8
µ2ε

− x2+
1
5x1−4
µ2ε

= 37x1−40
360ε →∞, if ε→ 0,

for A , 40
37 ≤ x1 < 15, x2 ≥ 5.

(F.5)

83
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D IV : x1+λ1ε+3(3−ε)−9
µ1ε

+ x2+λ2ε+(3−ε)−8
µ2ε

− x1

µ1ε
− x2−5

µ2ε
= 0,

for A , x1 <
40
37 , x2 ≥ 5.

(F.6)

D IIIb :
x1+λ1ε+

27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− x2+
1
5−4

µ2ε
=

296
5 x1−37x2+121

576ε →∞, if ε→ 0,

for A , 15
8 −

3
8x2 ≤

5
8x2 −

605
296 ≤ x1 < 15, 4− 1

5x1 ≤ x2 <
37
40x1 + 4 < 5.

(F.7)

D IIIb :
x1+λ1ε+

27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− x2+
1
5−4

µ2ε
=

296
5 x1−37x2+121

576ε → −∞, if ε→ 0,

for A , 15
8 −

3
8x2 ≤ x1 <

5
8x2 −

605
296 < 15, 4− 1

5x1 ≤ x2 <
37
40x1 + 4 < 5.

(F.8)

D IIIb : 0− x2+
1
5x1−4
µ2ε

=
4− 1

5x1−x2

9ε →∞, if ε→ 0,

for A , x1 <
15
8 −

3
8x2 < 15, 4− 1

5x1 = x2 <
37
40x1 + 4 < 5.

(F.9)

D IIIb : 0− x2+
1
5x1−4
µ2ε

=
4− 1

5x1−x2

9ε → −∞, if ε→ 0,

for A , x1 <
15
8 −

3
8x2 < 15, 4− 1

5x1 ≤ x2 <
37
40x1 + 4 < 5.

(F.10)

DV :
x1+λ1ε+

27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− x1

µ1ε
= 3x2−15

64ε →∞, if ε→ 0,

for A , 15
8 −

3
8x2 ≤ x1 < 15, 37

40x1 + 4 ≤ x2 = 5.
(F.11)

DV :
x1+λ1ε+

27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− x1

µ1ε
= 3x2−15

64ε → −∞, if ε→ 0,

for A , 15
8 −

3
8x2 ≤ x1 ≤ 15, 37

40x1 + 4 ≤ x2 < 5.
(F.12)

DV : 0− x1

µ1ε
= −x1

8ε → −∞, if ε→ 0,

for A , 0 < x1 <
15
8 −

3
8x2, 37

40x1 + 4 ≤ x2 < 5.
(F.13)

DV : 0− x1

µ1ε
= 0

8ε →∞, if ε→ 0,

for A , x1 = 0, 37
40x1 + 4 ≤ x2 < 5.

(F.14)

DVI :
x1+λ1ε+

27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− 0 = 8x1+3x2−15
65ε →∞, if ε→ 0,

for A , 15
8 −

3
8x2 ≤ x1 ≤ 15, x2 ≤ 4− 1

5x1.
(F.15)

DVI : 0− 0 = 0,
for A , x1 ≤ 15

8 −
3
8x2, x2 < 4− 1

5x1.
(F.16)

V̇P2S =



∞ for A , x1 ≥ 15, x2 ≥ 5,

∞ for A , x1 ≥ 15, 1 ≤ x2 < 5,

∞ for A , x1 ≥ 15, x2 < 1,

∞ for A , 4037 ≤ x1 < 15, x2 ≥ 5,

0 for A , x1 <
40
37 , x2 ≥ 5,

∞ for A , 158 −
3
8x2 ≤

5
8x2 −

605
296 ≤ x1 < 15, 4− 1

5x1 ≤ x2 ≤
37
40x1 + 4 ≤ 5,

−∞ for A , 158 −
3
8x2 ≤ x1 <

5
8x2 −

605
296 < 15, 4− 1

5x1 ≤ x2 ≤
37
40x1 + 4 ≤ 5,

∞ for A , x1 <
15
8 −

3
8x2 < 15, 4− 1

5x1 = x2 <
37
40x1 + 4 < 5,

−∞ for A , x1 <
15
8 −

3
8x2 < 15, 4− 1

5x1 ≤ x2 <
37
40x1 + 4 < 5,

∞ for A , 158 −
3
8x2 ≤ x1 < 15, 3740x1 + 4 ≤ x2 = 5,

−∞ for A , 158 −
3
8x2 ≤ x1 < 15, 3740x1 + 4 ≤ x2 < 5,

−∞ for A , 0 < x1 <
15
8 −

3
8x2,

37
40x1 + 4 ≤ x2 < 5,

∞ for A , x1 = 0, 3740x1 + 4 ≤ x2 < 5,

∞ for A , 158 −
3
8x2 ≤ x1 < 15, x2 < 4− 1

5x1,

0 for A , x1 <
15
8 −

3
8x2, x2 < 4− 1

5x1.

(F.17)
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F.1.2 Mode B

Similar derivations are performed in case the system starts in B . The switch to consider is
switching to A , with original setup time of x0 = 1. The derivative is then equal to (F.18). It
should be noted that specific parts of the domain in A can not be entered via setup. Setup at
least requires 1 time unit, in this one time unit x1 ≥ 3. Thus, D IV and DV are always skipped.

lim
ε→0

V
(
A , 1− ε, x1 (t+ ε) , x2 (t+ ε)

)
− V

(
B , 0, x1 (t) , x2 (t)

)
ε

. (F.18)

D I :
x1+λ1ε+

27
8 (1−ε)−15
µ1ε

+ x2+λ2ε+(1−ε)−1
µ2ε

− x2−8
µ2ε
− x1−9

µ1ε
= 45

72ε →∞, if ε→ 0,

for B , x1 ≥ 12, x2 ≥ 8.
(F.19)

D I :
x2+λ2ε+

8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− x2−8

µ2ε
− x1−9

µ1ε
= −37x1+629

360ε →∞, if ε→ 0,

for B , 9 ≤ x1 < 12, x2 ≥ 8.
(F.20)

D II :
x2+λ2ε+

8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− x2−8

µ2ε
= x1+28

45ε →∞, if ε→ 0,

for B , x1 < 9, x2 ≥ 8.
(F.21)

D III :
x2+λ2ε+

8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− x1+

3
8x2−12
µ1ε

=
− 37

8 x1+
185
64 x2+

111
2

45ε →∞, if ε→ 0,

for B , 12− 3
8x2 ≤ x1 < 12 + 5

8x2, 4 ≤ x2 < 8.
(F.22)

D III :
x2+λ2ε+

8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− x1+

3
8x2−12
µ1ε

=
− 37

8 x1+
185
64 x2+

111
2

45ε → −∞, if ε→ 0,

for B , 12− 3
8x2 ≤ 12 + 5

8x2 ≤ x1, 4 ≤ x2 < 8.
(F.23)

D III :
x2+λ2ε+

8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− 0 = 5x2+x1−12

45ε →∞, if ε→ 0,

for B , x1 < 12− 3
8x2, 12

5 −
1
5x1 ≤ x2 < 8.

(F.24)

D III : 0− x1+
3
8x2−12
µ1ε

=
−x1− 3

8x2+12

8ε → −∞, if ε→ 0,

for B , 12− 3
8x2 < x1, 0 < x2 <

12
5 −

1
5x1 < 8.

(F.25)

D III : 0− x1+
3
8x2−12
µ1ε

=
−x1− 3

8x2+12

8ε →∞, if ε→ 0,

for B , 12− 3
8x2 = x1, 0 < x2 <

12
5 −

1
5x1 < 8.

(F.26)

D III : 0− x1−12
µ1ε

= −x1+12
8ε → −∞, if ε→ 0,

for B , 12 < x1, x2 = 0.
(F.27)

D III :
x2+λ2ε+

8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− 0 = 5x2+x1−12

45ε →∞, if ε→ 0,

for B , x1 < 12− 3
8x2, 4 ≤ x2 < 8.

(F.28)

DVI :
x2+λ2ε+

8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− 0 = 5x2+x1−12

45ε →∞, if ε→ 0,

for B , x1 < 12− 3
8x2, 12

5 −
1
5x1 ≤ x2 < 4.

(F.29)

DVI : 0− 0 = 0,
for B , x1 < 12− 3

8x2, x2 <
12
5 −

1
5x1 < 8.

(F.30)
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V̇P2S =



∞ for B , x1 ≥ 12, x2 ≥ 8,

∞ for B , 9 ≤ x1 < 12, x2 ≥ 8,

∞ for B , x1 < 9, x2 ≥ 8,

∞ for B , 12− 3
8x2 ≤ x1 < 12 + 5

8x2, 4 ≤ x2 < 8,

−∞ for B , 12− 3
8x2 ≤ 12 + 5

8x2 < x1, 4 ≤ x2 < 8,

∞ for B , x1 < 12− 3
8x2,

12
5 −

1
5x1 ≤ x2 < 8,

−∞ for B , 12− 3
8x2 ≤ x1, 0 < x2 <

12
5 −

1
5x1 < 8,

∞ for B , 12− 3
8x2 = x1, 0 < x2 <

12
5 −

1
5x1 < 8,

−∞ for B , 12 < x1, x2 = 0,

∞ for B , x1 < 12− 3
8x2, 4 ≤ x2 < 8,

∞ for B , x1 < 12− 3
8x2,

12
5 −

1
5x1 ≤ x2 < 4,

0 for B , x1 < 12− 3
8x2, x2 <

12
5 −

1
5x1 < 8.

(F.31)

F.2 Derivative if Server Switches between Setups

If the server is in setup and continues setup of the same mode, the candidate Lyapunov function
equals zero by definition. If the server is in setup of one mode and switches to another however,
determining the the candidate Lyapunov function derivative is extensive. The derivative is only of
interest at the first time instant the server is started, it should be ensured that the complete setup
time is executed by the server. This leaves to conclude that x0 = 3 for B and x0 = 1 for A .

F.2.1 Mode A

Starting the derivation for cases the server started in A , the subsequent mode would be A if
x0 = 0 and the mode was finished, but the server can only switch to B . Implementing the buffer
contents during setup in (F.32), the candidate Lyapunov function derivative if the server started
in A is derived.

lim
ε→0

V
(
B , 3− ε, x1 (t+ ε) , x2 (t+ ε)

)
− V

(
A , 1, x1 (t) , x2 (t)

)
ε

. (F.32)

x1+λ1ε+3(3−ε)−9
µ1ε

+ x2+λ2ε+3−ε−8
µ2ε

− x1+3−15
µ1ε

− x2+1−1
µ2ε

= 68
72ε →∞, if ε→ 0,

for A , x1 ≥ 12, x2 ≥ 5.
(F.33)

x1+λ1ε+3(3−ε)−9
µ1ε

+ x2+λ2ε+3−ε−8
µ2ε

− x2+
8
5+

1
5x1−4

µ2ε
=

37
8 x1−13

45ε →∞, if ε→ 0,

for A , 104
37 ≤ x1 < 12, x2 ≥ 5.

(F.34)

x1+λ1ε+3(3−ε)−9
µ1ε

+ x2+λ2ε+3−ε−8
µ2ε

− x2+
8
5+

1
5x1−4

µ2ε
=

37
8 x1−13

45ε → −∞, if ε→ 0,

for A , x1 <
104
37 , x2 ≥ 5.

(F.35)

x1+λ1ε+
27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− x2+
8
5+

1
5x1−4

µ2ε
=

37
5 x1+

93
40−

37
8 x2

72ε →∞, if ε→ 0,

for A , 15
8 −

3
8x2 ≤

5
8x2 −

93
296 ≤ x1 < 12, 4 ≤ x2 < 5.

(F.36)

x1+λ1ε+
27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− x2+
8
5+

1
5x1−4

µ2ε
=

37
5 x1+

93
40−

37
8 x2

72ε → −∞, if ε→ 0,

for A , 15
8 −

3
8x2 ≤ x1 <

5
8x2 −

93
296 < 12, 4 ≤ x2 < 5.

(F.37)

0− x2+
8
5+

1
5x1−4

µ2ε
=
−x2− 1

5x1+
12
5

9ε →∞, if ε→ 0,

for A , x1 <
15
8 −

3
8x2 < 12, 4 ≤ x2 < 5.

(F.38)

x1+λ1ε+
27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− x2+
8
5+

1
5x1−4

µ2ε
=

37
5 x1+

93
40−

37
8 x2

72ε →∞, if ε→ 0,

for A , 15
8 −

3
8x2 ≤

5
8x2 −

93
296 ≤ x1 < 12, 12

5 −
1
5x1 ≤ x2 < 4.

(F.39)
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x1+λ1ε+
27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− x2+
8
5+

1
5x1−4

µ2ε
=

37
5 x1+

93
40−

37
8 x2

72ε → −∞, if ε→ 0,

for A , 15
8 −

3
8x2 ≤ x1 <

5
8x2 −

93
296 < 12, 12

5 −
1
5x1 ≤ x2 < 4.

(F.40)

0− x2+
8
5+

1
5x1−4

µ2ε
=
−x2− 1

5x1+
12
5

9ε →∞, if ε→ 0,

for A , x1 <
15
8 −

3
8x2 < 12, 12

5 −
1
5x1 ≤ x2 < 4.

(F.41)

x1+λ1ε+
27
8 (3−ε)+ 3

8 (x2+λ2ε)−12
µ1ε

− 0 = 8x1+3x2−15
64ε →∞, if ε→ 0,

for A , 15
8 −

3
8x2 ≤ x1 < 12, x2 <

12
5 −

1
5x1.

(F.42)

0− 0 = 0
for A , x1 <

15
8 −

3
8x2 < 12, x2 <

12
5 −

1
5x1.

(F.43)

V̇S2S =



∞ for A , x1 ≥ 12, x2 ≥ 5,

∞ for A , 10437 ≤ x1 < 12, x2 ≥ 5,

−∞ for A , x1 <
104
37 , x2 ≥ 5,

∞ for A , 158 −
3
8x2 ≤

5
8x2 −

93
296 ≤ x1 < 12, 4 ≤ x2 < 5,

−∞ for A , 158 −
3
8x2 ≤ x1 <

5
8x2 −

93
296 ≤ 12, 4 ≤ x2 < 5,

∞ for A , x1 <
15
8 −

3
8x2 < 12, 4 ≤ x2 < 5,

∞ for A , 158 −
3
8x2 ≤

5
8x2 −

93
296 ≤ x1 < 12, 125 −

1
5x1 ≤ x2 < 4,

−∞ for A , 158 −
3
8x2 ≤ x1 <

5
8x2 −

93
296 < 12, 125 −

1
5x1 ≤ x2 < 4,

∞ for A , x1 <
15
8 −

3
8x2 < 12, 125 −

1
5x1 ≤ x2 < 4,

∞ for A , 158 −
3
8x2 ≤ x1 < 12, x2 <

12
5 −

1
5x1,

0 for A , x1 <
15
8 −

3
8x2 < 12, x2 <

12
5 −

1
5x1.

(F.44)

F.2.2 Mode B

In case the server starts in B , the server can only switch to A . Implementing the buffer contents
during setup in (F.45), the candidate Lyapunov function derivative if the server starts in B is
derived.

lim
ε→0

V
(
B , 3− ε, x1 (t+ ε) , x2 (t+ ε)

)
− V

(
A , 1, x1 (t) , x2 (t)

)
ε

. (F.45)

x1+λ1ε+3(1−ε)−15
µ1ε

+ x2+λ2ε+(1−ε)−1
µ2ε

− x1+9−9
µ1ε

− x2+3−8
µ2ε

= −68
72ε → −∞, if ε→ 0,

for B , x1 ≥ 12, x2 ≥ 5.
(F.46)

x2+λ2ε+
8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− x1+9−9

µ1ε
− x2+3−8

µ2ε
=

13− 37
8 x1

45ε →∞, if ε→ 0,

for B , x1 <
104
37 , x2 ≥ 5.

(F.47)

x2+λ2ε+
8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− x1+9−9

µ1ε
− x2+3−8

µ2ε
=

13− 37
8 x1

45ε → −∞, if ε→ 0,

for B , 104
37 ≤ x1 < 12, x2 ≥ 5.

(F.48)

x1+λ1ε+3(1−ε)−15
µ1ε

+ x2+λ2ε+(1−ε)−1
µ2ε

− x1+
3
8x2− 15

8

µ1ε
=

37
9 x2−81

64ε → −∞, if ε→ 0,

for B , x1 ≥ 12, x2 < 5.
(F.49)

x2+λ2ε+
8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− x1+

3
8x2− 15

8

µ1ε
=

37
9 x2− 296

45 x1− 31
15

64ε →∞, if ε→ 0,

for B , 15
8 −

3
8x2 ≤ x1 < 12, 4 ≤ 93

185 + 8
5x1 ≤ x2 < 5.

(F.50)

x2+λ2ε+
8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− x1+

3
8x2− 15

8

µ1ε
=

37
9 x2− 296

45 x1− 31
15

64ε → −∞, if ε→ 0,

for B , 15
8 −

3
8x2 ≤ x1 < 12, 4 ≤ x2 < 93

185 + 8
5x1 < 5.

(F.51)
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x2+λ2ε+
8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− 0 = 5x2+x1−12

45ε →∞, if ε→ 0,

for B , x1 <
15
8 −

3
8x2 < 12, 4 ≤ x2 < 5.

(F.52)

x2+λ2ε+
8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− x1+

3
8x2− 15

8

µ1ε
=

37
9 x2− 296

45 x1− 31
15

64ε →∞, if ε→ 0,

for B , 15
8 −

3
8x2 ≤ x1 < 12, 12

5 −
1
5x1 ≤

93
185 + 8

5x1 ≤ x2 < 5.
(F.53)

x2+λ2ε+
8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− x1+

3
8x2− 15

8

µ1ε
=

37
9 x2− 296

45 x1− 31
15

64ε → −∞, if ε→ 0,

for B , 15
8 −

3
8x2 ≤ x1 < 12, 12

5 −
1
5x1 ≤ x2 <

93
185 + 8

5x1 < 5.
(F.54)

x2+λ2ε+
8
5 (1−ε)+

1
5 (x1+λ1ε)−4

µ2ε
− 0 = 5x2+x1−12

45ε →∞, if ε→ 0,

for B , x1 <
15
8 −

3
8x2 < 12, 12

5 −
1
5x1 ≤ x2 < 5.

(F.55)

0− x1+
3
8x2− 15

8

µ1ε
=
−x1− 3

8x2+
15
8

8ε → −∞, if ε→ 0,

for B , 15
8 −

3
8x2 ≤ x1 < 12, x2 <

12
5 −

1
5x1.

(F.56)

0− 0 = 0,
for B , x1 <

15
8 −

3
8x2 < 12, x2 <

12
5 −

1
5x1.

(F.57)

V̇S2S =



−∞ for B , x1 ≥ 12, x2 ≥ 5,

∞ for B , x1 <
104
37 , x2 ≥ 5,

−∞ for B , 10437 ≤ x1 < 12, x2 ≥ 5,

−∞ for B , x1 ≥ 12, x2 < 5,

∞ for B , 158 −
3
8x2 ≤ x1 < 12, 4 ≤ 93

185 + 8
5x1 ≤ x2 < 5,

−∞ for B , 158 −
3
8x2 ≤ x1 < 12, 4 ≤ x2 < 93

185 + 8
5x1 < 5,

∞ for B , x1 <
15
8 −

3
8x2 < 12, 4 ≤ x2 < 5,

∞ for B , 158 −
3
8x2 ≤ x1 < 12, 125 −

1
5x1 ≤

93
185 + 8

5x1 ≤ x2 < 5,

−∞ for B , 158 −
3
8x2 ≤ x1 < 12, 125 −

1
5x1 ≤ x2 <

93
185 + 8

5x1 < 5,

∞ for B , x1 <
15
8 −

3
8x2 < 12, 125 −

1
5x1 ≤ x2 < 5,

−∞ for B , 158 −
3
8x2 ≤ x1 < 12, x2 <

12
5 −

1
5x1,

0 for B , x1 <
15
8 −

3
8x2 < 12, x2 <

12
5 −

1
5x1.

(F.58)

Combining the expressions of the candidate Lyapunov function at switching instants for switching
to setup and switching between setups, and present these derivative in reduced form, gives
respectively (F.59) and (F.60). These expression are compared to (4.3) in Chapter 4. The option
that results in the minimum derivative value, presents the control action to perform in that part
of the domain.
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V̇P2S =



∞ for A , x1 ≥ 15,

∞ for A , 4037 ≤ x1 ≤ 15, x2 ≥ 5,

0 for A , x1 <
40
37 , x2 ≥ 5,

∞ for A , 158 −
3
8x2 ≤

5
8x2 −

605
296 ≤ x1 < 15, 4− 1

5x1 ≤ x2 <
37
40x1 + 4 < 5,

−∞ for A , 158 −
3
8x2 ≤ x1 <

5
8x2 −

605
296 < 15, 4− 1

5x1 ≤ x2 <
37
40x1 + 4 < 5,

∞ for A , x1 <
15
8 −

3
8x2 < 15, 4− 1

5x1 = x2 <
37
40x1 + 4 < 5,

−∞ for A , x1 <
15
8 −

3
8x2 < 15, 4− 1

5x1 ≤ x2 <
37
40x1 + 4 < 5,

∞ for A , 158 −
3
8x2 ≤ x1 < 15, 3740x1 + 4 ≤ x2 = 5,

−∞ for A , 0 < x1 < 15, 3740x1 + 4 ≤ x2 < 5,

∞ for A , x1 = 0, 4 ≤ x2 < 5,

∞ for A , 158 −
3
8x2 ≤ x1 < 15, x2 < 4− 1

5x1,

0 for A , x1 <
15
8 −

3
8x2, x2 < 4− 1

5x1,

∞ for B , x2 ≥ 8,

∞ for B , 12− 3
8x2 ≤ x1 < 12 + 5

8x2, 4 ≤ x2 < 8,

−∞ for B , 12− 3
8x2 ≤ 12 + 5

8x2 ≤ x1, 4 ≤ x2 < 8,

∞ for B , x1 < 12− 3
8x2, 0 <

12
5 −

1
5x1 ≤ x2 < 8,

−∞ for B , 12− 3
8x2 ≤ x1, 0 ≤ x2 <

12
5 −

1
5x1 < 8,

0 for B , x1 < 12− 3
8x2, x2 <

12
5 −

1
5x1 < 8.

(F.59)

V̇S2S =



∞ for A , x1 ≥ 104
37 , x2 ≥ 5,

−∞ for A , x1 <
104
37 , x2 ≥ 5,

∞ for A , 158 −
3
8x2 ≤

5
8x2 −

93
296 ≤ x1 < 12, 125 −

1
5x1 ≤ x2 < 5,

−∞ for A , 158 −
3
8x2 ≤ x1 <

5
8x2 −

93
296 < 12, 125 −

1
5x1 ≤ x2 < 5,

∞ for A , x1 <
15
8 −

3
8x2 < 12, 125 −

1
5x1 ≤ x2 < 5,

∞ for A , 158 −
3
8x2 ≤ x1 < 12, x2 <

12
5 −

1
5x1,

0 for A , x1 <
15
8 −

3
8x2 < 12, x2 <

12
5 −

1
5x1,

−∞ for B , x1 ≥ 104
37 , x2 ≥ 5,

∞ for B , x1 <
104
37 , x2 ≥ 5,

−∞ for B , x1 ≥ 12, x2 < 5,

∞ for B , 158 −
3
8x2 ≤ x1 < 12, 125 −

1
5x1 ≤

93
185 + 8

5x1 ≤ x2 < 5,

−∞ for B , 158 −
3
8x2 ≤ x1 < 12, 125 −

1
5x1 ≤ x2 <

93
185 + 8

5x1 < 5,

∞ for B , x1 <
15
8 −

3
8x2 < 12, 125 −

1
5x1 ≤ x2 < 5,

−∞ for B , 158 −
3
8x2 ≤ x1 < 12, x2 <

12
5 −

1
5x1,

0 for B , x1 <
15
8 −

3
8x2 < 12, x2 <

12
5 −

1
5x1.

(F.60)



Appendix G. Undefined Control
Action

This appendix lists the control actions to be performed, in specific parts of the domain in the
two direction system. The domain parts in which no conclusions could be made regarding
the control action to perform, by examining the candidate Lyapunov function derivative. The
solution presented in this appendix provides a time efficient solution regarding convergence of
the system. Although it results in a time efficient solution with respect to the convergence rate,
it unnecessarily complicates the control actions expression. Another option is that the server
continues in the current mode, which results in a less complex description of control actions and
provides a stabilizing controller as well. The research objective was to find a controller that is
easy to implement, because of that the results presented in this appendix are disregarded.
Figure G.1 to Figure G.4, visualize the part of mode A and mode B, in which the control action
is undefined. These parts of the domain are unaccounted for in the derivation presented in [1],
ergo this problem does not occur in [1].

G.1 Undefined Domain in Processing

In parts of the domain in A and B both server options, continue processing in the current
mode and perform setup of the subsequent mode, result in V̇ (s, x1, x2) = 0. Therefore, no
conclusion can be made by evaluating the candidate Lyapunov function derivative, regarding the
control action to perform in these parts of the domain. Figure G.1 and Figure G.2 are graphical
representations of the domain parts in respectively A and B , in which the control action is
undetermined.

Although the choice of control action does not result in different candidate Lyapunov function
values, the difference between both actions might appear in the time it takes the system to stabilize
the system in optimal periodic behaviour. Figure G.1 shows the part of the domain of mode A
where the control action is yet to be defined. The time it takes to obtain the desired periodic
behaviour, is set as a decision variable. By minimizing the decision variable, the control action is
designed such that the system converges as quickly as possible.
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Figure G.1: V̇
(
A , x1, x2

)
= 0.
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Domain undefined control in B

Figure G.2: V̇
(
B , x1, x2

)
= 0.
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The time it takes to obtain the desired periodic behaviour via continuing processing in mode A is
referred to as t A . In case x2 = 4− 1

5x1 the system is in periodic behaviour immediately when the

server continues in A . For all other values of x2 in this part of the domain, periodic behaviour
is obtained when x2 = 4. With x2 increases with rate λ2, combined with the previous statements
this gives an expression of t A , (G.1).
The time it takes to obtain the desired periodic behaviour in mode A, by switching to setup in
mode B, is referred to as t A ,s. If after setup the system values are on the dashed line illustrated
in Figure G.1, the system is in periodic behaviour after σ B = 3. In all other parts of the domain,
the time it takes to obtain periodic behaviour equals the time it takes x1 to equal 12. This gives
an expression of the time it takes to obtain optimal periodic behaviour in case the system switches
to B , t A ,s namely (G.2).
If t A ,s < t A , it is time efficient to switch to setup of mode B, else the server should continue in

A . Therefore, if (G.3) or (G.3) holds, the server should switch to setup of mode B.

t A =

{
0 if , x2 = 4− 1

5x1,
4−x2

λ2
= 4− x2 if , x2 6= 4− 1

5x1.
(G.1)

t A ,s =

σ B if , x2 = 5− 8
3x1,

σ B +
12−

(
x1+σ B

λ1

)
λ1

= 4− 1
3x1 if , x2 6= 5− 8

3x1.
(G.2)

x1 >
1

3
for x1 ≤ 15, x2 = 5− 8

3
x1 ≤ 4− 1

5
x1. (G.3)

x1 > 3x2 for x1 ≤ 15, x2 < 5− 8

3
x1 ≤ 4− 1

5
x1. (G.4)

Similarly a control action can be defined in the undetermined domain part in B . In Figure G.2,
the part of the domain where control actions have yet to be determined is hashed. The time it
takes to obtain the desired periodic behaviour if the server continues in B , is referred to as t B . If

the server continues in B and x1 = 12− 3
8x2 then the system is immediately in optimal periodic

behaviour. In all other parts of the domain, the time it takes to obtain optimal periodic behaviour
equals the time it takes for x1 to become 12. This gives the expression for t B , (G.5).
The travel time from the starting values to the optimal periodic behaviour is referred to as t B ,s,
if the server switches to mode A. If after setup is performed the system values are on the dashed
line illustrated in Figure G.2, the system is in periodic behaviour after σ A = 1 time units. For all
other values, periodic behaviour is obtained when x2 equals 4. Both statements combined result
in the expression of t B ,s, (G.6).
If t B ,s < t B it is time efficient to switch to setup of mode A. Hence, if (G.7) or (G.8) holds, the
server should switch to setup of mode A.

t B =

{
0 if , x1 = 12− 3

8x2,
12−x1

λ1
= 4− 1

3x1 if , x1 6= 12− 3
8x2.

(G.5)

t B ,s =

σ A if , x1 = 12− 5x2,

σ A +
4−

(
x2+σ A

λ2

)
λ2

= 4− x2 if , x1 6= 12− 5x2,
(G.6)

x2 >
1

5
, for x1 ≤ 15, x2 =

12

5
− 1

5
x1 ≤ 32− 8

3
x1. (G.7)

x2 >
1

3
x1, for x1 ≤ 15, x2 <

12

5
− 1

5
x1 ≤ 32− 8

3
x1. (G.8)
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G.2 Undefined Domain in Setup

The final part is when the server starts in setup at the first time instant. A visualisation of this
domain part in A and B , is presented in Figure G.3 respectively Figure G.4. The domain parts
in A and B , in which the control action is undefined are equal.
The same procedure as used when the server is in processing of a mode, is used if the server starts
in setup. This results in the most time efficient control action, regarding the convergence time.
The time it takes to obtain the desired periodic behaviour if the server continues in mode A, is
referred to as t A . If x0 is exactly σ A and the values of x1 and x2 are on the boundary, x1 = 12−5x2,
periodic behaviour is obtained when setup is finished. In all other cases, the system is in periodic
behaviour when x2 = 4. Which gives the expression for t A , (G.9).
The time it takes to obtain the desired periodic behaviour in mode A, if the server switches to
setup in mode B, is referred to as t A ,s. Switching to B means the complete setup time needs to

be executed. Hence, if the x1 and x2 are on the boundary, x2 = 5− 8
3x1, the system is in periodic

behaviour immediately after setup. In all other cases periodic behaviour is obtained when x1 = 12,
which yields the expression for t A ,s, (G.10).
If t A ,s < t A , it is time efficient to switch to setup of mode B, else the server should continue in

A . Therefore, if (G.11) or (G.12) holds, the server should switch to setup of mode B.

t A =

{
1 if x0 = 1, x1 = 12− 5x2,

x0 + 4−(x2+x0λ2)
λ2

= 4− x2 if x0 < 1, x1 ≤ 12− 5x2 or x0 = 1, x1 < 12− 5x2.
(G.9)

t A ,s =

σ B if x2 = 5− 8
3x1,

σ B +
12−

(
x1+σ B

λ1

)
λ1

= 4− 1
3x1 x2 6= 5− 8

3x1.
(G.10)

x1 > 3x2 for x1 ≤ 15, x2 < 5− 8

3
x1 ≤

12

5
− 1

5
x1. (G.11)

x2 > 1, for x1 ≤ 15, x2 = 5− 8

3
x1 ≤

12

5
− 1

5
x1. (G.12)

Similarly a control action can be defined in the undetermined domain part in B . Ihe part of the
domain where control actions have yet to be determined is hashed in Figure G.2. The time it
takes to obtain the desired periodic behaviour if the server continues in B , is referred to as t B . If

x0 = 3 and for x1 and x2 the expression x2 = 5− 8
3x2 holds, the system is in periodic behaviour

immediately after setup. In all other situations the system is in periodic behaviour when x1 = 12.
This gives the expression for t B , (G.13).
The travel time from the starting values to the optimal periodic behaviour, if the server switches
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Figure G.3: V̇ ( A , x1, x2) = 0.
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Figure G.4: V̇ ( B , x1, x2) = 0.
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to mode A, is referred to as t B ,s, (G.14). In this case if x2 = 12 − 5x2 holds, the system is
in periodic behaviour when setup is finished. For all other values of x1 and x2 the system is in
periodic behaviour when x2 = 4.
If t B ,s < t B it is time efficient to switch to setup of mode A. Hence, if (G.15), (G.16) or (G.17)
holds, the server should switch to setup of mode A.

t B =

{
3 if x0 = 3, x2 = 5− 8

3x2,

x0 + 12−(x1+x0λ1)
λ1

= 4− 1
3x1 if x0 < 3, x2 ≤ 5− 8

3x2 or x0 = 3, x2 < 5− 8
3x2.

(G.13)

t B ,s =

σ A if x2 = 12− 5x2,

σ A +
4−

(
x2+σ A

λ2

)
λ2

= 4− x2 x2 6= 12− 5x2.
(G.14)

3x2 > 1, for x1 ≤ 15, x2 < 5− 8

3
x1 <

12

5
− 1

5
x1. (G.15)

x2 < 1, for x1 ≤ 15, x2 = 5− 8

3
x1 ≤

12

5
− 1

5
x1. (G.16)

for x1 = 12− 5x2, x2 ≤ 5− 8

3
x1 ≤

12

5
− 1

5
x1. (G.17)

Finding an explicit expression for the time efficient control action is already quite extensive in this
two direction intersection example. When the number of flows is increased, determining control
actions in the undefined areas of the domain by minimizing the convergence time becomes even
more cumbersome. Therefore determining the control actions as such is not feasible.
The part of the domain is referred to as undefined because both possible control actions lead to
the desired steady-state behaviour. This means it is a possibility for the server to continue in the
current mode, it might only lead to an increase in the convergence time. The research objective is
finding a control policy that is easy to implement, hence the latter solution is chosen in case the
control action is undetermined.
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The control actions derived in Section 4.1 listed in (4.6), and (4.7), are extensive. The control
actions are more complex than the ones presented in [1]. Although the candidate Lyapunov
function is not defined in the entire domain in [1], this is not the source of the complex control
action in the domain parts referred to as DV and DV. These domain parts are taken into account
in [1], the only difference is the definition of the candidate Lyapunov function in setup. This
appendix is added to proof that some of the complexity of the control actions, is due to the
definition taken as mean extra work in the system during setup.
In [1] the candidate Lyapunov function is defined as (H.1). Notice that some changes are made in
the expression regarding the variables, to match the definitions used throughout this thesis.

V =



1
8 (x1 − 15 + 3x0) + 1

9 (x2 − 1 + x0) for A ,
1
8 (x1 − 15) + 1

9 (x2 − 1) for A , x1 ≥ 15,

min
(
1
9

(
1
5x1 + x2 − 4

)
, 18x1 + 1

9 (x2 − 5)
)

for A , x1 ≤ 15, x2 ≥ 5,

min
(
1
9

(
1
5x1 + x2 − 4

)
, 18x1

)
for A , x1 ≤ 15, x2 ≤ 5,

1
8 (x1 − 9 + 3x0) + 1

9 (x2 − 8 + x0) for B ,
1
8 (x1 − 9) + 1

9 (x2 − 8) for B , x2 ≥ 8,
1
8

(
x1 + 3

8x2 − 12
)

for B , x2 ≤ 8.

(H.1)

In mode A the candidate Lyapunov function derivative at switching instants is based on the
definition of the derivative used throughout this thesis, (H.2). This equation uses the definition
of the candidate Lyapunov function in setup. The candidate Lyapunov function is now redefined
to match (H.1), this expression is taken to compute V̇ (s, x1, x2) in mode A in case the server
switches to setup of mode B. The definition of the candidate Lyapunov function (H.1) is equal
to (3.23) for corresponding parts of the domain, apart from the cases where x0 > 0. Meaning
the candidate Lyapunov derivative if the server continues in its current mode is equal and can be
found in (4.3).

lim
ε→0

V
(
B , 3− ε, x1 (t+ ε) , x2 (t+ ε)

)
− V

(
A , 0, x1 (t) , x2 (t)

)
ε

. (H.2)

D I,D II : x1+λ1ε+−9+3(3−ε)
µ1ε

+ x2+λ2ε−8+3−ε
µ2ε

− x1−15
µ1ε

− x2−1
µ2ε

= 167
72ε →∞, if ε→ 0 ,

for A , x1 ≥ 15.
(H.3)

D IIIa : x1+λ1ε+−9+3(3−ε)
µ1ε

+ x2+λ2ε−8+3−ε
µ2ε

−
1
5x1+x2−4

µ2ε
=

37
5 x1−8
72ε →∞, if ε→ 0 ,

for A , 40
37 < x1 ≤ 15, x2 ≥ 5.

(H.4)

D IV : x1+λ1ε+−9+3(3−ε)
µ1ε

+ x2+λ2ε−8+3−ε
µ2ε

− x1

µ1ε
− x2−5

µ2ε
= 0 ,

for A , x1 ≤ 40
37 , x2 ≥ 5.

(H.5)

D IIIb : x1+λ1ε+−9+3(3−ε)
µ1ε

+ x2+λ2ε−8+3−ε
µ2ε

−
1
5x1+x2−4

µ2ε
=

37
5 x1−8
72ε →∞, if ε→ 0 ,

for A , x1 ≤ 15, 4− 1
5x1 ≤ x2 ≤

37
40x1 + 4 < 5.

(H.6)

DV : x1+λ1ε+−9+3(3−ε)
µ1ε

+ x2+λ2ε−8+3−ε
µ2ε

− x1

µ1ε
= x2−5

9ε → −∞, if ε→ 0 ,

for A , x1 ≤ 15, 4− 1
5x1 <

37
40x1 + 4 < x2 < 5.

(H.7)
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Due to the fact that there is only one expression for the candidate Lyapunov function if the
system is in setup, the number of derived expressions decreased. Furthermore, the results are less
complex as can easily be concluded from the derivation presented above. This yields the candidate
Lyapunov function derivative in case the server switches to setup, (H.8). Now comparing these
results to the corresponding domain parts in (3.23), the control actions if the server is in A are
determined. This results in expression (H.9).

V̇ =



∞ for A , x1 ≥ 15,

∞ for A , 4037 < x1 ≤ 15, x2 ≥ 5,

0 for A , x1 ≤ 40
37 , x2 ≥ 5,

∞ for A , x1 ≤ 15, 4− 1
5x1 ≤ x2 ≤

37
40x1 + 4 < 5,

−∞ for A , x1 ≤ 15, 4− 1
5x1 <

37
40x1 + 4 < x2 < 5.

(H.8)

(u0, u1, u2) =



(
A , µ1, 0

)
if m = A, x0 = 0, x1 > 15,(

A , µ1, 0
)

if m = A, x0 = 0, 0 < x1 ≤ 15, x2 ≥ 5,(
B , 0, 0

)
if m = A, x0 = 0, x1 = 0, x2 ≥ 5,(

A , µ1, 0
)

if m = A, x0 = 0, 0 < x1 ≤ 15, 4− 1
5x1 ≤ x2 ≤

37
40x1 + 4 < 5,(

A , λ1, 0
)

if m = A, x0 = 0, x1 = 0, 4− 1
5x1 ≤ x2 ≤

37
40x1 + 4 < 5,(

B , 0, 0
)

if m = A, x0 = 0, x1 ≤ 15, 4− 1
5x1 <

37
40x1 + 4 < x2 < 5.

(H.9)

The results presented in this appendix show that a different definition of the candidate Lyapunov
function in setup results in different control actions to be performed by the server. A similar
derivation could be given for mode B, however this is straightforward from the results presented
on mode A and therefore omitted from this appendix.
A decrease in complexity showed, a switch to setup in D IIIb does not show. However, the setup in
the domain part referred to as DV is (although simplified) still required based on these derivations.
This does not show in the controller presented in [1]. Therefore, it is concluded that the definition
of the candidate Lyapunov in setup is the source of the vast majority of the complex control
actions, but it is not the source of all complexity in the control action expressions. Furthermore,
it should be noted that the definition for the candidate Lyapunov function in setup used in [1]
significantly shortens all derivations. This might be useful if the convergence speed is of less
importance.



Appendix I. Intersection Data

This appendix lists the data used in the case studies of Section 5.4 and includes the computation
of the buffer contents in optimal behaviour.

I.1 A2N279 Intersection

The intersection consists of six flows, similar to the previously discussed example. With the
exception that in this case the data is not chosen such that the example results are simple and
straightforward. Although technically the number of vehicles is an integer number, in case the
control policy is derived the arrival rates are assumed to be constant which combined with the
fixed time schedule effective red and green times might result in real numbers. These resulting
numbers are not rounded to integers, it is assumed that this results in the most accurate control
policy. The arrival and process rates corresponding the intersection flows are listed in Table I.1.
The fixed time schedule is presented in Figure I.1. An example that explains in detail how the
optimal buffer contents are computed is given in Section I.2.
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1

0 10 20 30 39.3

time, t

fl
o
w

,
i

Figure I.1: Fixed time schedule, A2N279 intersection

Table I.1: Arrival and process rates of A2N279 intersection

i 3600λi 3600µi
1 2254 3230
2 1189 3800
8 2467 5700
9 127 1805
10 434 1615
12 643 3610

I.2 ’s Gravendijkwal Intersection

The intersection is considered a large intersection, it consists of 29 flows of which the fixed time
schedule is given in Figure I.2. The data corresponding to the flows, the arrival and process rates
are listed in Table I.2. The computation of the optimal buffer content based on the flow data is
presented in this section and the effective red and green times given in the fixed time schedule.
The optimal buffer content is shown in six figures opposed to one in the previous discussed
examples, for ease of reading.
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Figure I.2: Fixed time schedule, ’s Gravendijkwal intersection

Assuming the buffer is empty when the red time of a flow starts, the content of buffer i increases
with λi during red time. When buffer i is served, xi is processed at rate µi, until xi = 0 then buffer
i is served at rate λi. For instance, the red time of flow 1 during a period equals 76.9−13.8 = 63.1
time units. The green time of flow 1 equals 13.8 time units. So after red time, x1 = λ1 ∗ 63.1 =
250
3600 ∗ 63.1 = 4.3, during green time the x1 is processed at µ1 − λ1 which means that the buffer is
emptied in 4.3∗3600

1560−250 = 12 time units. Buffer 1 then proceeds with a slow mode, in which x1 = 0
for 2.8 time units. Computing these values for each flow in the system gives the optimal buffer
contents as function of time, which is given in Figure I.3 to Figure I.6. Although 4.3 vehicles are
impossible, it is assumed to be accurate to derive a control policy as the constant rates are an
assumption it is noted that in practice this situation will not occur.
The conflict matrix Σ is large for the ’s Gravendijkwal intersection, therefore the conflict matrix
is presented in a condensed form in Table I.3.
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Table I.2: Arrival and process rates of ’s Gravendijkwal intersection

i 3600λi 3600µi
1 250 1560
2 400 1900
3 500 3800
4 300 1700
5 1200 3800
6 250 1900
7 400 3400
8 400 2000
9 200 1900
11 1200 5360
12 100 1800
21 14 5000
22 14 5000
23 8 5000
24 8 5000
25 10 5000
26 10 5000
27 10 5000
28 10 5000
31 50 9999
32 50 9999
33 50 9999
34 50 9999
35 50 9999
36 50 9999
37 50 9999
38 50 9999
81 40 5000
82 40 5000

Table I.3: Conflicts and clearance time, ’s Gravendijkwal Intersection
i 1 2 3 4 5 6 7 8 9 11 12 21 22 23 24 25 26 27 28 31 32 33 34 35 36 37 38 81 82
1 0 0 0 3 2 4 2
2 0 0 0 2 1 0 5 1 6 0
3 1 2 4 3 3 1 2 7 2 8 0
4 0 0 4 0 6 2 5
5 1 1 0 0 0 0 0 4 0 5
6 1 0 0 1 4 2 8 2 9
7 0 0 3 1 6 2
8 0 2 1 1 0 0 5 0 6 0 6
9 5 4 3 0 1 3 2 8 2 9
11 0 0 0 1 0 0 3 0 5 2
12 0 1 3 3 1 0 7 2 8 2 7
21 2 2 1
22 0 0 0
23 3 2 0
24 0 0 0
25 2 1 0
26 0 0
27 3 0
28 0 0 0
31 12 8 12
32 0 0 0
33 12 8 12
34 5 8 6
35 11 7 11
36 0 0
37 13 13
38 11 8 8
81 0 0 0
82 0 1 2
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Figure I.3: Optimal buffer contents, 1–6.
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Figure I.4: Optimal buffer contents, 7–9,11–12.
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Figure I.5: Optimal buffer contents, 21–28.
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Figure I.6: Optimal buffer contents, 31–38,81–82.



Appendix I. Intersection Data 100

Table I.4: Active Conflicts ’s Gravendijkwal Intersection
i 1 2 3 4 5 6 7 8 9 11 12 21 22 23 24 25 26 27 28 31 32 33 34 35 36 37 38 81 82
1 0 0 0 0 0 1 0
2 0 0 1 0 0 0 1 0 1 0
3 0 0 0 0 1 0 1 0 1 0 1
4 0 1 0 0 0 0 0
5 1 0 0 0 0 1 0 0 0 0
6 1 0 1 0 0 1 0 1 0
7 0 0 1 0 1 0
8 1 0 0 0 0 0 1 0 1 0 1
9 0 0 1 0 1 0 1 0 1 0
11 0 0 1 1 0 0 0 0 0 0
12 0 0 0 0 1 0 0 1 0 1 0
21 1 0 0
22 1 0 0
23 1 0 0
24 1 0 0
25 1 0 0
26 0 1
27 1 0
28 0 0 1
31 1 0 0
32 1 0 0
33 1 0 0
34 1 0 0
35 1 0 0
36 0 1
37 1 0
38 0 0 1
81 1 0 0
82 1 0 0
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