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a b s t r a c t

The optimal scheduling problem of a systemwith two fluid queues attended by a switching
server is addressed from two angles, the optimal steady-state and the optimal transient
problem. The considered system includes features, such as setup times, setup costs, backlog
and constraints on queue contents, cycle times and service times. First, the steady-state
problem is formulated as a quadratic problem (QP), given a fixed cycle time. Evaluation of
the QP problem over a range of cycle times results in the optimal steady-state trajectory,
minimizing the total cycle costs or time average costs. Second, given initial conditions, we
derive the optimal transient trajectory that leads to the optimal steady-state trajectory
in a finite amount of time at minimal costs. For systems with backlog, we introduce
additional costs on the number of cycles required to reach the steady-state trajectory in
order to simplify the transient trajectory. The transient switching behavior and optimal
initial modes are also addressed. Furthermore, we show by means of an example that the
method can be extended to multi-queue switching servers.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Optimal scheduling of systems with switching behavior is a problem of great importance. This problem, for even the
most simple system, i.e., a server attending two queues, has been investigated by many researchers, see for example [1–9],
and references therein. We follow the general framework introduced by [10] and model the production flow as continuous
rather than discrete. The system considered in this paper is a server that can attend two fluid queues, where only a single
queue can be attended at a time. Switching service to another queue might require a setup process, which might take time
or involves switching costs. These systems arise in numerous contexts, such as manufacturing systems, signalized traffic
intersections, computer communication networks and hospital rooms. Usage of optimal schedules can reduce time or costs.
For instance, optimal schedules can reduce costs for manufacturing systems via lowering the required storage capacity and
shortening lead times, or, for traffic signals at signalized intersections, optimal schedules can reduce congestion and thereby
improve mobility and reduce the amount of environmentally harmful emissions.

In the aforementioned literature, the twoqueue switching servers are restricted in the sense that either setup times, setup
costs, backlog or limited queue contents are required, omitted or not allowed. Also, most studies assume the simplifying
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(a) Signalized intersection
with 2 flows.

(b) Switching server with 2
queues.

(c) Manufacturing system with 2
jobs.

Fig. 1. Different two queue switching server layouts.

condition that the system is symmetric, see [1,2,6,8]. In the currentwork, a twoqueue switching server is consideredwithout
restrictions on any parameters andwith the flexibility of allowing setup times, setup costs and backlog, aswell as constraints
on cycle time, service time and queue contents.

In this paper, we divide the optimal scheduling problem into two subproblems: the derivation of optimal steady-state
trajectories and the derivation of optimal transient trajectories. The current study is an extension of thework in [11]. Similar
to [12,11], we formulate both subproblems as Quadratic Programming (QP) problems,with the addition of backlog and setup
costs. Once the optimal steady-state trajectory is known, we study the best way of reaching it from any initial state, i.e., with
minimal costs. This is a transient optimization problem, occurring for instance in case of a machine which is failure prone,
or in case of a traffic intersection which gives priority to buses [13]. In these cases, we assume that deviations from the
steady-state trajectory rarely occur, allowing the system to recover to the steady-state situation after each interruption.
For systems without backlog and without capacity constraints, the policy for optimal transient behavior is presented. For
systems with backlog, we introduce additional costs on the number of cycles required to reach the steady-state trajectory
in order to simplify the transient trajectory.

Furthermore, we show bymeans of an illustration that the proposedmethods can be extended tomulti-queue switching
servers, given the order of service of queues.

The remainder of this paper is organized as follows. Section 2 describes the system and presents the constraints. The
optimal steady-state problem is addressed in Section 3 and examples of optimal trajectories are presented. In Section 4,
the optimal transient problem is addressed. An illustration of optimal trajectories for a multi-queue switching server is
presented in Section 5. Conclusions are provided in Section 6.

2. System description

We consider a system of two queues served by a single switching server. Fluid arrives at each queue i = 1, 2 with arrival
rateλi. The content of queue i at time t is denoted by xi(t). The server is limited to serve only one queue at a time. If the server
serves queue i, the service rate is given by ri ∈ [0, µi]. Three examples of the system under consideration are presented in
Fig. 1, a signalized traffic intersection with two flows in Fig. 1(a), a 2-queue switching server in Fig. 1(b) and a 2-product
manufacturing system in Fig. 1(c). The latter system has constant demands λi instead of constant arrivals.

Typically, switching service between different queues implies a setup process, either a setup time σi,j ≥ 0 for switching
from queue i to queue j, setup costs si,j or a combination of these. For instance, a setup time can be reserved for vehicles to
leave the intersection after the queue has received a red light (end of service), thereby preventing collisions, or for amachine
to adjust configurations or to perform cleaning. In the latter case, also switching costs might be involved. A cycle consists of
the setup and service of both queues. The total setup time in a cycle is denoted by σ = σ1,2 + σ2,1 and the total setup costs in
a cycle by s = s1,2 + s2,1.

Given the setup times and cyclic behavior, we assume that the system can operate in four modes, denoted by m ∈

{1, 2, 3, 4}. Without loss of generality, the first mode, m = 1, indicates a setup to serve queue 1 and possible idling of the
server, m = 2 indicates serving queue 1, m = 3 indicates a setup to serve queue 2 and possible idling of the server and
m = 4 indicates serving queue 2. Note that for a systemwithout setup times, i.e., σ = 0, modes 1 and 3 can have a duration
of zero time units. The state x of the system not only consist of queue levels x1 and x2, but also of the remaining idle time x0
(including setup times) and modem, i.e., x(t) =


x0(t), x1(t), x2(t), m(t)


.

A service time is defined as the uninterrupted interval during which the queue is served. The duration of a service time
for queue n is nonnegative and is denoted by τn. Once the server is allocated to serve queue n, the server requires an idle
period τ 0

n , which consists of the setup time and a possible idle time, i.e.,

σj,n ≤ τ 0
n , n, j = 1, 2, n ≠ j. (1)

In this paper, we distinguish between a system with and a system without backlog. In case of backlog, denoting an
accumulation over time of work waiting to be done or orders to be fulfilled, the contents of queue n can be negative
and are therefore divided into an inventory level x+

n (t) = max(xn(t), 0) and a backlog level x−
n (t) = min(xn(t), 0). Hence,

xn(t) = x+
n (t) + x−

n (t) and at each time instance either the backlog or inventory level is zero, i.e., x+
n (t)x−

n (t) = 0, ∀t . For
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a system without backlog, xn(t) = x+
n (t), the indicator + is often omitted. Also, for this system it is shown in [14] that for

optimal policies, a server, once serving a queue does not idle and serves at maximal rate. Hence, the service time allocated
at queue n is divided into two parts,

τn = τµ
n + τ λ

n

where the duration of serving at maximal rate is indicated by τ
µ
n and the duration of serving at arrival rate by τ λ

n . Note that
serving at arrival rate, i.e., τ λ

n > 0, occurs only if the queue is empty. This duration is referred to as slow-mode, since capacity
is wasted. However, as indicated in [9] and shown in Section 3, using a slow-modemight result in optimal trajectories, since
it enlarges the cycle time and thereby reduces the fraction of time spent on set-ups, which also wastes capacity. For systems
with backlog, we assume that the server, once serving a queue, can serve the queue at the maximal rate and subsequently
can serve the queue at the arrival rate.

The cycle time T is the time it takes to serve both queues in a cycle. The cycle time consists of idle and service periods for
each queue, i.e.,

T = τ 0
1 + τ

µ

1 + τ λ
1 + τ 0

2 + τ
µ

2 + τ λ
2 .

The workload of queue n is defined by ρn =
λn
µn

. An important notion for steady-state trajectories is stability. A system is
called stable if all queue contents remain bounded. For switching servers, cf. [15–17], this definition is commonly used. To
achieve a stable system, the system capacity should be able to meet the inflow, i.e., is it possible to process all incoming
fluid? For the considered two queue switching servers, all incoming fluid can be processed if ρ1 + ρ2 ≤ 1. Note that the
total workload for systems with setup times should be strictly less than 1, i.e., if the total workload equals 1 the server lacks
capacity to serve the fluid that has arrived during setups. In a stable system the service periods must satisfy

λnT = µnτ
µ
n + λnτ

λ
n , n = 1, 2. (2)

Condition (2) also ensures that the queue contents at the start of the cycle are identical to the queue contents at the end of
the cycle, and therefore ensures steady-state behavior. If (2) is not satisfied, the systembehavior is transient. Note thatwe can
impose additional constraints regarding service periods and queue contents, depending on the system under consideration.
These constraints can originate from, e.g., operational or safety issues. We remark that these constraints are not mandatory,
but can be included if required. Some of them are discussed below.

Cycle time constraints can originate from, for instance, limiting the cycle time of amanufacturing system to the operator’s
available time or requiring a minimal cycle time for safety reasons in traffic intersections. Therefore, minimal and maximal
cycle times, respectively Tmin and Tmax, can be taken into account,

Tmin
≤ T ≤ Tmax. (3a)

Furthermore, bounds on service times, denoted by τmin
n and τmax

n , can be required, e.g., minimal andmaximal service (green)
times for traffic intersections. The service time constraints are imposed via

τmin
n ≤ τn ≤ τmax

n n = 1, 2. (3b)

In addition to the constraints on cycle and service periods, the queue lengths can be bounded, e.g., finite queue capacity, and
also a minimal queue level (or maximal backlog level) can be desired, i.e.,

xmin
n ≤ xn(t) ≤ xmax

n , n = 1, 2. (3c)

Note thatwe can impose additional constraints, regarding service times and/or queue contents. Given the systemdescription
and the constraints, we present a method to derive the optimal steady-state trajectory in Section 3. This trajectory is used
in Section 4 to derive the optimal transient trajectory.

3. Optimal steady-state trajectory

Multiple performance criteria exist for evaluating the trajectory. For the system under consideration, cycle time, flow-
time, total costs or average costs are commonly used criteria. In this paper, we focus on minimizing the cycle time or the
costs. However, other criteria can be easily incorporated.

3.1. Cycle time

The minimal cycle time T ∗ required to serve all arrivals during a cycle can be easily derived. Idling of the server, or
wasting capacity due to service at arrival rate both elongate the cycle time and are therefore not optimal, unless required
to satisfy any constraints. For the unconstrained system, i.e., without constraints (3), the minimal cycle time follows from
T = ρ1T + ρ2T + σ . Required lower bounds on service periods, given by (3b) or by (3c) via

τn ≥ T −
xmax
n − xmin

n

λn
, n = 1, 2,
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Fig. 2. Evolution of xn during a cycle, including setup and service periods and rates of increase/decrease.

also affect the minimal cycle time. In the remainder of this paper, we assume that τmin
n is such that

τmin
n ≥ T −

xmax
n − xmin

n

λn
, n = 1, 2.

From the relations T = τ1 + τ2 + σ , τ1 = max(ρ1T , τmin
1 ), and τ2 = max(ρ2T , τmin

2 ), we obtain (by considering all four
cases):

T ∗
= max


τmin
1 + τmin

2 + σ ,
σ

1 − ρ1 − ρ2
,
σ + τmin

1

1 − ρ2
,
σ + τmin

2

1 − ρ1


.

If we also consider the lower bound on the cycle time (3a), where without loss of generality we can assume Tmin
≥

τmin
1 + τmin

2 + σ , the minimal cycle time follows from

T ∗
= max


Tmin,

σ

1 − ρ1 − ρ2
,
σ + τmin

1

1 − ρ2
,
σ + τmin

2

1 − ρ1


. (4)

Then, τ1 = ρ1T ∗ and τ2 = T ∗
− σ − τ1 are the, not necessarily unique (if T ∗

= Tmin), service periods from a steady-state
trajectory with minimal cycle time.

3.2. Total costs

Total costs during a cycle is another performance criterion. This criterion is used, for instance, in [4]. Costs can arise from
switching service between queues, i.e., setup costs s. Also, costs can be related to the queue contents. We consider inventory
costs c+

n , which are proportional with x+
n (t), and backlog costs c−

n , proportional with x−
n (t), which for instance arise when

production is behind on the demand for the system depicted in Fig. 1(c). This results in the following total costs Jc for the
steady-state trajectory

Jc =

 T

0


c+

1 x+

1 (t) + c−

1 x−

1 (t) + c+

2 x+

2 (t) + c−

2 x−

2 (t)

dt + s. (5)

The trajectory minimizing Jc is the optimal steady-state trajectory. The optimal trajectory is a trade-off between loss of
capacity due to setups, slow-modes and the average setup costs. Elongating the cycle time, by including a slow-mode or
creating backlog, results in less switches over time where capacity is lost due to setups and thereby lowers the average
setup costs. It can be seen in (5) that the setup costs s do not influence the optimal steady-state trajectory. However, these
costs do play a role for the time average costs as performance indicator.

The total inventory and backlog of a queue during a cycle can be derived regarding the service periods, due to the fluid
flows and cyclic behavior. Fig. 2 presents the contents of queue n during a single cycle. All idle and service periods are
indicated, together with the slope rates.

The minimal content of queue n in a steady-state trajectory is denoted by xn. For the optimal steady-state trajectory, this
value is bounded, as presented in the following lemma.

Lemma 3.1. For the optimal trajectory it holds that

max(xmin
n , (λn − µn)τ

µ
n ) ≤ xn ≤ min(xmax

n + (λn − µn)τ
µ
n , 0), n = 1, 2.

Proof. The proof is twofold. First, consider a trajectory where xn > 0 and xmin
n < 0, depicted by the solid line in Fig. 3(a).

Then, an alternative trajectory exists with identical service periods and xn = 0, depicted by the dashed line. The alternative
trajectory has lower costs, i.e., it has xnT less total inventory, presented by the gray area. If xmin

n > 0, for the same reasoning,
xn = xmin

n is optimal. Second, consider a trajectory where xn < (λn − µn)τ
µ
n , i.e., the maximal queue content is less than
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(a) Trajectory with xn > 0. (b) xn < −λn(τ
0
j + τ

µ

j + τ λ
j + τ 0

n ).

Fig. 3. Graphical representation of Lemma 3.1.

zero (xn(t) < 0 for all t ∈ [0, T )). This trajectory is presented by the solid line in Fig. 3(b). Then, an alternative trajectory
exists with identical service periods and xn = (λn −µn)τ

µ
n , depicted by the dashed line. The alternative trajectory has lower

costs, i.e., it has (xn + (µn − λn)τ
µ
n )T less total backlog, presented by the gray area. If xmax

n < 0, for the same reasoning,
xn = xmax

n + (λn − µn)τ
µ
n is optimal. �

Based on Lemma 3.1, the inventory and backlog can be easily derived for a steady-state trajectory. Total inventory of
queue n during a cycle is denoted by w+

n and total backlog by w−
n . These values depend on the queue content constraints

xmin
n and xmax

n , n = 1, 2.
If xmin

n ≤ 0 ∧ xmax
n ≥ 0, the total inventory and backlog are given by

w+

n =

 T

0
x+

n (τ )dτ =
1
2

λnµn

µn − λn
(T − τn)

2
+ xnT + w−

n , (6a)

w−

n =

 T

0
x−

n (τ )dτ =
x2n
2


1

µn − λn
+

1
λn


+ τ λ

n xn, (6b)

where (6a) can be readily obtained from Fig. 2 as the area above xn from which we subtract −xnT − w−
n .

If xmin
n > 0, and therefore also xmax

n > 0, it holds that

w+

n =

 T

0
x+

n (τ )dτ =
1
2

λnµn

µn − λn
(T − τn)

2
+ xnT ,

w−

n = 0,

and for xmax
n < 0, and therefore xmin

n < 0, the contents are given by

w+

n = 0,

w−

n =

 T

0
x−

n (τ )dτ =
1
2

λnµn

µn − λn
(T − τn)

2
+ λnτ

λ
n (T − τn) − (xn + (µn − λn)τ

µ
n )T .

It can be seen that the expressions for w+
n and w−

n in (6) are quadratic in the optimization variables τn and xn. Hence, the
optimization problem is formulated as a Quadratic Programming (QP) problem, given by

J∗c = s + min
τ0
n ,τ

µ
n ,τλ

n ,xn

2
n=1


c+

n w+

n + c−

n w−

n


,

s.t. τmin
n ≤ τn ≤ τmax

n , n = 1, 2, (7a)
xn ≤ xmax

n − (µn − λn)τ
µ
n , n = 1, 2, (7b)

λnT = µnτ
µ
n + λnτ

λ
n , n = 1, 2, (7c)

T = τ 0
1 + τ

µ

1 + τ λ
1 + τ 0

2 + τ
µ

2 + τ λ
2 , (7d)

where (7b) follows from (3c), i.e., the maximal queue content is given by xn + (µn − λn)τ
µ
n , as can be seen in Fig. 2. Note

that the objective is quadratic, as the total inventory and backlog levels (6) are a quadratic combination of the optimization
variables.

For the system without backlog, the minimal total costs J∗c can be analytically derived, which is presented in Section 3.3.
For the systemwith backlog and for systemswithmultiple queues or networks of switching servers, the analytical derivation
is, if possible, much more complex.

3.3. Time average costs

The time average costs are commonly used as performance indicator, also referred to as time average weighted work in
process for manufacturing systems or time average weighted queue lengths. In [1,2,6,8,9], this performance indicator is also
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considered. The time average costs, given a fixed cycle time T , are given by

Jw =
1
T
Jc . (8)

For the system without backlog, the minimal time average costs, as well as the total costs, can be analytically derived. First,
consider the unconstrained system. We assume, without loss of generality, that c1λ1 ≥ c2λ2. Recall that, under optimal
policies the server, once attending a queue, does not idle, i.e., τ 0

n = σj,n. The time average costs, see (6) for xmin
n ≥ 0, are

given by

Jw(T ) =
1
T


a1(T − ρ1T − γ ([1 − ρ1 − ρ2]T − σ))2

+ a2(T − ρ2T − (1 − γ )([1 − ρ1 − ρ2]T − σ))2 + s

+ c1xmin

1 + c2xmin
2 ,

an =
cn
2

λnµn

µn − λn
, n = 1, 2.

(9a)

The minimal required service time is given by (ρ1 + ρ2)T . The remainder of the service time, i.e., ([1 − ρ1 − ρ2]T − σ), is
divided in (9a) over both queues using γ ∈ [0, 1], which denotes the fraction of remaining service allocated at queue 1. The
optimum of (9a) for T > T ∗ with respect to γ is given by

γ ∗
= min

 [c1λ1(1 − ρ2) − c2λ2ρ1]T − c2λ2σ
c1λ1

1−ρ2
1−ρ1

+ c2λ2


(1 − ρ1 − ρ2)T − c1λ1σ

1−ρ2
1−ρ1

− c2λ2σ
, 1

 . (9b)

Note that γ ∗ > 0 for T > T ∗, as the denominator of (9b) is strictly positive if T > T ∗ and the nominator is zero if both
T = T ∗ and c1λ = c2λ and strictly positive otherwise. From (9b), we find that all additional service time is allocated at
serving the first queue, i.e., γ ∗

= 1, if

T ≤
c1λ1σ

c2λ2(1 − ρ1) − c1λ1ρ2
∨ c1λ1ρ2 ≥ c2λ2(1 − ρ1). (9c)

Hence, for c1λ1ρ2 ≥ c2λ2(1 − ρ1), a slow mode at queue 2 is never optimal. We first present the optimization problem if
(9c) is satisfied. Given (9c), i.e., γ ∗

= 1 (all additional service allocated at queue 1), the time average costs are given by

Jw(T ) = (a1ρ2
2 + a2(1 − ρ2)

2)T + 2a1σρ2 + c1xmin
1 + c2xmin

2 +
a1σ 2

+ s
T

, (9d)

and the optimal cycle time T opt yields

T opt
=


a1ρ2

2 + a2(1 − ρ2)2

(s + a1σ 2)

a1ρ2
2 + a2(1 − ρ2)2

,

and J∗w = Jw(T opt). Next, the effect of the constraints on this system is regarded. By adding bounds on the cycle time (3a), the
feasible area changes, i.e., T ∈ [T ∗, Tmax

]. Capacity constraints, i.e., bounds on service times and bounds on queue lengths,
both limit the service time duration, as discussed in Section 3.1. For the system satisfying (9c) together withminimal service
period constraints, the time average costs are given by (9d) if τmin

2 ≤ ρ2T ∗, i.e., τ2 ≥ τmin
2 . Otherwise

Jw(T ) =
a1(σ + τmin

2 )2 + a2(T − τmin
2 )2 + s

T
+ c1xmin

1 + c2xmin
2 , if T <

τmin
2

ρ2
, (9e)

which exceeds the time average costs given by (9d), as additional service time is allocated at queue 2. Note that the lower
bound on the service period of queue 1 can only affect the minimal cycle time, as all extra service time is allocated at queue
1. Moreover, an upper bound on the service duration bounds the cycle time via

T ≤
τmax
n

ρn
, n = 1, 2. (9f)

If both (9c) and (9f) are satisfied, the maximal service time constraints only affect Jw if τmax
1 ≤ T − σ − ρ2T , as for these

cycle times the duration of the slow mode in queue 1 is limited. Then, the time averaged costs are given by

a1(T − τmax
1 )2 + a2(σ + τmax

1 )2 + s
T

+ c1xmin
1 + c2xmin

2 , if T >
τmax
1 + σ

1 − ρ2
, (9g)
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Fig. 4. Time average costs for the system with parameters (10).

which also exceeds the time averaged costs for the unconstrained system for similar reasoning. Then, the optimal time
averaged costs J∗w for the system satisfying (9c) is the minimum of the following optimization problems

minimum of (9e) for max

T ∗, Tmin

≤ T <
τmin
2

ρ2
,

minimum of (9d) for max

T ∗, Tmin,

τmin
2

ρ2


≤ T ≤ min


Tmax,

τmax
1 − σ

1 − ρ2


,

minimum of (9g) for
τmax
1 − σ

1 − ρ2
< T ≤ Tmax,

which can be easily derived. As an example, consider a heterogeneous (non-symmetric) system without backlog, with
parameters

λ1 = 2, µ1 = 8, σ2,1 = 3, c+

1 = 8,

λ2 = 1, µ2 = 4, σ1,2 = 7, c+

2 = 1.
(10)

A graphical representation of Jw(T ) for the system with parameters (10) (satisfying (9c)) is presented in Fig. 4. The solid
line presents the time average costs for the unconstrained system. The costs for the system with τmin

2 = 10 are depicted
by the dashed line and the costs for the system with τmax

1 = 40 are depicted by the dotted line. Note that the optimum for
the unconstrained system and system with the maximal service period constraint on queue 1 is located at T opt

= 32. If the
minimal service period for queue 2 is required, the optimum is located at T = 40.

If the additional service time is allocated at service of both queues, i.e., (9c) does not hold, the time average costs are
given by substituting (9b) into (9a), resulting in

Jw(T ) =
c1λ1c2λ2(T + σ)2

2[c1λ1(1 − ρ2) + c2λ2(1 − ρ1)]T
+

s
T

+ c1xmin
1 + c2xmin

2 .

Furthermore, for the system with minimal and maximal service time constraints, the costs Jw(T ) are given by

a1(T − τmax
1 )2 + a2(σ + τmax

1 )2 + s
T

+ c1xmin
1 + c2xmin

2 , if T >
τmax
1 + γ ∗σ

ρ1 + γ ∗(1 − ρ1 − ρ2)
,

a1(σ + τmax
2 )2 + a2(T − τmax

2 )2 + s
T

+ c1xmin
1 + c2xmin

2 , if T >
τmax
2 + (1 − γ ∗)σ

ρ2 + (1 − γ ∗)(1 − ρ1 − ρ2)
,

a1(T − τmin
1 )2 + a2(σ + τmin

1 )2 + s
T

+ c1xmin
1 + c2xmin

2 , if T <
τmin
1 + γ ∗σ

ρ1 + γ ∗(1 − ρ1 − ρ2)
,

a1(σ + τmin
2 )2 + a2(T − τmin

2 )2 + s
T

+ c1xmin
1 + c2xmin

2 , if T <
τmin
2 + (1 − γ ∗)σ

ρ2 + (1 − γ ∗)(1 − ρ1 − ρ2)
.

Then, along the same lines as presented above, the optimum is given by the minimum of all optimization results within
the feasible cycle time range. If the objective is to optimize the total costs in a cycle, a similar approach can be used where
Jc = TJw .
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Fig. 5. Optimal steady-state trajectory, with characteristic points A − F .

(a) Queue contents versus time. (b) Optimal trajectory.

Fig. 6. Optimal queue contents over time (left) and periodic trajectory (right) during a cycle for the system with parameters (10) and T = T ∗
= 20.

To derive the optimal steady-state trajectory using QP, e.g., for the system with backlog or for systems with multiple
queues, the cycle time T is required to be a constant value. Otherwise, as the cycle time depends on service and idle periods,
the objective function (8) is non-linear. Then, the solution Jw(T ) with minimal costs for cycle times within the range

T ∗
≤ T ≤ min


Tmax,

τmax
n

ρn


, n = 1, 2,

renders the optimal steady-state costs J∗w , which can be easily found.
The optimal trajectory, within the constraints, is a trade-off between loss of capacity due to setups, slow-modes and the

average setup costs. Elongating the cycle time by including a slow-mode or creating backlog, results in less switches over
timewhere capacity is lost due to setups and lowers the average setup costs. For a systemwithout backlog, a typical steady-
state trajectory is depicted in Fig. 5. The trajectory consists of six characteristic points, labeled in alphabetical order A − F .
The optimal trajectory for systems without constraints contains at most one slow-mode, i.e., F = A or C = D. Furthermore,
if no setup periods are considered, D = E and A = B. Optimal policies will serve queue i until the other queue j reaches a
threshold. Therefore, the trajectory can include slow-modes at both queues. A special case of this model, with µ1 = µ2 and
c1 = c2 has been studied in [1,2,5,6,8] and it is shown that the optimal policy is a clearing policy, i.e., the server empties a
queue and then switches to serve the other queue.

3.4. Illustrations

Using the method described above, we illustrate some optimal steady-state trajectories for the two queue switching
server. We consider again the system with parameters (10). Note that, at first, backlog is not allowed for this system. From
(4), we find the minimal cycle time T ∗

= 20. The corresponding steady-state trajectory with minimal costs is presented in
Fig. 6. Here, in the figure on the left, the evolution of the queue contents during a cycle is presented. In the figure on the right,
the periodic trajectory, i.e., x1 versus x2, is presented. It can be seen that no slow-mode occurs in the trajectory, as expected
by considering theminimal cycle time. This trajectory also yields the optimal total costs J∗c = 2550 (and Jw = 127.5). For the
time average costs as performance indicator, the trajectorywithminimal cycle time does not result in the optimal trajectory.
The steady-state costs are depicted in Fig. 7(a). Theminimum is located at T = 32, and the corresponding trajectory, depicted
in Fig. 7(b), is the optimal steady-state trajectory. The optimal costs are J∗w = 120 with service periods τ

µ

1 = 6, τ λ
1 = 8,

τ
µ

2 = 8 and τ λ
2 = 0.

Next, the effects of setup costs, backlog and the constraints are presented in a stepwisemanner. Starting from the system
with parameters (10), without setup costs, without constraints on service periods and no backlog, we add parameters and
restrictions step by step and analyze the steady-state trajectory optimizing the time averaged costs. Note that, for each
trajectory, the previous constraints are preserved. Adding setup costs s2,1 = 300 and s1,2 = 200 to the system results in the
optimal trajectory depicted in Fig. 8(a). The optimal cycle time, costs, service periods and minimal queue contents for each
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(a) Time average costs. (b) Optimal trajectory.

Fig. 7. Time average costs versus cycle time (left) and optimal trajectory for T = 32 (right) for the system with parameters (10).

(a) s2,1 = 300 and s1,2 = 200. (b) c−

1 = 50 and c−

2 = 3. (c) τmax
1 = 15.

(d) xmax
= [35, 16]⊤ . (e) Tmax

= 25. (f) xmin
= [2, −2]⊤ .

(g) No setup periods.

Fig. 8. Optimal steady-state trajectories for the system with parameters (10), minimizing the time average costs. The system is subsequently extended
with setup costs (a), backlog (b), maximal service period (c), maximal queue contents (d), maximal cycle time (e) and minimal queue contents (f). In (g),
no setup periods are considered.

trajectory are presented in Table 1. Compared to the trajectory depicted in 7(b), it can be seen that the addition of setup
costs elongates the cycle time and increases the duration of the slow-mode. This is also expected, since it is beneficial to
enlarge the cycle time as the costs of switching become larger.
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Table 1
Optimal cycle times, costs, service periods and minimal queue contents for the trajectories depicted in
Figs. 7–8.

Fig. T J∗w τ
µ

1 τ λ
1 τ

µ

2 τ λ
2 x1 x2

7(b) 32 120 6 8 8 0 0 0
8(a) 38.78 134.13 6.57 12.52 9.70 0 0 0
8(b) 40.65 130.41 6.72 13.77 10.16 0 0 −7.62
8(c) 33.33 131.93 6.11 8.89 8.33 0 0 −6.25
8(d) 30 134.06 5.83 6.67 7.5 0 0 −6.5
8(e) 20 134.07 5 0 5 0 −4.14 −3.75
8(f) 24 158.06 5.33 2.67 6 0 2 −2
8(g) 20 60.37 1.67 13.33 5 0 2 −2

Allowing backlog, with backlog costs c−

1 = 50 and c−

2 = 3, shifts the optimal trajectory downwards and enlarges the
cycle time, see Fig. 8(b). For queue 2, the inventory and backlog costs are equal. Note that no backlog occurs at queue 1,
which is optimal due to the long slow-mode and the high costs of backlog. Next, the service period of queue 1 is restricted
(τmax

1 = 15), resulting in the optimal trajectory depicted in Fig. 8(c). The service period of queue 1 for this trajectory is the
maximal service period, see Table 1. Adding upper bounds on the queue contents, xmax

1 = 35 and xmax
2 = 16, also reduces

the cycle time, see Fig. 8(d). Also, both upper bounds are reached in the trajectory. In Fig. 8(e), the optimal trajectory of the
system with a maximal cycle time Tmax

= 25 is depicted. This trajectory has a cycle time of 20 time units, the minimal
required cycle time (no slow-modes), and also queue 1 has backlog.

For systems that require a minimal amount of products in the queue, or a maximal allowed amount of backlog, we add
minimal queue constraints to the model. In Fig. 8(f), the optimal trajectory is depicted where the content of queue 1 is at
least 2 and the backlog of queue 2 cannot exceed 2, i.e., xmin

1 = 2 and xmin
2 = −2. Unlike the previous trajectory, the optimal

trajectory is not the trajectory with the minimal cycle time and queue 2 reaches both boundaries. Finally, in Fig. 8(g) the
optimal steady-state trajectory for this system without setup periods is depicted. Due to the setup costs, this trajectory is
not the fixed point (2, 0). The optimal cycle time is 20 time units, which is not the minimal cycle time for this system.

4. Optimal transient trajectory

The transient optimization problem is that of steering the system towards the optimal steady-state trajectory at minimal
costs. Machine failure in a manufacturing application or bus priorities in a signalized traffic intersection are two examples
that can remove the system from the steady-state trajectory. We assume that deviations from the steady-state trajectory
rarely occur, allowing the system to recover to the steady-state situation after each interruption, which is reasonable for
systems such as traffic intersections or manufacturing applications.

A transient solution is defined as a trajectory in the x1 − x2 space that leads to the optimal steady-state trajectory in a
finite amount of time. An optimal transient solution is a transient solutionwhichminimizes the costs of reaching the optimal
steady-state trajectory. For the remainder of this paper,we define the initial state x(0) as the state immediately after removal
from the periodic solution, e.g., after the machine failure or bus priority. In order to reach the steady-state trajectory from
every possible initial state in finite time, the steady-state trajectory requires a slow-mode, since serving at a lower rate,
i.e., not at full capacity, provides the transient trajectory to ‘catch up’ with the steady-state trajectory.

For a fixed number of cycles C , we present the transient optimization problem as a QP problem. A cycle, starting at mode
m, is defined as the series of operations until the end of the previousmode (which is 4 for mode 1, 1 for mode 2, etc.). Denote
by τi,c the service time of queue i for the cth cycle (c ≤ C), consisting of the service time at maximal rate τ

µ

i,c and the service
time at arrival rate τ λ

i,c . Also, xn,c denotes the content of queue n at the end of the cth cycle:

xn,c+1 =xn,c + λn(Tc − τ λ
n,c) − µnτ

µ
n,c, n = 1, 2, c = 1, 2, . . . , C,

where xn,0 = xn(0). In the remainder of this paper we assume that the initial mode is 1, i.e., start setting up to serve queue
1, and derive the QP problem for this particular case. The QP problems for the other initial modes can be derived similarly.
Constraints for the transient problem (cf. (1) and (3)) are listed below. Minimal and maximal cycle time constraints are:

Tmin
≤ Tc ≤ Tmax, c = 1, 2, . . . , C, (11a)

with Tc = τ 0
1,c + τ

µ

1,c + τ λ
1,c + τ 0

2,c + τ
µ

2,c + τ λ
2,c . Minimal and maximal service periods:

τmin
n ≤ τn,c ≤ τmax

n , for n = 1, 2, c = 1, 2, . . . , C, (11b)

and minimal idle time

σj,n ≤ τ 0
n,c, n, j = 1, 2, j ≠ n, c = 1, 2, . . . , C . (11c)

If the transient optimization problem is considered for an infinite number of cycles, the transient trajectory would remain
on the steady-state trajectory once it is reached. However, due to the finite number of cycles considered in the QP problem,
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a termination effect occurs. Clearly, the direct costs vary over the optimal periodic orbit, and typically, at the end of a service
mode the direct costs are less than the average. Therefore, assuming the transient solution is on the periodic orbit at the
final cycle, prolonging this final cycle by enlarging τ λ

2,C (instead of switching) is beneficial. To negate this termination effect,
we enforce the final state of the final cycle C of the transient solution to be identical to the final state of the steady-state
solution, i.e.,

xn,C =x∗

n, n = 1, 2, (11d)

with x∗
n the content of queue n at the start/end of the optimal steady-state trajectory, i.e., the content at the start of the

setup to serve queue 1. If (11d) holds, the trajectory is defined as a feasible transient trajectory, otherwise the trajectory
is infeasible. Deriving the optimal transient trajectory is discussed for two classes of two queue switching servers: servers
without backlog and servers with backlog.

4.1. System without backlog

For the system without backlog, the transient costs are defined by

Jp = lim inf
t→∞

 t

0
[c+

1 x1(τ ) + c+

2 x2(τ ) + s21v1(τ ) + s12v2(τ ) − J∗w]dτ , (12)

with vn(t) =
1

σj,n
, j ≠ n during a setup to queue n and vn(t) = 0 otherwise, and recall that J∗w is the optimal time average

steady-state cost of the system. Furthermore, service is at maximal rate if the queue is nonempty, otherwise at arrival rate.
The total queue contents wn,c of queue n for cycle c satisfy:

w1,c =

x1,c−1 +

1
2λ1τ

0
1,c


τ 0
1,c +


x1,c−1 + λ1τ

0
1,c −

1
2µ1τ

µ

1,c


τ

µ

1,c + (x1,c−1 + λ1τ
0
1,c − µ1τ

µ

1,c)τ
λ
1,c

+

x1,c−1 + λ1τ

0
1,c +

1
2λ1(τ

0
2,c + τ

µ

2,c + τ λ
2,c) − µ1τ

µ

1,c


(τ 0

2,c + τ
µ

2,c + τ λ
2,c), c = 1, 2, . . . , C, (13a)

w2,c =

x2,c−1 +

1
2λ2(τ

0
1,c + τ

µ

1,c + τ λ
1,c + τ 0

2,c)

(τ 0

1,c + τ
µ

1,c + τ λ
1,c + τ 0

2,c)

+

x2,c−1 + λ2(τ

0
1,c + τ

µ

1,c + τ λ
1,c + τ 0

2,c) −
1
2µ2τ

µ

2,c


τ

µ

2,c

+ (x2,c−1 + λ2(τ
0
1,c + τ

µ

1,c + τ λ
1,c + τ 0

2,c) − µ2τ
µ

2,c)τ
λ
2,c, c = 1, 2, . . . , C . (13b)

Using (13), the transient costs (12), considering C cycles, can be written as

Jp(C) =C(s1,2 + s2,1) + Qp(C),

where Qp(C) is the solution to the quadratic programming problem, for C cycles, given by

Qp(C) = min
τ0
n,c ,τ

µ
n,c ,τ

λ
n,c

2
n=1

C
c=1


c+

i wn,c − J∗w(τ 0
n,c + τµ

n,c + τ λ
n,c)


, (14)

subject to constraints (3c), (11), (13), and

x1,c ≥ λ1(τ
0
2,c + τ

µ

2,c + τ λ
2,c), c = 1, 2, . . . , C, (15a)

x2,c ≥ 0, c = 1, 2, . . . , C, (15b)

x1,c−1 ≤ xmax
1 − λ1τ

0
1,c, c = 1, 2, . . . , C, (15c)

x2,c ≤ xmax
2 − (µ2 − λ1)τ

µ

2,c, c = 1, 2, . . . , C, (15d)

where constraints (15a) and (15b) follow from xi(t) ≥ 0, and constraints (15c) and (15d) follow from (3c).
Given a system with the initial state outside the steady-state trajectory, the number of cycles required to derive the

optimal transient trajectory is not easily determined. However, a lower bound on the number of cycles required for a feasible
transient trajectory Cmin can be determined by using a clearing policy, regarding the initial state and considering a system
without capacity or service period constraints. For a systemwith capacity or service period constraints, this number of cycles
is usually not enough to reach the steady-state trajectory. Starting from this lower bound, and by adding extra cycles, we
solve the QP problem until a feasible transient trajectory is derived. Note that this transient trajectory is not necessarily
the optimal trajectory, i.e., adding more cycles may lower the costs. Therefore, the number of cycles considered in the QP
problem (14) is increaseduntil the total costs required for the transient trajectory to reach the steady-state trajectory does no
longer change, i.e., J∗p (C) = J∗p (C+i),∀i > 0. Then, addingmore cycles does not result in a different transient trajectory, in the
sense that it only adds steady-state cycles to the solution. Hence, this suggests that the transient solution is the optimal one.

4.1.1. Illustrations
For the system with parameters (10) and without constraints on queue length, cycle time and service periods, the

optimal transient trajectory for initial state x(0) =

3, 6, 25, 1


is presented in Fig. 9(a) by the solid line. The
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(a)x(0) =

3, 6, 25, 1


. (b)x(0) =


3, 30, 23, 1


.

Fig. 9. Optimal transient trajectories with different initial states. In (a) the clearing policy is optimal, in (b) it is not.

Fig. 10. Discontinuous switching curves (black), for the system with parameters (10), and transient trajectory (gray) for x(0) =

3 45 80 1


.

optimal steady-state trajectory is depicted by the dashed line. Note, that the initial mode is 1, and that the steady-state
trajectory is reached during the second cycle. It can be seen that for this initial state a clearing policy (until the steady-
state trajectory is reached) yields the optimal performance. However, the optimal trajectory for the systemwith initial state
x(0) =


3, 30, 23, 1


, presented in Fig. 9(b), gives a different result. First, after the setup, queue 1 is emptied. Second,

after the setup, queue 2 is served until a content of 3.43 is reached, then the system switches to serve queue 1. Note that
queue 2 is not emptied. Next, queues 1 and 2 are both cleared before reaching the steady-state trajectory.

For the trajectory depicted in Fig. 9(b), it is clearly shown that a trade-off exists between a build-up of the much more
expensive queue 1 and switching before emptying queue 2. This behavior is not present in symmetric systems, as a clearing
policy is optimal for symmetric systems, see for instance [1,8].

Each optimal transient trajectory contains switching points. A switching point is the state x =

x0, x1, x2, m


at

which the system switches to serve the other queue, i.e., switching between modes m = 2 and m = 3 and between modes
m = 4 andm = 1. Experimentally combining the switching points of optimal trajectories, i.e., solving the transient problem
for a set of initial states and collecting the switching points, results in a switching curve. A switching curve characterizes the
optimal transient structure for any given initial state, provided that the server works at maximal rate. Note that for a system
with constraints on the service period, switching curves may not exist in general, as the switching points are affected by
the constraints and will depend on the initial state. For the system without service time constraints, switching curves can
possibly be derived analytically as follows. Starting from the steady-state trajectory, an area can be characterized fromwhich
the transient trajectory converges with a single operation to the steady-state trajectory. Next, an area can be characterized
for which the system converges to the steady-state trajectory in two steps, and the optimal service times can be derived.
Continuing these steps might result in the switching curves.

The (experimentally determined) switching curves for the system with parameters (10) are presented in Fig. 10, along
with a trajectory for initial state x(0) =


3, 45, 80, 1


. The switching curve for a transition betweenmodesm = 2 and

m = 3 is given by the line starting from x1 = 0 and x2 ≥ 17, where (0, 17) is the switching point of the optimal steady-state
trajectory. The switching curve for a transition between modes m = 4 and m = 1 is discontinuous with linear segments.
These segments do not overlap, i.e., each initial state has a single optimal trajectory.

For the system with parameters (10) and c+

1 = 2, the switching curve is continuous, see Fig. 11(a). Here, the switching
curve for a transition between modesm = 4 andm = 1 is piecewise linear.

Adding maximal queue length constraints xmax
1 = 75 and xmax

2 = 92 to this model results in the switching curves
depicted in Fig. 11(b). The figure also displays the optimal transient trajectory for x(0) =


3, 40, 80, 1


. It can be

seen that the switching curves, originating from the queue level constraints, are located λnσj,n below xmax
n , as the queue

length increases during the setup. The initial queue contents, for starting in mode 1, are limited to x1(0) ≤ xmax
1 − λ1σ2,1

and x2(0) ≤ xmax
2 − λ2σ .
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(a) Unconstrained system. (b) Bounds xmax
1 = 75 and xmax

2 = 92.

Fig. 11. Switching curves (black), for the system with parameters (10) and c+

1 = 2, and transient trajectory (gray) for x(0) =

3 40 80 1


.

Fig. 12. Switching curves (black) and optimal initialmode for the systemwith parameters (10) and c+

1 = 2,m(0) = 2 in the gray area,m(0) = 4 otherwise.

For an optimal transient policy, the switching curves can be used to indicate the switching moments. From our
experiments we find that for c+

n µn ≥ c+

j µj, queue n is always emptied and the optimal policy for c+
n µn = c+

j µj is, as
expected, a clearing policy (unless prohibited by restrictions (11)).

Alongside the switching curves, for an optimal transient policy, also the optimal initial mode (given contents x0(0), x1(0)
and x2(0)), if it is not predefined, can be derived. Together with the switching curves, this gives the policy for optimal
transient behavior given initial queue contents. Once the optimal initial state is known, the queues are served until a
switching point is reached, switch to the successive mode, until converging to the optimal steady-state trajectory. If all
initial modes are allowed, the states with setup modes m(0) = 1 and m(0) = 3 are of course not optimal. Therefore, a
comparison of the transient costs starting with both modesm(0) = 2 andm(0) = 4 results in the optimal initial mode. For
the system with parameters (10) and c+

1 = 2, the optimal initial modes are presented in Fig. 12, along with the switching
curves. For initial queue contents in the gray area the optimal initial mode ism(0) = 2,m(0) = 4 otherwise.

Note that, for the system without backlog, the optimal transient trajectory does not include idling of the server. Also, a
slow-mode only occurs while on the steady-state trajectory or to converge to this trajectory. For the system with backlog,
presented next, idling of the server and slow-modes can occur in the optimal transient trajectory.

4.2. System with backlog

For the system with backlog, the transient costs are defined by

Jp = lim inf
t→∞

 t

0
[c+

1 x+

1 (τ ) + c−

1 x−

1 (τ ) + c+

2 x+

2 (τ ) + c−

2 x−

2 (τ ) + s2,1v1(τ ) + s1,2v2(τ ) − J∗w]dτ . (16)

Since Lemma 3.1 does not hold for each cycle in a transient trajectory, the inventory and backlog cannot be calculated by (6).
Therefore, extra variables β and δ are introduced, representing the duration of which the queue content is either positive
or negative in a mode, to calculate the inventory and backlog. Consider queue 1 that starts cycle c in mode 1. The queue
contents during this cycle are depicted in Fig. 13.

The periods in which the queue contents change, i.e., all periods except those serving at arrival rate, are divided into a
part in which the content of queue n is positive, with a duration of δn,c ≥ 0, and a part in which the content is negative, with
a duration of βn,c ≥ 0. For queue 1 it holds that

δ̄1,c + β̄1,c = τ 0
1,c, δ̂1,c + β̂1,c = τ

µ

1,c, δ1,c + β1,c = τ 0
2,c + τ

µ

2,c + τ λ
2,c . (17)

Furthermore, we denote by x̄1,c the content of queue 1 in cycle c after the idle period τ 0
1,c and by x̂1,c the content of queue

1 in cycle c after the period of maximal service τ
µ

1,c , see Fig. 13. We also denote by x̄1,c,0, the contents of queue 1 in cycle c
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Fig. 13. Evolution of x1 during cycle c .

Fig. 14. Evolution of x2 during cycle c .

when the idle period has taken β̄1,c , by x̂1,c,0 the content of queue 1 in cycle c after the period of maximal service has taken
δ̂1,c , and by x1,c,0 the content of queue 1 in cycle c when the period of serving queue 2 has taken β1,c , see Fig. 13.

The queue levels at these time instances are divided into a positive and a negative part, i.e.,

xn,c = x+

n,c − x−

n,c, xn,c,0 = x+

n,c − x−

n,c,0, n = 1, 2, (18a)

x̄n,c = x̄+

n,c − x̄−

n,c, x̄n,c,0 = x̄+

n,c,0 − x̄−

n,c,0, n = 1, 2, (18b)

x̂n,c = x̂+

n,c − x̂−

n,c, x̂n,c,0 = x̂+

n,c,0 − x̂−

n,c,0, n = 1, 2, (18c)

where

x+

n,c ≥ 0 x−

n,c ≥ 0 x+

n,c,0 ≥ 0 x−

n,c,0 ≥ 0 n = 1, 2, (18d)

x̄+

n,c ≥ 0 x̄−

n,c ≥ 0 x̄+

n,c,0 ≥ 0 x̄−

n,c,0 ≥ 0 n = 1, 2, (18e)

x̂+

n,c ≥ 0 x̂−

n,c ≥ 0 x̂+

n,c,0 ≥ 0 x̂−

n,c,0 ≥ 0 n = 1, 2. (18f)

We also add the following equality constraints describing the evolution of the contents of queue 1 in cycle c , as well as the
constraints that for changing queue levels only the positive respectively negative part is changing.

x̄1,c,0 = x1,c−1 + λ1β̄1,c x̄−

1,c,0 = x−

1,c−1 − λ1β̄1,c (19a)

x̄1,c = x̄1,c,0 + λ1δ̄1,c x̄+

1,c = x̄+

1,c,0 + λ1δ̄1,c (19b)

x̂1,c,0 = x̄1,c − µ1δ̂1,c x̂+

1,c,0 = x̄+

1,c − µ1δ̂1,c (19c)

x̂1,c = x̂1,c,0 − µ1β̂1,c x̂−

1,c = x̂−

1,c,0 + µ1β̂1,c (19d)

x1,c,0 = x̂1,c + λ1β1,c x−

1,c,0 = x̂−

1,c − λ1β1,c (19e)

x1,c = x1,c,0 + λ1δ1,c x+

1,c = x+

1,c,0 + λ1δ1,c . (19f)

In terms of these new variables, the total inventory and backlog of queue 1 in cycle c are defined by respectively

w+

1,c =
1
2 β̄1,cx+

1,c−1 +
1
2τ

0
1,cx

+

1,c,0 +
1
2 (δ̄1,c + δ̂1,c)x̄+

1,c +
1
2τ

µ

1,c x̂
+

1,c,0

+
1
2 β̂1,c x̂+

1,c + τ λ
1,c x̂

+

1,c +
1
2β1,c x̂+

1,c +
1
2 (β1,c + δ1,c)x+

1,c,0 +
1
2δ1,cx

+

1,c (20a)

w−

1,c =
1
2 β̄1,cx−

1,c−1 +
1
2τ

0
1,cx

−

1,c,0 +
1
2 (δ̄1,c + δ̂1,c)x̄−

1,c +
1
2τ

µ

1,c x̂
−

1,c,0

+
1
2 β̂1,c x̂−

1,c + τ λ
1,c x̂

−

1,c +
1
2β1,c x̂−

1,c +
1
2 (β1,c + δ1,c)x−

1,c,0 +
1
2δ1,cx

−

1,c . (20b)

For queue 2, we use a similar approach to derive the backlog and inventory during cycle c . The queue contents during this
cycle are depicted in Fig. 14. Denote by x̄2,c the content of queue 2 in cycle c after the idle period τ 0

2,c .
The periods during which queue 2 is not served at arrival rate are divided according to

δ̄2,c + β̄2,c = τ 0
1,c + τ

µ

1,c + τ λ
1,c + τ 0

2,c, δ2,c + β2,c = τ
µ

2,c . (21)
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Fig. 15. Optimal transient trajectories with different initial states, for the system with parameters (25).

Then, the total inventory and backlog in cycle c is given by respectively

w+

2,c =
1
2 β̄2,cx+

2,c−1 +
1
2 (β̄2,c + δ̄2,c)x̄+

2,c,0 +
1
2 (δ̄2,c + δ2,c)x̄+

2,c +
1
2τ

µ

2,cx
+

2,c,0 +
 1
2β2,c + τ λ

2,c


x+

2,c, (22a)

w+

2,c =
1
2 β̄2,cx−

2,c−1 +
1
2 (β̄2,c + δ̄2,c)x̄−

2,c,0 +
1
2 (δ̄2,c + δ2,c)x̄−

2,c +
1
2τ

µ

2,cx
−

2,c,0 +
 1
2β2,c + τ λ

2,c


x−

2,c . (22b)

We also have the following equality constraints:

x̄2,c,0 = x2,c−1 + λ2β̄2,c x̄−

2,c,0 = x−

2,c−1 − λ2β̄2,c (23a)

x̄2,c = x̄2,c,0 + λ2δ̄2,c x̄+

2,c = x̄+

2,c,0 + λ2δ̄2,c (23b)

x2,c,0 = x̄2,c − µ2δ2,c x+

2,c,0 = x̄+

2,c + µ2δ2,c (23c)

x2,c = x2,c,0 − µ2β2,c x−

2,c = x−

2,c,0 − µ2β2,c . (23d)

Then, the transient costs (16) for the system with backlog, considering C cycles, can be written as

Jp(C) =C(s1,2 + s2,1) + Qb(C).

Here, Qb(C) is the solution to the quadratic programming problem, for C cycles, given by

Qb(C) = min
τ
µ
n,c ,τ

λ
n,c

2
n=1

C
c=1


c+

n w+

n,c + c−

n w−

n,c − J∗w(σn,j + τµ
n,c + τ λ

n,c)

, n ≠ j, (24)

Objective function (24) is subject to constraints (17)–(23), and, from (3c),

x1,c ≤ xmax
1 , x̄1,c ≤ xmax

1 , x̄2,c ≤ xmax
2 .

Note that the constraints (18) only guarantee that x+
n,c = max(0, xn,c) + k and x−

n,c = max(0, −xn,c) + k for some constant
k ≥ 0. However, minimizing the objective function (24) with c+

n > 0 and c+
n > 0 guarantees that k = 0.

4.2.1. Illustrations
Consider the system with the following parameters

λ1 = 3, µ1 = 8, σ2,1 = 1, c+

1 = 2, c−

1 = 20,

λ2 = 1, µ2 = 9, σ1,2 = 3, c+

2 = 1, c−

2 = 10,
(25)

and without setup costs or constraints on capacity or service periods. In Fig. 15, the optimal steady-state trajectory (black
solid line) and three optimal transient trajectories are depicted. The solid (gray) line represents the transient trajectory with
x(0) =


3, 10, −10, 1


, where the server sets up to serve queue 2 directly after the setup to queue 1. The dashed

line depicts the trajectory starting from x(0) =

3, −10, −10, 1


. Here, after the setup, the server idles until x1 = 0

and then converges to the steady-state cycle using a slow-mode. This example shows that optimal transient trajectories
can include idling of the server, unlike the trajectories for the system without backlog. This is also intuitive, as idling of
the server is the quickest way to remove backlog. A third trajectory, depicted by the dotted line in Fig. 15, starts from
x(0) =


3, −10, 10, 1


and also converges directly after emptying queue 1 and continuing service at arrival rate.

In Fig. 16, three optimal periodic trajectories are presented starting with a large backlog in queue 1 (x1(0) = −30). The
initial state for the trajectory depicted by the gray solid line is x(0) =


3, −30, −5, 1


, the trajectory depicted by

dashed line x(0) =

3, −30, 0, 1


and the trajectory depicted by dotted line x(0) =


3, −30, 15, 1


. It can be

seen that the backlog is minimized as fast as possible, by switching to serve queue 2 and serving this queue or idling until
x2 = 0. Note that, for convergence to the steady-state trajectory, the server can switch earlier to serve queue 1. However,
this reduction in time does not outweigh the extra backlog costs. Moreover, when the trajectory reaches the origin, the
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Fig. 16. Optimal transient trajectories with different initial states, for the system with parameters (25).

(a) Convergence after 4 cycles, J∗P = 105.85. (b) Convergence after 2 cycles, JP = 107.64.

Fig. 17. Two trajectories for x(0) =

3 10 10 1


.

server can immediately switch to serve queue 1, resulting in a lower total inventory. For this system, this reduction in costs
does not outweigh the cost reduction by elongating the cycle time. Therefore, queue 2 is served at arrival rate a little longer,
i.e., until x2 = 2.06.

In some cases, the optimal transient trajectory requires a few additional cycles to converge to the steady-state trajectory
after the queue levels are directed to the vicinity of the steady-state trajectory. This trajectory has optimal costs, but another
transient trajectory, which converges with less cycles to the steady-state trajectory and almost identical costs, might be
desired by the operator, e.g., for simplicity of the trajectory. As an illustrative example, Fig. 17presents twodifferent transient
trajectories, bothwith initial state


3, 10, 0, 1


. Fig. 17(a) depicts the optimal transient trajectory, which requires four

cycles to converge to the steady-state trajectory. In Fig. 17(b), a transient trajectory is depicted which converges after two
cycles, with almost similar costs, i.e., a difference of 1.7%. This trajectory might be desired over the optimal trajectory, as the
costs are almost similar and the trajectory converges faster to the steady-state trajectory.

Also, switching curves for the system with backlog, as presented for the system without backlog, provide no insight in
the optimal transient behavior, due to this complex convergence for some of the optimal transient trajectories. To negate
the occurrence of extra cycles just before converging, we add costs to the number of cycles required to converge. Denote
by cc the additional transient costs of requiring an extra cycle to converge to the steady-state trajectory. Then, the transient
costs J̄p are denoted by

J̄p(C) =C(s1,2 + s2,1 + cc) + Qb(C). (26)

Using (26), for the system with parameters (25) and cc = 5, which is only 31% of the optimal steady-state costs J∗w , the
switching curves and three transient trajectories are depicted in Fig. 18. These switching curves are depicted with the black
solid lines, and are generated by optimizing trajectories for the systemwithout backlog in the initial states. Also the optimal
steady-state trajectory is depicted (gray)with corresponding switching points. It can be seen that the switching curves on the
left side, which represent a transition betweenmodesm = 2 andm = 3, consist of three line segments and single switching
point on the steady-state trajectory. In Fig. 18(a) a transient trajectory is depicted, with x(0) =


3, 10, 11, 1


and

converges to the steady-state trajectory during the slow-mode in the second cycle. The transient trajectory presented in
Fig. 18(b), with initial state x(0) =


3, 10, 7, 1


, converges to the steady-state trajectory during service of queue 2

in the first cycle. Due to allowed backlog, this is possible for a whole range of trajectories, as they switch at the second
line segment of the switching curve. Finally, in Fig. 18(c) a transient trajectory is depicted for the system with initial state
x(0) =


3, 10, 0, 1


. Note that the trajectory converges to the steady-state trajectory during service of queue 1 in

the second cycle, while convergence was already possible during service of queue 1 in the first cycle. However, using two
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(a) x(0) =

3, 10, 11, 1


. (b) x(0) =


3, 10, 7, 1


.

(c) x(0) =

3, 10, 2, 1


.

Fig. 18. Switching curves, optimal steady-state trajectory and three transient trajectories.

x

x

x

Fig. 19. Three-queue switching server.

cycles results in lower costs (even with the added costs cc). For a larger cost cc , the use of this second cycle can be removed.
Trajectories that reach a point on the dashed line, while serving queue 1, converge to the steady-state trajectory by using a
slow-mode from that point.

For obtaining the results in this section, we used Matlab R2014b on a 1.9 GHz Intel Core i5-4300U CPU. We used
quadprog for solving the quadratic programs. Solving the QP’s for determining the optimal steady-state trajectory took
either 0.001 s or 0.002 s. Solving the QP’s for the transient problem took in between 0.26 s and 1.21 s with an average of
0.34 s.

5. Multi-queue switching servers

Extending this work tomulti-queue switching servers imposes several problems. The first problem is the order of serving
the queues. The proposedmethod can be extended to derive optimal steady-state and transient trajectories for multi-queue
switching servers if the order of service of queues is predefined, for instance due to safety issues at traffic intersections or
a fixed order of assembly at manufacturing systems. If the order is not predefined, the optimal trajectory can be derived by
first determining the optimal trajectory for all possible orders of serving queues, and then selecting the one yielding the best
performance. The second problem is the interpretation of the switching curves and optimal transient trajectories. If, for any
initial state, the transient trajectories can be derived, a common policy (as specified by the switching curves) is not easily
found or does not exist.

For example, consider a three-queue switching server, presented in Fig. 19. The state of the 3-queue server is given by
x =


x0, x1, x2, x3, m


. The arrival and service rates are indicated in Fig. 19, all setup periods have a duration of

1 and the costs are given by c1 = 4, c2 = 2, c3 = 1. Furthermore, the server is restricted to serve only one queue at a
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(a) Queues vs. time. (b) Trajectory.

Fig. 20. Optimal steady-state trajectory of the 3-queue system.

Fig. 21. Switching area, switch from serving queue 3 to serve queue 1.

Fig. 22. Optimal transient trajectory for x(0) =

1, 200, 200, 200, 1


.

time. Due to, for example, operator requirements, the service order of queues is fixed, i.e., assume without loss of generality
that queues are served in the order 1, 2, 3 and then queue 1 again and so on. Also, backlog is not allowed, i.e., the queue
lengths are nonnegative. Furthermore, no restrictions are imposed on the service periods or queue lengths. For this system,
the optimal steady-state trajectory is presented in Fig. 20. This trajectory has a single slow mode, after emptying queue 1.

Then, the optimal transient trajectory is derived similarly as presented in Section 4.1, with the addition of service of
queue 3. The combined switching points, derived by experiments, result in switching areas. A switch to serve queue 2
or queue 3 occurs when queues 1 or 2 are emptied, i.e., x =


0, 0, R, R, 1


or x =


0, R, 0, R, 2


,

respectively. The switching area indicating a switch between serving queue 3 and setting up to serve queue 1 is presented
in Fig. 21. It can be seen that, queue 3 is, once served, not always emptied, as the switching area is not represented by
x =


0, R, R, 0, 3


. This behavior is similar to the transient behavior of a two queue system.

For this illustrative example, no constraints are imposed on the service or cycle times. Therefore, the server is allowed to
switch to serve the next queue right after finishing a setup. This occurs for instance if x(0) =


1, 200, 200, 200, 1


.

The corresponding optimal transient trajectory is presented in Fig. 22. It can be clearly seen that queue 3 is not served in
the first cycle, i.e., after emptying queue 2, the system starts serving queue 1 again. To do this, first a setup to queue 3
is performed, followed by a setup to serve queue 1. This indicates that, if the order of service is not predefined, another
sequence can result in better performance.
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6. Conclusions

In this paperwe studied the optimal steady-state and transient trajectories for a two queue switching server. The optimal
steady-state trajectory is derived analytically for the system without backlog. For the system with backlog, and to allow
multi-queue switching servers, the problem is formulated as a QP problem given a fixed cycle time. By solving the QP over
a range of cycle times, the optimal steady-state trajectory is derived. An advantage of this method is that it is flexible in
adding objectives and constraints, e.g., setup times and/or setup costs, including backlog and constraints on cycle times,
service times and queue lengths.

Second, we formulated the transient problem, i.e., a transient trajectory which minimizes the costs of reaching the
optimal steady-state trajectory. This problem is also formulated as a QP problem, depending on the number of cycles C
imposed to reach the steady-state trajectory. Evaluating a range of values C results in the optimal transient trajectory, given
initial queue contents and initialmode. For the systemwithout capacity constraints and no backlogs, switching curves can be
derivedby combining switchingpoints of optimal trajectories, i.e., points atwhich the systemswitches to serve other queues.
These switching curves are the blueprint of a policy for optimal transient behavior. Furthermore, the optimal initial mode,
if not predescribed, can be derived. Together with the switching curves, this yields the control policy for optimal transient
behavior. For the system with backlog, we introduced additional costs on the number of cycles required to converge to the
steady-state trajectory, to derive a more simple schedule and to be able to derive switching curves for the unconstrained
system.

Finally, we have shown that the presented approaches can be extended to multi-queue switching servers. For a fixed
queue routing, i.e., fixed service order of queues, the approach can be easily extended by adding the extra queues.
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