Feedback control compared to
common control strategies for a
multi-product flow line

H. Ploegimakers

SE 420328

Master’s Thesis

Supervisor: Prof.dr.ir. J.E. Rooda,
Coach: Dr.ir. A.A.J. Lefeber

EINDHOVEN UNIVERSITY OF TECHNOLOGY
FacuLTy oF MECHANICAL ENGINEERING
SY¥STEMS ENGINEERING GROUP

Eindhoven, January 2003

FINAL ASSIGNMENT

EINDHOVEN UNIVERSITY OF TECHNOLOGY January 2003
Department of Mechanical Engineering
Systems Engineering Group

Student H. Ploegmakers

Supervisor Prof.drir. J.E. Rooda
Advisor Drir. A.AJ. Lefeber

Start January 2002

Finish December 2002

Title Hybrid control of a flow line
Subject

Several control strategies are available for controlling flow-lines existing of a number of machines,
producing few products in large numbers. Examples of these strategies are Pull, Push, Conwip and
Polca. These control strategies achieve different performances, depending on the system’s properties.
An alternative for controlling such a (Discrete Event) production system might be the use of continuous
Control Theory. Research so far primarily focused on throughput, without regarding cycle time. No
systematic method has been developed for this method of control yet.

Assignment
Develop a method for using Control Theory to control the described flow-line. For that purpose, observe

the flow-line’s behavior as a continuous flow in discrete time. Aspects of interest include:

e the development of a continuous model for the Discrete Event production system, including system
dynamics caused by delay during processing.

o the design of a suitable controller for the continuous model.
= the conversion of the continuous controller output signal to the discrete event production system input.
o the conversion of the discrete event production system output to the continuous controller input.

Describe under what conditions the described approach is valid. Compare the performance of the de-
scribed controller to the performance of conventional control strategies. Present the results in a report,
and provide recommendations for further research.

Prof dr.ir. J.E. Rooda Dr.ir. A.A.J. Lefeber

7\
Systems h!; 5.“

Engineering . & ‘. Department of Mechanicai Engineering

Preface

This master’s thesis is a result of a final assignment at the Eindhoven University of Technol-
ogy. The final assignment, a research project of one year, is the closing part of a five years
curriculum to become a Master of Science in Mechanical Engineering, with a specialization
in Systems Engineering.

The Systems Engineering group aims to develop methods, techniques and tools for the
design of advanced industrial systems. My research project has been performed within the
research theme of Optimization and Control. The research within this theme is engaged
in developing controller designs and optimization tools starting from computer models of
manufacturing systems and machines. The objective of this research project was to develop
a method for controlling a manufacturing system using feedback control.

First of all, I would like to thank my coach, Erjen Lefeber, for his enthusiastic support. I
have much appreciated the vivid discussions, and his accurate contributions. I thank profes-
sor Rooda for his interest in the research project, and my colleague-students for their daily
support. Furthermore, I would like to thank my family, friends and girlfriend for patiently
supporting me during the busy recent period.

Hugo Ploegmakers
Eindhoven, January 2003

ii

Summary

The objective of this research project is to develop a method to control a manufacturing
system using feedback control. The manufacturing system of interest is a three machine
multi-product flow line with stochastic process times, producing eight different product
types in large quantities. The performance of the feedback controlled flow line is compared
to the performance of the flow line controlled by several common control methods: push,
pull, conwip and POLCA control. The main performance criteria for the flow line are
assumed to be the throughput of the system and inventory level. Controlling a discrete
event model of a manufacturing system may be described as defining on which conditions a
next controlled event should take place.

Feedback control is an exponent of control theory. The objective of feedback control is
to cause a system’s output variables to follow a reference signal. For discrete time feedback
control, at each sample time, the system outputs are measured (sampled). The controller
uses the measured output values to defermine appropriate controller output values. These
controller output values are applied to the system as system inputs. In general, the design
of a feedback controller requires a continuous dynamic model of the system to be controlled.
A continuous model is a set of difference equations, describing the relation between input
and output variables.

For this research project, the system to be controlled is a discrete event model of the
three machine flow line. The inputs of the discrete event model are defined as a sequence
of controlled events. The outputs of the discrete event model of the manufacturing system
are defined as the buffer levels and the finished goods levels. The discrete event model of
the flow line, having a sequence of discrete events as input, cannot directly be connected
to a (continuous) feedback controller. Furthermore, the discrete event system cannot be
directly described by a continuous dynamic model. Therefore, a signal conversion algorithm
is defined to convert a continuous system input into appropriate discrete events for the
discrete event model. The use of a conversion algorithm enables the following approach to
apply feedback control to the discrete event model of the manufacturing system:

» Define a conversion algorithm to convert a continuous input signal into discrete events.

e The system to be controlled exists of the conversion algorithm and the discrete event
model. The system’s input is the input of the conversion algorithm. The system’s
outputs are the outputs of the discrete event model.

e Construct a continuous dynamic model of the system.

» Use the continuous model to design a feedback controller.

iii

iv

o Interconnect the discrete event model, the feedback controller and the conversion
algorithm.

The conversion algorithm is defined such that the relation between the inputs of the
conversion algorithm and the outputs of the discrete event model is linear. The input
variables of the conversion algorithm are not required to have a physical meaning. The input
of the conversion algorithm is defined as a target throughput per product for all machines.
The objective of the conversion algorithm is to generate an appropriate sequence of events
for the discrete event model, so that the throughput of the machines of the discrete event
model follow the target throughput determined by the controller. An algorithm is described
which records the shortage of production of each machine and generates appropriate events.

Designing the feedback controller requires a continuous dynamic model of the controlied
gystem. System Identification is a method to derive a continuous model of a system, treating
the system as a black box. After a model class has been selected, the model's parameters
are fitted to experimental input and cutput data. The suitable model class for designing an
MPC controller is a discrete time linear time-invariant state space model. A discrete event
model is used to determine the response of the system output to a set of training input data.
For the estimation of the model, the MATLAB® System Identification toolbox is used. A
state space model for all inputs and outputs contains over 4000 parameters. Because of the
problem’s size, first a smaller problem is observed. The structure of the smaller problem’s
solution is used as a structure for the larger model. The state variables are defined equal
to the outputs. The System Identification toolbox is used to estimate the unknown model
parameters.

The continuous model is used to design a Model Predictive Control (MPC) controller.
The criterion to define the optimal controller outputs is a weighed sum of system output
errors and controller output moves, for a number of samples ahead. For unconstrained
MPC, the control law may be written as a linear function of predicted future errors and a
constant MPC gain matrix. The predicted future errors are computed using the continuous
model of the system.

Simulation experiments are used to determine the performance of both the feedback con-
trolled system and the manufacturing system controlled by common control strategies. The
described common control strategies are push, pull, conwip and POLCA. The performance
of the MPC controlled system strongly depend on the system’s parameter settings. For the
observed case, the MPC controlled system performs well. The presence of more variability
or finite buffer sizes the does not disturb the MPC controlled system.

Samenvatting (in Dutch)

Doel van dit onderzoeksproject is een methode te ontwikkelen om regeltechniek te gebruiken
voor het besturen van een fabricagesysteem. Het beschouwde fabricagesysteem is cen flow
line, waar een aantal verschillende producttypes in grote aantallen wordt geproduceerd. De
prestaties van de door regeltechniek bestuurde lijn kunnen vervolgens worden vergeleken
met die van dezelfde lijn bestuurd door conventionele besturingsmethoden, zoals push, pull,
conuip en POLCA. De doorzet en het voorraadniveau worden beschouwd als de belangrijkste
criteria voor de prestatie van het systeem. Het besturen van een discrete event-model van
een fabricagesysteem kan worden opgevat als het definiéren onder welke voorwaarden een
bestuurd event plaats mag vinden.

Regeltechniek wordt gebruikt om een variabele van een systeem een bepaald referentie-
signaal te laten volgen. Bij regeltechniek in discrete tijd wordt na regelmatige intervallen
elke keer de uitgang van het te regelen systeem gemeten. Deze kennis wordt gebruikt om
de uvitgang van de regelaar te bepalen. De uitgang van de regelaar wordt vervolgens als
ingang van het systeem gebruikt. In het algemeen is voor het ontwerp van een regelaar een
continu dynamisch model van het te regelen systeem nodig. Een continu model is een set
differentievergelijkingen die de relatie tussen de uitgangen en de ingangen van het systeem
beschrijven.

Dit onderzoeksproject beschrijft het regelen van een discrete event-model (DEM) van
een fabricagesysteem. Wanneer dat model wordt beschouwd als een systeem met ingan-
gen en uitgangen, is de ingang een stroom discrete events. De uitgangen kunnen worden
gedefiniBerd als de voorraadniveaus in de buffers en de hoeveslheid voltooide producten.
Omdat de stroom van discrete events geen continu signaal is, kan het DEM niet direct
worden aangesloten op de (continue) regelaar. Verder kan het DEM niet één-op-één worden
beschreven door een continu model. Om deze problemen te ondervangen, wordt een conver-
siealgoritme gedefiniéerd. Dit algoritme vertaalt de continue systeemingang naar discrete
events voor het DEM. Hierdoor wordt de volgende aanpak mogelijk:

o Definiéer het conversiealgoritme om de continue systeemingang om te zetten in discrete
events.

e Het te besturen systeem bestaat uit het conversiealgoritme en het DEM. De ingang
van het conversiealgoritme is de ingang van het systeem, en de uitgang van het DEM
is de uitgang.

e Stel een continu model op van dit systeem.

o Gebruik met continue model om een regelaar te ontwerpen.

vi

e Verbind het DEM met de regelaar, de regelaar met het conversiealgoritme en het;
conversicalgoritme met het DEM.

Het conversiealgoritme moet bij voorkeur zo worden ontworpen, dat een lineaire relatie
tussen de ingang van de conversie en de uitgang van het DEM ontstaat. Hoewel de in-
gangsvariabelen geen fysieke betekenis hoeven te hebben, is gekozen de ingang te definiéren
als een doel-doorzet, per producttype per machine. Het doel van het conversiealgoritme
wordt dan om de door de regelaar opgegeven doorzet zo goed mogelijk te volgen. Voor
dat doel is een algoritme beschreven, dat door de productieachterstanden bij te houden de
meest geschikte events kan genereren.

Om de regelaar te ontwerpen is een continu dynamisch model van het te regelen systeem
nodig. System fdentification is een methode om een dynamisch model van een systeem op
te stellen, zonder de oorzaken achter het gedrag van het systcem te kennen. De methode
schat de parameters van een bepaald model aan de hand van experimentele ingangs- en
uitgangsdata. Voor het ontwerpen van een Model Predictive Control (MPC) regelaar is een
lineair, tijds-invariant toestandsruimtemodel de aangewezen klasse. Om trainingsdata te
genereren, zijn simulaties met een DEM gebruikt. Vervolgens wordt de System Identification
Toolbox van MATLAB® gebruikt om het model te schatten. Het model voor alle ingangen
en uitgangen bevat meer dan 4000 parameters. Vanwege dit formaat is eerst een kleiner
probleem beschouwd. De structuur van de oplossing van dit kleinere probleem is gebruikt
voor het volledige model. De toestandsvariabelen worden gelijk aan de uitgangsvariabelen
gekozen, en de onbekende parameters van het model worden door de System Identification
Toolbox geschat.

Het verkregen continue model wordt gebruikt om een Model Predictive Control (MPC)
regelaar te ontwerpen. Een veelgebruikte doelfunctie om het optimale regelsignaal te bepalen
bestraft kwadratisch afwijkingen van de systeemuitgang van het referentiesignaal, en veran-
deringen in de regelaaruitgang, beide voor een aantal regelacties vooruit. Wanneer geen
beperkingen worden opgelegd aan de variabelen van de regelaar, kan de regelwet worden
herschreven als een lineaire functie van de voorspelde toekomstige fouten en een constante
MPC-versterkingsmatrix. Het continue model wordt gebruikt om de toekomstige fouten te
voarspellen.

Simulatie-experimenten worden uitgevoerd met een model van het fabricagesysteem
met de MPC-besturing. Dezelfde experimenten worden ook uitgevoerd voor de conven-
tionele besturingen push, pull, conwip en POLCA. De prestaties van het systeem met
MPC-besturing zijn sterk afhankelijk van de instellingen van de besturingsparameters. De
beschreven flow-lijn levert met MPC-besturing goede prestaties. Het systeem is relatief
ongevoelig voor variabiliteit, en introductie van eindige buffercapaciteiten stoort de MPC-
besturing niet.

Contents

1 Introduction

2 Controlling a manufacturing system
2.1 A manufacturing system . .
2.2 A discrete event model
2.3 Controlling a discrete event model

2.4 Analytical relations for a manufacturing system .

3 Case: a flow line
3.1 The multi-product flow line
3.2 Nomn-equal product types . .

3.3 Coefficients of variation for Non-equal product types .

4 Common control strategies
4.1 Components of control strategies
4.2 Commonly used control methods
4.3 Simulation experiments

4.4 Evaluation of simulation results

5 Feedback conirol for a manufacturing system
5.1 Feedback control

5.2 Feedback control for the manufacturing system

6 Conversion of signals
6.1 Conditions for the conversion algorithm
6.2 A concept for the continuous input variable
6.3 Implementation of the conversion algorithm

6.4 Performance of the conversion algorithm

vii

[= B R .

11
11
12
14

17
17
20
23
31

33
33
35

37
37
38
38
42

viii

7 The continuous dynamic model
7.1 System Identification

7.2 Identification of the three machine flow line

8 The MPC controller
8.1 Model Predictive Control
8.2 Matlab MPC Toolbox . .

8.3 MPC implementation for a time varying reference trajectory

9 MPC applied to the multi-product flow line
9.1 The MPC controlled flow line .
9.2 Implementation
9.3 TParameters of the MPC controlled system .

9.4 Experiments.

10 Conclusions and discussion
10.1 Conclusions

10.2 Discussion .
11 Recommendations
Bibliography

A Imnplementation of Model Predictive Control
A.1 The MPC Controller gain matrix
A2 Expected output deviation e}y, ,

A.3 Internal state reconstruction

B Chi implementation code
B.1 Push model
B.2 Pull model
B.3 (Hybrid) Conwip model
B.4 (Pull) Conwip model
B.5 POLCA model
B.6 MPC controlled model

Contents

45
45
47

55
55
b7
58

61
61
62
64
69

75
75
76

79

81

83
84
86
86

87
87
89
092
94
96
99

Table of symbols and
abbreviations

o

]

6*

€
Ethreshold
Ai

()

—r

Mg 33 Q6
3]
Ok

B P Aafed B

Conversion algorithm filtering factor

Throughput

Target throughput

Conversion algorithin backlog error

Conversion algorithm threshold backlog error
Mean demand for products of product type group
Mean of =

Mean queueing time for workstation ¢

Variance of z

Mean service time for product type @

Mean service time for products of product type groupi
Flow time

Augmented state vector

Reconstructed augmented state vector

Squared coefficient of variation

Squared coefficient of variation of inter arrival time
Squared coefficient of variation of inter departure time
Squared coefficient of variation of effective process time
output tracking error

System output error for the prediction horizon
Number of kanbans

Demand mix parameter

Service time mix parameter

Control horizon

Number of input variables

Number of state variables

Number of output variables

Prediction horizon

Demand fraction

Arrival rate

Effective processing rate

Natural process time

Effective process time

Sample time

Utilization

ix

D;
E(x)
Kurpco

Controller input vector

System input vector

System input trajectory for control horizon
Maximum system input

Mean WIP level

Input step weighing factor

Output error weighing factor

Maximum WIP level

State vector

Controller output, vector

Qutput reference vector

System output reference for the prediction horizon
System output vector

Predicted system output for the prediction horizon
Mean demand for product type ¢

Expectation of z

MPC controller gain matrix

Number of product types

Input step weighing matrix

Qutput error weighing matrix

Contents

Chapter 1

Introduction

The performance of a manufacturing system strongly depends on the methods used to
control the flow of goods and information in the manufacturing system. In the second half
of the twentieth century, various new concepts for controlling the flow of inventory have been
developed. Examples of these concepts are Material Requirements Planning (MRP), Just In
Time (JIT) and Zero Inventories. The use of the concept MRP explosively grew in the 1970°s
([Hop00]). In the 1980’s, methods such as Just In Time and Zero Inventories, originating
from Japan, achieved successes {[Mon83]). Currently, numerous variants of control methods
have been developed, trying to combine the best aspects of both MRP and JIT.

Various tools may be used for the design and analysis of control methods for a manufac-
turing system. The science of queueing theory provides methods to perform computations
on the queueing behavior of relatively simple systems. The rise of computer technology en-
abled the use of simulation experiments to test more complicated designs of control methods
and manufacturing systems. For example, discrete event models may be used to predict the
performance a manufacturing system and control method. Nevertheless, designing a control
method mainly remains a case of experience, rules of thumb and a process of trial-and-error.

An alternative method to design a control method for a manufacturing system may be
the use of control theory and feedback control. The objective of control theory is to cause a
system’s variable to follow a reference signal. Of a feedback controlled system, the output
variables are measured, and the knowledge of the output variables is used to determine an
appropriate input signal for the system. Control theory is a well-developed field of science,
intensively studied since World War II. It is widely used for controlling various types of
systems, such as mechanical systems or chemical process systems. Less research has been
done in the use of feedback control for controlling manufacturing systems.

The objective of this research project is to develop a method for controlling the flow
of goods in a manufacturing system, using feedback control. The performance of the feed-
back controlled manufacturing system should be compared to the performance of common
control methods. As a test case to measure the performance of the control methods, an
imaginary three machine multi-product flow line is defined. For this research project, the
main performance criterion for a controlled manufacturing system is the relation between
inventory level and throughput. A given throughput should be reached with a minimum of
inventory, or, a maximum throughput should be achieved for a given amount of inventory.
The high throughput level and low inventory level may be used as a reference signal for

2 Chapter 1. Introduction

a feedback controller. Objective of the feedback controller is to make the manufacturing
system follow this reference trajectory.

The method to design a feedback controller for a manufacturing system may be divided
into the following aspects:

» The feedback controller: The type of feedback controller chosen to control the manu-
facturing system is a Model Predictive Control (MPC) controller. As for most types
of feedback controllers, designing an MPC controller requires a continuous dynamic
model of the system that is to be controlled.

e The continuous dynamic model: A continuous dynamic moedel of a system is a set of
differential (or difference) equations describing the response of the system outputs to
the system inputs. In this research project, the method of System Identification is
used to construct a dynamic model of the manufacturing system.

e The conversion of signals: The input and output signals of a feedback controller are
generally continuous variables. A discrete event model of a manufacturing system
describes the behavior of the system using discrete events. For this research project, a
feedback controller is to be connected to a discrete event model. The incompatibility
of the continuous and discrete signals require a conversion of the continuous controller
output signal into discrete events.

Simulation experiments with discrete event models are used to measure the performance
of both the feedback controlled manufacturing system and the same manufacturing system
controlled by common control methods. The results of the simulation experiments are
compared.

After this introduction, the report continuous with the introduction of some important
parameters of a manufacturing system, such as WIP and throughput. Analytical relations
for these parameters are discussed. These relations serve to predict and understand some
aspects of the behavior of a manufacturing system, such as queueing. In Chapter 3, a flow
line is introduced as a test case to which feedback control and common control methods
are applied. Chapter 4 describes four common control methods: push, pull, conwip and
POLCA. Simulation experiments are performed to measure the performance of these con-
trol methods applied to the flow line. The results of the experiments are presented and
discussed. Chapter 5 gives an introduction to feedback control and defines the input and
output variables of the controlled system. Chapter 6 describes a conversion algorithm to
convert the continuous controller output into discrete events for the discrete event model.
In Chapter 7, the method of System Identification is introduced. This method is used to
construct a dynamic model of the conversion algorithm and discrete event model. In Chap-
ter 8, the concept of MPC is described. The dynamic model derived in Chapter 7 is used
for the design of an MPC controller. Chapter 9 describes the closed loop system, consisting
of a discrete event model of the manufacturing system, the MPC controller and the signal
conversion algorithm. Discrete event simulation experiments are performed to measure the
performance of the MPC controlled discrete event system. The results of these experiments
are presented and discussed. The report ends with conclusions and recommendations for
further research.

Chapter 2

Controlling a manufacturing
system

Goal of this research project is to compare the performances of a manufacturing system
controlled by common control strategies and a new control strategy using feedback control.
This chapter defines a manufacturing system and some of its important properties. These
properties may be used to describe the performance of the system. Discrete event models
for manufacturing systems are introduced, and a definition of the control of discrete event
models is given. The next chapter, Chapter 3, describes the case of a multi-product flow
line, to which both the common control strategies and the feedback control strategies are
applied in further chapters.

2.1 A manufacturing system

A manufacturing system may be viewed as an arrangement of tasks and processes, properly
put together, to transform a selected group of raw materials and semifinished goods to a
set of finished products ([A1t97]). The manufacturing system does not only include the flow
of products, but also the required information ([Hop00]). In [Alt97], the basic functions
of manufacturing are considered procurement, production and distribution. This research
project focusses on the flow of products and information required for the production function
of the manufacturing system.

An important class of manufacturing systems is the class of flow lines. A manufacturing
system is called a flow line when its stages are arranged in series and all products produces
by this system follow the same sequence of processes {[Alt97]). Flow lines may be dedicated
to a particular product or a range of products and are mainly used for mass production.
Important properties for describing and controlling a manufacturing system, and especially
a mags production system, are throughput 4, flow time ¢, inventory or work-in-process
(WIP) level w and utilization u. The next part of this section is dedicated to these quantities.
Section 2.4 provides analytical relations for these quantities in a manufacturing system. The
throughput § describes the speed of products passing a certain section of the manufacturing
system. In this report, the smallest unit for products is a lot. Because the throughput is a

4 Chapter 2. Controlling a manufacturing system

derivative or a rate, it is measured by taking an average over a certain period of time. The
dimension of throughput is lots per unit time.

Note that if the throughput at one section of the system is not equal to the throughput
at another section, the amount of work in process between the two sections decreases or
increases. In a steady state situation, the throughput is equal for all sections of the system.
The flow time ¢ of a lot is the period of time it takes a lot to flow through the manufacturing
system or a subsystem of the manufacturing system. Both process time and queueing time
are part of the flow time. Flow time may be measured for each individual lot. The dimension
of flow time is units time.

The WIP level w is the amount of work-in-process in the manufacturing system or
subsystem of the manufacturing system at a certain moment. It consists of all lots present
in that part of the system, so both of the lots being currently processed and of the queued
lots. The WIP level is measured at a certain moment for a certain (sub)system. It is
represented in lots.

Quantity | Symbol Specified for: Unit

WIP w time instant, (sub)system lots

flow time » lot, {sub)system time
throughput é time interval, system section { lots/time

Table 2.1: Dimensions of w, ¢ and &

Table 2.1 summarizes the dimensions of the properties described in this chapter. These
dimensions are important, for example for computing averages of these properties correctly.

The performance of a manufacturing system may be measured in numerous ways. De-
pending on the type of manufacturing system and the objectives of the system, different
criteria may be defined. For example, a system designed for mass production requires differ-
ent definitions for performance than a system to manufacture custom-built products. This
research project focusses on controlling a manufacturing line for mass production. Important
properties for measuring the performance of a mass production system are throughput, flow
time and WIP level. Because of their importance, analytical relations for these properties
are given in Section 2.4.

2.2 A discrete event model

A model of a system may be defined as a simplified representation of that system. Models of
manufacturing systems may be used for the design and analysis of manufacturing systems.
Manufacturing systems may be described using discrete event models. The discrete event
model has only a limited number of states. At certain moments, the system instantly
switches from the one discrete state to the other. In this report, such a change of state
is referred to as an event. Distinction may be made between controlled and uncontrolled
events. Controlled events are events that can be directly controlled. An example of a
controlled event is the authorization of a machine to process a lot. Uncontrolled events
are events that cannot be directly controlled, because they are a reaction of the observed
system. An example of an uncontrolled event is the breakdown of a machine or the end of
a (stochastic} processing time. The distinction between controlled and uncontrolled events
may be compared to the distinction between inputs and outputs (or disturbances) of a

2.3. Controlling a discrete event model it

dynamic system (Chapter 5). This project uses discrete event models of manufacturing
systems to perform research on controlling a manufacturing system

The observed discrete event model consists of several processes. It contains a generator,
buffer, machine and exit processes. Buffer and machine processes are the equivalent of
buffers and machines in a manufacturing system. The buffer process receives lots through
one channel and releases them through the second channel as soon as release is requested
by a downstream machine or exit process. A machine process processes a lot as soon as
it is authorized to do so. The generator and exit processes are responsible for releasing
new lots into the manufacturing system and removing finished goods from the system. The
generator process generates lots to be processed in the system. Lots may be generated
uncontrolled, with a deterministic or stochastic arrival rate, or controlled, after request by
a controlling process. At the end of the line, the exit process removes finished lots from the
system. Other processes, e.g. a controller process, may be added to the model in order to
adequately control the system.

Figure 2.1: Model of the three machine manufacturing line

An example of a representation of a discrete event system is given in Figure 2.1. Each
process is represented by a circle, and the flow of lots {or information} is represented by an
arrow. Fach workstation consists of a buffer and a machine. For the discrete event model,
the properties throughput §, WIP level w and flow time ¢ are defined equally as for the
manufacturing system.

2.3 Controlling a discrete event model

Purpose of this research project is to compare the performance of several control methods
for a manufacturing system. The manufacturing system is described by means of a discrete
event model. This section provides a definition of control of a discrete event model of a
manuofacturing system and describes the purpose of controlling a manufacturing system.
Controlling the model of the discrete event manufacturing system may be described as
specifying or limiting the behavior of the processes it consists of. The control strategy
defines the reactions of the manufacturing system to uncontrolled events, such as the arrival
of customer demand or machine breakdown. The control strategy may be described as the
set, of rules defining at which conditions which controlled event should take place. These
events may include for example the release of lots inte the system by the controller and
the authorization to take lots from a buffer to be processed at a machine. The behavior of
the manufacturing system or discrete event model strongly depends on the control strategy.
The purpose of the control strategy is to optimize the behavior of the discrete event model
of the manufacturing system. Which control strategy to use depends both on which criteria
are chosen for the performance of the manufacturing system and on the properties and
characteristics of the manufacturing system.

This research project focusses on the control of a flow line. The properties of the manu-
facturing line under consideration are described in Chapter 3. Because this manufacturing

6 Chapter 2. Controlling a manufacturing system

line is used for mass production, main targets of the control strategy are to achieve a high
throughput with low flow times and WIP levels. Because throughput and flow times are
considered important properties for this research project, the next section summarizes some
analytical relations for flow time, throughput and WIP level.

Chapter 4 describes several commonly used control strategies and their implementation
applied to the flow line described in Chapter 3. Chapters 5 to 9 describe an alternative for
the common control strategies, using feedback control.

2.4 Analytical relations for a manufacturing system

The goal of this project is to compare the performance of several control strategies. Nu-
merous performance criterions may be formulated and considered. This report focusses on
the aspects of throughput 4, flow time ¢ and WIP level w. The relations between through-
put, flow time and WIP level may be obtained using simulation experiments with discrete
event models. Nevertheless, a great deal of knowledge may also be obtained by perform-
ing relatively simple analytical calculations. These calculations provide useful insight in
the expected behavior of the system and help to understand and verify simulation results.
Furthermore, the analytical relations may provide initial settings for the design of a control
strategy.

This section provides analytical relations between WIP, flow time and throughput, as
well as formulas for estimating queueing times. Furthermore, the section describes the
phenomena of blocking and starvation. These phenomena cause a loss of throughput, for
example in a system with a lack of storage space.

Little’s law

Little’s law describes the relation between the mean amount of WIP (&) in a system in
steady state, the throughput () and mean flow time (@):

wW=@-0. (2.1)

Note that Little’s law only holds in steady state situations.

Queueing equations

For simple queueing systems, consisting of one workstation of buffer and a single machine,
the following formula provides the waiting time ¢, in the upstream queue in front of a
machine:
c2+e? u
WYq = 2 . 1= Lo

This formula requires the squared coefficients of variation ¢? of both arrival (c2) and process-
ing (c?), the mean effective processing time t, and the utilization u. The squared coefficient
of variation defined as the ratio of variance o? and squared mean pu?:

(2.2)

¢ =—. (2.3)

2.4. Analytical relations for a manufacturing system 7

The utilization of a one machine workstation may be defined as the ratio of the effective
machine capacity r. and the arrival rate r,:

LY (2.4)
Te

with r, being defined using the effective process time ¢,:

re = o (2.5)
Note that u is required to be strictly less than one for stochastic systems. At a utilization
level of one or higher, the workstation cannot process the arriving flow of work. In steady-
state, the queue length grows to infinity and no steady-state situation is reached. The
effective process time consists of natural process time # and if necessary several disturbances
such as random outages and setups (see [Hop00]).

For a so-called M/G /1-system ([Ken#1]), the results of queueing equation (2.2) are exact
([Buz93]). An M/G/1-system is a queueing system with a memoryless inter arrival time
distribution and general process time distribution and one (parallel} machine. For other
systems, the results are only an approximation.

Equation 2.2 may be used for a series of machines. Lots departing from the first work-
station arrive at the next workstation. Therefore, c2 of a downstream buffer equals 2 of the
upstream machine. The relation between both coefficients of variation and the utilization u
are given by the linking equation ([Buz93}):

= (1-ud)-2+u?-c. (2.6)
Note that (2.6) clearly shows that at high utilization, the departure coefficient is primarily
determined by process time distribution, and by the arrival coeflicient at low utilization.

The results of linking formula (Formula 2.6) are only exact in case both processing times
and inter arrival times are distributed exponentially (M/M/1). In other cases, the results
are approximations only.

An example of an M/M/1-system is a push controlled system with exponentially dis-
tributed order inter arrival times and exponentially distributed service times. For each
workstation, the average queueing time g can be computed. The push controlled system
and its performance are described in Chapter 4. Note that controlling the authorization of
machines or the release of lots in many cases introduces a dependence between inter arrival
times of sequential lots. Queueing equation (2.2) are only valid in case of memoryless inter
arrival time distribution.

Blocking and starvation

In the previous section, the effective process time £, and effective capacity r. have been
introduced because the queneing equation (2.2) requires the utilization u of the workstation.
For a stand-alone workstation with infinite buffer capacity, all arrival rates r, strictly smaller
than the effective capacity r. are allowed. In that case, the throughput equals the arrival
rate. In some situations, the arrival rate is subject to more strict conditions. In this section,
the phenomena of blocking and starvation are defined. After that, an example is given of
a small system where blocking and starvation cause more strict constraints to the arrival

8 Chapter 2. Controlling a manufacturing system

Bl - MI — » M2 - E

Figure 2.2: Two machine flow line: no intermediate buffer

rate. This example is meant to explain the phenomenon that a limited WIP level limits
the maximum throughput that a system can achieve. The maximum system throughput
is not only limited by the effective capacity of the slowest workstation, but also by the
configuration of the system.

Blocking is the phenomenon of stoppages at work stations because of a lack of storage
space or excessive accumulation in downstream stages ([Alt97]). Starvation is the phe-
nomenon of a lack of jobs in the upstream stages, causing a loss of throughput as well. For
a simple case, the magnitude of the influence of blocking and starvation on the maximum
throughput of the system is derived.

Example 2.4.1 Consider a simple flow line consisting of two machines in series. In front
of the first machine is a buffer always containing sufficient lots. Finished lots always imme-
diately leave the second machine. This may be represented by an exit process E. No buffer is
available belween both machines. Figure 2.2 shows the described system. Equivalent to the

Figure 2.3: Two machine flow line as a kanban system

two machine system in Figure 2.2 is a pull system with only one kanban per workstation, as
shown in Figure 2.3. For ezplanation about kanban controlled systems such as pull control
is referred to Chapter 4.

The mazimum throughput of this system is not only bounded by the machine capacity r..
Assume that both machines are processing a lot. First, machine 1 finishes processing the
lot. The loi can only leave the machine after machine 2 has also finished processing. A loss
of throughput because of blocking occurs. Now assume that machine 2 finishes processing
first. The machine cannot start processing the next lot until processing has been finished at
machine 1. A loss of throughput because of starvation occurs. Because of these losses, the
system’s processing rate is not determined by processing times of single machines, but by
the mazimum of both processing times.

Let X1 and X5 denote the (stochastic) processing times of machines ! end 2. Let Z
denote the mazimum of stochastic functions X, and Xa:

Z = mar{ X1, Xs). (2.7)

To determine the mazimum allowed throughput, not only the effective process time t. needs
to be considered, but the sum of effective process time t, and time lost due to blocking and

2.4. Analytical relations for a manufacturing system 9

starvation ty. This sum is denoted by tep:
tep =t +1p. (2.8)

For each product, the sum t.p 1s determined by the slowest of the two machines. The mean
of tep equals the expectation of the stochastic variable Z:

fp = E(2). (2.9)

When ot least one of the processing times is stochastic, the value of t.p is larger than the
mazimum of t.; and 9.

As an example, T, is derived for assuming equal mean service times, but deterministic for
one machine and exponentielly distributed for the other. For two machines with stochastic
process times, the approech is similer, but the calculations are more complicated.

As an ezample, L.y is derived for a simple case. Assume that both machines in Figures 2.2
and 2.3 have equal effective process times, but for one machine, the service times t.; are
deterministic, while for the other machine the effective process times .o are distributed
exponentially:

tel = Eeg = 1/0. (210)

To compute the expectation of the stochastic funciion Z of (2.7), the density function of
Z needs to be determined. Let the process time for machine 1 be described by X1 and the
process time of machine 2 by X5, The density function of the exponentially distributed
function equals:

ft)y =ae™™, (2.11)

and the distribution function equals
F(t)=1-¢e"%, (2.12)

The integral of the distribution function of Z must equal one. Using F(1/a) =1+ 1/e, the
density function of Z equals:

fl®) =ae ™ fort>1lla,
Jf@)dt =1+1/e fort=1/a, (2.13)
f) =0 fort<1/a.

{3.16) can be used to determine the expectation for Z and therefore (see (2.9)) Lep:

o0
Py = f ¢ Ft) dt (2.14)
—o0
=/ t f(t) dt (2.15)
1
1 e-1 -1 —atioe
= (— -t e (2.16)
e+1
S (2.17)
This result shows that the system can only process 25 lots during one unit time. Com-

e+1
pared to the theoretical process rate v. of a lots per unit time, 1/e (approzimately 37%) of

throughput is lost.

10 Chapter 2. Controlling a manufacturing system

The example shows that for a certain configuration of manutacturing system and control
method, a loss of throughput occurs with respect to the effective process rate, due to blocking
and starvation. A similar loss of throughput may occur in other manufacturing systems using
other control strategies when the storage space or the amount of WIP is limited. Chapter 4
shows similar results from experiments.

It might be possible as well to define the effective process time t. in such a way that
the losses because of blocking and starvation are included in #.. The occurrence of blocking
and starvation depend on the configuration of the manufacturing system and the control
method. For each control method, a different ¢, would have to be computed. Furthermore,
detailed effective process time computations are beyond the scope of this research project.
For more details about the effects of blocking on ¢, is referred to [Wul(2).

This chapter introduces the concept of a manufacturing system and some of its impor-
tant properties, discrete event models of a manufacturing systems and control of discrete
event models of manufacturing systems. Furthermore, analytical relations for important
quantities in manufacturing systems are provided. The next chapter describes one specific
manufacturing system. This system is used as a test case. Chapter 4 to 9 describe control
methods. These control methods are all applied to the case first described in Chapter 3.

Chapter 3

Case: a flow line

Goal of this research project is to develop a method for using feedback control for controlling
a manufacturing system. The performance of that control strategy may be compared to the
performance of more common control methods. To measure and compare the performance
of the control strategies, a case has to be developed. The control strategies are all applied to
this case. On the one hand, the case has to be challenging, requiring a good control strategy.
On the other hand, the case must be general, in order to avoid that the results can only be
applied specifically to that case and not to other cases. The case of a multi-product flow line
studied by Krishnamurthy and Suri in [Kri00] meets the conditions. The case shows that
—contrary to the common idea— in some cases Push controlled systems outperform Pull
systems. Both a specific and a more general variant of this case are described in the next
section. In the following chapters, both common control strategies and feedback control are
applied to the case.

3.1 The multi-product flow line

This section describes the basic manunfacturing system used as a case to test the performance
of several control methods. Subject of this study is a manufacturing system consisting
of three workstation. Each workstation consists of a buffer and a single machine. The
workstations are oriented in series as a flow line. A number of N different product types is
produced in large quantities. For this study, the number of product types N is set to 8.

The machines are assumed not to have setup times and not to fail. The machines are
assumed to be single lot machines. Processing of lots never fails and lots do not re-enter
the system. Initially, infinite buffer capacities are assumed. Process times are modelled
as Poisson processes. Demand inter arrival times are modelled as Poisson processes, unless

Figure 3.1: The three machine multi-product flow line

11

12 Chapter 3. Case: a flow line

indicated otherwise. Initially, the demand is equally divided over the eight different product
types. Assuming Poisson processes for inter arrival times and process times yield an M/M/1-
system ([Kenb1]), simulating an environment with high variability ([Kri00]). For M/M/1-
systems, the queuing relations described in Section 2.4 can be used. Initially, the mean
service time for all machines equals 1 [units time], independent from the type of product
that is processed. This may be denoted as:

te,, = 1 for all product types ¢ and machines j. (3.1

E{J’

Thus, if no variability would be present, the maximum throughput of the system would
have been 1 [lots/unit time], and the minimum flow time 3 [units time|. Because the service
times are assumed to be exponentially distributed, the variability causes a lower throughput
and a longer flow time. Because of the equal machines, none of the machines is a specific
bottleneck.

The situation with equal process times and demands for each product type, is referred to
as the equal product types case. The next section describes the case of eight product types
divided into two groups with different demand and service times.

3.2 Non-equal product types

The previcus section described the situation of all product types having equal properties.
This section introduces a situation with more variability due to differences between the
product types. This situation may simulate a disturbance in demand mix and in process
times, which are likely to occur in practice ([Kri00]). The control strategy must also be able
to react adequately to this more variable situation.

Assume that the 8 product types, which initially had equal properties, are divided into
two product type groups with different properties. These two product type groups are
assumed to have different (mean) demands and mean process times. This situation is
referred to as non-equal product types.

The mean demand for product i is denoted by D;. The mean demand of the first four
product types does not equal the mean demand of the last four:

D,,-,=A1fori=1,...,4 (32)
D= X fOI‘i‘—"5,...,8‘ (33)

The two product type groups also have different mean service times. The mean effective
processing time of product ¢ on machine j (t,;) is given by:

te,, =7 fori=1,...,4 (3.4)

eij

te;; =m2 fori=5,...,8. (3.5)

Two parameters, kg and &, are defined as the ratio between the demands and process
times for the two product type groups:

kg =" and k, = - (3.6)

3.2. Non-equal product types 13

Note that for kg = k; = 1 both product type groups have equal properties: the equal
product types case. To be able to compare the performance of the non-equal product types
system with the equal product types system, the values for A and 7 may be chosen such
that the mean process time and mean demand over all product types equals these of the
equal product types case. This is ensured by (3.7) and (3.8). The mean demand of the two
product type groups equals D:

(M + Ag)

2
The mean process time over all product types equals the fraction of demands multiplied

by the corresponding process time 7. The mean process time for all products in the equal
product types cage is 1.

N- =D. (3.7)

N
E . ()\1’?‘1 +)\272) =1. (38)

The mean demands A; and Az should be expressed as a function of D, N, k4 and &,. For
that purpose, (3.6) is substituted in (3.7):

M., 2D
M+)= 57 (3.9)

Equation (3.9) can be rewritten into the following two expressions for A; and As.

kg 2D
P P A —— 3.10
VT Nkg+ 1) (3.10)
2D
Ay = ———, 3.11
= Nk 1) (3.11)

Substitute the expression for k, in {3.6), and (3.10) and (3.11) into (3.8) and divide both
numerator and denominator by % to obtain:

mn+§=m+L (3.12)

r

Equation (3.12) can be rewritten into the following two expressions for 7; and 73:

(kg + 1)k

ka-kp+1° (3.13)
o kg+1
Ty = ko kbt 1 (3.14)

This chapter describes the properties of a case to be used in further chapters to measure
the performance of different control methods. To variant of a multi-product flow line are
described: the equal product type case of all eight product types having equal properties,
and the non-equal product types case of two different product type groups, having different
mean service times and demands. Section 2.4 provided relations from queueing theory for
queueing times in for example manufacturing systems. These relations may directly be
applied to the equal product type case. For the non-equal product type case, few additional
derivations have to be made. These derivations are presented in the following section.

14 Chapter 3. Case: a flow line

3.3 Coefficients of variation for Non-equal product types

Section 2.4 provides sufficient tools for performing calculations on the equal product types
case. In this section, additional formulas are given, required to perform equal calculations
to the system with non-equal product types.

Queueing and linking equations (2.2) and {2.6) require a value for the squared coefficients
of variation of inter arrival times and of process time ¢ and ¢2. For non-equal product types,

each product group has its own coeflicient of variation. To be able to use (2.2) and (2.6},
an effective value has to be determined for both ¢2 and ¢2.

Coefficient c?

Goal of this subsection is to find a relation for an effective ¢2 for two product groups with
different demand and service times. Recall that the definition of ¢ in (2.3) uses the mean
u and the variance 2. The mean process time is known from (3.8): 1. For derivation of
the variance, the following equations are used:

o? = Ex* — (Ex)®, (3.15)

The expected value of z, E(z) is the mean. The expected value of z2, E(z?) is obtained by
solving the following integral, containing the probability density function f:

E(z®) = /m 22 f(x) de. (3.16)

—o0
Both the service time for product group one and for product group two are distributed
exponentially. Their density functions fi; and fs are:

1 1 1 _1
A= —e Tt and fot) = —e " (3.17)
1 T2

The probability that a lot is drawn from the first product type is proportional to the fraction
r of demand for that product type:

n AL+ As ’
Now the effective density function f. for process time of either the one or the other product
type group equals:

r

(3.18)

£t = r(;l-l-e"%t) +Q —r)T—lze—%*. (3.19)

Solve integral (3.16) for density function f, from (3.19) to obtain the following expression
for the variance o2:

o2 =@2r -2 + (1 -7 — (2r —)77, (3.20)

Use (2.3) to compute c2. For this particular case, with g = 1, the squared coefficient of
variation equals the variance:

E=2r -+ (- - 2r - forp=1. (3.21)

Note that the variance only equals 1 in case r = 1, which corresponds to Ay = Xs. For
situations other than r = 1, the variance does not equal the mean, so service times are not
distributed exponentially.

3.3. Coefficients of variation for Non-equal product types 15

Coefficient ¢2

In the previous subsection, an expression has been derived for an effective ¢Z. This subsection
describes the derivation of a relation for determining the effective squared coeflicient of
variation of inter arrival times, c2, for two different product type groups having different
inter arrival time distributions.

The inter arrival time distribution of the products 1 to 4 (product type 1, see (3.2)) have
the following density function:
filt) = Ai e fori=1,... 4. (3.22)
1
For the four products of product type 2, the density function of the inter arrival time
distribution equals:
filty=— e 2t for i = 5...,8 {3.23)
An exponential distribution of mt.er arrival times implies a Poisson distribution for the

number of arrivals. The following equations give the probability of &k arrivals of product
type i in the interval from 0 to ¢:

()\Lt)k —t .

R(k):——i:'—--e St fori=1,...,4, (3.24)
Lk

Pi(k) = (";G') et fori=5,...,8. (3.25)

To obtain the probability Fp that no arrivals occur in the mterval from 0 to ¢, use (3.24)
and 3.25 and substitute k with 0. For eight independent processes, the probability that no
arrivals occur for any of these processes, equals the product of the individual probabilities.
This probability Py total, 18
— e~ (3Tp)t

Pootar(t} = € 317 327", (3.26)
The probability of one or more arrivals occurring in the interval equals 1 — Fp gota1. The
probability density function is obtained by differentiating 1 — Py total:

4 4. _
fla) = (- + 3)e (35t (3.27)

Equation (3.27) shows that the inter arrival times remain exponentially distributed regard-
less of mix parameters k4 and k,. The parameter of the effective exponential distribution is
(£ + &%) The squared coeﬂiment of variation of an exponential distribution equals 1 (see
(2 3)) The squared coefficient, of variation of arrival for the non—equal product types variant
equals 1 regardless of mix parameter k4. Becanse of that, ¢2 equals 1 in case demand arrival
pattern As mentioned in Section 3.1, for the equal product types case, a workstation is an
M/M/1-system. The non-equal product types case is only an M/M/1-system for k, = 1.
For k, # 1, the system is M/G/1. Note that c2 is not a function of k4. This implies that
the performance of a Push system (see Chapter 4) must be equal for all values of k4 as long
a8 ky = 1. This fact is in contradiction to the simulation results shown in [Kri00].

In this chapter, two variants of a multi-product flow line are described. In the next
chapters, several control methods are described and applied to this flow line to measure and
compare the performance of these control methods. The next chapter describes commonly
used control methods. In that chapter, the analytical methods from Section 2.4 are used
to verify and interpret the results of simulations with these control methods. The chapters
after that, Chapter 5 to 9 describe an alternative control method, using feedback control.

16

Chapter 3. Case: a flow line

Chapter 4

Common control strategies

Subject ot this chapter are several common control methods for manufacturing systems.
Section 2.3 described the control strategy as the set of rules defining which controlled events
should take place at which conditions. These sets of rules may be decomposed into several
components, each responsible for a part of the control strategy for the manufacturing system.
In this chapter, first some of these components for control strategies are given. After that,
these components are used to describe four more or less commonly used control methods:
push, pull, conwip and POLCA. At last, these four control methods are all applied to the test
case of the multi-product flow line that is described in Chapter 3. Simulation experiments
are used to measure the performance of the control methods. Each contrcl method has its
dedicated section, in which the implementation of the simulation experiments is described
and the results are evaluated.

4.1 Components of control strategies

In Section 2.3 the suggestion is made to define a control strategy as the set of rules defining
and restricting the controlled events as reaction to the uncontrolled events. Several control
methods are more or less commonly known in different. variants. For this report, the sets of
rules of these control methods are decomposed into several components. Each component
corresponds to a concept used in common control methods. Designing a control strategy
may now be regarded as choosing how to use these components. To illustrate this concept,
Section 4.2 describes the four commonly known control strategies of push, pull, conwip and
POLCA as combinations of the properties introduced in this section. When designing control
methods, one is not restricted to these commonly known methods: alternative methods
may control methods may be designed combining these components as well. TFirst, the
components are described.

MRP release times

In [Hop00)] is described how in the 1970°s the use of Material Requirements Planning (MRP)
grew explosively. MRP replaced older manufacturing control systems that mainly used some
variant of statistical reorder points. The basic idea of MRP is to use the knowledge about

17

18 Chapter 4. Common control strategies

planned final product demand to plan the production of its components. This subsection
describes the use of MRP release dates in controlling the discrete event model.

In some cases, processing lots too early should be avoided. A lot that is finished too
early only claims storing capacity until the due date. Furthermore, machine capacity is
claimed, which might better be used by other orders. The use of MRP release dates avoids
processing lots early. The MRP schedule contains the times and dates that jobs should be
processed in order to be available right in time. Lots are only allowed to be processed when
the corresponding release time has passed. This canses the (seemingly illogical) phenomenon
of lots queueing in front of an idle machine.

Basic lot release methods

The generator process and the machines need a trigger when to release or process which
type of lot. This section describes the most basic method for releasing these triggers.

The most basic method for authorizing a machine is sending a trigger for that machine
to process a lot as soon as the machine is idle and a lot is available in the upstream buffer.

Although slightly more complicated, a similar release method may be used for the gen-
erator process. The manufacturing system is restricted by a utilization constraint: the
throughput of the manufacturing system cannot, exceed the throughput of the system bottle-
neck. Therefore, the generator process should release lots at a lower rate than the maximum
throughput of the bottleneck. In case lots are released into the system at a rate equal to
or exceeding the throughput of the bottleneck, the utilization of the bottleneck approaches
one, yielding an unstable system. The amount of WIP does not reach steady state, but
rises to infinity. The generator process is allowed to release lots at a rate strictly lower than
the bottleneck’s throughput. The lots may be released at a fixed rate, or at a variable rate.
The latter option may be used to model a system using MRP for the release of orders. The
fixed lead times are subtracted from the (stochastic) arrival times of the orders.

Work In Process level control

This section describes a more sophisticated method for controlling the authorization of
machines and the generator process, limiting the amount of WIP in (part of) the system.

The WIP level is an important guantity in controlling a manufacturing system. The
amount of WIP is physically limited by the limited storage space for inventory (modelled
by finite buffer capacities). Reaching this imit may cause the phenomenon called blocking:
a finished product cannot leave the machine because it cannot be stored and the machine
is blocked for next products. Furthermore, Little’s law (see Section 2.4) shows the relation
between WIP and flow time: an increase of WIP also causes an increase of flow time. In
controlling manufacturing systems, an aim may be to reduce flow time, for example to be
able to react to customer demand more quickly. These two reasons justify limiting the
amount of WIP in the manufacturing system.

A method to limit the amount of WIP is the use of authorization cards. These cards are
also called kenbans, after the Japanese word for card [Sur00]. Within (part of) the system,
a limited number of cards is available, and the amount of WIP is not allowed to exceed the
number of cards. This is achieved by only allowing a lot to enter that part of the system

4.1. Components of control strategies 19

when a (corresponding) kanban is available. The kanban is then attached to the lot and
goes with the lot through the manufacturing system. Only at a certain stage of the line,
at the end of the kanban loop, the kanban leaves the lot and becomes available for next
lots at the beginning of the loop again. For modelling purposes, in this report available
kanbans are assumed to wait for a next lot in a kanban buffer (KB). Figure 4.1 shows the

Figure 4.1: Example of a small kanban loop

smallest possible kanban loop. Lots flow through the system from left to right. Machine M
is only allowed to process a lot when a (corresponding) kanban is available in kanban-buffer
KB. The kanban goes with the lot, also after processing on M has finished, and returns to
kanban-buffer KB only after the lot has left buffer B. Figure 4.2 shows an example of a larger

Figure 4.2: Example of a larger kanban loop

kanban loop: the first machine is only allowed to process a next lot when a (corresponding)
kanban is available in kanban-buffer KB. The kanban goes with the lot and only returns
to the kanban-buffer after the lot has left the last buffer. Note that it is also possible for
kanban loops to overlap each other, or to have one loop within the other loop.

When kanbans are used to control a manufacturing system producing different types of
products, distinction may be made between the use of product-specific kanbans and generic
kanbans. In the first case, the type of kanban determines which lot is to be processed next.
In the second case, with non-specific cards, the kanban does not determine which type of
product is to be produced. For a buffer, FIFO may be used, or the order of products in a
backlog order list may determine the type of product to be started.

The number of kanbans determines the maximum utilization of the kanban controlled
part of the system. For a description of the mechanism causing this maximum utilization
is referred to Section 2.4.

20 Chapter 4. Common control strategies

Scheduling of buffered lots

In case more than one lots are present in a buffer, a selection has to be made which lot to
process first. This subsection describes some possible sorting methods.

In a system with WIP level control, a lot is only allowed to be processed in case a
(corresponding) kanban is available. The availability of kanbans determines which lots are
authorized by WIP control. Furthermore, lots have to be available in the upstream buffer.
When MRP release times are used, only lots for which the release time has passed are
allowed to be processed. Only from the lots obeying these three conditions, a lot may be
selected to be processed. The order of lots may for example be sorted based on the time
that the lots have been waiting in the buffer, or time that the kanban has spent in the
buffer, or the MRP due dates for that process.

Now that some components of control methods for manufacturing systems have been
described, control methods may be created by combining these components. The next
sections describe several common control methods. These methods are all applied to the
case of the flow line introduced in Chapter 3. Each of these control methods has a section
dedicated to it. For each control method, a simulation model of the controlled flow line
is made, experiments are performed and the results of the experiments are discussed. The
chapter ends with a comparison of the performances of the control methods applied to the
flow line.

4.2 Commonly used control methods

This section describes several commonly used control methods for manufacturing systems.
These methods are described using the components from Section 4.1. Models of these
control methods are made and applied to the flow line case. After that, experiments are
performed to measure and compare the performance of the control methods. Purpose of
these experiments is to compare the results to the results of a control method using feedback
control, as is described in Chapters 5 to 9.

Each manufacturing system requires its control strategy. The previous chapter described
components of control strategies. In this chapter, these components are combined. Four
widely used control strategies may also be described as a combination of choices for these
parameters. For these control methods, the method for WIP level control (kanban loops),
material release and scheduling of buffer lots are summarized.

Push control

The most basic control strategy is called push control. No WIP level control method is used
and new lots are just *pushed’ into the system, at moments corresponding to the MRP due
date minus the lead time. During processing, the MRP release times are not considered
anymore. The buffers use a first-in-first-out (FIFO) schedule. The demanded throughput
determines the release rate of lots. The amount of inventory, or Work In Process (WIP), is
a result of the chosen release rate.

For each material release rate strictly lower than the theoretical maximur throughput,
a dynamic equilibrium cccurs. The amount of work in the buffers varies. As long as one

4.2, Commonly used control methods 21

Figure 4.3: Flow line with Push control

or more lots are available in the buffer, the machine is not idle. As soon as no lots are
available, the machine is idle, causing a loss of throughput. The higher the average WIP
level, the smaller is the probability that no lots are available. This results in less idle time
and a higher throughput.

Pull control

A simple method using the advantages of maximum WIP level control by kanbans is pull
control. In a pull system, all machines are authorized by small kanban loops, with product
specific kanbans. The number of kanbans in each kanban loop (consisting of machine, buffer

Figure 4.4: Flow line with Pull control

and kanban buffer) determines the maximum amount of WIP in that part of the system.
A next ot is only allowed to enter the subsystem after another lot has left the subsystem.
MRP release times are not used.

Conwip control

Conwip control is an example of what [Kri00] refers to as hybrid control, because it uses

both properties from push and from pull control. Conwip control uses one long kanban loop,
stretching from the first machine to the last buffer. In this way, the total amount of WIP in

Figure 4.5: Flow line with Conwip control

the system is limited to the number of kanbans in the system. When the maximum number
of lots are in the system, the next lot is only allowed to be released into the system after

22 Chapter 4. Common control strategies

another one has left it. The first machine is authorized by kanbans as in a pull system, the
other machines do not use kanban authorization, as in a push system.

Tn case different product types are being processed at the same system, two different
types of conwip control may be distinguished: pull conwip and hybrid conwip [Kri00]. The
difference is the method used for scheduling the lots for the first machine. Pull conwip uses
product specific kanbans. Therefore, the type of kanban determines which type of lot is set
up. Hybrid conwip uses generic kanbans and a list of backlog orders is used to determine
which type of product is set up next.

MRP due dates are not used for authorizing machines.

Conwip control uses kanbans to limit the level of WIP in the system. Conwip uses only
one (large) kanban loop for the entire system, instead of a small loop for each machine (Pull
control). This causes a lower minimum number of kanbans; the lowest number of kanbans
equals one kanban for each product type (for pull conwip) or even just one kanban (for
hybrid conwip). For this reason, the resident WIP remains far less than using Pull control.

Pull Conwip control uses product specific kanbans. The type of product that has to
be released at the start of the line is determined by the type of kanban that is available.
For that reason, customer demand has to be modelled by the Exit process that determines
which type of lot is taken out of the last buffer. This model of customer order arrivals is
equal to the model used for Pull control.

POLCA control

POLCA control is another hybrid control strategy. The name is an abbreviation for Paired
cell Overlapping Loops of Cards with Authorization. The strategy uses both MRP due dates
and generic kanbans to determine whether a machine is authorized to produce a certain lot.
For determining MRP due dates, the relations for queueing times described in Section 2.4
are used. The kanban loops extend over two cells and the loops are overlapping: one cell is
both the second cell of the first loop and the first cell of the next loop. The lots in the buffers

Figure 4.6: Flow line with POLCA control

are sorted on MRP due date. The system is specifically designed for a certain throughput:
the number of kanbans corresponds to the mean WIP level of a pure push system.

4.3. Simulation experiments 23

4.3 Simulation experiments

In this section, the control methods introduced in the previous section are applied to the
multi-product flow line described in Chapter 3. Simulation experiments are used to mea-
sure the performance of the control methods. For this research project, the main criteria
for performance is the average WIP level and the throughput of the system. For that rea-
son, experiments are performed for each control method to determine the amount of WIP
required to achieve a throughput level. The throughput levels correspond to a workstation
utilization of 50% to 90%. The experiments are performed for both the equal product types
variant of the case (kg = k, = 1, see Chapter 3) and an unequal product types case with
mix parameters k; = 0.2 and k, = 5.0. These mix parameters correspond to values of
1/6 for r (3.18), and 3 and 3/5 for service times m; and 7» for product type 1 and 2. The
squared coefficient of variation of the service time distribution is then ¢ = 51/20 = 2.55
(using (3.21)). Note that service times are subject to far more variability than in the equal
product type case, with ¢2 = 1.

For each described control method, first the model and the experiment are described.
After that, the simulation results are presented and discussed.

The push control experiment

A model of the push controlled flow line has been made. A graphical representation of
the push controlled flow line is given in Figure 4.3. The arrival of orders is modelled by
the generator generating lots with exponentially distributed inter arrival times. The mean
inter arrival times are computed using (3.10) and (3.11). The Exit process is always able
to receive finished goods. The buffers are modelled as first-in-first-out (FIFQO) buffers of
infinite capacity. The machines have exponentially distributed service times. The mean
service times for both product type groups are computed using Equations (3.13) and (3.14).
For the y implementation code is referred to Appendix B.

Experiments are performed for five throughput levels, corresponding to a utilization
varying from 50 to 90%. The experiment starts with an empty manufacturing line. Only
after a certain number of lots, the system has reached steady state. For that reason, an
offset has to be determined. The mean flow time or WIP are computed using only the
data of the lots after the offset. Furthermore, the number of lots for an experiment has
to be determined. For estimating the required offset and number of lots, an experiment is
performed at the highest observed utilization rate of 90%. Figure 4.7 shows the flow time
per lot, the mean flow time computed over all previously finished lots and the mean flow
time computed over all previously finished lots, neglecting the first 3000 lots. The figure
shows that the mean flow time should not be computed for a too small number of lots.
¥or all experiments, an offset of 3000 lots is chosen. The mean flow time is measured over
the next 7000 lots. For each throughput level, the experiment is repeated 30 times. The
mean WIP level @ is computed using the measured mean flow time ¢ and throughput &,
and Little’s law (2.1). For higher utilization levels, a higher WIP level is expected in the
simulation experiments. The WIP level for the non-equal product types case is expected to
be higher than the equal product types case, because the distribution of service times has
a higher coefficient of variation.

As mentioned in Section 3.1, the flow line of the equal product types variant with
push control consists of M/M/1 workstations. For M/M/1-systems, the queueing times

24 Chapter 4. Cominon control strategies

o
£
=
S
1 1
1} 5000 10000 15000
60 T T
[+]
£ 4l _
=
2
F20 -
E
0 1 1
0 5000 10000 15000
E 80 T T
5
o 40 e -
£ -
z
=201 -
[=
g
E V] 1 1
0 5000 10000 15000

lots
Figure 4.7: Push experiment: (mean) flow times (u = 0.9)
can be computed analytically using the relations presented in Section 2.4. Table 4.1 gives

a summary of the results of the analytical relations applied to the multi-product flow line.
These results should correspond to the results of the simulation experiments. The waiting

4 te P | Pg2 PQ3 | Protal i
05|10 10| 10| 1.0 6.0 3.0
06|10 15| 15| 15 7.5 | 4.5
07110 23| 233 23 0| 70
0810 40| 40| 40 15 | 12.0
091101 90| 9.0| 9.0 30 | 27.0

Table 4.1: Calculated WIP for equal product types case

time in the queue in front of workstation ¢ is denoted as ¢q;. For kg = kp = 1, the waiting
times are equal in front of each workstation. This is caused by the fact that the first term
of Formula 2.2 equals 1 as long as process times and inter arrival times are distributed
exponentially.

For the non-equal product types case with k, # 1, the effective distribution of service
times is not exponentially (see Section 3.3), yielding an M/G/1-system. In case of an
M/G/1-system, the results of (2.6) are only an approximation. Because of that, only an
approximation of the queueing times can be computed. Table 4.2 gives a summary of the
results of the methods presented in Section 2.4 to the flow line.

Table 4.2 shows that the queueing times are the shortest for the first workstation, and
the longest for the last workstation. This is expected, because the inter arrival times for
the first machine are exponentially distributed (¢2 = 1). For the machines further in line,

4.3. Simulation experiments 25

| bt | Por | P2 | Pos | Protal i
05| 1.0 1.8 2.0 2.2 90| 4.5
06| 1.0 271 3.1 3.4 12.2 7.3
0.7 10 4.2 5.1 5.6 17.9 | 12,5
0.8 | 1.0 7.2 9.2 | 10.0 29.4 | 23.5
0910162220 23.1 64.4 | 57.9

Table 4.2: Calculated WIP for non-equal product types case

¢2 depends on both ¢ and ¢? of the upstream workstation (2.6). For the observed case,
% is larger than 1 for all workstations. The further downstream, the larger becomes the
influence of ¢Z compared to the influence of the ¢2 of lots at the beginning of the line.

Results of the Push control simulations

The results of the described simulation experiments are summarized in Table 4.3. For
low throughput levels, little queueing occurs. Higher throughput levels, approaching the
utilization limit of 1, require far more inventory.

ki=hy=1 kg=02k, =50

) {17 4 0
05| 3.0 0.5 4.8
0.6 | 45 06 74
0.7 | 6.8 (0.7 | 11.5
0.8 | 12.0 0.8 | 19.5
091273 09| 421

Table 4.3: Results of Push experiments

Figure 4.8 graphically represents the results.

The Pull control experiment

Simulation experiments have been done with a model for pull control. The maximum amount
of WIP is controlled by setting the number of kanbans. For several numbers of kanbans,
the flow time and throughput are determined. Section 2.4 describes the mechanism causing
a maximum throughput for a given number of kanbans.

The exit process is used to model customer demand. Because goal of the experiments is
to determine the maximum throughput for a certain WIP level, the order arrival rate must
not be chosen lower than the maximum system throughput. This is realized by releasing
the next order immediately after the previous one has been satisfied. Note that for product-
specific orders, this method of modeling customer demand is not equal to taking a lot out of
the last buffer as soon as it arrives. This method would result in a higher throughput at equal
number of kanbans, but is not considered a realistic model of customer demand. 'The first
method is more similar to the customer demand model used for push control. Because of this,
a more fair comparison can be made. Nevertheless, note that this customer demand model
only has stochastic order of product types, while the method used for modelling demand

26 Chapter 4. Common control strategies

== koi=kp=1 B
@ kd=0.2, kp=5.0

0.9r

throughput

0.51

0.41 1

s 1 [1 1 1

0 10 20 30 40 50 60 70 80

mean WIP

Figure 4.8: Performance of Push control

for push control also has stochastic demand inter arrival times. A graphical representation
of the pull controlled flow line is given in Figure 4.4. For the y implementation of the
model is referred to Appendix B. Note that this v implementation sends kanbans back to a
kanban buffer after a lot has left a buffer instead of after a lot has arrived at the downstream
machine. Though the results are equivalent, this implementation is not the common.

Note that a minlium number of kanban exists: each kanban loop must have at least one
kanban for each product. Therefore, a number of k kanbans per product type per machine
corresponds to a number of 8 - 3 - k kanbans for all machines and products. The lowest
possible number of kanbans equals 8 - 3 - 1 = 24, so the maximum amount of WIP wyax in
this system can not be set legs than 24. The WIP level caused by this minimum number of
kanbans may be called the resident WIP [Kri00]. A lower demanded throughput does not
result in a WIP level lower than the resident WIP, When no customer demands arrive, lots
are processed until every kanban loop containg an equal number of lots and kanbans. In the
simulation experiments, with high customer demand, a steady-state situation is expected
to occur. In steady-state, the mean WIP level is lower than the resident WIP.

The number of kanbans k is varied from 1 to 3 per kanban loop per product type. To
determine the mean WIP and throughput, for each number of kanbans 30 experiments are
performed. Each experiment consists of 10000 lots. The throughput and average WIP are
computed over the last 7000 lots.

Results of the Pull control simulations

Table 4.4 shows the throughput and mean WIP levels for & = 1, 2 and 3 kanbans. The
minimum number of 1 kanban per product and kanban loop still achieves a throughput of
0.78 times the maximum throughput. Indeed, the WIP level shown in Table 4.4 is lower

4.3, Simulation experiments 27

ki=ky=1 kai=102,k, =50
Wmax) w Wmax] D
24 | 0.78 | 18.3 24 1 0.70 | 194
48 | 0.88 | 32.1 48 + 0.80 | 36.5
72| 0.92 | 444 72| 084|526
96 } 0.87 | 68.4

Table 4.4: Results of Pull experiments

0.9r A
0.8 —= ka=kp=1 1
‘@ kd=0.2, kp=5.0

. 0.7F o 4

£

=

2

" 0.6} .
05F -
0.4+ b

0 10 20 30 40 50 60 70 80

mean WIP

Figure 4.9: Performance of Pull control

than the resident WIP, because most of the time the buffers are not always entirely filled.
Sirnulations with a lower demand rate would show a WIP level approaching the analytical
resident WIP. The experimental results are graphically represented in Figure 4.9.

The (Pull) Conwip control experiment

Conwip is the control method with an upper limit to the amount of WIP in the entire
controlled system. Pull conwip differs from hybrid conwip because of the use of product
specific kanbans. The design variable for a conwip system is the number of kanban cards.
The number of kanban cards defines the maximum amount of inventory in the system. This
subsection describes the experiments using pull conwip control. The number of kanbans per
product type is varied from 1 to 12. For a eight different product types, this implies a total
number kanbans varying from 8 to 96. For each number of kanbans, 30 experiments are
performed. The throughput § and the mean flow time ¢ is measured for lots 3000 to 10000.
Little’s law (2.1) is used to determine the mean WIP level .

A praphical representation of the model of the pull conwip controlled line is given in

28 Chapter 4. Common control strategies

0.8} 1
0.8 .
@ kd=0.2, kp=5.0
0.7F .
2
o
g
=
0.6} 1
0.5} .
-]
0.4} 1
0 10 20 30 40 50 60 70 80

maan WIP

Figure 4.10: Performance of (pull) Conwip control

Figure 4.5. The generator process can always generate lots of the type demanded by the first
magchine. The exit process is modelled equal as the exit process for pull control simulations.
An order for a specific product type is generated immediately after the previous order has
been satisfied. No next order is released until the previous order is satisfied by a lot of the
demanded product type. Because of this, the finished goods buffer will in general not be
empty. For the code of the x implementation is referred to Appendix B. Again, note that
this x implementation sends kanbans back to a kanban buffer after a lot has left a buffer
instead of after a lot has arrived at the end of the line. Though the results are equivalent,
this implementation is not the common.

Results of the (Pull) Conwip control simulations

The results of the pull Conwip simulations are presented in Table 4.5. The results show that
(pull) Conwip slightly outperforms Pull control. Similar to pull control, also using product
specific kanbans, (pull) conwip control suffers from a large amount of redundant resident
WIP at higher utilization levels for the unequal product types variant (kg = 0,2, kp = 5.0).
This is caused by the fact that the number of kanbans is equal for each product type, while
the demand for the one type is far larger than for the other type. A possible solution would
be to adjust the number of kanbans per product type to the demand mix.

The (Hybrid) conwip experiment

A model of the (hybrid) conwip controlled flow line has been made. The graphical represen-
tation is equal to the model of the (pull) conwip model showed in Figure 4.5. The difference
is the modelling of customer demand. Hybrid conwip uses generic kanban cards, not spec-
ifying the type of product that should be started up at the beginning of the line. Because

4.3. Simulation experiments 29

ke =Fkp=1 ke =02k, =5.0
Wmax 0 w Wmax 4]
81055 72 81048 | 7.3

16 | 0.74 | 134 16 | 0.61 | 13.9
24 | 0.82]| 19.2 24 1 0.69 | 20.3
32 1087|248 321 0.74 | 26.7
40 { 0.89 | 304 40 | 0.78 | 32.9
48 1 0.91 | 35.7 48 | 0.81 | 39.1
56 | 0.84 | 45,5

64 | 0.86 | 51.7

Table 4.5: The results of (pull) Conwip experiments

of that, a backlog order list is used to determine the type of lot inserted into the line by the
generator process. Note that for this method of demand modelling, the performance of the
line is independent of the number of product types. The only stochastic effect included in
the model is the stochastic process times. The system does not contain lots for which no
demand exists. Because the exit process is always able to accept all types of lots, the last
buffer is always empty.

Experiments are performed for a number of kanbans varying from 3 to 30. For each
number of kanbans, the throughput is determined by measuring the mean flow time from
lot 3000 to lot 10000. Each experiment is repeated 30 times.

Results of the (Hybrid) conwip simulations

The results of the simulation experiments are presented in Table 4.6 and in Figure 4.11.
The results show that the WIP levels required for a throughput level are low. These results
are influenced by the few stochastic aspects in the model and the fact that the contents
of only two buffers are observed, compared to three buffers for other control methods.
The difference between the modelling of Hybrid and Pull Conwip systems causes the hybrid
conwip system model to perform better. The Hybrid conwip model always immediately takes
the lots out of the last buffer, while the pull conwip system has to wait for the appropriate
type of product to be finished. This causes WIP in the last buffer and less throughput for
the pull conwip controlled system.

The POLCA control experiment

The number of kanbans in each kanban loop of a POLCA system is specifically tuned for
a certain throughput. The number of kanbans is equal to the expected mean WIP for the
push controlled system. Section 2.4 described a method to compute this mean WIP level.
Figure 4.12 shows the results of simulation experiments. For the POLCA controlled system,
one may choose to model the release of lots into the system by releasing lots into the system
at the demand rate for which the system has been designed, or only after demand from the
first machine. In the first case, the amount of work in the first buffer becomes very large
when the release rate comes close to the maximum system throughput. For that reason,
the more stable option of releasing only after demand is chosen. This method of modelling

30 Chapter 4. Common control strategies

ka=hy=1 kg =02,k = 5.0
Wmax] w Wmax é w
3|/060| 26 31052| 25
5071 4.0 51061 39
71078 | 5.4 71067) 53
91082]| 68 9071 6.7
11 | 0.85 | 8.2 11 | 075 | 81
13| 0.87 | 9.5 13078 | 94
15| 0.89 : 10.9 15| 0.8 10.7
17 | 0.89 | 12.2 17 | 0.82 | 11.9
19 [0.91 | 13.6 19 | 0.84 | 13.3
21 | 0.85 | 14.6

23 | 0.86 | 15.7

25 | 0.87 | 17.2

27 | 0.88 } 18.3

29 | 0.89 § 19.7

Table 4.6: Results of hybrid Conwip experiments

customer demand does not include stochastic order inter arrival times and the stochastic
sequence of product types does not affect the performance of the system.

POLCA contro! releases a lot at the due date of the lot, minus the service times, the
expected queueing times and a safety lead time. For the simulation experiments, the MRP
due dates for the second and the third machine are determined at the moment the generator
process generates the lot for the first machine. The release time for the second machine
equals the release time plus the expected service time for the first machine plus the expected
queueing time for the second machine. The release time for the third machine equals the
release time for the second machine plus the expected service time for the second machine
plus the queueing time for the third machine. Safety lead times are not modelled.

Note that the limit of a POLCA system with a very high number of kanbans equals Push
control, but with MRP release date authorization at all machines.

Results of the POLCA control simulations

Table 4.7 presents the results of simulation experiments for the POLCA controlled three
machine flow line. The variable §* denotes the target throughput, for which the system
was designed. The results from Tables 4.1 and 4.2 are used to compute the settings of the
POLCA system. The number of kanbans in each POLCA loop is computed set at the WIP
level for the same buffers and machines in the push controlled system. For example, for
the number of kanbans for the first kanban loop, the first two buffers and machines are
observed. In case of kg = k, = 1, Table 4.1 shows that for a utilization of 0.5, the queueing
time for each workstation is 1 (unit time). The mean service time is also 1 (unit time) per
machine. The expected flow time for two workstations equals 4 (units time). Little’s law
(2.1) states that the average WIP level @ is 0.5 x 4 = 2. Because of that, the number of
kanbans for the first POLCA loop is set to 4 as well. In Table 4.7, the number of kanbans
for loop i is denocted as nk;. Especially the experiments with the non-equal product types
(ka = 0.2,k, = 5.0) show that the POLCA controlled system does not always reach the

4.4. Fvaluation of simulation results 31

== kd=kp=1 E
O hd=0.2, kp=5.0

throughput

0.5-:: i

0 10 20 30 40 50 60 70 80

mean WIP

Figure 4.11: Performance of (hybrid) Conwip control

ka=hy=1 kg =0.2,k, = 5.0

k| b w) & | k| kb i g
05 2} 2| 27052 05| 3| 4| 48043
06| 3t 3| 40061 06| b| 6| 7.5 054
07| 4+ 4| 64072 0.7 8| 9116 | 0.64
08| &8} 8102 |0.79 08| 15|17 | 21.0 | 0.76
0918 |18 | 23.0 | 0.89 09|37 |43 | 5091 0.89

Table 4.7: Results of POLCA experiments

throughput for which the system was designed. This may easily be compensated by adding
a number of kanbans. The settings for the MRP release dates for the second and third
machine also influence the performance of the system. Table 4.8 show the performance of
the POLCA controlled system when the MRP release times is not regarded. In that case,
machines are always authorized to process the next lot when a kanban is available. The
throughput of the system is higher than when the MRP releases are regarded. The benefit
of using the MRP release dates only shows when for example tardiness of individual lots,
or the variability of flow of outgoing lots is measured as well.

4.4 Evaluation of simulation results

The simulation results show that all discussed control methods perform better for the equal
product types variant (ky = kp, = 1) than for the variant with non-equal product types
(ks = 0.2,kp = 5.0). One reason for this is the increased variability. Coefficient ¢? is
more than twice as high for ks = 0.2,k, = 5.0 (see Section 4.3). The difference between

32 Chapter 4. Common control strategies

0.9+

0.8

e
=~
T

throughput

o
[=2]
T

o5F |

0.4} .

0 10 20 30 40 50 60 70 20

mean WIP

Figure 4.12: Performance of POLCA control
ka=02,k, =5.0

0 | k1 | b w]
05| 3| 4| 39060
06| 5| 6| 6.1]|0.68
07| 8| 9| 91077
08|15 |17 | 16.2 | 0.85
09|37 |43 | 383 | 093

Table 4.8: Results of POLCA experiments - no MRP

performance for the two product mix variants is even larger for systems using product
specific kanbans: pull and pull-Conwip. This is caused by the fact that the same number
of product-specific kanbans is used for both the highly demanded product types and the
products types with a lower demand. At higher utilization levels, hybrid control methods,
including aspects of both push and pull systems, outperform push and pull systems. This
may be caused by the rigidness of both push and pull systems. Push control does not react
to the state of the system. In case queue lengths are longer than average, for example
due to stochastic effects, Push control does not react by releaging less lots into the system.
Pull control is rigid as well. It strives for a fixed buffer level, regardless of the demands of
the system. Furthermore, the methods for modelling demand introduce different stochastic
effects for the different control methods.

The following chapters describe an alternative method for the common methods pre-
sented in this chapter. In chapter 5, the feedback controller is introduced.

Chapter 5

Feedback control for a
manufacturing system

In the previous chapter, several common control strategies for a multi-product flow line have
been described. A selection between these common control methods may be made using
rules of thumb, or using simulation experiments and trial-and-error. An alternative for the
common methods may be the use of feedback control. Feedback control is an extensively
studied field of science, more often used to control for example mechanical systems than to
control manufacturing systems. It may provide a better founded method to design a control
strategy. Also, the performance of feedback controlled manufacturing system may be better
than the performance of systems using more common control methods.

Chapters 5 to 9 describe a method for designing a feedback controller to a manufacturing
system as the multi-product flow line described in Chapter 3. This chapter first introduces
the concept of feedback control and some of the terminology of feedback control. After that,
the approach for applying feedback control to the manufacturing system is described.

5.1 Feedback control

Control may he defined as the process of causing a variables of a system to follow a desired
reference trajectory. In case of feedback control, output variables are measured. The con-
troller uses the knowledge of the output variables to determine a proper reaction in order to
affect the value of the output variables. This reaction is applied (or fed back) to the system.
In [Ste84] three general classes of needs are distinguished to be satisfied by feedback control:

1. Suppressing the influence of external disturbances
2. Ensuring the stability of the process

3. Optimizing the performance of the process
The variables of the system may be classified into the following categories:

1. Input varitables, which denote the effect of the surroundings on the process:

33

34 Chapter 5. Feedback control for a manufacturing system

i syé-tam i i

e controllar [

Figure 5.1: The concept of feedback control

» Manipulated (or adjustable) variables, if their values may be adjusted freely by
operator or control mechanism.

= Disturbances, if their values are not the result of adjustment by an operator or
control system.

2. Qutput variables, which denote the effect of the process on the surroundings:

o Measured output variables,

o [Unmeasured output variables.

In general, input variables are denoted as © and output variables as y. In this research
project, all input variables are assumed to be manipulated input variables, and all output
variables are assumed to be measured output variables. These input and output variables of
a system are graphically represented in Figure 5.1. For a basic feedback controlled system,
the output ¥, of the system is the input u. of the controller. The output y. of the controller
is the input u, for the system. The system output is measured and sent to the controller
and the controller computes an appropriate output signal. The controller output signal
is used as input signal for the system. These steps may be performed continuously (in a
continuous time approach) or at discrete time steps only (in a discrete time approach). For
a discrete time approach, a sample time is introduced. Periodically, a sample is drawn from
the system output signal. The controller uses the measured system output to determine the
appropriate control action. The control output is applied to the system. The sequence of
sampling and applying is repeated after each sample time.

The following sequence of steps may be used to design a feedback controller:

o Define the system of interest. Define the objective of controlling the system and define
the input and output variables of the system

e Construct a continuous dynamic model of the system. Many methods for designing a
feedback controller require a dynamic model of the system. In this context, a dynamic
model is a set of differential equations (or difference equations, in case of a discrete
time approach) describing the behavior of the system. In this context, the behavior
of the system is the response of the system’s output variables to its input variables.
The model class that is to be used depends on the system and the selected method
for designing the controller.

o Design the controller. Numerous methods for designing a feedback controller are
available. Which method to use depends amongst other reasons on the properties of
the system and the model, and the purpose of the feedback controller.

5.2. Feedback control for the mamifacturing system 35

P N system :] —w

construct model

5 continuous dynamic maodel
|

design controller

\— controlier 4——/

Figure 5.2; Feedback controller design

s Apply the controller to the system.

The approach for designing a feedback controller is represented by Figure 5.2. Now that the
terminology and the general principles of feedback control have been described, feedback
control can be applied to a manufacturing system.

5.2 Feedback control for the manufacturing system

This section describes an approach to apply feedback control to the manufacturing system
described in Chapter 3. The system of interest, the input and output variables and the
objective of controlling the manufacturing system are defined.

Controlling the manufacturing system

In Chapter 2, controlling a discrete event model is described as specifying or Limiting the
behavior of the processes of the discrete event model. The control method should define
which controlled events take place at which conditions. Purpose of controlling the manu-
facturing system is to optimize the behavior of the manufacturing system. For this research
project, the main indicators for performance are throughput and WIP level.

The system of interest is a manufacturing system. The controlled events (for example:
machine ¢ should start processing a product of type j) are the variables that denote the
effect of the surroundings on the system. The controlled events should be adjusted by an
operator or control system. For that reason, these controlled events are selected as the input
for the system of interest, the manufacturing systerm.

Purpose of feedback control is to let the output variables of the system follow a certain
reference trajectory. A purpose of controlling a manufacturing system is to optimize the
performance of the system. For this research project, the objective of the control method is
mainly to achieve a high throughput at low WIP levels. Feedback control can only achieve
that objective when the system outputs are chosen such that the objective can be expressed
using the system’s output variables. For that reason, the WIP levels {in each buffer, for

36 Chapter 5. Feedback control for a manufacturing system

conversion discrete event

(algorithm | 2V ¥ " odel _w

yﬂ=us y3=u¢

L controller 4—)

Figure 5.3: Feedback control for the discrete event system

X

each product) and the finished goods levels (for each product) are selected as the system’s
output variables.

The system of interest is detined as the manufacturing system described in Chapter 3.
The system input is defined as the free events and the system outputs as WIP and finished
goods levels. Objective of the controller is to generate these events that cause the WIP
and finished goods levels to follow a certain reference trajectory. This reference trajectory
should defined in such a way that it corresponds to the desired behavior of the system.

Continuous inputs for the manufacturing system

Section 5.1 described a sequence of steps to design a feedback controlled system: definition
of the system, construction of a continuous dynamic model and design of the controller.
In this context, the dynamic model is a set of difference equations describing the relation
between the system’s input and output variables. In this section, the input signal of the
manufacturing system is defined as the free events. This signal, a sequence of discrete
events, can not be used as a variable of a difference equation. The system of which the
dynamic model is to be made (and to which the controller is to be connected) needs to
have a continuous variable as input instead of a sequence of discrete events. For that
purpose, the discrete event model of the manufacturing system needs to be augmented with
a conversion algorithm. Purpose of this conversion algorithm is to convert a continuous
input signal into discrete events. A dynamic model can be made of this augmented system
(consisting of manufacturing system and conversion algorithm) when the relation between
input and output signal can be described using difference equations. The controller can be
interconnected to the conversion algorithm, because the continuous controller output signal
is compatible to the continuous input signal of the conversion algorithm. The conversion
algorithm uses the controller output to generate appropriate events. Figure 5.3 represents
the controller and the augmented system of manufacturing system and conversion algorithm.

The next chapter describes a conversion algorithm, suitable to convert a continuous
signal into free events for the manufacturing system. Chapter 7 describes the construction
of a continuous dynamic model of the augmented system. In Chapter 8, a method of
feedback control, Model Predictive Control (MPC), is introduced. A controller is designed
using the model derived in Chapter 7. In Chapter 9 the designed controller is applied to
the discrete event model of the multi-product flow line.

Chapter 6

Conversion of signals

As described in Chapter 5, the input signal for the discrete event manufacturing system
consists of a sequence of controlled events. The chosen approach to design a feedback con-
troller (Section 5.1) includes the construction of a continuous dynamic model of the system
to be controlled. Such a model consists of difference equations describing the response of a
continuous output variable to a continuous input signal. A sequence of controlled discrete
events is not a continuous signal. A conversion algorithm needs to be defined in order to con-
vert the continuous system input to a sequence discrete events, which can be offered to the
manufacturing system. This conversion is not only required for constructing a continuous
dynamic model, but also for applying the continuous controller to the manufacturing sys-
tem. The controller provides a continnous output signal that also needs to be transformed
into discrete events before it can be applied to the manufacturing system.

This chapter describes the conditions that the conversion algorithm should obey and
a concept for the conversion algorithm, obeying these conditions. After that, a possible
implementation of the algorithm is presented. At last, the performance of the algorithm is
tested experimentally.

6.1 Conditions for the conversion algorithm

This chapter describes a conversion algorithm to convert a continuous input variable into
a sequence of discrete events. In this section, conditions the conversion algorithm should
obey are described.

First, the input variable of the conversion algorithm should be defined as a continuous
variable. Both constructing a continuous dynamic model and connecting the system to the
continuous controller output require a continuous input signal for the conversion algorithm.

Second, the continuous input variable should preferably be defined such that a linear
relation exists between the input of the conversion algorithm and the output of the man-
ufacturing system. Linear models may be used to describe such a linear relation between
input and output, only causing relatively uncomplicated caleulations, bath for construction
of the model and for design of the controller.

37

38 Chapter 6. Conversion of signals

6.2 A concept for the continuous input variable

The previous section describes the conditions for a conversion algorithm. In this section, a
proposal for a continuous input variable for the conversion algorithm is made. The conver-
sion algorithm itself is only described in Section 6.3

Assume that a target throughput per machine per product is defined as the input for
the conversion algorithm, and assume that a conversion algorithm can be defined that
adequately transforms the continuous input signal into a sequence of discrete events. The
property throughput is an average, and therefore specified for a time interval (see Section 2.1.
Define this time interval as the controller sample time, and denote the target throughput
for product ¢ and machine j over a sample interval as &;;. A target throughput 47; is defined
for each machine and each product. For the case described in Chapter 3, this implies a
number of 3 x 8 = 24 input variables.

In Section 2.2, the generator process was introduced, responsible for the release of new
lots into the system. The generator process may release new lots either in a controlled way
{on demand), or in an uncontrolled way (for example with fixed or stochastic inter release
times). In case the release of lots is assumed to be controllable, an input signal can be
defined for the generator process. The input signal may be defined in an equal way as for
the machines: 8}, is the target throughput of product i for the generator process. For
modelling purposes, the generator process may be considered as a machine process with
zero service time and an infinite inventory of lots upstream. For the feedback controlled
flow line, the generator process is assumed to be controlled. Therefore, corresponding to
the number of product types for the generator process, 8 input variables are added to the
24 input variables for the machines. This implies a total number of input variables of 32 for
the observed multi-product flow line.

Recall that the output of the manufacturing system is defined as the buffer levels per
buffer per product and the finished good levels per product. The response of these outputs
to input 4]; is expected to be linear: for example, the rate of change of buffer contents is
proportional to the throughput of the adjacent machines, Furthermore, the response on two
excitations is expected to equal the sumn of the two individual responses (superposition).

Note that a linear response is only expected for a bounded set of input signals. Buffer
levels cannot become negative and machine capacity is bounded by a utilization constraint
(see Section 2.4). The boundaries on the input signal are discussed in more detail in Chap-
ter 7.

6.3 Implementation of the conversion algorithm

The previous section introduced an input variable for a conversion algorithm. A conversion
algorithm to transform this input variable into discrete events obeys the conditions described
in Section 6.1. This section describes an algorithm to adequately convert the input variable
(target throughput §3;) into a sequence of discrete events for the manufacturing system. This
may be represented as a control problem within the larger control problem, as represented
by Figure 6.1: the conversion algorithm is the controller for the manufacturing system.
Denote the input of the manufacturing system as u,,, and define an alternative manufacturing
system output y,, = d;;. Note that this output is not the system output y,. Purpose of
the conversion algorithm may then be defined as to generate events w,, in order to let

6.3. Implementation of the conversion algorithm 39

conversion discrete event
) F-avents g
algorithm b model

v, Y
L controller

Figure 6.1: Conversion as control within the controlled system

y8=u c

the alternative manufacturing system output ¥, follow reference trajectory u,. A target
throughput &f; for each sample interval corresponds to a target production of fg 65;dt in
the interval of time from 0 to ¢{. Define the actual production p;; as the sum of lots of
product type ¢ processed on machine j. An error ;; may be defined, denoting the shortage
of processed lots of type ¢ on machine j:

4
€ij j;éi:’jdt—pij- (6.1)

Note that this error does not equal the deviation of the system output variables y, (buffer
levels and finished goods) from the reference trajectory for these variables. Introduce a
production threshold value €ihreshola- When the error is smaller than éshreshold, the demand
is considered satisfied, so that no further lots need to be processed. To determine whether
a machine should start processing a product, and if so, which type of product, the series of
questions are answered for each machine:

» Which set of product types satisfies €;; > €ihreshola?
» Which set of product types are available in the upstream buffer?

e Take the section of these both sets. In case this section is empty, no product can or
should be processed on that machine. In case the section contains one or more product
types, the type with the largest error ¢;; is selected to be processed.

The state of each machine may be represented as in Figure 6.2. A machine has three states:
evaluating, processing and idle. From the state evaluating, it can only move to either
processing or idle, and from these two states back to evaluating. In the state evaluating,
the described procedure is used to determine whether or not the machine should start
processing another lot. In case the machine starts processing, the state becomes processing.
The machine remains in that state until processing has finished. After that, it returns to
the state evaluating. In case the machine should not, or can not, process a next lot, the
state becomes idle. This occurs when no lots are available in the upstream buffer of the
product types with €;; > €threshold- Lhe machine can only leave that state and return to
evaluating when either the buffer contents have changed, or at sample instants, when a new
control action is computed. Sample instants are discussed in the next subsection.

40 Chapter 6. Conversion of signals

4 Y)

evaluating

processing idle

) —

Figure 6.2: The three states of a machine

The error €;; is updated after a lot has been processed (the number 1 is subtracted
from the corresponding error €) and after a control action is received from the controller at
gsample times. The buffer level of workstation j increases when workstation 7 —1 has finished
processing a lot and decreases when workstation j starts processing a lot. The sequence of
updating error ¢ is described in the next subsection.

Sample instants

Ag described in Chapter 5, a discrete time feedback controller samples at discrete times.
After each sample interval, the outputs are measured, a control action is computed and
the control action is applied to the system. For that reason, after each sample period, the
output values of the discrete event system (buffer levels and cumulative production) are
sent to the controller. The controller uses these values to determine new controller output
values, which are used as input signal for the conversion algorithm. The length of sample
time %, is chosen such that a number of discrete events take place within one sample time.

At the end of a sampling interval, the backlog error € in generally is not exactly zero.
These errors may be small (when the backlog error is lower than the production threshold
value} or larger (in case the system was not able to meet the demanded production). In
both cases, the error should be compensated during the next intervals. The error may be
100% compensated, or for only a smaller part. Compensating only a smaller part may be
beneficial in case a very high input signal has been applied to the system for a longer period
of time. In case of 100% compensation, the conversion algorithm might remain authorizing
lots at a high rate because of a supposed shortage from the past high input signals, while
the controller may already have decreased the output signal. For filtering the past errors, a
filter is designed. After each sampling period, the remaining error is sent to the filter, and,
depending on the properties of the filter, part of the error is sent back to the conversion
mechanism to compensate. The design of the filter determines to which degree the error is
compensated in next sampling periods. This subject is discussed in the next section.

The system is controlled in a discrete time. A first order approach is used to reconstruct
the controller output signal between the sample points. Let J; ;(k) denote the controller

6.3. Implementation of the conversion algorithm 41

s T

k ket —t—»

Figure 6.3: The controller output signal

output at time step k. At the beginning of a sample period, the backlog error € is increased
by ts - 0; ;(k). At the beginning of the next sample period, when 4; ;(k + 1) is available, the
first order approximation correction is made: £,/2- (d; ;(k + 1} — d; ;(k)) is added to € too.
A graphical representation of this is presented in Figure 6.3.

The next subsection is dedicated to the filter used filtering the remaining errors after
each sample interval.

Filter

An algorithm is described to update the error € at each sample moment. The algorithm
contains a filter, that determines how errors from previous sample intervals are compensated
in the current {and future) sample intervals. Errors remaining from further in the past
should not be fully compensated, because the relevance of past input values is far lower than
the relevance of recent input values. The total system of manufacturing system, controller
and conversion algorithm would even function without compensation of errors from previous
sample intervals by the conversion algorithm. In that case, an uncompensated error from
the conversion algorithm causes a deviation of the system outputs from the reference cutput.
The controller compensates this deviation by demanding higher controller output values.

Because of the low relevance of errors from far past sample times, an exponentially
decaying compensation of past errors is chosen. Let the unfiltered backlog error at the end
of a sample period be denoted as €,, and the filtered backlog error as ef(k). The filter is
implemented as:

er(k)=a- k) (0<a<l). (6.2)

Note that for & = 0 no error from previous filter periods is compensated, and for @ = 1 the
error is fully compensated.

In case an error € remains after sample time %, and no events take place reducing the
error and no inputs are offered making the error increase, the error decays exponentially:

e(k+n) =e(k) - " (6.3)

The output values of the controller may be saturated. In case of saturation, the variable
is subject to lower and/or upper bounds. Assume the controller output signal is subject to

42 Chapter 6. Conversion of signals

a saturation upper limit tun,y and the filtering factor is set to a (with 0 < @ < 1). Then,
error € also has an upper bound. This upper bound is derived in this subsection. Assume
that for a long period of time the controller output remains at the saturation upper limit
Umax. Is denotes the sample time. Backlog error € can be described as in the next equations:

e(k+1) = ae(k) + tstimax, {6.4)
elk+2)=cae(k+ 1)+ tstmax, {6.5a)
= afa e(k) + totimax) + s Umax- (6.5b)
Therefore,
n--1
e(k+n)=ca"elk) + Z ts Umax O (6.6)
=0

Because 0 < o < 1, the first term becomes zero as n approaches infinity. For the second

term, use the relation:
m~+n m+1

i o 7 1 il
Zb’r _br—l—r . (6.7)
=n

{6.6) and (6.7) can be used for determining the limit for backlog error e after a period of
maximum controller output signal:

. _ ts Umax
n].l}ngo 6(]67 + n) = m— (68)

An implementation of the conversion algorithm defined in this chapter has been made in
the specification language x. In the implementation, the conversion algorithm is integrated
in the controller process of the discrete event model of the manufacturing system. For the
implementation code is referred to the Appendix B.

6.4 Performance of the conversion algorithm

The purpose of the conversion algorithm is to convert a continuous input signal to a series
of discrete events for the manufacturing system. In the previous sections, the conversion
algorithm is designed in such a way that it attempts to make the throughput of the manufac-
turing system follow the target throughput provided by the controller. This may be regarded
as a control problem as well. Different choices had been possible as well for the implemen-
tation of the conversion algorithm. This section, the behavior of the conversion algorithm
in an open-loop situation is observed. Input signals are applied to the conversion algorithm
to observe the response of the conversion algorithmn and the manufacturing system. In the
next chapter, Chapter 7, a continuous dynamic model is made of the system consisting of
both the conversion algorithm and the discrete event model of the manufacturing system.

Figure 6.4 gives an example of the behavior of backlog error € as a function of time.
The values in the right corner are the controller output values §. The sample time is 10
{units time]. At each sample instant, the backlog error is filtered and the filtered error is
transferred to the next sample interval. This corresponds to the vertical lines downwards in

6.4. Performance of the conversion algorithm 43

6F 610 0190328 -
620 0.255064
630 0.208813
640 0.0386555
5- 650 0.0990504
660 0.193447
670 0.290958
680 00640258
ar 690 0.114561 7
= 700 0.0433732
=
[
g af -
%
8
2t 4

R 1 1 1 1 1 1 I I

1
610 620 630 640 650 660 670 680 890 700 710
time

Figure 6.4: Example of conversion backlog error ¢

the figure at each multiple of the sample time. Immediately after that, the new controller
output is measured and the required production for the next sample period and the first
order approximation are added to the filtered backlog error. When a lot is finished, the
corresponding backlog error is reduced by one. This corresponds to the steps down with a
height of one during the sample intervals. Figure 6.5 shows both the conversion algorithm
input and the discrete event model throughput per sample interval for a certain machine
and product type. Due to the discrete number of events, the mean throughput varies around
the controller signal. Figure 6.6 shows that the cumulative production of the discrete event
model and the cumulative conversion input signal. As expected, the cumulative production
follows the conversion algorithm input signal. Note that an offset between the lines in
Figure 6.6 is not a matter of concern. In a closed loop situation, an offset of the system
output from the reference signal woud be compensated by the controller.

The sequence of steps to design a feedback controller included the construction of a
continuous dynamic model of the phenomenon of interest. In this chapter, a conversion
algorithm has been described in order to convert a continuous system input into diserete
events, the required input for the manufacturing system. A continuous dynamic model can
be constructed of the system consisting of both the conversion algorithm and the model of
the manufacturing system. Developing this model is described in Chapter 7. The model
may be used to design a suitable feedback controller (Chapter 8). After that, the feedback
controller may be applied to the system of conversion algorithm and discrete event model
{in Chapter 9).

44

Chapter 6. Conversion of signals

1 -6 T T T T
° o
1.4} @ throughput per sample time ‘ i
. ——= convatsion input
1.2f i
21t " c
:%
EO.S - -
3
£0.61 1
e
04r o o © ° ° 4
o o e o o o
) E L——[HW\——J |
OF 0000 OO0 O 0O B
C 20 40 60 80 100
time

Figure 6.5: Example of conversion input and response {per sample)

880 T T T T
© cumulative production
860 —_ tumulative conwersien tput |] |
840 8
820 .
g
5
£ 800 .
=1
=
o
a

780
760 Jp— |

74045

720 1 1 1 1
0 20 40 60 80 100

time

Figure 6.6: Example of conversion input and response (cumulative)

Chapter 7

The continuous dynamic model

Chapter 5 described a sequence of steps for designing a feedback controller. Omne of these
steps was the construction of a continuous dynamic model of the system of interest. The
continuous dynamic model is a set of difference equations describing the behavior of the
system. Purpose of the model is to use it for designing a feedback controller.

This chapter describes the method of System Identification for obtaining a dynamic
model. After that, the technique of System Identification is used to obtain the dynamic
model for the case system.

7.1 System Identification

This chapter describes System Identification. System Identification is a method to obtain
a model of a dynamic system. The method is an alternative for first principle design. First
principle design uses the knowledge of the physical causes of the behavior of a system to
create a model. The alternative, system identification, treats the system as a black box:
an input signal is offered to the system and the system response is measured. System
identification fits a model to these experimental data, not considering the physical causes
of the behavior.

The dynamic model is to be used for designing a feedback controller for the modelled
system. The performance of the controller strongly depends on the correctness of the model.
For a relatively simple case, constructing a model using a first-principles is possible. The
decision to use the method of System Identification is made because the controller design
method should not only work for the simple case observed for this research project. It must
also be possible to obtain a dynamic model for more complicated cases, maybe even too
complicated to be modelled using first principles. System identification allows to construct
a model for the system of both manufacturing line and the conversion algorithm described
in Chapter 6 even for more complicated conversion algorithms or manufacturing systems.

The cycle of generating an identified model consists of the following steps:

#= Specification of the phenomenon of interest

= Specification of model class

45

46 Chapter 7. The continuous dynamic model

¢ Search of relevant training data
» Estimation of a model

e Evaluation of the model

After the phenomenon of interest has been specified, a model class, experimental data,
and a criterion have to be specified. The experimental data consist of an input signal for
the identified system, and the response of the system to this input signal. The system
identification algorithms fit the parameters of the model within the selected model class,
using the experimental data.. Depending on the results of the evaluation step, the model
may be accepted or rejected.

State Space models

The reason for developing a dynamical model in this research project is to use it to design
a feedback contreller using Model Predictive Control (MPC). Model Predictive Control
(MPQC) is an advanced control technique, using an internal model of the system to predict
the behavior of the systemn over a certain prediction horizon. MPC is described in more detail
in Chapter 8. Most MPC algorithms require a linear, time-invariant (LTI), discrete-time,
state-space model of the system. For that reason, this is the only model class considered in
this report. The general form for an LTT State-Space model is:

o(k +1) = Az(k) + Bu(k) + Ke(k) (7.1)
y(k) = Cx(k) + Dulk) + e(k). (7.2)

Vector y € R™ is a vector of output variables and vector v € K™ is a vector of input
variables. Parameter k is an index for the time step. In the closed-loop system at each
time step k, the values of output y are measured. These values are used to determine the
appropriate controller action © to apply to the system. Vector £ € R?= contains the state
variables. The state variables are additional variables, used to describe the relation between
the input and the output. Equation 7.2 shows that the state on time z(k + 1) is a linear
combination of the state z(k) and the input signal on time k. The output y(k) is a linear
combination of the state (k) and the input u(k). The state variables may or may not have
a. physical meaning. Vector ¢ € R™ is a vector containing white noise with mean 0 and
variance 1.

Estimation

In this chapter, system identification is introduced as a method to obtain a state space model
for a stochastic input-output system. For the estimation of the models, the MATLAB® Sys-
tem Identification Toolbox has been used. This subsection briefly summarizes the estimation
method used by the MATLAB® toolbox.

The approach to obtain a state-space model for a stochastic input-output system is to
first regress the outputs on the inputs, in order to remove the effects of the inputs. The
resulting data form a state-output relation, from which the model parameters A and C can
be estimated. After this, the input-state and input-output parameters B and D can be
estimated, using the original data. At last, the noise parameters can be estimated using the
residuals. For more detailed information about the mathematical procedures is referred to
[Hei97].

7.2. Identification of the three machine flow line 47

' iconversion|
™ algorithm —events

discrets event
model | Yo ®

construct model

——— continuous dynamic model —

Figure 7.1: The system of conversion algorithm and manufacturing system

7.2 Identification of the three machine flow line

In this section, a model for the three machine flow line is identified, following the procedure
described in the previous section.

Specification of the phenomenon of interest

In Chapter 5, inputs and outputs are selected for the discrete event model of the multi-
product flow line described in Chapter 3. The discrete event system requires discrete events
as input signal. To be able to feed that system with the continuous controller output signal,
and to be able to describe the system as a continuous (discrete time) model, a conversion
algorithm has been described in Chapter 6. The phenomenon of interest, or the system to be
identified, is defined as the discrete event systemn together with the conversion algorithm for
converting the continuous signal to discrete events. This system is represented in Figure 7.1.
In the following subsections, a model of this system is made using system identification.

The input variables of the conversion algorithm and the output variable of the discrete
event system have so far been described using a notation with two indices. For example,
ui; is the input variable corresponding to product ¢ and resource j. The resources are the
generator process and the machines. The output corresponding to product ¢ in buffer j is
denoted as y;;. The level of finished goods is considered as the last buffer. The notation
corresponds to a matrix representation of the variables, with the first index representing the
row number and the second index the column number. A state space representation of the
system requires a vector notation of input and output variables instead of a matrix notation.
The vector representation is found by stacking the columns of the matrix representations.
The vector notation of the input signal starts with the input variables for all product types
for the generator, then all inputs for the first machine, and so on. The vector notation
of the output signal starts with the output variables for all product types of the variables
corresponding to the first buffer, then all output variables for the second buffer, and so on.
An example of the vector representation for ¢ € 0,1 and j € 0,1,2 is given in the following
example:

. . tgp ol U
matrix notation | o0 0L 02 (7.3)
Yip Uil Uiz

. T
corresponds to vector notation [ugn w10 uor Un oz iz] . (7.4)

48 Chapter 7. The continuous dynamic model

Specification of model class

As described in the previous section, the model class best suited for designing a MPC
controller is a discrete time state space model. This subsection describes the selection of
the order of the state space model.

In Chapter 6, the number of input variables of the system has been defined as 32: one
input per product type, for three machines and one generator process. The number of
product types is 8. Chapter 5 defined the output variables of the manufacturing system as
the buffer levels per product type for all three buffers and the finished goods per product
type. This implies a number of output variables of 32. Before a state space model of the
gystem can be constructed, the order of the model has to be chosen. The order of the
model is the number of state variables in vector . This number can be freely chosen,
but a low order model may not be able to represent the behavior of the system correctly,
while a high order model may be unnecessarily complicated, cansing expensive calculations.
Furthermore, a too high order model does not only describe the behavior of the system, but
also the measurement noigse. The knowledge of the manufacturing system and the relation
between input and output signals may be useful for selecting an adequate model order.
Chapters 5 and 6 and Subsection 7.2 describe that the system to be identified consists
of both the flow line and the conversion algorithms. The system inputs are the target
throughputs and the system outputs are the buffer levels, both per product per buffer or
machine. Although the state variables in the identified state representation do not have to
correspond to a physical property of the system, it is clear that the relation between input
and output cannot be described without having information about previous buffer levels.
This implies that the number of state variables should at least equal the number of outputs.

Specification of training data

System Identification is a method to obtain a dynamic model for a system by examining
input and output data and fitting a model best corresponding to these data. For that reason,
the selection of training data is essential for obtaining a correct model. In the previous
subsection, a linear state-space model is selected to describe the behavior of the system.
Non-linear behavior of the system cannot be described correctly by this type of model. For
that reason, the input signals should be selected in such a way that an approximately linear
response is expected. The input signals should satisfy two conditions:

The utilization constraint.

In case the input signal imposes a higher throughput than the theoretical capacity,
the machine is not be able to process as much as is demanded. The corresponding
output buffer levels do not react in a linear way to such an input signal.

The cumulative production constraint.

When inputs demand the system to process a product that is not available in the
previous buffer, the machine is not able tc process the product. In that case, the
corresponding output buffer levels do not react linearly to the imposed input signal.
To obtain a linear response, the cumulative demanded throughput for a machine is
not allowed to exceed the cumulative demanded throughput of the previous machine
{or generator).

7.2. Identification of the three machine flow line 49

In this report, an input signal meeting these two constraints is called a walid input sig-
nal. Note that even for a valid input signal, non-linear response may occur because of the
stochastic properties of the machine service times. Though theoretically valid, an input
signal demanding a high throughput may not be realized in case of occasional longer service
times.

A series of input data is generated, exciting all inputs. The value of the input signals
vary from zero to the maximum throughputs allowed by the utilization constraint. Different
inputs are excited in combination to show the dependency between different inputs would
show. The size of the experiment is about 6000 data points. The input signal is applied to
the systemn of conversion algorithm and discrete event model. The sample time ¢, is 10 units
time. During this experiment, the output variables g, are measured. Input and output data
form a data set of 6000 input and output points. Each input point consists of a value for
each of the 32 inputs. Each output point contains the values of the 32 measured output
variables. The data set can be used to estimate the parameters of a model using system
identification. Note that the simulation experiment to gather data points is an open-loop
simulation: the input trajectory is selected prior to the experiment, and does not depend
on the measurements of the system outputs.

Estimation of the model

This subsection describes the estimation of a state space model for the three machine multi-
product flow line. The MATLAB® System Identification Toolbox estimates the parameters
for a model, using the set of training data described in the previous subsection.

The toolbox offers the possibilities to load and pre-process data, and to estimate a (state-
space) model for a given system order. The model may be pre-structured, or entirely free.
In case of a structured model, some or all elements of some of the matrices of the model
are given so that the identification algorithun only fits the missing parameters. For a free
model, the identification algorithm determines values for all model matrices. The obtained
models can be analyzed using (other) verification data.

Recall that the number of product types is set to 8. A lot generator process and three
machines are controlled. For that purpose, the contents of three buffers and the finished
goods levels are measured. Because of that, the system has 8- (1 + 3) = 32 input variables
and 8- (3+41) = 32 output variables. Section 7.2 described that the number of state variables
should be at least 32 as well.

Sequentially, three approaches have been used to estimate a model using the system
identification. These three attempts are successively described in this subsection.

e The first approach was to estimate all parameters of the complete system For a number
of 32 input, output and state variables, matrices A, B, C, D and K of (7.1) and (7.2)
all have the size 32 x 32. To estimate these matrices, 5 - 32% = 5120 parameters
have to be estimated. The MATLAB® System Identification Toolbox suffered from
insufficient memory attempting to estimate all 5120 parameters, using the 6000 data
points consisting of 2 - 32 values each. Because of that, a smaller problem was offered
to the toolbox.

e Target of the smaller problem was to estimate a model for the same system, but only
two of the eight product types were observed. The relation between input and output

Chapter 7. The continnous dynamic model

is expected to be equal for all product types. The interrelations between product
types can be estimated by identifying the system for two product types. As long as
the input signal is valid, the input for the one product type is expected to have only
little effect on the outputs of the other product types. The same experimental data
was used, but only the data of the two selected product types were considered. With
only two product types observed, the system only requires 2 - 4 = 8 inputs, outputs
and state variables. This implies a number of only 320 parameters to be estimated.
The MATLAB® System Identification Toolbox succeeded in estimating the model.

The identified model showed a clearly recognizable structure. Matrix A almost equals
the unity matrix. This implies (see (7.1)) that state variables do not depend on other
state variables, but only on their previous value and the input signal. In case no input
signal is applied, the state remains at its previous value. Matrix D almost equals the
zero matrix. This is caused by the fact that no direct feed-through of the input to the
output occurs. It takes at least one sample time for an input signal to influence the
output signal. The structure of B and C were less obvious. Not B and C separately,
but the product C'B showed a recognizable structure. The product CB is {rounded)
represented in (7.5):

f10 0 -10 0 0 0 0 0
0 W 0 -1 0 0 0 0
o 0 10 0 -10 © 0 0
o 0 0 10 0 -10 0 0

¢B= 0 0 0 0 10 0 -10 0O (7.5)

0 0 0 0 0 10 0 -10
0 0 0 0 0 0 10 0

| 0 0 0 0 0 0 0 10 |

The values in product CB correspond to the change in buffer contents when a unity
input signal is applied to the corresponding input during a sample time of 10 time
units. The exact value of the non-zero elements is slightly smaller than 10, because
a theoretically valid signal may not be realized due to stochastic service times, as de-
scribed in Section 7.2. The state variables do not have a clear physical representation.
The structure of product C'B may be represented by the following equation:

10 ford =3,
CBy=4¢-10 fori=j+ N, (7.6)
0] for all other elements.

with N representing the number of product types.

Identification of the system, only considering two out of eight product types, yielded
a model for the relation between the inputs and outputs for the two product types.
To design a feedback controller for the manufacturing system, a model for the system
including all product types is required. The structure of the obtained model may be
used to construct models for the system for more product types.

The knowledge of the structure of the smaller model may be used for identifying a
larger model. The MATLAB® System Identification Toolbox is able to estimate the
parameters of a model with a given structure. In a structured model, distinction can
be made between free and fixed parameters and free parameters of the model. The
fixed parameters are fixed at a certain value by the user. The free parameters are

7.2. Identification of the three machine flow line 51

estimated by the identification toolbox. A structured model may be offered to the
toolbox. For a structured model, only the values for the free parameters are estimated
instead of estimating the values for all elements of the matrices A, B, C', D and K.

Define the state variables as the buffer contents and the finished goods levels. In that
case, the state corresponds to the outputs, implying C is a unity matrix. Note that
this definition has the advantage that the state can directly be measured. The relation
between the inputs and the outputs should be equal as the relation described by the
product CB of the previous identified model. A structured state-space model for 32
inputs, outputs and state variables may be offered to the toolbox. It has the following
structure:

Matrix A is a unity matrix of size 32x 32. Matrix D is a zero matrix of 32 x 32. Matrix
C' is a unity matrix of size 32 x 32. Because of that, the structure of matrix B is equal
to the structure for the product C'B of the previous identified model. Therefore, the
model is represented by:

A=1I, (7.7)
b fori=j,

By = q—b fori=j+N, (7.8)
0 for all other elements,

C=1I, (7.9)

D=0q. (7.10)

The number of product types IV is 8, and the size of the matrix is 32 x 32. All zeros
are fixed, and all elements denotes as b or —b are free. This implies a number of free
variables of 7N = 56 free variables. Disturbance matrix K may be fixed at zero, or
estimated, implying 32? = 1024 extra variables. The values for these free parameters
may be obtained for the complete system (all inputs and outputs) without a lack of
memory.

The structured model with identified free parameters describes the relation between the
input and output signal for all product types. The parameters can be estimated without
problems due to a lack of computer memory. In the next subsection, the performance of
the model is discussed.

Evaluation of the model

The free parameters of the model described in the previous subsection have been estimated
by the System Identification toolbox. The estimated values for the free parameters b in
(7.8) varied depending on the data set used for the estimation process. As remarked in
Section 7.2, a theoretically valid signal may not be realized by the machines because of
their stochastic service times. For a data set demanding a low machine utilization, the
value for b almost reached the limit of 10.

The model may be graphically evaluated by plotting the output values predicted by the
fitted model together with experimental data. The model can best be evaluated with other
data than the data used to fit the model. An example of a plot of two input signals and
the response predicted by the model and the experimental response is given in Figure 7.2.

52

Chapter 7. The continuous dynamic model

o 100 T T T T T T T T T
is]
[2+]
o circles: measured data AT L
2 solid: fitted model ___oerem T NeeremT Nt
= 50 i ok =
[+)
B
o
g 0 1 I
0 10 20 30 40 50 60 70 80 90 100
samples
1 T T T T T T T T
s
oF
Bos| -
(=%
=
(=%
=
O 1 I / 1 1 1 k 1 1 ¥
0 10 20 30 40 50 60 70 80 90 100
samples
1 T T T 1 T T ¥ T T
1]
=
of
Bost -
(=8
s
(=%
E
0 1 1 1 1 L1 I 1
0 10 20 30 40 50 60 70 B0 90 100
samples

Figure 7.2: Experimental output and model output and corresponding input signals

7.2. Identification of the three machine flow line 53

Similar plots are made for all output signals. For all outputs, the model output behaves
similar to the experimental data. The experimental data may deviate from the model output
because of the stochastic behavior of the machines, as described in Section 7.2. The model
contains both the information which inputs are related to which outputs, and the magnitude
and direction of the influence of an input to an output. In the next chapters, the model
is used to design an MPC (Model Predictive Control) feedback controller. This feedback
controller contains the model to predict the behavior of the system for a certain prediction
interval. Note that the time scale of Figure 7.2 (100 samples) is larger than the prediction
horizons used in Chapter 9 (up to approximately 10 samples). Therefore, small deviations
of the predicted output and the experimental output that only show after large time, are
not of great importance.

In the next chapter, the cbtained continuous model is used for designing a suitable
controller. The matrices of the state-space model are described in (7.8), and the value of b
in B is set to exactly 10.

54

Chapter 7. The continuous dynamic model

Chapter 8

The MPC controller

Chapter 8 gives an introduction to Model Predictive Control (MPC) and describes how
MPC may be applied to the multi-product flow line.

8.1 Model Predictive Control

Model Predictive Control (MPC) is an advanced control technique widely used in for exam-
ple industrial process control. The benefits of MPC include that it can easily be applied to
multi variable systems, it can deal with constraints and it is suited to control systems con-
taining time delays ([Mac02]). Feedback control may be defined as the process of measuring
output variables to use that information to cause a system variable to accurately follow a
reference trajectory. Characteristic aspects of MPC are the presence of an internal model,
representing the behavior of the system, and the use of a receding horizon.

As for most discrete time feedback controlled systems, at sample k, the system output
ys(k) is measured. The task of the controller is to determine an appropriate controller output
ye(k) to used as system input u,(k). Figure 8.1 shows the concept that the MPC controller
uses to determine the controller output y.(k). At sample k, the following information is
available:

s System output y, (k).

» The reference trajectory for the system output y?. The number p represents the
control horizon. The reference signal should be known for the next p samples:

vP(k) =yr(k+1),y-(k +2),..., 5. {k +p). {8.1)
Now assume a system input trajectory 47" (k) for the next m steps ahead:
A (R) = (k) Gk + 1), g (K +). (8.2)

The number of input moves ahead, m, is referred to as the control horizon. The assumed
input trajectory 47 (k) and the model, representing the system’s behavior, can be used to
predict the future response of the system §2(k + 1), to the assumed input trajectory:

gek+1) =gs(k+ 1), 95k +2),....9:(k + p). (8.3)

55

56 Chapter 8. The MPC controller

: [
--------------------------- ® L
. - . L] ysp
L]
L]
lbys(k)
—— I |
k+1 k+2 k+m time — bep
am
L'[Adg(kt1) w

k kil k2 | Kem time — Kp

Figure 8.1: The concept of Model Predictive Control

A criterion may be defined to quantify the performance of the assumed system input tra-
jectory. A generally used criterion quadratically penalizes errors (differences between the
system output and the system output reference} and moves in system input signal:

Minimize J(K) = 3 i(wy(i,j)[m(km =0k P+ Y D (0 3) A 4B),
f=1i=1 =1 i=1 (84)

with
Aug(k) = us(k) —ug(k — 1). (8.5}

Weighing factors wy (i, §) and w, (i, 7) define the ratios between the penalties. The response
of the system is predicted and errors are penalized over prediction horizon p. The value of
input signals of the input trajectory is only allowed to change over control horizon m. After
that, the input is assumed to remain constant. Control horizon m is required to be smaller
or equal to prediction horizon p.

Of the optimal system input trajectory, defined by (8.4), only the first step is applied to
the system. At the next sample instant, an optimal input trajectory is determined again.
This concept is referred to as a receding horizon.

Constraints may be imposed to the system’s variables. For example, the step of system
input, Awu,, may be limited, or the value of the state variables may be bounded to a
certain interval. In case of constrained variables, the criterion (8.4) becomes a quadratic
programming (QP) problem ([Mac02]). For each control action, the problem has to be solved
again. When no constraints are applied to the variables, finding the optimal system inputs
s in (8.4) is a least squares problem. The unconstrained MPC control law may be written
as a matrix multiplication, including a fixed MPC controller gain matrix (Kmpe). This
matrix only needs to be determined once, off-line. Solving a least-squares problem once off-
line is computationally less complicated than solving a QP problem for each control action.
For that reason, unconstrained MPC is used to control the multi-product flow line in this

8.2. Matlab MPC Toolbox 57

research project. In case the problem proves to require constraints, one may switch over to
constrained MPC.

In this section, the general concept of MPC is described. The next two sections de-
scribe two implementations to design an MPC controller. The first implementation uses the
MATLAB® MPC toolbox. Its use is limited to constant reference signals. Because of that,
an alternative, more general implementation for the design of an MPC controller for the
multi-product flow line is described in Section 8.3

8.2 Matlab MPC Toolbox

MATLAB® is equipped with an MPC Toolbox. The MPC Toolbox contains tools and func-
tions to design and evaluate MPC controllers. Simulations with the MPC toolbox are lim-
ited to simulations with the MPC controller applied to a continuous model in the MATLAB®
workspace. The purpose of this research project is to apply the feedback controller to a dis-
crete event model of a manufacturing line. Because of that, the MaTLAB® MPC Toolbox
is only used to determine the controller gain matrices. The determined matrices are used
in MATLAB®, but outside the MPC Toolbox.

The function smpccon

The function of the MPC Toolbox to design MPC controller gain matrices is named SMPCCON.
It uses the objective defined in (8.4) to determine controller gain matrices. Arguments of
the function are a continuous dynamic model, a prediction horizon, a control horizon and
weighing factors for the cutput tracking error and the input steps. The continucus model
is used to predict the response of the system to an assumed input trajectory. The other
arguments correspond to the variables in (8.4). The matrix K, returned by the function
SMPCCON, is consists of three matrices:

K, = [Kg Kez Ky (8.6)

Matrix k. equals —kzo. Because of that, only one of these matrices is used in the control
law. The closed loop control law is the following:

Auc(k) = ye(k) = k1 Az(k) + kea(ys (k) — yr(E)), (8.7)

with Axz(k) denoting z(k) — z(k — 1), the deviation of the state variables. In general,
the state of a system cannot be measured directly. When the state cannot be measured
directly, it can be reconstructed by a state observer, using the input and output signals and
a model of the system. A simple state observer is described in Appendix A. The states of
the observed system described in Chapter 5 can directly be measured, because the states
are equal to the outputs. The control law provides steps of the controller output instead
of controller outputs. Therefore, the input applied to the system, u;(k), is the sum of
controller output y. and previous system input u,(k — 1). Vector y, is a vector containing
the reference values for the outputs. Equation (8.7) is the solution to the least squares
problem of (8.4}, assuming the output reference values remain at the constant value of
yr(k) during the prediction horizon. For the next control action, the reference is assumed
constant at y.(k + 1), etcetera.

58 Chapter 8. The MPC controller

Interpretation of the controller gain matrices

'The function SMPCCON may be used to determine controller matrices k¢ and kez to control
the discrete event model. For certain parameters, the matrices have the following values:

0.0845 0.0763 0.0720 0.0701
et — —0.0081 0.0802 0.0744 0.0720
¢ 7 1 -0.0043 —0.0100 0.0802 0.0763
—0.0018 —0.0043 —0.0081 0.0845

(8.8)

and one gain for error e:

—0.0641 -~-0.0475 -—-0.0395 —-0.0362
P 0.0166 —0.0661 —0.0442 —0.0395 (8.9)
27100079 00199 —0.0561 —0.0475|")

0.0032 0.0076 0.0166 —0.0641

For the system of conversion algorithm and discrete event model, inputs have been defined
as target throughputs (of generator and machines, per product type) and outputs buffer
levels and finished goods levels (per product type). The state variables are equal to the
outputs. Because of this, matrices (8.8) and (8.9) may be interpreted. Matrix (8.9) defines
the step of input signal for the generator and each machine separately as a function of the
system output reference tracking error ¢ = y, — . Each row corresponds to a system
input {generator or machine) and each column corresponds to an output (buffer or finished
goods). For example, an negative error of size 1 in the first buffer (one lot less than the
reference level), adds a positive step (of size 0.0641) to the input of the upstream generator,
while the downstream machines are slightly slowed down. The larger the physical distance
between an input and an output is, the less influence output errors have on the input.

This section describes the MPC implementation of the MATLAB® MPC Toolbox function
SMPCCON. It provides optimal system input steps Au with respect to (8.4), assuming the
reference signal to remain constant during the prediction horizon. In general, a reference
trajectory does not remain constant. For example, the demanded finished goods level,
one of the outputs of the discrete event model, should increase in time. The next section
describes a method to obtain MPC controller gain matrices without using the MATLAB®
MPQC Toolbox. The method can determine the optimal controller outputs for a reference
signal that is not constant over the prediction horizon.

8.3 MPC implementation for a time varying reference
trajectory

The previous section describes an implementation of MPC using the MATLAB® MPC Tool-
box. The function SMPCCON is used to determine controller gain matrices. Multiplied by
the error of the output variables and the steps of state variables, these matrices provide the
solution to the least squares problem defined by (8.4). A disadvantage of the implementa-~
tion is that the reference signal is assumed to remain at a constant value for the length of
the control horizon. This section describes an alternative control law, not using the MAT-
LAB® MPC Toolbox. This implementation can handle a reference that varies during the
prediction horizon.

8.3. MPC implementation for a time varying reference trajectory 59

An MPC controller gain matrix Kprpe i8 determined by solving a least squares problem
containing the weighing factors, control horizon and prediction horizon from (8.4) and the
continuous dynamic model. For a definition of the least squares problem is referred to
Appendix A. The control law becomes the following:

Aul' = Kype eﬁ,m:o: (8.10)

with Au'™ denoting the steps in system input during the prediction horizon, and e‘g! Au=0
denoting the error between the system output and the output reference trajectory during the
prediction horizon. The error ef) 5, _, may be reformulated, using the continuous dynamic
model to predict the response of the system:

HC’AII?
—Ca®%
Chu=o = [57] =2, (8.11)

_GA‘I)pA

with r, denoting the output reference trajectory for the prediction horizon. For the meaning
and computation of the matrix containing the elements —C'4®% is referred to Appendix A.
The control law may be rewritten by substituting (8.11) in (8.10):

—Cada
—Cﬁi‘i A
Au;"' KMPC . [yz] — yf (8.12)

—C_,q'i'i

Appendix A is dedicated to the mathematical implementation of the MPC controller.
The next chapter, Chapter 9, describes the closed loop system of discrete event model,
MPC countroller and conversion algorithm. Simulation experiments are used to determine
the performance of the MPC controlled system.

60

Chapter 8. The MPC controller

Chapter 9

MPC applied to the
multi-product flow line

This chapter first suminarizes the previous chapters, in which a discrete event model, a
conversion algorithm, a continuous dynamic model and an MPC controller are introduced.
After that, the discrete event model (DEM), the MPC controller and the conversion algo-
rithm are connected. Several parameters of this system are described, and a suggestion for
the initial value for these parameters is given. After that, a method to find the optimal
parameter values is presented. Simulation experiments are used to measure the performance
of the controlled DEM. The results of these experiments may be compared to the results of
the common control methods, described in Chapter 4. Similar experiments are performed
for a system with limited builer capacities.

9.1 The MPC controlled flow line

The discrete event models.

In Chapter 3, a manufacturing system is introduced. The manufacturing system is
a three machine multi-product flow line. Various control methods are applied to
it, to measure their Performance may be measured in many ways, but this research
project focuses on the relation between throughput and WIP level. The manufacturing
system may be modelled used discrete event models (DEMs). Input of the discrete
event system is a sequence of authorizations, a sequence of discrete events. Qutputs
are defined as the buffer levels and the finished goods levels.

The conversion algorithm

The discrete event model is controlled by defining which events should take place at
which moments. Because a goal of this research project is to use feedback control to
control the discrete event model of the manufacturing system, the input variable of
the system should be a continuous signal instead of a sequence of diserete events. For
that reason, a conversion algorithm is described in Chapter 6. The algorithm converts
a continuous input signal (6*, a target throughput per product per machine) into an
appropriate sequence of events.

61

62 Chapter 9. MPC applied to the multi-product flow line

The continuous model

A continuous dynamic model is made of the system consisting of conversion algorithm
and discrete event model. The continuous dynamic model is a set of difference equa-
tions, describing the relations between the input and output variables of the system.
The model is a linear time-invariant state space model. It is derived using System
Identification. The model is described in Chapter 7.

The MPC controller

The continuous model is used to design a feedback controller. The method of control
is Model Predictive Control (MPC). Characteristic aspects of MPC is the presence of
a receding horizon and an internal model in the controller. The internal model is used
to predict the response of the system. More information about the MPC controller is
found in Chapter 8.

This chapter describes the system of discrete event model, MPC controller and conversion
algorithm. These three components are connected. At each sample time, the output of the
discrete event model is meagured. The measurements are used by the controller to compute
an appropriate control action. The control action is applied to the conversion algorithm.
The conversion algorithm uses the controller output to generate events for the discrete event,
system.

9.2 Implementation

A discrete event model of the three machine manufacturing line is made using the speci-
fication language x ([Roo0l]). The conversion mechanism and a sampling mechanism are
implemented in the model’s controller process. The System Identification Toolbox of MAT-
LAB® is used to obtain the continuous dynamic model. The experimental data, used to
identify the continuous model are generated by a discrete event model implemented in .
The MPC controller, containing the dynamic model, is implemented in MATLAB®. Com-
munication between x and MATLAB® takes place using the pymat-module of the language
Python. For implementation codes is referred to Appendix A.

The concepts of the implementation of the conversion algorithm, the continuous model
and the controller are discussed in Chapters 6 to 8. The concepts of the discrete event
model of the manufacturing system are similar to the discrete event models described in
Chapter 4. Some differences are discussed in the next subsection.

Implementation of the discrete event model

The performance of the MPC controlled model of the three machine manufacturing line
has to be compared to the performance of the common control strategies described in
Chapter 4. For that reason, the MPC controlled systems and the systems using common
control strategies must be modelled as equally as possible. Chapter 4 showed that for
different control strategies, the demand has to modelled differently.

In all experiments, the contents of three buffers was observed. For some control methods,
these three buffers were the three buffers in front of the three machines, while for other
methods the contents of three buffers after the three machines were observed. Also for the

9.2. Implementation 63

G —» B —u E
Figure 9.1: Example for demand modeling

MPC controlled line decisions have to be made which buffers to observe and which method
to use for demand modeling.

The method for modeling demand for the pull and pull-conwip controlled line seems a
reasonable method for modeling demand for the MPC controlled manufacturing line. Un-
fortunately, this method of modeling demand is not possible for the MPC controlled system.
First, the method for modeling demand for pull and pull-conwip systems is summarized.
After that, an explanation is given why this method cannot be used for modeling demand
of the MPC controlled system.

For pull and pull conwip, demand is modelled as orders arriving at the last buffer. In
case an order cannot be satisfied immediately, because the demanded product type is not
available in the finished goods buffer, the order is stored in a backlog order list. The backlog
order lst is FIFQO: the second order in the list can only be satisfied after the first one has
been satisfied. The arrival rate of orders should not be set too low, because the goal of the
experiments is to determine the maximum throughput that the system can reach. For that
reason, the arrival rate is set higher than the maximum throughput of the system. Because
of the order arrival rate higher than the throughput of the system, the length of the backlog
order list increases. An ever-growing backlog order list is equivalent to generating the next
order for a product type immediately after the previous order has been satisfied.

This method of modeling demand does not work for the MPC controlled system. Reason
for this is that the release of lots into the system is explicitly limited by the WIP level in
the system. In other cases, as the MPC controlled manufacturing line, one of the buffer
levels does not reach equilibrium, but explodes. This phenomenon is explained by the
following example. An example of a system with similar behavior is a system consisting
of only a generator, buffer and exit process processing more than one product type. This
figure is represented by Figure 9.1. Assume that the generator releases lots (with stochastic
or deterministic inter release times) of the types in a certain ratio. Let the exit process
immediately generate an order for a product type after the previous order has been satisfied.
‘When the demanded product type is available in the buffer, the lot is immediately removed
from the buffer and the order is satisfied. This simple system does not reach equilibrium,
but the number of lots in the buffer of one of the product types continues increasing.

Because the described method used to model demand for pull and pull conwip cannot
be used for the MPC controlled system, a different method has to be used. In the y im-
plementation of the MPC controlled discrete event model, lots are assumed to immediately
leave the finished goods buffer. Because of that, the system contains less stochastic effects
than the push, pull and pull-conwip models (see Chapter 4). Because lots are immediately
removed from the lagt buffer, mean WIP level in the last buffer is zero. In order to make a
more fair comparison with the other control methods observing the WIP levels in 3 buffers,
the WIP level in the buffer in front of the first machine is observed as well. Figure 9.2
represents the y implementation of the discrete event model. A circle represents a process
and an arrow represents a flow of lots or information. The generator &' and machines M
are authorized by a controller process ', containing the conversion algorithm. Information

64 Chapter 9. MPC applied to the multi-product flow line

Figure 9.2: Implementation of the MPC controlled flow line

about the buffer levels is sent to the controller by the buffers B. Process F' is the filter
process (see Chapter 6 in the conversion algorithm.

9.3 Parameters of the MPC controlled system

In this section, the MPC controlled system is described, and simulation experiments are
done, to measure the performance of the MPC controlled system. The MPC controlled
system has many parameters. The value of these parameters influence the behavior and
performance of the system. In this section, the system parameters are described and sug-
gestions for their initial values are given. The parameters may be divided into parameters
of the conversion algorithm, of the controller design and the reference signal.

Conversion algorithm parameters

The implementation of the conversion algorithm contains several parameters that influence
the behavior of the algorithm and therefore the entire closed loop system. These parameters
are:

1. the saturation limits for the controller output,
2. the production threshold value.

3. the filtering factor o at sample instants.

The values of the conversion input signal may be bounded by a lower and/or and upper
bound. When the signal threatens to exceed one of the bounds, its value is kept at the
boundary value. Imposing these bounds may be referred to as saturating the signal. A
target of saturation is to avoid the controller to generate input signals that cannot be realized
by the system. For example, a valve cannot be opened for more than 100%. Closed loop
simulation experiments showed that the output signals of the controller remained relatively

9.3. Parameters of the MPC controlled system 65

machine 1 — product type 2
0 .4 T T T

= controller output
— linear fit

0.35

0.3

T
1

0.25

0.15

controller output

0.1

0.05

~0.05, 50 100 150 200

sample

Figure 9.3: Example of controller output values

low, even for high machine utilizations. As an example, Figure 9.3 shows the controller
output signal for the first machine for the product type with the largest demand, during
a number of samples. The utilization of the system is 90% and product mix parameters
kg = 0.2 and kp = 5.0. The relatively low controller output values give no reason to apply
saturation.

The preduction threshold value epnreshord is described in Chapter 6. If the conversion
algorithm backlog error € is higher than the €y eshald, @ machine may be authorized to
produce a lot of the corresponding product type. The value of parameter €presholg influences
the reaction of the conversion algorithm to small inputs. For a high value of €qpresholq, the
conversion algorithm may not authorize a machine to process a lot, while for a low €ihreshold
value the algorithm may have. Recall that conversion algorithm backlog error e does not
automatically lead to system backlog error e, because the feedback controller measures and
compensates the system backlog (see Chapter 6). In closed loop simulations, the effect of
parameter €ihreshold i8 not clearly visible. Probably, a different ¢ipresnolg value results in a
slightly different values in matrix B in the continuous model (see 7) and therefore a slightly
different MPC controller gain matrix.

Filtering factor o may be considered as the variable distributing the task of compensating
backlog errors over the conversion algorithm and the controller. For a = 0, all conversion
backlog error € is neglected. Therefore, system backlog error e occurs and this backlog has to
be compensated by the controller: a lack of production causes a deviation from the reference
signal and therefore a larger controller output. For & = 1, all conversion backlog errors are
compensated by the conversion algorithm. Less system backlog occurs so the controller has
to compensate less. Note that the conversion backlog error e does not decrease exponentially

66 Chapter 9. MPC applied to the multi-product flow line

3 T T T T T T T T T

30t

20F

mean WIP

25}

24

23k B

a8 L 1 L L L . L
o o1 0.2 03 0.4 05 0.8 07 C.8 09 1
alphe

Figure 9.4: Mean WIP as a function of filtering factor o

to zero in time in case o = 1 (see Chapter 6).

Experiments have been done, varying e from 0 to 1. Of course the exact results of
the experiments are only valid at the observed throughput level and at equal settings for
the other parameters of the system.Nevertheless, the experiments show that the value of o
has a large influence on the performance of the system. Figure 9.4 shows the mean WIP
required to reach a 90% system utilization for several levels of a. The other parameters
of the experiments are: mix parameters ks = 0.2, k, = 5.0, reference WIP level is 0.6 lot
for all products and buffers, prediction and control horizon 10 steps and ratio of weighing
factors wy, : wy = 4. These parameters are described in the next subsections. Figure 9.4
shows that the mean WIP level strongly decreases at higher values for o.

Controller design parameters

Several parameters have to be set when designing the MPC controller. The controller
gain mafrix is a function of the ratio of weighing factors w, and w,, penalizing controller
output steps and deviation of the system output from the reference signal. Furthermore,
the controller gain matrix is a function of the control horizon m and prediction horizon p.

For an initial setting of the weighing factor, estimate the order of magnitude of the two
penalized aspects in (8.4): the deviation of the system output from the reference signal e,
and the controller output steps. In simulation experiments, the buffer levels per product
type show to be either zero or cne, and rarely two or higher. Depending on the reference
signal, the order of magnitude of error e for buffer levels is one. For finished good levels,
the order of magnitude of the error e is about one as well. The order of magnitude of
the controller output is about 0.1: assume the throughput of the system, 4, is close to the
utilization limit. For mean processing times of 1 (units time), this

implies that the sum of target throughput 4* for all products of one machine should
be close to 1. Throughput about evenly spread over the different product types implies a
controller output signal with order of magnitude 1/8. Assume that the steps in the controller
output signal are not larger than the order of magnitude of the ontput signal itself. In that

G.3. Parameters of the MPC controlled system 67

case, the order of magnitude of Au, is about 1/8 as well. In order to penalize a normal
reference tracking error e about equal as a normal step in controller output, the ratio of
weighing factors w, and wy in (8.4) should be approximately opposite to the ratio of orders
of magnitude of Au and e. The orders of magnitude of w, and wy, in this subsection suggest
a ratio of weighing factors w, and w, of approximately 8 : 1. For this research project,
weighing factors are chosen equally for all inputs and weighing factors are chosen equally
for all outputs.

The control and prediction horizon m and prediction horizon p determine how many
sample times ahead the inputs may be changed and the response is predicted (see 8.4). For
this research project, the prediction horizon m is chosen to be equal to the prediction horizon
to reduce the number of variables for which experiments had to be performed. The control
horizon should be selected long enough that the effects of an input signal have reached the
output of the system. The model of the manufacturing line does not include time delays.
Nevertheless, longer horizons provide a smoother controller output signal. The performance
is expected to increase for longer horizons, but the increase of performance is negligible
for very long horizons. Furthermore, the MPC implementation described in Section 8.2,
and used for the experiments in this chapter, uses a constant reference value during the
prediction horizon. The increase of the reference level for the finished goods is ignored. For
that reason, very long prediction horizons should be avoided when this implementation is
used. The alternative implementation, described in Section 8.3 is able to use time-varying
reference signals during the prediction horizon.

The output reference signal

Control may be defined as the process to cause a system’s variable to follow a certain
reference trajectory. In this research project, the output of the discrete event manufacturing
system should follow a certain reference trajectory. The outputs of the discrete event system
are the WIP levels per buffer and product, and the cumulative finished lots per product.
The derivative of the cumulative finished lots is the throughput of the system. Therefore,
imposing a reference for the output signal is the equivalent of imposing reference values on
the WIP levels and the throughput of the system.

Purpose of controlling the manufacturing system is to cause the system to achieve a high
throughput at a given WIP level, or, vice versa, or to cause the system to require a low WIP
level for a given throughput. To reach this goal, selection of an appropriate reference signal
is essential. The system cannot follow each reference signal. The throughput is, for example,
bounded by a utilization constraint (2.4). Furthermore, variability causes queueing. The
higher the utilization is, the more queucing occurs. Because of that, a higher utilization
requires a higher mean WIP level. This phenomenon may as well cause the system not to
be able to follow the reference signal. A system cannot achieve a very high utilization with
a very low WIP level. What the lower limit of the mean WIP level is to achieve a certain
throughput, depends on the properties of the manufacturing system, but also on the control
method. In Chapter 4, the relation between throughput and mean WIP level is determined
experimentally for some common control methods.

In case a reference signal is offered to the system, demanding a throughput and a rela-
tively high WIP level, the controller is able to let the system outputs follow this reference
signal. In case a very difficult reference signal is offered, for example: achieve a certain
throughput with a mean WIP level of zero, the reference signal cannot be followed. The

68 Chapter 9. MPC applied to the multi-product flow line

a5

30

251

[
=]
T

maan WIP

- 1 L ' L L L
1] 5 1o 15 20 25 ac as
referance WIP

Figure 9.5: WIP versus reference WIP

definition output signals and cost criterion (8.4) determine the reaction of the system to
an unrealizable input signal. The controller is expected to try and find a compromise. Be-
cause outputs are defined as buffer levels and finished goods levels and all output tracking
errors are weighed equally, the magnitude of the error for the finished goods is expected to
be comparable to the magnitude of the error for the buffer levels. Note that an absolute
error of a few lots over the cumulative production corresponds to only a very small loss of
throughput over a large interval, Because of that, the system might still perform very well
(achieving a high throughput with a low mean WIP level), while the reference signal for
buffer levels cannot be reached.

Experimentally, an optimal reference WIP level may be determined. For that purpose,
experiments are done, starting with a high, easily realizable, reference WIP level. Then,
the reference WIP level is decreased. The mean WIP level of the system is measured for
all reference WII* levels. For a fixed throughput level, the mean WIP level of a system
has the the characteristic curve shown in Figure 9.5, as a function of the reference WIP
level. The system’s WIP can easily follow relatively high reference WIP settings. As long
as the reference can be followed the system’s mean WIP level equals the reference WIP, so
that the curve in the figure follows y = z. For lower reference WIP values, the deviation
between reference WIP and achieved mean WIP increases. For very low reference WIP
values, the system’s mean WIP even shows an abaolute increase. A possible cause for this
increase is the fact that with a very low WIP level, the demanded throughput can not be
met. The deviation in throughput can be compensated by allowing the WIP levels to rise.
The measurements for Figure 9.5 have been performed at low utilization {(u = 0.6). Higher
utilizations show a similar relation between mean WIP and reference WIP, but the higher
the utilization is, the less smooth the resulting figures are.

Figure 9.5 shows that a reference WIP value exists causing a minimum achieved mean
WIP. In this chapter, this minimum has been approached by performing experiments for
many reference WIP values. A rule of thumb for a reasonable reference WIP level seems to
be to take half of the amount of WIP achieved by a simulation with reference WIP level of
ZETO.

9.4. Experiments 69

Design of Experiments

The performance of the MPC controlled system depends on several parameters. The optimal
settings for these parameters depend on the required performance of the system. For exam-
ple, a lower demanded throughput has a lower optimal reference WIP level. Furthermore,
interaction between the parameters may be present.

Design of Experiments (DOE) may be a suitable method to find the optimal parameter
settings with a relatively small number of experiments and only little trial-and-error. For
a given throughput level, the optimal parameter settings are the settings resulting in the
minimum mean WIP level. The parameters are referred to as the design variables. The
approach may be the following:

® Define a domain for the design variables. This domain may be a region around an
initial estimate of the design variables.

e Design an experiment. In case the number of design variables is not too large and the
computations do not require a very large amount of time, the experiment may be a
full-factorial design.

s Fit a response surface model. The class of model depends on the expected and ob-
served response. For a quadratic response, a full quadratic model may be suitable. In
case interaction between the design variables is observed, interaction terms should be
added.

¢ Find the minimum of the response surface model. Constraints may bound the value
of the design variables to the domain of the training points used to fit the model. The
model may not be valid for point outside the domain of training points. In case the
optimum is found at the edge of the training domain, a new model should be fitted,
using better training data points. An optimum in the domain of the response surface
model should be verified by discrete event simulations.

For some of the systems parameters, such as the reference WIP levels, an optimal setting can
be found using DOE. This section does not have the objective of experimentally determining
the optimal settings for the hypothetical flow line. Because of that, the parameters of the
experiments presented in this section are not further optimized using DOE.

9.4 Experiments

The previous chapter describes an MPC controlled discrete event model of a manufacturing
system. In this section, simulation experimentis are used to measure the performance of the
system. The main aspects of the performance of a manufacturing system for this research
project are the throughput and the mean WIP level. Similar experiments determining the
relation between throughput and WIP level for more common control strategies such as
push and pull, are described in Chapter 4.

An MPC controller, identical for all throughput values, is designed using the following
parameters:

» Control horizon and prediction horizon m = p = 8.

70 Chapter 9. MPC applied to the multi-product flow line

o
5 10¢
g
50 N
[
0 5000 10000 18000
40 T T
£30r b
..—g_ 20 p
3
210} ..
0 L 1
a 5000 10000 15000

-
o
T
i

(=]

mean flow tima (cfiset)
B
T
L

(=]

5000 10000 16000
lots

Figure 9.6: MPC experiment: (mean) flow times

e Ratio of weighing factors for error and input steps w,, 1w, =8 : 1.
The settings of the conversion algorithm are the following;:

e Conversion backlog error filtering factor a = 1.
* No saturation on controller output or controller cutput steps.

e Production threshold einresnola = 0.3.

The reference signal of the WIP levels is set at (.25 for each product and each buffer. For
3 buffers and 8 products, the total reference WIP equals 6.

The experiments described in this chapter are performed using the MPC implementation
of Section 8.2. Simulations are performed for both the equal product types variant (kg =
ky = 1, see Chapter 3) and for a variant with unequal product types, with kg = 0.2, k, = 5.0.
These settings correspond to the settings of the experiments for commeon control methods,
described in Chapter 4, so that the results may be compared. Figure 9.6 show flow times
and mean flow times for one simulation experiment. The mix parameters are kg = 0.2 and
kp, = 5.0 and the utilization is 90%. For computing the mean flow time, a range of lots
has to be determined. The data from the first lots should not be used because of possible
transient responses. Enough lots should be used, to decrease the stochastic effects. An
offset of 3000 lots is chosen. The mean flow time is computed over the next 7000 lots. In
Figure 9.6, the mean flow time using an offset of 3000 lots is presented as well. For each
throughput level, 30 experiments are performed. Little’s law (2.1) is used to determine the
mean WIP level @.

Table 9.1 shows the mean WIP level for several throughput levels. Because the mean
effective process time ¢ is set to 1 (unit time), a throughput of 0.9 corresponds to a uti-
lization of 90%. Table 9.1 show the remarkable result that the higher variable situation

9.4. Experiments

ki=ky=1 kg=02k, =50
5] @ 5] w
050 | 4.80 0.50 | 6.16
0.55 | 5.31 0.55 | 6.74
0.60 | 5.93 0.60 | 7.50
0.65 | 6.71 0.65 | 8.33
0.70 | 7.63 0.70 | 9.38
0.75 | 8.94 0.75 | 10.60
0.80 | 11.07 0.80 | 12.30
0.85 | 14.15 0.85 | 14.70
0.90 | 19.99 0.90 | 18.78

71

Table 9.1: Results of MPC experiments

(ka = 0.2, k, = 5.0) requires a lower mean WIP level than the situation with equal product
types (kg = kp = 1.0). The experimental results are also presented in Figure 9.7. An expla-
nation for the remarkable phenomenon of a lower WIP level for a more variable situation is
pregented in the following example.

Example 9.4.1 Assume a workstation, consisting of a buffer and a single machine, needs
to process two lots. Both lots have o (deterministic) service time t, = 2, and are present
in the buffer. No further lots arrive during this small ezperiment. Because the lots have
equal service times, it does not matter which lot 1s processed first. Assume lot 1 is processed
first. The total flow time, consisting of queueing time in the buffer (pg) and processing
time (t;), are presented in Table 9.2. Now assume the two lots have different process times,

lot 1 first
lot no. rg ts Protal
1 0 2 2
2 2 2 4
surm: 6
mean: 3

Table 9.2: Example: Flow times for equal lots

for example: t; = 1 for lot 1, and t; = 3 for lot 2. The mean process time equals still 2.
Either lot 1 or lot 2 maey be processed first. Tuble 9.3 shows the flow times for both options.
Table 9.3 shows thal for the situation of two lots with different service times gqueueing, the

lot 1 first lot 2 first
lotno. wo s Prota lotno. @g ts Protal
1 0 1 1 1 3 1 4
2 1 3 4 2 0 3 3
sum: 5 sum: 7
mean: 2.5 mean: 3.5

Table 9.3: Example: Flow time for different lots

one schedule results in a lower flow time than the other schedule. The better schedule results
in a flow time lower than for two lots both having the mean service time.

72 Chapter 9. MPC applied to the multi-product flow line

throughput
=
~J
T

0.6F

0.5F

4 6 8 10 12 14 16 18 20 22

mean WIP

1 1 1

Figure 9.7: Performance of MPC control

The situation described in the example may occur in the MPC controlled flow line as well.
The mix parameter k, = 5.0 implies that the service times of the one product type are five
times as long as the service times of the other (see Chapter 3). The simulation results in
Figure 9.7 show that at higher utilization levels, when queueing plays an important role,
the performance of the non-equal product types variant does not vary much from the equal
product types variant (kq = kp = 1). The results suggest that the MPC controller is able to
determine a schedule using the benefits of different service times, rather than to be disturbed
by the higher variation for the non-equal product types variant.

Finite buffer capacities

In this chapter, a feedback controller is used to control a model of a manufacturing system.
The feedback controller is designed using a continuous dynamic model. This model, a set
of difference equations in state-space form, attempts to describe the relation between the
inputs and the outputs of the controlled system. The inputs are target throughputs, offered
to a conversion algorithm, which uses the input signal to generate appropriate events for
the discrete event model. The outputs of the discrete event model are the buffer levels and
the finished goods levels.

Ounly for a certain domain of inputs and outputs, the model is valid. For example, the
buffer contents of the discrete event model cannot become negative. This constraint is not
included in the continuous model. A discrepancy between continuous model and discrete
event model may disable the controller to properly control the system. The simulation
experiments presented in the previous subsection did not reveal any problems caused by the
discrepancy the two models. In this subsection, an extra discrepancy between the discrete
event model and the continuous dynamic model is introduced: finite buffer capacities.

So far, infinite buffer capacities have been assumed. In reality, buffer capacities are

9.4. Experiments 73

never infinite. A lack of buffer space may cause blocking. Blocking is the phenomenon of
stoppages at workstations because of a lack of storage space in downstream stages ([Alt97]).
An example of the effects of blocking on the throughput of a simple system is presented in
Section 2.4. A finite buffer capacity can easily be introduced in a discrete event model. The
continuous model does not contain information about a constraint on the buffer levels. A
constraint may be added to the MPC controller, but constrained MPC is computationally
more complicated than unconstrained MPC (see Chapter 8).

Simulation experiments are performed to determine the influence of the extra discrepancy
between the continuous model and the discrete event model. The controller used for the
experiments is equal to the controller used in the previous subsections, so the controller
design parameters are: p = m = 8, w, : wy = 8 : 1, and the conversion algorithm parameters
are: & = 1, €threshold = 0.3 and the contreller output is not constrained. The equal product
types variant of the manufacturing system is observed, at target throughputs corresponding
to utilizations of 50% to 90%. Again, for each throughput level, the mean flow time is
measured from lot 3000 to lot 10000, and each experiment is repeated 30 times.

For modeling reasons, the buffer capacities are limited per product type. For example,
a buffer capacity of 1 (Table 9.4) means that one lot of each product type can be stored
in each buffer. For eight different product types and three buffers, a buffer capacity of
1 implies a total buffer capacity of 24 lots for the system. Table 9.4 show the results

buffer capacity 1 buffer capacity 2

&*] 1D &* é L1
0.50 | 0.50 | 4.85 0.50 | 0.50 | 4.81
0.60 | 0.60 | 6.13 0.60 | 0.60 | 5.95
0.70 | 0.70 | 8.29 0.70 | 0.70 | 7.65
0.80] 0.76 | 9.94 0.80 | 0.80 | 11.28
0.90 | 0.76 | 10.00 0.90 | 0.85 | 16.00

Table 9.4: Results of MPC experiments with finite buffer capacities

of the simulation experiments with limited buffer capacities. The column §* represents the
target throughput, offered to the controller as a reference signal. The column d represent the
achieved throughput, resulting from the experiments. With a limited buffer capacity of 1 lot
per product type per workstation, the MPC controlled flow line cannot achieve a throughput
higher than 0.76 (lots/unit time), regardless of the reference throughput. Note that for a
finite buffer capacity of 1, some outputs predicted by the continuous model are assumed to
be an element of R, while the cutput of the discrete event model is an element of only 0, 1.
The controller still performs well, despite the discrepancy between the contimuous model
and the discrete event model. The performance of the system is even slightly better than
the performance of the system with infinite buffer capacity. When the throughput reference
cannot be followed, the gystem remains stable and divides the production shortage over the
different product types.

74

Chapter 9. MPC applied to the multi-product How line

Chapter 10

Conclusions and discussion

10.1 Conclusions

The goal of this research project is to develop a method to apply a feedback controller for a
manufacturing system. The performance of the feedback controlled manufacturing system
is compared to the performance of several common control methods. The main criteria for
performance in this research project are throughput and WIP level. A three machine multi-
produect manufacturing line is introduced as a case to test the performance of the control
methods. Both the common control methods and the feedback controller are applied to this
same case.

Commeon control methods

Four common control methods, push, pull, conwip and POLCA, are described. Simulation
experiments are used to measure the performance of the control methods applied to the flow
line. For each control method, the simulation experiments show that a higher throughput
requires a higher inventory level. Furthermore, a more variable environment causes more
queuneing and therefore requires more inventory.

Hybrid systems as conwip and POLCA, using aspects, of both push and pull methods,
outperforms the more rigid pure push and pure pull. Systems using kanban authorization
cards suffer from resident WIP at lower utilization levels. For systems using product-specific
kanban cards, the mix of kanbans should be adapted to the product mix. At last, the use of
different customer demand models for the different control methods strongly influence the
results of the experiments.

Feedback control.

Because the performance of a manufacturing system strongly depends on the control method,
goal of this research project is to develop a more systematic approach for designing a control
method. A possible approach is the use of feedback control. The method presented in
this report to use feedback for controlling a manufacturing system consist of the following
aspects:

75

76 Chapter 10. Conclusions and discussion

A conversion algorithm.

A conversion algorithm is presented to convert a continucus input signal into an ap-
propriate sequence of discrete events. The input is defined as a target throughput
per sample, for each resource and product type. Compensating the conversion algo-
rithm backlog error leads to better performance than leaving the compensation to the
feedback controller.

A continuous model.

A continuous model of the system consisting of both the conversion algorithm and
the discrete event model of the flow line is presented. System Identification is used to
determine the structure of the linear state-space model, as well as to fit unknown model
parameters. The model has a limited domain because the machines are subjected to
a utilization constraint and the buffer contents can only have natural values.

A feedback controller.

The feedback controller uses Model Predictive Control (MPC). MPC determines an
optimal controller output signal, that minimizes the output reference tracking errors,
and the moves of the controller output for a number of samples ahead. The continuous
model is used to predict the system response. The controller gain matrix for an
unconstrained MPC controller is constant, and can therefore be determined off-line.

Experiments show that the MPC controlled model of the multi-product flow line performs
well compared to the common control methods. At higher utilization levels, it requires less
inventory than common control methods for equal throughput levels. Furthermore, it is less
sensttive to variability, as is shown in the experiments with the non-equal product types.
The performance remains good, also when a finite buffer capacity is introduced. This is
remarkable, because the linear model does not correctly describe the non-linear response of
output variables when the maximum capacity of a buffer is reached. Constraints on variables
in the MPC controller are not necessary to successfully control the observed system.

10.2 Discussion

This research project describes a method to design a feedback controller for a discrete event
model of a manufacturing system. The method is able to successfully control a simple case:
a three machine multi-product flow line. A relevant question is whether the control method
using feedback control can and should be applied to other manufacturing systems.

The described method using feedback control is not very complicated, but more com-
plicated than the common control methods such as push, pull, POLCA or conwip. The
implementation of the common methods requires only limited tools such as schedules or
cards. Implementation of the feedback control method requires detailed information about
the location, amount and flow of inventory. This information may only be present in so-
phisticated manufacturing environments. Furthermore, manufacturing systems only used
at low utilization ratios, or having only little stochastic properties, may be equally served
by a less complicated control method, as for example push control.

A feedback controller for a flow line is described. For manufacturing systems with highly
flexible routing, such as a job shop, the described method is less suitable. Each product,
route or recipe is a different product type for the continuous model. Each extra product type

10.2. Discussion 77

introduces an extra set of input, output and state variables. Although the computations
are not expensive, a large number of variables greatly increases the size of the problem.

When a continuous dynamic model is used for designing a feedback controller, the con-
troller can only be as good as the continuous model. Not all phenomenons occurring in a
manufacturing system may be easily captured in a continuous model. An example of such
a phenomenon is the fact that buffer contents cannot be negative or greater than the buffer
capacity. 'The discrepancy between discrete event model and the continuous dynamic model
does not disturb the controller in the performed experiments. Nevertheless, the continuous
model is an aspect of concern.

For this research project, the feedback controller is only tested in an unlikely environ-
ment. An infinite supply of raw materials and infinite customer demand is assumed. This
assumption is made because one of the objectives of the research project is to compare the
performance of common control strategies to feedback control. For this comparison, the
maximum throughput for given WIP levels is determined, and the supply of materials or
the arrival of customer demand should not limit the measured performance. In reality, the
supply of raw materials and the customer demand is rarely unlimited.

In general, one of the objectives of feedback control is to suppress the influence of distur-
bances. The simulation experiments were performed for a relatively constant environments,
with only stochastic process times. Presumably, the benefits of feedback control only really
show in an environment subject to more disturbances. No experiments have yet been per-
formed to verify this claim.

78

Chapter 10. Conclusions and discussion

Chapter 11

Recommendations

Asg discussed in the previous chapter, describing the complex behavior of a discrete event
model of a manufacturing system by a continuous dynamic model may introduce a discrep-
ancy between the behavior of the discrete event model and the behavior predicted by the
continuous model. The possibilities and limitations of modeling the behavior of the discrete
event model with a continuous dynamic model should be an aspect of further research.

In the described simulation experiments, the feedback controlled discrete event model
shows stable behavior. It is hard to define the conditions for an MPC controlled system to
be stable. Further research to the issue of stability is recommended.

The surroundings of the system are very important for the performance of a system.
Further research to feedback control for a manufacturing system might include an environ-
ment for the feedback controlled system, subject to disturbances in raw material supply and
customer demand.

The use of MPC to control a manufacturing system seems especially beneficial for highly
utilized systems. Furthermore, the feedback control problem for real manufacturing systems
becomes very large because of the great number of variables. These are two reasons to use
MPC to control part of a manufacturing system rather than the entire system. A common
control method is suitable for lowly utilized parts of a manufacturing system, while feedback
control can be used for higher utilized parts as the bottlenecks.

For this research project, the target of feedback control was to achieve a high throughput
and a low WIP level. An additional control target, especially when the feedback controlled
system is part of a larger manufacturing system, is to reduce the variability of the lots
leaving the feedback controlled system. Less variability in the inter departure times at the
end of the feedback controlled system causes less queueing in the downstream system.

79

80

Chapter 11. Recommendations

Bibliography

[Alt97] T. Altiok. Performance Analysis of Manufocturing Systems. Springer, 1997.

[Buz93] J.A. Buzacott and J.G. Shantikumar. Stochastic Models of Manufacturing Systems.
Prentice Hall, 1993.

[Hei97] C. Heij and P.M.J. van den Hof. System Identification. Dutch Institute of Systems
and Control, 1997.

[Hop00] W.J. Hopp and M.L. Spearman. Factory Physics: foundations of manufacturing
management. McGraw-Hill, 2000.

[Ken51] D.G. Kendall. Some problems in the theory of queues. Journal of the Royal
Statistical Society, 1951.

[Kri00] A. Krishnamurthy and R. Suri. Re-examining the performance of push, pull and
hybrid material control strategies for multi-product flexible manufacturing sys-
tems. International Journal of Flexible Manufacturing Systems, 2000.

[Mac02] J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.

[Mon83] Y. Monden. Toyota Production System. Industrial Engineering and Management
Press, 1983.

[Roo01] J.E. Rooda and J.J.T. Kleijn. x Manual. Systems Engineering Group, Eindhoven
University of Technology, 2001.

[Ste84] G. Stephanopoulos. Chemical process control: An introduction to theory and prac-
tice. Prentice Hall, 1984,

[Sur00] R. Suri. Quick Response Manufacturing: A Companywide Approach to Reducing
Lead Times. Productivity Press, 2000.

[Wul02] F.J.J. Wullems. Data collection for simulation of flow lines with blocking; the role
of machine failure in throughput loss. Master’s thesis, Systems Engineering
Group, Eindhoven University of Technology, November 2002.

81

82

Biblicgraphy

Appendix A

Implementation of Model
Predictive Control

In this appendix, relations for computing the MPC controller gain matrices are described.
For that purpose, first an augmented state space representation is presented. At last, a
basic method is given for constructing the state in case it cannot be meagured directly.

An augmented state representation

In chapter 7, state space models of the following form are derived:

z(k + 1) = Az(k) + Bu(k), (A.1)
y(k) = Czlk). (A.2)

The model describes the system in terms of state variable z as a function of input u. In
some cases, it may be beneficial to describe the system as a function of Awu instead of u.
For example, a commonly used cost criterion for an MPC controller (8.4) is expressed in
Awu. An alternative representation of the model may be obtained by choosing different state
variables. The augmented state representation described in this subsection is used in the
functions of the MATLAB® MPC Toolbox. Define the augmented state variable £:

£(k) [Ag;%(:)c)] with Az(k) = 2(k) — 2(k — 1). (A.3)

The model described by Equations A.1 and A.2 can be rewritten using the augmented state
variable &:

£k +1) = [(il OI] £k + [C;] Au(k), (A.4)
y(k) = [0 I]¢(k). (A.5)

This model represents the same system as the model of (A.1) and (A.2). The system’s
matrix may be labelled using the index A for augmented:

E(k + 1) = Ap(k) 4+ BaAu(k), (A.6)
y(k) = Callk). (A7)

83

84 Appendix A. Implementation of Model Predictive Control

The augmented state space representation described in this section is used in the next
sections to compute the optimal controller gain matrix with respect to (8.4) and to predict
el u—o® the output error for a constant system input.

A.1 The MPC Controller gain matrix

Before the MPC controller gain matrix can be defined, few variables must be introduced.
Define two matrices, 4 and C, containing the model dynamics:

- B 0 0 -
AB+B B
s o
A Tt Al AB+E B (A.8)
™ A AB+B
Ly a 1o 4t
and
c 0
_ c
C= (A.9)
0 e
and define the product of matrices A and € as Y:
=CA. (A.10)

Assume the system has n,, state variables, n, outputs and n,, inputs. The prediction horizon
is denoted as p and the control horizon as m. The dimension of 4 is p n; x m n, and the
dimension of C equals p n, X p n, Therefore, ¥ has dimensions p My X M ny. ¢ and R are
diagonal matrices (sized p n, and m nu squa.re) containing the weighing factors for output
deviations e and controller output steps Au respectively.

Introduce a notation to store the predicted values for state variables, output variables

A.l. The MPC Controller gain matrix 85

and input variables in vector form:

- m1(k+1|k) b

Tna(E+1[k)

¥4 — .
GRS R EPRG

: (A.11)

L 2 (ko]) -
r 1 (k+1]k)

Yy (E+1]E)

P+ 1) = -
¥k +1) v (s plf)

(A.12)

= Uny (}"‘-‘l‘ﬂk) -
™ ul(k“c)

‘u,.uj_k|k)

m —
ug (k+1) = wy (k+m—1|k)

(A.13)

L thryw (om—1])

Note that both state and output variables are predicted until prediction horizon p, but
the controller output only until control horizon m. Similarly, the predicted deviations
e of the system output y, from the reference trajectory y, are defined as e?(k + 1) =
y2(k +1) — yR(k +1).

The controller gain matrices for linear, unconstrained MPC can be determined off-line.
In the unconstrained case, the quadratic performance criterion of Equation 8.4 reduces to
a least squares problem.

Because of the superposition principle, the responses to a constant input value and
deviations from this constant value may be superposed. Let e} ,_, denote the deviations e
in case Au = 0 (u is kept at a constant value). The unconstrained MPC control law provides
the deviations in controller output (Au(k) = w(k) —u{k — 1)) as a linear combination of the
predicted deviations e of the system output ¥, from the reference trajectory y,:

Au* = —[YTQY + R|'YTQ &) pueyy (4.14)
Au = Kppe eg,Au:ﬂ' (A.15)
Because computing the inverse in Equation A.14 is numerically inefficient, an aliernative

formulation should be used. For example, in MATLAB®, the left divide operator '\’ solves
the system by Gaussian elimination.

Al =[] \[Fgem] . (A.16)
' Kuro = [%]\[9] . (A.17)

This section provided a method to determine the MPC controller gain matrix Kyrpo.
The optimal controller output Aw is obtained by multiplying the controller gain matrix by
eh ,—o (see Chapter 8), the expected deviations of the system output from the reference
signal in case u was kept at a constant value. The next subsection provides a method to
compute ef, .

86 Appendix A. Implementation of Model Predictive Control

A.2 Expected output deviation e},

The previous subsection gave the optimal controller output as a function of the expected
deviation of the output and the reference signal in case the input was kept at a constant value
(€l 4—o)- This subsection provides a method to compute the values of e},_,. The error
el ,—o i the difference between predicted output and reference output until the prediction
horizon:

ePAu:O = ygu:ﬂ - yf (A].S)
Recall the augmented state space representation from equations (A.4) and (A.5). The
augmented state representation may be used to easily compute the expected outputs for
Au =0, yi,._o Matrices of the augmented representation are denoted with the index A.

E(k + 1) = 24L(k) + T aAu(k), (A.19)
y(k) = Ca&(k). (A.20)

Because Au = 0 and the augmented state representation only contains Au instead of u, the
prediction for y, for a fixed input value can be easily computed:

£(k +n) = 25L(R), (A.21)
yalk+n) = Ca PUE(K). (A.22)
Substitute (A.22) in (A.18):
Cada
Cad3
ef&u:(] = . ['ﬁ] y? (A23)
Cad¥,

A.3 Internal state reconstruction

The MATLAB® implementation of the MPC controller in the MPC Toolbox requires a value
for the state of the system for determining the controller output (8.7). In general, the
{augmented) state of a system cannot be measured directly. For those cases, an observer
may be designed to reconstruct the state, using the measured outputs and the system input.
This section describes the standard (augmented) state reconstruction used by the MATLAB®
MPC Toolbox.

The augmented state space model is represented by (A.4) and (A.5). At each sample
time, the reconstruction of the state is updated. The updated state reconstruction depends
on the previous reconstruction, the known controller output and the measured system out-
put. The element y of the augmented state variable, representing the system output, is
updated using the actual measurement from the controlled system. Let £ denote the recon-
struction of the controlled system state, and Awu, the change of controlled system input.

Ek+1)= [;A 00] E(ky + [Gﬂ Aug(k) + [‘}] (k). (A.24)

At each sample instant, the system output ¥, is measured and sent to the controller. The
controller uses the internal model of the controlled system, (containing matrices 4, B and
C to reconstruct the augmented state of the system). The controller output . is obtained
by multiplying manufacturing system output y,, output reference y, and augmented state
reconstruction £ with controller gain matrices.

Appendix B

Chi implementation code

Appendix B provides the code of the implementation of the models in the specification
language x. Note that the systems share equal components.

B.1 Push model

// model for three machine multi product flow line
// PUSH controlled

// H. Ploegmakers, 2002

// Teads orders from file orders.in

// gemerated by genlist.chi

// usage: ./push kd kp D

const N: nat = 8

type order=nmatiinat // serial nr, product type

, lot=nat#nati#real // serial nr, product type, release time
, miz=real#real#realéraal // lambdal, lamba2, taul, tau?2

// functien to calculate demands and process times (lambda and tau) for both
// product types, function of mix parameters kd, kp and total demand D

func kdkp2lt(kd, kp. P: real) -»> mix =

I{ 11, 12, ti, t2: real

| 12:= 2+D/(N#(kd + 1))

i 1li= kd=12

i B2:= (11 + 12}/ (li*kp + 12)
i tli= £2+kp

; ret <11, 12, t1, t2>»

11

// generator
pro¢ G(fo: ?file, a: !lot, D: real)=
I[o: order, a: -> real
| e:= exponential{l/D}
i *[true > fo?o; al<o.0, o.1, time>; delta sample e]
11

// buffer, infinite capacity
proc Bla: 7lot, b: !lot)=
{[xe: lot#*, x: lot
lxs:= []
; %[a?x -> X8:
| len(xs)>C; blhd{xa) -> xa:
]

xs++[x]
t1(xs)

11

// machine

87

88 Appendix B.

proc M{(a: ?lot, b: !lot, kd, kp, D: real)=
1[e: {(-> real)*2, x: lot, m: mix

o:= kdkp2lt(kd, kp, D)

; e.0i= exponential{m.2)

i e.1l:= exponential(m.3)

i *[true
-> a%x
; delta sample e.(2#x.1 div W)
; blx
11
/f exit

proc E{a: ?lot, startup, tot: nat)=
|[x: lot, ct,tp,avget: real, nr: mat
| avget:= 0.0; nr:= 0; tp:= 0.0
;%[true
-> a?x
; [x.0 < startup -> skip
Iz.0 »= startup
b d
or:= nr+l; ct:= time-x.2
i avget:= {({nr-1)*avgct+ct) /nr
i tp:= (nr+startup)/time
; [x.0 = tot -> lavget,"\t",x.0,"\t",tp, "\t",tp*avgct,"\n"
; terminate
|x.0 /= tot -> skip
1

11

syst LINE(kd, kp, D: real)=

[[gbl, blmi, m1b2, b2m2, m2b3, bim3, m3e: -lot
@(filein("orders.in"), gbl, D)

B(gbl, biml)

M(biml, mib2, kd, kp, D)

B(mib2, b2m2)

M(b2m2, m2b3, kd, kp, D)

B(m2b3, b3m3)

M(b3m3, m3e, kd, kp, I

E(m3e, BOOO, 10000)

|
|
|
I
|
I
|
]

xper{(kd, kp, B: real) = |[LINE(kd, kp, D) 1|

Chi implementation code

B.2. Pull model

B.2 Pull model

// model for three machine multi product flow line
// PULL controlled

// H. Plosgmakers, 2002

// reads orders from file orders.in

// generated by genmlist.chi

// usage: ./pull kd kp nk

// note: orders.in miat be generated with equal kd!

const N: nat = 8

type order=nati#nat // nr, product type

, lot=nat#nat#real¥real // nr, product type, tr, t{entering buffer)
, mix=real#real#irealfreal // lambdal lamba2 taul tau2

// function to initialize kanban buffers
fune initkanban (a: nat) -> nat* =
I[i: nat, ks: nat#*

{ ka:= []
i *[a>»0
=» i:= N-1

i *[1 »= 0 -» ks:= ks++[1]; i:= i-1
]

ai= a-l

1

; ret ks

11

// function to calculate process times {tau) for both
product types

func kdkp2lt(kd, kp, D: real) -> mix =

IT 11, 12, t1, t2: real

| 12:= 2+D / (N#(kd + 1))

; 11:= kd#1l2

P tli= (kd + 1) * kp/(kd * kp + 1)
D t2i= (kd + 1) / (kd * kp + 1)

; ret <11, 12, t1, t2>
11

// function that determines which kanban to send to machine: selects
// the longest waiting kanban, for which a product is available
func chooseproduct(ks: nat*, nb: nat"N, i: nat) -> nat =
[[k: nat
| [lenke) < i ->» ret O
| len(ka} »= i -> k:=hr{(take{ks, i))
; [nb.k >0 ->ret i
| nb.k = 0 -> ret chooseproduct{ks, nb, i+l)
]
]
11

// machine: comp. MIS p.46
proc M{a: {?lot)"N, b: (!lot}"N, c: 7mat, kd, kp: real)=
I[e: (-> real)"2, x: lot, kanban: nat, m: mix
| mi= kdkp2lt(kd, kp, 1.0)
i e.0:= exponential{m.2)
;i a.1:= exponentialim.3}
i *[true
=> cTkanban
; a.kanban?x
; dalta sample e.(2+kanban div N)
; b.kanban!x
1
11

// generator
proc G(a: !'lot, id: nat)=
1l n: nat
| n:= @
; *[true -» al!<n, id, tima, 0.0>; n:=n + 1]

11

/7 buffer

89

90 Appendix B.

proc B(a: 7lot, b: !lot, c: !nat, id: nat)=
I[=: lot, xs: lot*

| xs:=[]

;oxL a?x -» xg:=x8 ++ [<x.0, x.1, x.2, time>]
| len(zs}>0 ; b'hd(zs) ~> zs:=tl(xs); c!id
]

1l

// butfer: updates content to KBb
proc Bb(a: 7lot, b: !lot, ¢: 'mat, d: !nat, id: nat)=
I[x: lot, xs: Lot*

| xa:=f]
*[a?x -> zs:=xs++[x]; 4!l
| len{xs)> 0 ; b'hd{xs) —> xs:=t1{xs); clid; d'0
]

1

// kanban-buffar
proc KB(a: (Tnat) N, b: !mat, k: nat)=

1[ke: nats

| k&:= initkanban(k}

. *[j: nat <= O..N: a.j7k =» ke:=ks++[k]
| len(ks)>0 ; blhd(ks) ->» ka:=t1l(ks)
]

11

// kenban buffer, monitoring the number of products for each type in buffer
proc KBb(a: {(?nat)"N, b: !mat, k: nat, d: (7nat)"N)=
|[ks: nat*, i, be: nat, mb: nat"¥
| nb:=<0, 0, 0, 0, @, D, O, 0>
; ks:= initkanban(k)
; *[j: mat <- 0,.N: a.j%k
-> ks:xke ++ [k]
| choosepreduct(ks, nb, 1} > 0; b!hr(take(ks, chooseproduct(ks, nb, 1)))
->» ir=chooseproduct(ks, nb, 1)
i ks:= take(ks, i-1) ++ drop(ks, 1)
| j: nat <- 0..N: d.j%be
-> [bc =0 -» mb.ji=nb.j - 1
lbc =1 => ob.j:=nb.j + 1
]

3t

f/ exit process
proc E(a: (?lot)"N, fo: ?file, startup, tot: nat)=
I[o: order, x: let, ot, mr, nrr: nat, ct, avgct, tp: real
| avget:=0.0; nr:=0; nrr:=0
; %[true
-> fo%ao
ot:= (o.,1)
; a.ot?x
; nrTi=nrr+l
; [orr < startup -> skip
|nrr >=startup
=> nr:i=nr+l; cti=time-x.2
; avgot:=((nr-1)*avgct+ct}/nr
; tpi={nr+startup)/time
; [nrr = tet
—->
!avgct, "\g', nrr, "\t", tp, g tp*avget, "yt
; terminate
Inrr /= tot -> skip
]

Il

syst LINE(kd, kp: real, nk: nat)=

Il gmi, mibl, bim2, m2b2, b2m3, m3b3, b3e: {-lot)"N,
blkbl, b2kb2, b3kb3, blkb2, b2kb3: (-nat)*N,
kbiml, kb2m2, kb3m3: -nat

| i: nat <~ 0..N: G(gml.i, i)

| M{gml, mibl, kbiml, kd, kp}

|
Il i: nat <- Q..N: Bb(mlbl.i, blm2.i, blkbl.i, bikb2.i, i)

Chi implementation code

B.2. Pull model

R M{blm2, m2b2, kbdm2, kd, kp)

Il i: nat <- O..N: Bb(m2b2.i, b2m3.i, b2kb2.i, b2kb3.i, i)
I M{b2m3, m3b3, kb3m3, kd, kp}

Il i: nat <- 0..N: B{m3b3.i, b3e.i, b3kb3.i, i)

1] E(b3de, filein("orders.in"), 5000, 10000)
n KB{bikbl, kbiml, nk)

1 KBb(b2kb2, kb2m2, nk, blkb2}

I KBb{b3kb3, kb3m3, nk, b2kbd)

11

xper(kd, kp: real, nk: nat) = |[LINE{kd, kp, nk)]I

91

92 Appendix B.

B.3 (Hybrid) Conwip model

// model for three machine wulti product flow line
// contrelled by pull-conwip

// H. Ploegmakers, 2002

// reads ordera from file orders.in

conat N: nat = 8

type order=nati#nat // number, product-type

, lot=matimatitreal [/ number, product-type, release-time
, mix=real#realifreald#real // lambdal lamba2 taul tau2

// function to initialize kamban buffers
// note: generic kanbane are used
fune initkanban(a: nat) -> nat* =
I[kB: nat#
| ks:= []
; #[a > 0 -> ks:= ks ++ [1]; a:= a-1]
; ret ks

11

// function to caleculate demands and process times (lambda and tau) for both
// product types, function of mix parameters kd, kp and total demand D
func kdkp2lt(kd, kp, D: real) -> mix =
I[L 11, 12, t1, t2: real
| 12:= 24D/ (N*{kd + 1))

i 1l:= kd*12
»ot2:= (11 + 12)/{l1*kp + 12)
; tl:= t2+kp

ret <11, 12, ti1, t2>

11

//generator, reads product type from file
proc ((fo: Tfile, a: !lot)=

|[o: order

| #[fo%o; a!<0.0, 0.1, time»]

H

// buffer: infinite capacity
proc B(a: ?lot, b: !lot)=
I[zs: lot*, x: 1ot

I zs:= []
i »L a?x -> zg:= x8 ++ [x]
| len(xs)>»>0; b'hd(zs) -> ze:= tl(xs)
1

11

// buffer, infinite capacity, releasing kanbans
proc BR(a: ?lot, b: !lot, c: 'mat)=
J[x: lot, xs: lot=*

I xs:= []
i *#L a?x -> x8:= x5 ++ [z]
| len{xs)>0 ; Dbl!hd{xs}) -> xs:= t1{zs); c!1
1
11
// kanban-buffer
proc KB(a: Tnat, b: Inat, k: nat)=
I[ks: nat*
| ks:= initkanban(k)
s %[aTk -» ks:= ks ++ [k]
| len{ks) > O; b'hd(ks) -> ka:= t1(ks)
]
11

// machine authorized by kanbane
proc MA(a: ?lot, b: !let, c: Tnat, kd, kp: real)=
I[@: {-> real)*2, x: let, kanban: nat, m: mix

| m:= kdkp2lt{kd, kp, 1.0)

; e.0:= exponential{m.2}

; e.1:= exponential(m.3)

; *[true —>

c?kanban

Chi implementation code

B.3. (Hybrid) Conwip model

. arx
delta sample e.{2+x.1 div W)
: bix

11

// machine
proc M(a: 7lot, b: !lot, kd, kp: real)=
I[e: (-» resl)"2, z: lot, m: mix
| m:= kdkp21t(kd, kp, 1.0)
; 8.0:= exponential(m.2)
; a.1:= exponential(m,3)
; *[true —>
atx
; delta sample e.{2*x.1 div N}
; blx
]

1

proc E{a: ?lot, startup, tot: nat)=
|lx: lot, nr, nrr: nat, ct, avget, tp: real
| avget:= 0.0; nr:i= 0
i *[true ->
a?x
; nrr:=nrr + 1
; [nrr < startup -> skip
| nxr >= startup ->
nr:=nr + 1
;oet:= time-x.2
avget:= {(or-1)+avget + ct)/or; tp:= (orr)/time
i [nrx =
; terminate
| nrr /= tot -> akip
]

n

syst LINE(kd, kp: real, nk: nat)=

IL gmi, n3b3, b3e, mibl, blm2, m2b2, b2m3: -lot, b3kb, kbml: -nat
| G{filein("orders.in"), gmil)
| HA(gml, mibl, kbmi, kd, kp)
| B{mibl, bim2)

| M{bim2, m2b2, kd, kp)
| B{m2b2, b2m3}

| H(b2m3, m3b3, kd, kp)
| BR(m3b3, b3e, b3kb)

| E{b3e, 5000, 10000)

| KB(b3kb, kbml, nk)

[

xper(kd, kp: real, nk: nat) = |[LINE(kd, kp, nk} I[

tot -> lavget, "\t", orr, "\t", tp, "\t". tphavgct, "\n"

93

94 Appendix B. Chi implementation code

B.4 (Pull) Conwip model

// model for three machine multi preduct flow line
// controlled by pull-conwip

// 4. Ploegmakers, 2002

/{ reads orders from file orders.in

const N: nat = B

type order = nat#nat // nunber, product-type

, lot = nat#nati#real // number, product-type, release-time
, mix = realdrealfirealiireal // lambdal lamba2 taul tau2

func initkanban (a: nat) -> nate =
I[i: nat, ka: nat*
| ka:= [1
; *[a >0
-» i:= N-1
3 *[1 >= 0 -> ka:= ks ++ [il; i:=i - 1]
;7 ai= a-1
]
} ret ks

11

// function to calculate process times (tau) for both product types
func kdkp2lt(kd, kp, D: real) -» mix =

IL 11, 12, +1, t2: real

| 12:= 24D / (H»(kd + 1))

11i:= kdx12
t1:= (kd + 1) * kp/(kd % kp + 1}
t2:= (kd + 1) / (kd « kp + 1)

ret <11, 12, 1, £2>

// generator
proc G(a: !'lot, id: nat)=

I[n: nat

| n:= 0

; #[al<n, id, time> -» n:=n + 1]
11

// buffer, infinite capacity
proc B(a: Tlot, b: [lot)=
I[L xa: lot#, x: lot

| xs:= []

;o a?z -> x8:= xa++[x]
| len{zs}>0; bl'hd(zs) -> xs:= t1l(xs)
]

11

// buffer, infinite capacity, releasing kanbans
proc BR(a: 7lot, b: !lot, ¢: !nat, id: mat)=
I[x: lot, xs: lot+*

| xa:= []

RS a?x -> xs:= xs++[x]
| len{xs} » 0; b'hd{xzs) ->» x8:= tl{xs); ¢'id
1

11

// kanban-buffer
proc KB(a: {(Tnat)"K, b: !mat, k: nat)=

|[ks: nat#
| ks:= initkanban (k)
; %[j: nat <- 0..N: a.j7k -> ks:= ka++[k]
| len(ks)>0Q; bthd(ks) -> ks:= t1{kse)
]
11

/f machine
prec M{a: ?lot, b: llot, kd, kp: real)=
I[L e: {-> real)"2, x: lot, m: mix

| m:= kdkp2lt(kd, kp, 1.0)

; @-0:= expomential(m.2)

B.4. (Pull) Conwip model

: e.1:= exponential(m.3)

i #[true
-> a?x
i delta sample a.(2%x.1 div N)
; blx
]

11

// machine authorized by kanbans
proc MA(a: (?lot}"N, b: !lot, c: ?nat, kd, kp: real)=
{[e: (-> real)*2, x: lot, kanban: nat, m: mix
| m:= kdkp21t(kd, kp, 1.0)
; e.0:= exponentiel{m.2)
; @.1:= exponential{m.3}
; *[true
—> ctkanban
a.kanban?x
; delta semple e.(2+kanban div N)
. bix

11
// machine: last machine, sends through N channals

proc ME(a: Tlot, b: (!lot)"N, kd, kp: real)=
I[et (> real)"2, x: lot, m: mix

| mi= kdkp21t(kd, kp, 1.0)
; e.0:= exponential(m.2)
; e.l:= aexponential(m.3)
; *[true
-> a’x
; delta sample e.(2+x.1 div N)
s bo(x.1)!x

]
11

proc E(a: (?lot)"N, fo: 7file, startup, tot: nat)=
|[o: order, x: lot, ot, nrr, mr: nat, ct, avgct, tp: real
| avget:= 0.0; nx:= 0; nrr:= 0
: %[true
-> fo7o
ot:= 0.1
a.0t?x
nrr:= nrr+i
[nrr < startup -> skip
|urr »= startup
=» nr:= nr+l
. cti= time-x.2
. avget:= ({nr-1)%avgct+ct)/nr
. tp:= nrr/time
[nrr= tot

-> lavget, "\t", nrr, "\t", tp, "\t", tpravgct,
: terminate
| nrr /= tot -> skip

]

1

syst LINE(kd, kp: real, nk: nat)=
I gnl, n3b3, b3e: (-lot)"N, mibl, blm2, m2b2, b2n3: =-lot,
b3kb: {=-nat)"N, kbml: -mat
i: nat <~ 0..N: G{gml.i, i)
MA{gml, mibl, kbml, kd, kp)
B{mlbl, blm2)
M{bin2, n2b2, kd, kp)
B{m2b2, b2m3)
ME(b2m3, m3b3, kd, kp)
i: nat <- 0..N: BR(m3b3.i, b3e.i, b3kb.i, i)

KB{bdkb, kbml, nk)

d — o ————

xper(kd, kp: real, mk: nat) = |[LINE(kd, kp, nk) 1}

"“\n"

E(b3e, filein("ordaers.in"), G000, 10000)

95

96 Appendix B. Chi implementation code

B.5 POLCA model

// model for three machine multi product flow line
// controlled by POLCA

// H. Ploegmakers, 2002

// reads orders from file orders.in

type tps=real"3 // release-time M1, xrtM2, rtM3

, lot = nat#nat#tps // nr, product type, release times
, mix = (real)"4 // lambdal lamba2 taul tau2

, order = nat#nat // number, product-type

const N: nat = 8

// function to initialize kanban buffers
// note: generic kanbans are used
func initkanban(a: nat) ~> nat* =

I[ka: nat*
| xa:= []

; *[a > 0 => ks:= ks++[1]; a:= a-1]
; ret ks

11

// function to calculate process times (tan) for both product types
func kdkp2lt{kd, kp, D: real} -> mix =
IT 11, 12, t1, t2: real
| 12:= 2%D / (N#(kd + 1))
11:= kdx12
tle= (kd + 1} * kp/(kd * kp + 1)
t2:= (kd + 1} / (kd * kp + 1)
ret <11, 12, ti, t2>

1

// function inserting lots in buifer
// sorted by MRP release time
func insbuf(y: lot, xa: lot*, i: mat) -> lotw =

IL y8: lot»
I [len{xs) =0 -> ys := [7]
| len{xs) > 0 and (y.2).i > ((br(xs)).2}.i -> ys:= xa++{y}
| len{xs) > 0 and {y.2).i <=((hr{zs)).2}.i -»
[(y.2).i <= ((hd(x8)).2).1 -> y& := [yl++xs
| (7.2).i > ({hd(x3)).2).1 -> y8 := [hd(xs)] ++ imsbuf(y, (t1(zs)}, i}
]
]
; ret ys
11

// returns waiting time in queue
func phifl{ca2, ce#2, u: real) => real =

I[ta: Teal

| te:= 1.0

; ret (ca2+ce2)suste/(2%(1-u))
11

// Function: linking equation

/{ returns cd"2 as a function of ca*2, ce”2, u
func cd2(ca2, ce2, u: real) -> real =

I[ret (1-u"2)*ca2 + u"2*cel 11|

/f function providing effective sigma“2 for two exponential distributions
// function of lambdal, lambda2, fraction of first product type (0% -> 0.5)
func sigma(11, 12, c: real) -> real =

I[rat (2%c~c*2}%(11°2) + (1-c~2)#(12°2) - 2wc*(1-c)* (11412} 1|

// generator, reads product type from file
proc G(fo: ?file, kd, kp, D: real, a: !lot)=
Il o order, m: mix, sigmatau, phiQl, phif2: real, i: nat
| mi= kdkp21t{kd, kp, D)
;i sigmatau:= sigma(m.2, m.3, m.0 / {(m.0+m.1))
phiQi:= phiQ(1.0, sigmatau, D)
phif2:= phiQ}(cd2(1.0, sigmatau, D), sigmatau, D)
*[true
-> fo%o
; i:= 2%0.1 div N + 1

B.5. POLCA model

i al<e.0, 0.1, <time, time+phifl+m.i, time+phiQl+phiQ2+ 2¥m.i>>
1
11

// buffer: inserts lots using insbuf
proc Ba: 7lot, b: !lot, isert: mnat)=
IL x: lot, xs: lot#*, r: bool
1 x8:=1[]
; *[trme; a?x
-» xs:= insbuf (x, xs, isort)
; ri= false
| not{(xr) end len{xs} > 0; delta max{0.0,hd(xs).2.isort - time)
-» ri= true
| *; b'hd(xs)
~> xs:= t1(xs)
; T:= false
]
11

/7 buffer releasing kanbans: inserts lots using insbuf
proc BR(a: Tlot, b: 'lot, c: !mat, isort: nat)=
I[x: lot, xzs: lot*, r: bool
| xs:= []
; #[true; a?x
-» xs:= insbuf (z, xs, isoxt)
; el
; ri= false
| not(r) and len(xs) > 0; delta max(0.0,hd(zs}.2.isort - time)
-» r:= true
[r; blhd(zs)
-»> xa:= t1(xs)
; T:= false
1
11

// machine; authorized by kanbans
proc M(a: 7lot, b: !lot, ¢: Tnat, kd, kp: real)=
Il e: (-> real)*2, x: lot, kanban: nat, m: mix
m:= kdkp21t (kd, kp, 1.0)
i e.0:= exponential (m.2)
i @.1:= exponential{m.3)
i #[true
—» cTkapban

; a™x

; delta sample e.(2*x.1 div N}

; blx

11

// ‘push’-machine: without kanbans
proc ME(a: flot, b: !lot, kd, kp: real)=
I[e: (-> real)"2, x: lot, m: mix
| m:= kdkp21t(kd, kp, 1.0)
. e.0:= exponential(m.2)
. 8.1:= exponential{m.3)
. *[true
-> a?x
i delta sample e.(2#x.1 div N)
; bix

H

// kanban-buffer
proc KBE(a: 7nmt, b: !nat, nk: nat)=
J[ks: nat#, k: nat

| ks:= initkanban(nk)

.ow[a?k -» ks:= ks ++ [k]
| lenfka) > 0; b'hd{ks) -> ks:= t1l(ks)
]
11
/f exit

proc E(a: ?lot, startup, tot: nat)=

98 Appendix B. Chi implementation code

I[x: lot, ct, tp, avget: real, nr, nrr: nat
| avget:= 0.0; nr:= 0; nrr:= 0
; *[true
-» a%x
; nrri=nrr + 1
; [nrr < startup -> skip
| nrr »>= startup
=> nr:=ar + 1
i ochi= time-(x.2).0
i avgeti= ((nr-1)+avget+et)/nr
. tpi= nrr/time
i [nrr = tot -> lavget, "\t", nrr, "\t", tp, "\t", tp*avget, "\n"
; terminate
| nxr /= tot -> skip
]

11

syst LINE(kd, kp, D: real, nkl, nk2: nat)=
IL gml, mlb2, b2m2, m2b3, b3m3, m3b4, bde: -lot, b3kbl, kbiml, b4kb2, kb2m2: -nat
G(filein("orders.in"), kd, kp, D, gml)
H(gmi, mib2, kbiml, kd, kp)

B(nib2, b2m2, 1)

M(b2n2, m2b3, kb2m2, kd, kp)

BR(m2b3, b3m3, b3kb1l, 2)

ME(b3m3, m3b4, kd, kp)

BR(m3b4, bde, bdkb2, 2)

E(b4e, 5000, 10000)

KB(b3kbl, kbiml, nkl)

KB(b4kb2, kb2m2, nk2)

hed — o ——— — —— —

xper(kd, kp, D: real, nki, nk2: nat) = {[LINE(kd, kp, D, nki, nk2)]|

B.6. MPC controlled model

B.6 MPC controlled model

// Discrete Event System: 3 machines, N products

// system is controlled by MPC controller (in Hatlah)

f// compile by: ¢76 DESlimbuf.chi pythoncontrol.ext

/f Usaga: "DESlimbuf kd kp throughput wipref bufsize hor weightu tend"
/7 kd: product group demand ratic

// kp: product group pracess time ratio

/{ external functions (specified in pythoncomtrol.py):

// ext initmatlab{kd:real, h: mat, wu, ut, wref: real)->bool
// ext controlactien(y:real 24)-> real~24

// ext closematlab()->bool

const N: nat = § // only pair numbers

, Wi nat = 4 // # machines + generator
, mb: nat = b // # buffers: m + 1

, H4: nat = 32 // Nd=mxN

type lot = nat#nat#real // type, nunber, release-time
, na = nat"N

, ra = real"N

, rad = real”N4

// function returns index corresponding te largest element (>0) in rest, b>Q

func selact(rest: ra, b: na) -> bool¥nat =

|[beetsofar: nat#real#bool, threshold: real, i: nat

| thresheld:= 0.3

; bestsofar:= <0, thresheld, falser; i:= 0

s ¥[i < XN

> [bi >0 -
[rest.i > bastsofar.l -> bestmofar:= <i,rest.i,true>
|rest.i <=bestsofar.l -» skip
]
I b.i <= 0 -> gkip

; L= i+ 1

; ret <bestsofar.2, bestsofar.0>

H

// function intialises natural arrays (buffer contents) at n
func initna{n: nat) -> na =
I[i: nat, a: na

| i:= 0
¥ [1 < W => a.it=mn; ir= 4 +1]
; Tet a

]l

// function intialises real arrays (size N) at mn
fune initra(n: real) -> ra =
I[L i: nat, a: ra

| i:=0 }
; *[1 <N -> a.dir=mn; i1=1 +1]

H
; ret a
|

]

// function intialises real arrays (size 4#F) at n
func initrad(n: real) -» rag =
IL i: nat, a: rad

I i:=0
s #0 1 < N4 > aii=n; i:=i +1]
: ret a

H

// function multiplies real array elemente with (real) constant
func multralp: ra, n: real) -> ra =

I[i: nat, a: ra

| i:= 0

i #*[1 <N ->adii= n*p.i;i=1i+1]

;i rat a

11

// function takes the sum of elements of nat array

99

100 Appendix B. Chi implementation code

fun¢ sumna(a: na) -» nat =

IC i: nat, s: nat

| i:= 0; B:= 0

; *[i <N > 8= +a.i; i:=1i+1]
; ret s

11

// function takes the sum of elemente of real array
func sumraa: ra) —> real =

I[L i: nat, s: real

| i:=0; 8:= 0.0

s *[A < N ->a:=83+a.i; i:=1+11]

; ret s

11

func minnsra{pl,p2: ra) -> ra =
I[L i: nat, a: xa

| i:=0
i #[1 < W =» a.ii= pl.i = p2.i; i:=1i+ 11
; Tet a

11

func plusra{pl,p2: ra) -» ra =

I[i: nat, a: ra
| i:= ¢
j #[1 <N -> adi= pl.i+ p2.i; it= i+ 1]
; ret a

11

// function combines an array of m na’s into 1 rad
func nalrad(nad: na*m) -> rad =
IL yred: rat, i, j, index: nat

| i:=0; j:= 0
;*[j(m
> %[i <N

=» index:= j*N + i
; yrat.index:= n2r(na4.j.i)
;irz= i+ 1
]

HEH + 1
i H

3
0
1
; ret yrad
11

//function splite an array of m#N reals (ra4) into an array of m arrays of N reals
func ra42ra(zra4: rad) -> ra*m =
I[y4ra: ra"m, ratemp: ra, i, j, index: nat
| ji=0; i:= 0
¥l j < m
=> *[i < N -> index:= j#N + i
; ratemp.i:= xrad.index
;ir=i+ 1

]
i yira.j:= ratemp
H T TR !
i 1= 0
]
; ret yira

11

// function gemerating real array with zeros, except for 1.0 for element n
fune avent2I{n: nat} =-> ra =

I[L at ra

| a:= initra{0.0)

; a.n:= 1.0

; Tet a

11

func saturate{y: re4, 1lim, ulim: real) —> rad =

I[ysat: ra4, i: nat

| i:= 0

; #[1 < N4 -> ysat.i:= min{max(y.i,11lim),ulim); i:=di + 1]
; Tat ysat

B.6. MPC controlled model

11

fune plotna(r: na) —» bool =

Il i: nat

| #[1 < N-1 -> Ir.i,"\t&"; i:=1i + 1]
PR E 3% 1

;i reat true

11

func plotra{r: ra) -» bool =

I[i: nat

| #[i < B-1 —=> fr.i,"\t"; i:=i +11]
; Irli

; ret true

11

// generator: equals machine with only one chamnel (out) and no service times
proc G{b: {!1ot)"N, c: Zmat)=

|[r,nr: nat

| nr:=0

j *[true -» c%r; b.r!<r,nr,time>; nr:=nr + 1]

11

// machine
proc M(a: (?lot)"N, b: (1lot)"N, c: Tnat, kd, kp: real)=
If x: lot, r: nat, te: (~> real}"2
| te.0:= exponential((kd + 1)*kp/(kd+*kp + 1)) // parameter: mean te
; te.l:= exponential{(kd + 1)/ (kd+kp + 1))
; *[true
-» c?r
; a.x%x
; delta sample te, (2%r div N)
; burlx
1
11

// buffer: sends 1 or 0 to comtroller (lot received/sent)
proc¢ B{a: ?lot,b: !lot,c: !mat, bmax:nat)=
I[z8: lot*,x: lot

| zs:= []
; *[len(xs)} < bmax; a?x =» xs:= xs++[x]; c!1
| len{xs) > O; b!hd{xs} -> xs:= tl{xs); c!0
]
11
// exit

proc E(a: (%lot)"N, ¢: !real, tee: mat)=
Il x: lot, ft, mft: real, nr: nat
| mft:= 0.0; nr:=0
; *[i: nat <- 0..N: a.i?x
-» [2.1 > tse -» ft:=time - x.2
; nr:=nr + 1
;o mft:= (£t + mit# (nr-1))/or
| x.1 <= tse -> skip
]
| true; c!mft -> skip
]
11

/f filter: used by contreller in continuous-discrete transformatien
proc F(a: ?ra, b: !ra, lambda: real)=
IL xrest,yrest: ra
| [abs{lambda - 0.5) > 0.5 —> !"alpha incorrect {{! < alpha < 1)\n"; terminate
| abs(lambda - 0.5) <= 0.5 -> skip
]
i #*[true -> a?xrest; yrest:= multra(xrest,lambda); blyrest]

11

// controller
proc C{a: (!nat}"m, b: ({(fnat)"N)"m, af: (!ra)"d, bf: (?ra)~4, d: Treal,
ts, tend, 1lim, uwlim, kd, wa, ut, wref: real, h: nat) =

Il j, n, nr: nat, avgWIP, tsample, mft: Teal, MLrumning, foo: bool, mextlot: (bool#nat)*m

, bb: ma*mb, cprod: na, e, u, ul: ra"m, yc: rad, midle: bool"m
| ye:= initrad(0.0)

101

102 Aﬁpendix B. Chi implementation code

j:=0
: mft:= 0.0
i*[j<em
-» e.j:= initra(0.0)
; mextlot.j:= <false, 0>
; midlae.j:= true
; bb. {j+1):= initna(0)
i ji=i+1
]
: bb.O:r=initna{l}; cprod:= initna(0)
avgWIP:= 0.0; tsample:= 0.0; nr:= {
: MLrunning:= initmatlab(kd,h,w,ut,wref)
#[k: mat <- 0..m: mextlot.k.0 and midle.k; a.k!'nextlot.Xk.1
-> midle.k:= false
| k: nat <- 0..m, i: nat <~ 0..N: true; b.k.i%n
-> [n=0 -> bb. (k+1).i:= bb.(k+1).i - 1
[n=1 -> bb. (k+1).i:= bb.{k+i).i + 1

;i [k= 3 ->cprod.i:= cprod.i + 1
| ¥ f= 3 -> [midle. (k+1) -> naxtlot.(k+l):= select(e.(k+l),bb.(k+1})
| not{midle.{k+1)) -> skip
]
]

e.k:= minusra(e.k,event2I(nextlot.k.1))
midle.k:= true
nextlot.k:= select(e.k,bb.k)

1
true; delta tsample — time
-> teample:= time + ts
i nr:=nr + 1

avgWIP:= (n2r(sumna(bb.1)+sumna(bb.2)+sumna(bb.3))+avgWIP = (nr-1))/or
i j:i=0
*[j<m

-» af.jle.j; bf.j%.j
ul.j:= u.j '
=i+ 1

c:= controlaction(na2ra4(<bb.i,bb.2,bb.3,cprod>))
rad2ra(saturate(yc,1llim,ulim))
0
[j<m
-> @.j:= plusra(e.j,mltra(minusra(multra(u.j,3.0),ul.j},0.6%te))
; nextlot.j:= eelect(a.j,bb.j)
s ji= i+ 1

¥
]
3
*

; [time >= tend -> MLrunning:= closematlab(}
; d7mft
i 1avgWIP,"\t",mft*sumna(cprod) /tima,"\t", sumna{cprod) /time, "\n"
; terminate
| time ¢ tend -> skip
]

11

syst LINE(kd, kp, alpha, tend: real, bm, hor: nat, weightu, ut, wipref: real)=
I[gbl, bilml, mib2, b2m2, m2b3, b3m3, m3b4, bie: (-lot} N
cm: (-nat)*m, be: ({-nat)”*N)"m, cf, fc: (-ra)-4, ec: -real
@{gbl,cm.0)
i: mat <- 0..N: B{gbl.i,biml.i,bc.0.i,bm)
M{biml,mib2,cm.1, kd, kp)
i: nat <- 0..N: B(mlb2.i,b2n2.i,bc.1.i,bm)
M(b2m2,m2b3,cm.2, kd, kp)
: nat <= 0..N: B(m2b3.i,b3m3.i,be.2.i,bm)
M{b3m3,n3bd,cm.3, kd, kp)
i: nat <- 0..N: B{n3b4.i,bde.i,bc.3.i,1000}
E{bde, ec, 2000)
Clem, bc, cf, fc, ec, 10.0, tend, -5.0, 5.0, kd, weightu, ut, wipref, hor)
i: nat <~ 0..m: F{cf.i.fc.i, alpha)

H

|
|
|
|
|
|
|
|
|
|
1

xper(kd, kp, alpha, throughput, wipref: real, bufsize, hor: nat, weightu, temnd: real) =
I[LINE(kd, kp, alpha, tend, bufsize, hor, weightu, throughput, wipref)]|

