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Summary

In a world where the complexity of systems is ever increasing, the demand for con-

trol strategies is ubiquitous. To this end, systems of switching servers are regarded

in this research. Switching servers attend multiple queues, while switching between

attending queues might take time or involve costs. Systems of switching servers

are all around, for instance at the manufacturing industry, food processing facilities

or computer communication networks. Switching servers can also describe the dy-

namics of everyday life situations, such as, for example, traffic flows at signalized

traffic intersections or queueing in hospital rooms. To gain more insight into the (ba-

sic) dynamics of switching servers, the switching server is modeled as a fluid flow

system with constant arrival rate, constant service rate and without disturbances. It

is natural to assume the flow of objects as continuous for systems where discrete

objects arrive in a high volume. Systems with low-volume discrete arrivals fall out-

side the scope of this research, as models for discrete items are more suitable, since

each individual object may have a large effect on the system.

In this research, control of switching servers is decoupled into an optimal periodic

behavior problem and an optimal transient behavior problem. The optimal periodic

behavior is the desired reference trajectory, which leads to optimal long-term perfor-

mance of the system. The optimal transient behavior is the trajectory that optimally

steers the system towards the periodic behavior, if the system is removed from the

optimal periodic behavior, e.g., due to service maintenance or service priorities.

A method is presented to derive the optimal periodic behavior for a two-queue sin-

gle switching server. Analytical derivation of the optimal periodic behavior for

switching servers with more than two queues or with restrictions on queue contents

or service periods quickly becomes too difficult, if possible at all. Therefore, for

systems with setup times, setup costs and/or backlog, the optimal periodic behavior

problem is formulated as a Linear Programming (LP) problem, or a Quadratic Pro-

gramming (QP) problem. This method is flexible in the performance criteria and

constraints used. Additional constraints can be easily implemented, e.g., bounds on

queue contents or bounds on service and cycle times.

Next, this method is extended to derive the optimal periodic behavior for multi-

queue single switching servers. In these systems, multiple queues can be served

simultaneously at a queue-dependent rate. Hence, signalized traffic intersections,

where multiple vehicle lanes can receive a green light at the same time, can also
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be modeled by multi-queue switching servers. The optimization method consists

of two consecutive steps. First, all feasible sequences are generated, as for systems

with more than two queues, the optimal switching order is unknown a priori. Sec-

ond, the optimal service times are derived for each sequence. We allow for a queue

to have multiple service periods in a sequence and show, by means of examples,

that allowing multiple service periods for a queue in a cycle can have a substantial

(positive) effect on the system performance.

For a network of switching servers, where objects flow via predefined routes to (sev-

eral) servers in the network, a similar approach is presented to derive the optimal

periodic behavior. However, unlike queues for single switching servers, the arrival

rate for a queue in the network can be non-constant. In the network, fluid trav-

els between queues, which leads to piecewise constant arrival rates at queues, i.e.,

the piecewise constant departure rate from a queue is the arrival rate at the down-

stream queue. Therefore, the service periods are divided into different phases and

aggregation of queues is used to derive the queue contents in the network. For the

aggregation of queues, it is assumed that transportation times between queues are

zero, i.e, after service the flow is immediately available in the successive queue.

Then, the optimization for each feasible sequence is formulated as a QP problem

and optimal periodic behavior for networks of switching servers can be determined.

Given the predetermined optimal periodic behavior, optimal transient behavior of

single switching servers is investigated next. A method is presented that optimally

steers the system towards the periodic behavior. For any initial state, the optimal

transient trajectory problem is formulated as a QP problem. For a two-queue switch-

ing server, the system with and without backlog are considered separately. By com-

bining the switching points, i.e., states on the optimal transient trajectory at which

the server switches to the other queue, the optimal control policy can be derived

for the unconstrained system without backlog. This policy is expressed in terms

of switching curves: if a point on this curve is reached, the system must switch to

serve the other queue. For systems with constraints on queue contents or service

periods, these switching curves may not exist in general, as the switching points are

affected by the constraints and they will depend on the initial state. This method

can be extended to multi-queue switching servers. However, for these systems the

sequences, i.e., order of serving queues, is (usually) not predefined. Feasible se-

quences can be generated similar to the sequence generation process for deriving

the optimal periodic behavior of multi-queue switching servers. Then, for each se-

quence an optimization problem can be formulated and solved, and the best solution

yields the optimal transient behavior.

The controllers resulting from the aforementioned approaches are central controllers

and determine the switching behavior of each server, based on the state of the en-

tire system, i.e., global state information. For non-artificial systems, e.g., signal-

ized traffic intersections, access to global state information is hardly ever the case

in practice. This renders the design of observers, providing good estimates of the

global state of the system based on input/output from the system, of crucial impor-
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tance. We present, as a first step towards observer design for a general switching

server, observer design for multi-queue single switching servers with a clearing

policy. Moreover, these systems, being highly relevant in the context of manufac-

turing and traffic applications, are part of a special class of piecewise affine hybrid

systems. Although all subsystems are unobservable and not all events are visi-

ble, a continuous-time observer is constructed which guarantees that the estimate

converges to the state of the plant under suitable conditions. The main idea is to

sample the system at visible events, for which an observer can be designed using

standard techniques from control theory. Then, this discrete-time observer is used

as a blueprint for the continuous-time observer, where besides the plant dynamics

additional ‘waiting’ modes are assigned to the observer. It is formally shown that

these principles result in a successful observer design.

For the Kumar Seidman network, and a specific policy, a similar approach is used to

design an observer, as a first attempt in the direction of observer design for networks

of switched systems. Although a minimal amount of information is measured, an

observer is derived which converges to the current network state. The approach

is threefold. First, based on the policy and network dynamics, the switching pat-

tern (which is cyclic) is determined. Second, the network is sampled with varying

sampling periods at visible event times, and the dynamics between these times are

derived. Third, the observer evaluates all possible predicted states at the visible

event times. By eliminating infeasible possibilities, finally a single estimated net-

work state remains. Via simulation it is shown that this state converges to the actual

network state.

Finally, problems related to control and observer design of switching servers are

discussed. For a network of two switching servers including transportation times, a

heuristic is presented to derive a good service schedule for networks of switching

servers. First, the network is regarded as a single server and the optimal periodic

behavior for this server is determined. Second, the resulting service schedule is im-

plemented at the network and for each server the optimal phase delay is determined.

Also, scheduling of switching servers with stochastic arrival processes are briefly

discussed. We approximate the average queue length for systems with stochastic

arrival processes and use these approximations to derive service schedules via a

non-linear programming problem. Last, optimal control policies for discrete-time

controlled dynamical systems with uncertain demand is derived. Using techniques

from robust optimal control, without assuming a certain strategy a priori, the policy

can be derived. We also show that by the use of observers, for detectable or observ-

able systems, unknown states can be reconstructed.

This dissertation can serve as a starting point for future research on control and

observer design for switching servers. The introduced methods for determining the

optimal periodic and transient behavior and the observer design can be extended

to networks with stochastic behavior and can be investigated for real life control

problems.
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Chapter 1

Introduction

1.1 Dynamic processes

All around dynamic processes take place. Literally, dynamic stands for “charac-
terized by continuous change, activity, or progress” and process for “a series of
actions, changes, or functions bringing about a result”. Then, the combination dy-

namic process describes a continuous change of actions that results in something.

In this thesis, we restrict ourselves to controllable dynamic processes. That is, dy-

namic processes for which the outcome can be steered or influenced. Two examples

of such dynamic processes are presented below. In Figure 1.1a, a signalized traffic

intersection is depicted. The flow of vehicles crossing this intersection is a dynamic

process and these vehicles are regulated by the use of traffic lights. The second

example is the back-end production of a semiconductor production process, i.e.,

assembly and test of individual semiconductors, see Figure 1.1b. Here, the overal

process is to sequentially assemble and test individual semiconductors.

(a) Signalized intersection (b) Semiconductor production

Figure 1.1: Two examples of dynamic processes

To gain insight into dynamic processes or to control dynamic processes a dynamic
system is developed, a mathematical description that can express and model the

behavior of the dynamic process over time. A dynamic system can be classified

1



Chapter 1: Introduction 2

based on the type of the state:

• continuous state: The state takes values in a continuous set and can take a

value between any other two values. Examples of continuous states are the

speed of a vehicle, the duration of a green signal at traffic intersections or the

amount of fluid in a reservoir.

• discrete state: The state takes values in a countable or finite discrete set, such

as the number of vehicles waiting in front of the traffic light or the signal of

the traffic signal (either green, yellow/orange or red).

Also, a dynamic system can be categorized based on the time over which the state

evolves:

• continuous time: The time is a continuous set, between any two points in time

there are an infinite number of other points in time. One can think of the

queue length in front of a traffic signal or the traffic signal itself which both

can take a value at an unspecified point in time.

• discrete time: The state is viewed at separate (discrete) points in time and is

unchanged throughout each time period. Thus, a variable jumps from one

value to another as time moves from one time period to the next. This cor-

responds to a digital clock that gives a fixed reading of 11:23 for a while,

and then jumps to a new fixed reading of 11:24, etc. In this framework, each

variable of interest is measured once at each time period. The number of

measurements between any two time periods is finite.

At last, a distinction between two time-advance approaches can be made:

• time-driven: The state of the system changes as time advances, either con-

tinuously for continuous time systems or after every time period for discrete

time systems.

• event-driven: The state of the system changes due to occurrence of an event,

i.e., the start or end of an activity. The times between occurrences of events

are typically not equidistant. Typical examples of event-driven systems are

manufacturing systems, telecommunication networks and logistic systems.

For a signalized traffic intersection, possible events are: a change of the traffic

signal, arrival of a vehicle, or a queue becoming empty.

An example of an event-driven continuous-time discrete-state system is a vehicle

queue in front of a traffic light. The state of the system is the number of vehi-

cles waiting in the queue and the events are arrivals or departures of vehicles. An-

other example is the water tank depicted in Figure 1.2a, which is an event-driven

continuous-time continuous-state system. Here, the state of the system is the water

level x. Fluid is added via a pump with rate f to the tank and fluid is removed from

the tank via an outlet with rate y.
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Systems with combinations of continuous and discrete states, continuous and dis-

crete time or time-driven and event-driven dynamics are labeled hybrid systems.

Hybrid systems can be found in many fields and disciplines, such as traffic man-

agement systems, manufacturing systems, process control, embedded systems, me-

chanical and bio-mechanical systems, electrical circuits and biological systems. A

simple example of a controlled hybrid system is the regulation of the water level

x(t) at time t in the water tank depicted in Figure 1.2a. In a simplified description,

the fluid inflow rate f can be either zero or a constant value λ , i.e., mode ‘off’ or

mode ‘on’ respectively. The fluid outflow rate y < λ is constant. In each mode, the

water level x(t) can be described by a function based on the current water level and

the in- and outflow rates. If the water level reaches the threshold x(t)≤ x, the fluid

inflow is switched on (mode ‘on’). The inflow is switched off (mode ‘off’) if the

water level exceeds the upper boundary x̄.

f

x

y
x
x

(a) Water tank system

x

x̄

A

C

B

time

x

(b) Water level reference (solid)

Figure 1.2: Water tank system overview (left) and water level (right).

In this thesis, fluid flow switching servers are considered. These continuous-time

event-driven hybrid systems have both continuous states (queue contents) and dis-

crete states (server modes). A point of emphasis in this thesis is control of systems.

A system can be controlled in many ways. For instance, for the water tank system

depicted in Figure 1.2a, a controller regulates the inflow of water. The controller

switches the system to mode ‘on’ or to mode ‘off’, depending on the water level.

A typical example from control theory is a system that has to follow a reference
and the controller manipulates the inputs of the system to follow this reference. An

illustrative example is presented in Figure 1.2b. Here, the fluid level of the water

tank system is depicted over time by the solid line. This trajectory is also the refer-

ence trajectory. The controller uses this reference trajectory to determine the control

actions (switch the inflow ‘on’ or ‘off’), given the state of the system, i.e., the water

level x(t). If the system is initially in point A in the figure, the system is located

on the reference trajectory and the controller aims to follow this trajectory as good

as possible. Due to disturbances, e.g., an extra inflow of water due to rain or an

unpredicted outflow due to leakage, the water level can deviate from the reference

trajectory, illustrated by points B and C in the figure. Then, a trajectory is derived

to bring the system back to the reference trajectory, indicated by the dotted lines.
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The control problems discussed in this thesis can be divided into two subproblems.

The first problem is to find the optimal periodic behavior, that is, the periodic ref-

erence trajectory that optimizes a performance criterion. For signalized traffic in-

tersections, the performance criterion can be, for example, to minimize the average

queue lengths, to minimize fuel consumption or to minimize the average delay of a

vehicle. Given the optimal periodic behavior, the second subproblem is to find the

optimal transient behavior, or optimal transient trajectory. That is, steering (control-

ling) the system from an arbitrary starting point to the periodic behavior. Examples

of transient trajectories are depicted by the dashed lines in Figure 1.2b, steering the

water tank system from points B or C back to the reference trajectory.

Another point of emphasis is observer design. Consider again the problem of con-

trolling the water tank system in Figure 1.2a, or any other hybrid system. For this

system, the water level is required by the controller to determine a control action,

i.e., switch the inflow ‘on’ or ‘off’. However, it can be that continuous water level

measurements are unavailable and, for instance, only a sensor is available that in-

dicates if the water level has reached the lower threshold x. Still, after measuring

the output of this sensor and the inflow and the outflow of water in the system for a

while, the water level can be derived. So, to overcome the problem of missing water

level measurements, an observer for the water level can be designed, based on both

the sensor information and measurements of the inflow and the outflow of the sys-

tem. The observer estimates the current water level of the system. Subsequently, the

controller uses this estimate obtained from the observer instead of the actual water

level measurements.

1.2 Contributions

The main contributions of the research presented in this thesis are:

• Derivation of the optimal periodic behavior for multi-queue single switching

servers and for a network of switching servers. The optimal behavior is de-

fined with respect to cycle time, time averaged weighted queue contents, time

averaged weighted waiting time, queue contents or a combination of these

criteria.

• Optimal control of multi-queue single switching servers. Derivation of op-

timal transient behavior that steers the system, with optimal performance, to

the optimal periodic behavior.

• Observer design for a special class of hybrid systems, which includes multi-

queue single switching servers that operate using a clearing policy. These

observer design principles are also applied to design an observer for a specific

network of switching servers, operated under a specific service policy.
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1.3 Outline of the thesis

A graphical overview of the structure of this thesis is presented in Figure 1.3. Each

box indicates a chapter. Boxes with a gray outline indicate that single switching

servers are considered, black outlined boxes indicate that networks of switching

servers are considered. Emphasis on control is presented in chapters with white

filled boxes, emphasis on observers is presented in chapters with a grey filled box.

Solid arrows indicate a strong relationship between chapters, dashed lines present a

weak relationship between chapters. Note that Chapters 1 and 2 are omitted from

Figure 1.3 as these chapters are introductory chapters and are linked to all other

chapters.

C3 C4

C7C6

C5

C9

C8

Figure 1.3: Graphical overview of the structure of this thesis.

Next to graphical thesis overview, a concise description of each chapter is given

below.

Chapter 2 gives a description of fluid flow switching servers. Single switching

servers and networks of switching servers are discussed. Also an overview of con-

trol and observer design of these systems is given.

Chapter 3 presents a method to derive optimal periodic behavior for a two-queue

fluid flow switching server. The optimal periodic behavior is derived for systems

with setup times, setup costs, backlog and constraints on queue length and service

periods.

Chapter 4 presents the derivation of optimal periodic behavior for a multi-class fluid

flow switching server. In the considered systems, multiple queues can be served si-

multaneously and a queue can be served multiple times in a cycle. A traffic applica-

tion with corresponding optimal periodic service schedules is presented. In addition,

the chapter contains a case study of an intersection in Eindhoven, the Netherlands,

to demonstrate the proposed method.

In Chapter 5, the optimal periodic behavior for a network of multi-class fluid flow

switching servers is presented, as an extension to Chapters 3 and 4. The considered

networks are assumed to have instant transportation, i.e., zero transportation times.

Chapter 6 provides a method to derive the optimal transient behavior for a two-
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queue fluid flow switching server, i.e., the cost-optimal way to return to the periodic

behavior from any initial state.

In Chapter 7, observer design for multi-class switching servers with clearing poli-

cies is presented. Based on the limited (partial) information provided by the server,

it is shown that the complete state of the system can be reconstructed.

Chapter 8 presents observer design for a well known network of switching servers,

the Kumar Seidman network, given a specific policy. This work is a first attempt in

the direction of observer design for networks of switched systems.

Chapter 9 discusses control of a network of traffic intersections with transporta-

tion times, control of traffic intersections with stochastic arrivals and control and

observer design for supply networks. these problems are related to control and ob-

server design of fluid flow switching servers.

Finally, Chapter 10 concludes this thesis with a summary and suggestions for fur-

ther research on the subjects.

In each chapter, illustrations are provided to demonstrate the basic concept that is

treated.



Chapter 2

Multi-queue switching servers

A general description of a multi-queue switching server is a server that can attend

a single or multiple (but not all) queues at a time, while switching between queues

might take time or involves costs. One can think of switching servers as man-made

systems which can be found in, for example, the manufacturing industry, food pro-

cessing facilities or computer communication networks. Switching servers can de-

scribe much more than artificial systems, as they can also be used to describe the

dynamics of everyday life situations, such as, for example, traffic flows at signalized

traffic intersections or queueing in hospital rooms.

In switching servers, different phenomena occur, such as maintenance, human as-

pects or fluctuations in arrival rate and service rate. If possible, incorporating all

these phenomena in a model results in a detailed, yet complex, system. To gain

more insight into the basic dynamics of the switching server, models are derived.

Models are abstractions of detailed real systems in which only a couple of phenom-

ena are taken into account. To this end, the switching servers are considered as fluid
flow models, similar to the general framework introduced by [59]. Therefore, the

queues in the system are represented by reservoirs that store arriving fluid and pro-

vide the fluid to the server. In lots of systems, individually distinguishable objects

are directed through the system. One can think of cars at traffic intersections or

wafers in the semiconductor industry. This class of systems, with discrete (count-

able) objects, can be regarded as discrete event models. Fluid flow models regard

the objects that require service from a higher level of abstraction, by assuming that

individual objects can not be distinguished and hence treating them as a continuous

flow. For systems handling large amounts of objects, distinguishing all individual

objects is not necessary, and it can even distract from the basic dynamics. Examples

of such systems are, for instance, cars in a traffic intersection during rush-hour or

food in the production of mass consumables.

A lot of research has been conducted on the behavior of switching servers with

stochastic arrival and service rates. In this thesis, the emphasis is on deterministic
systems, i.e., constant arrival and service rates, as a better understanding of the crux

7
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of controller design for switching servers is required first. Note that, in reality, de-

terministic systems are rare. However, investigating deterministic systems provides

insights and methods that can be relevant to controller design for stochastic systems,

as can be seen in Section 9.2. Furthermore, the considered system structure does

not change over time, i.e., the systems have a fixed structure, e.g., manufacturing

systems or traffic networks.

The remainder of this chapter presents an overview of multi-queue switching servers

and introduces the notation. In Section 2.1, a single switching server is presented.

Here, the most simple system, a two-queue switching server, is introduced. Sec-

tion 2.2 presents a network of switching servers. Control of switching servers is

discussed in Section 2.3. Finally, observers are discussed in Section 2.4 and Sec-

tion 2.5 provides an outlook for the rest of the thesis.

2.1 Single switching server

Switching servers are considered that attend multiple queues. The total number

of queues in a system is denoted by N > 1 and the set of queues is given by

N = {1,2, ...,N}. Therefore, a single switching server competes over N queues. In

this section, the most simple model of a multi-queue switching server is introduced,

the two-queue switching server (N = 2).

Several examples of the two-queue switching server are presented in Figure 2.1.

These examples illustrate a manufacturing system serving two different product

types (Figure 2.1a), a signalized traffic intersection with two flows of vehicles (Fig-

ure 2.1b) and a fluid flow system with two different types of fluid (Figure 2.1c).

Note that all of these examples have the same behavior.

x1
μ1

μ2

σ1,2 σ2,1

λ1

x2

λ2

(a) Two product manufac-

turing system.

x2

x1

λ1

λ2

μ2
μ1

σ2,1
σ1,2

(b) Two flow signalized in-

tersection.

λ1

λ2
μ1

μ2

σ1,2 σ2,1
x2

x1

(c) Two tank fluid flow sys-

tem.

Figure 2.1: Different two queue switching server layouts.

For the presented systems, fluid flows representing products arrive at buffers, ve-

hicles arrive at vehicle lanes and fluid flows arrive at tanks or reservoirs. In the

remainder, we denote the location where fluid is stored, i.e., for example, buffers,

lanes or reservoirs, by queues. Fluid arrives at each queue i = 1,2 with constant
arrival rate λi. The content of queue i at time t is denoted by xi(t).
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The two-queue switching server is limited to serve only one queue at a time. If

the server attends queue i, the service rate is given by ri ∈ [0,μi]. Typically, switch-

ing service between different queues implies a setup process. The setup process

consists of setup times σi, j ≥ 0 for switching from queue i to queue j, setup costs
si, j ≥ 0 or a combination of these.

When the switching server attends a queue, two successive periods can be distin-

guished, a service period and an idle period. A service (idle) period is defined as

the uninterrupted interval during which the queue is (not) served. Note that during

a setup no queue content is processed, hence a setup is part of the idle period. The

duration of a service (idle) period for queue i is nonnegative and is denoted by τi
(τ0

i ). The idle period is divided into a part during which the switching server sets up

to serve the queue and a part in which the switching server idles.

Throughout the thesis, examples of signalized traffic intersections or manufactur-

ing systems are presented. Therefore, an overview of the terminology for these

systems is presented below.

Manufacturing system
A manufacturing machine working on two product types is presented in Figure 2.1a.

Products (fluid) arrive at a predefined buffer (queue). The buffer content can also

be denoted by the inventory level. The machine processes the products at a given

process (service) rate. Once the machine requires to process the other queue, a setup

time, sometimes also referred to as switchover time, might be required. During the

setup, for example, the machine configurations can be adjusted or the system can be

cleaned.

Traffic intersection
An isolated signalized traffic intersection can also be modeled as a single switching

server. Each flow of vehicles leaves the intersection via a single route. Therefore,

if vehicles that arrive from the same direction leave the intersection in distinct di-

rections, these are modeled as multiple flows. Vehicles halt in front of a red light,

before the stop line, in a vehicle lane (queue). Once a flow receives a green light, the

vehicles discharge at a saturation (service) rate. Assuming constant arrival and con-

stant saturation rates are reasonable for real world intersections. Constant arrivals

can be calculated, especially in recurrent congestion, based on historical data. Also,

when queues exist during green (service) periods, departure rates can be assumed

constant, since vehicles discharge at their saturation rate. A green period indicates

the interval during which a flow receives a green light and a red (idle) period indi-

cates the interval at which the traffic signal is red. The amber/orange signal is not

considered. This could either be modeled as part of a green signal, part of a red

signal or a combination of both signals depending on the assumptions: If during

the first part of an amber signal traffic still departs and during the remainder of the

amber signal traffic does not depart, the first part of the amber signal can be consid-
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ered as part of a green signal and the remainder as part of a red signal. Switching

between flows implies a setup time, also referred to as clearance time, lost time or

intergreen time. This time is reserved for vehicles to leave the intersection after

the flow has received a red light, thereby preventing collisions. The setup times are

based on the layout of the intersection and therefore switching to and from a flow

does not imply that the same setup times are needed.

2.2 Network of switching servers

When switching servers interact, i.e., fluid served at a switching server is send to the

queue of another switching server, the system is labeled as a network of switching

servers. The most important difference with the single switching server models is

that the arrival rate of fluid at queues is not always constant. Below, an illustrative

example of a network of switching servers is discussed.

In a fluid flow queuing network, fluid flows from one switching server to another,

and eventually leaves the network. The network consists of multi-queue switch-

ing servers, labeled by j = 1,2, ...,S. Fluid flows through the network via a single

or multiple predefined routes. A route, starting from an external source, indicates

which switching servers are visited and also in which order. The queues are la-

beled in the order of occurrence along the route(s) by n = 1,2, ...,N. Note that all N
queues are divided over S switching servers. As example, a well-known manufac-

turing network is presented in Figure 2.3, as introduced in [62]. This manufacturing

network is used as a running example throughout the thesis. The network consists

of two switching servers. Server 1 serves queues 1 and 4 and server 2 serves queues

2 and 3. The network processes a single fluid flow arriving from an external source

with constant rate λ1(t) = λ at queue 1. The fluid flow consecutively visits servers

1, 2, 2, and 1 via queues 1, 2, 3, and 4 respectively. Queue 1 is the only queue

receiving fluid from an external source, the other queues receive the fluid from pre-

ceding queues. Switching between service of queues 1 and 4, and between service

of queues 2 and 3 requires a setup period. The difference with single switching

server systems is that the arrival rate of fluid in each queue is not constant. Con-

sider, for instance, the content of queue 2 depicted in Figure 2.3. Here, the arrival

rate is zero if queue 1 is not served and it is equal to the service rate of queue 1

(r1(t)) otherwise.

λ
x1 x2

x4 x3

A B
σ3,2

σ2,3

σ4,1

σ1,4
μ2

μ3

μ1

μ4
y

Figure 2.2: Two switching server, four queue network.
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In [62] it was shown analytically by means of a counterexample that when using a

clearing policy, such networks might become unstable. In a clearing policy, a queue

is served until it is empty and then the server switches to attend another queue, also

known as exhaustive service. Even systems with sufficient capacity at each switch-

ing server and deterministic arrival and service rates might become unstable. The

main reason is because clearing policies spend too long on serving a single queue.

This results in starvation of other servers and therefore capacity is wasted. Due to

this waste, the effective capacity of these other servers is not sufficient anymore,

resulting in an unstable system. An example of an unstable system is presented

in Figure 2.3. The upper figure presents the queue contents of the queues served

by server 1 (x1 and x4) and the lower figure presents the queue contents x2 and

x3, served by server 2. Although the evolution of the queue contents during only

500 time units is presented, the system is unstable limt→∞ x1(t) = ∞. Furthermore,

in [62] it is also shown that even for networks without setup times, a clearing policy

might result in an unstable system.
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time
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Figure 2.3: Queue content evolution, network with clearing policy.

2.3 Control

The control of hybrid systems is a problem of importance. In, e.g., [47, 72], recent

overviews for various techniques for controller synthesis of hybrid systems are pre-

sented. More specifically, we focus on optimal control of switching servers. For

switching servers, optimal control is relevant as, for example, optimal schedules

for manufacturing systems can reduce costs via, for instance, lowering the required

storage capacity and shortening lead times. For traffic signals at signalized intersec-

tions, optimal schedules can reduce congestion, and thereby reduce the amount of

environmentally harmful emissions, and improve mobility.
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Control of switching servers with constant arrival and constant service rates can

be divided into two subproblems. The first problem is to find the optimal periodic
behavior, i.e., a cyclic schedule of service periods or the steady-state trajectory. The

second problem is to find the optimal transient behavior, that is, steering (control-

ling) the system from an arbitrary starting point (queue contents, time, mode of the

server, etc.) to the periodic behavior. A parallel can be drawn with a motorist driving

to a certain destination using guided navigation. The navigator computes a route,

or reference trajectory, a priori. Then, the motorist uses this reference trajectory to

determine the control actions (speed, orientation, etc.) given the state of the vehicle.

Similarly, for a system of switching servers, first feasible (periodic) behavior should

be specified. Along with the current state of the system, this behavior can be used as

reference for the servers to determine what steps to take. No matter what the state

of the system is, even if it is outside the periodic behavior, suitable control actions

should be determined (transient behavior).

Due to the complexity of the systems, even the most simple system, a switch-

ing server attending two queues, has been investigated by many researchers. In

this research, the systems incorporate different phenomena. A small overview is

given here: Systems with setup times [9, 19, 33, 36, 39, 49, 53, 73, 84], setup

costs [53, 73, 84], finite queues [19, 33, 36, 53, 73], backlog [19, 73] or service

period constraints [44, 55]. Also, most of these authors assume symmetric sys-

tems [19, 33, 49, 53, 73]. However, a general framework that incorporates all afore-

mentioned phenomena is lacking. In Chapter 3, we present a method to derive the

optimal periodic behavior of a two-queue switching server that incorporates all phe-

nomena, i.e., setup times, setup costs, (in)finite queues, backlog, and a heterogenous

system. This behavior is optimal within the given constraints.

Determining optimal periodic behavior for a single switching server with more than

two queues is an even more challenging problem, c.f. [91]. In [63], a convex op-

timization problem is presented for a single multi-queue switching server, which

determines a, not necessarily achievable, lower bound on the waiting costs in a de-

terministic environment with both setup times and setup costs. Similar, polling sys-

tems (see [70, 101] and references therein) or the economic lot scheduling problem

(see [82] and references therein) have been studied by a large number of researchers.

For a system with a number of competing unlimited queues, negligible setup times

and cost of operation per unit linear in the queue content, it is well-known that

the optimal policy is a μc-rule, see [14] or [24]. This policy allocates service to the

non-empty queue with the largest rate of cost decrease. In Chapter 4 we assume that

the switching server is able to serve several queues simultaneously, unlike the above

mentioned papers. Moreover, each queue is served at a queue-dependent rate, which

is independent of the number of queues being served. These kind of models may

arise when studying, e.g., multiclass queueing tandems, multi-server polling sys-

tems with overtaking constraints or signalized traffic intersections. These systems

are also studied in [66], where optimal control of a multiclass fluid flow network
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for which several queues can be served simultaneously is presented. We extend this

model by considering external arrival rates in each queue and non-negligible setup

times.

Since the introduction of traffic lights, different models, methods and strategies

for controlling isolated traffic intersections with pretimed signals, which can be

regarded as multi-queue switching servers where multiple queues can be served

simultaneously (see Chapter 4), have been proposed, c.f. [18, 78] and references

therein. For these systems, the problem consists of determining the optimal periodic

behavior or signal timing plan, i.e., scheduling the green and red periods of each

flow during one cycle at the intersection. This problem is obviously important as

optimal control can, for instance, improve mobility, decrease congestion and lower

emissions harmful for the environment. As discussed above, analytical derivation of

optimal periodic behavior is restricted to intersections with two flows. In practice,

however, intersections almost always involve more than two flows. Therefore, we

focus on optimal periodic behavior of an isolated intersection with multiple flows,

by using optimization techniques in Chapter 4.

Research on optimizing the performance of isolated signalized traffic intersections

can be roughly divided into three approaches; group-based, phase-based and lane-

based.

In the group-based approach, both the composition and order of groups are pre-
liminarily fixed, c.f. [4, 5, 88], and the green periods are optimized. However, by

preliminarily assuming the composition of groups, one can not assure a global opti-

mal periodic solution.

In the phase-based approach, the staging of flows is derived from knowledge of the

crossing compatibility of the flows, c.f. [23, 41, 54, 90, 102, 74]. Sequences of

groups, with a single green interval for each flow in a cycle, are generated. How-

ever, by means of an example, we show that giving each flow a single green interval

in a cycle is not necessarily optimal and in some cases, substantial improvement is

possible by allowing multiple green periods per flow.

The lane-based approach combines the design of lane markings and signal settings

for isolated signal-controlled intersections, see for instance [97, 98] and the ref-

erences therein. However, in this thesis, fixed lane markings (for existing inter-

sections) are assumed. Therefore, lane-based methods do not apply in the current

setting.

The control of networks of multiple switching servers is also challenging. A net-

work can be divided into two classes: acyclic and non-acyclic networks. If switch-

ing servers are ordered such that fluid flows only towards queues of higher ordered

servers, the network is acyclic. Otherwise, if such an ordering is not possible, the

network is non-acyclic. Examples of non-acyclic networks are networks of signal-

ized traffic intersections, where vehicles can both drive from one intersection to

the other and vice versa, or manufacturing systems where a product route visits a

specific switching server multiple times (re-entrant servers). For non-acyclic net-
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works where each server has sufficient capacity, it is shown via simulation in [12]

that queues can explode over time, i.e., the system is unstable. This depends on

the policy used to control the system. Different clearing policies have been intro-

duced in [80]. For deterministic single switching servers and multi-queue acyclic

queueing networks with sufficient capacity, these policies are stable. However, non-

acyclic deterministic networks might become unstable using a clearing policy, as

shown in Section 2.2 and in [62]. This observation led to the development of queue

regulators or gated policies, see [52, 79]. Here, each queue contains a gate and

is therefore split into two parts. Switching to serve other queues now depends on

the queues after the gate, instead of the total queue contents. Then, a server might

switch earlier, avoiding long service periods on a queue. Under certain conditions

these regulators stabilize the (possibly non-acyclic) network. However, note that

non-acyclic networks are only unstable for certain conditions and stability can not

always be easily checked. Therefore, the queue regulators are not always neces-

sary. Fruitlessly applying these regulators results in a larger amount of fluid in the

network, which is undesired for the performance. The references mentioned above

constitute only a small part of the total literature in this area. However, most of

them have one common approach: the system behavior is based on an a priori con-

sidered policy. An advantage of this approach is that stability is guaranteed and that

the policies can be applied to any network. However, guaranteed stability does not

imply good behavior. Therefore, it is better to have a general approach to design

a tailor made policy for the considered system, depending on the desired perfor-

mance. This is an entirely different view at the problem of controlling a network of

switching servers. Instead of starting from a policy and analyzing the behavior of

the system, one can start from a desired network behavior, specified a priori. For a

specific well-known network presented in [62] (see Figure 2.3), this approach has

been presented in [68], along with the optimal periodic behavior. In Chapter 5, we

present a more general framework to derive the desired periodic network behavior

for systems without transportation times. The controller which makes the network

behavior converge to this desired behavior is still a topic for further research. A

method can be to derive the control actions based on Lyapunov’s direct method,

designing a controller that continuously lowers the energy of an , ‘energy-function’,

i.e., the error dynamics of the system, so that the system eventually settles down

to the reference trajectory. This, and similar approaches are discussed in, for in-

stance, [38, 65, 67, 103].

Another method, concerning a two-queue switching server, minimizes the total

costs to converge to the desired periodic behavior from any arbitrary state, pre-

sented in [33, 45, 73]. The considered systems are either symmetric and a clearing

policy is optimal, or do not include setup times. In Chapter 6, we present a method

for these (heterogenous) systems, including backlog and setup times, to derive the

(transient) trajectory to steer the system to the optimal periodic behavior with low-

est costs. This is a transient control problem, occurring in case of a machine which

is failure prone, or in case of a signalized traffic intersection which gives priority to

busses, see [100]. Furthermore, control of two-queue switching servers is consid-
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ered in [49, 67].

2.4 Observers

Due to numerous amount of potential applications, hybrid systems attracted a lot of

attention. A great many of results on modeling, analysis, verification and control

appeared in the literature. In most of these developments it is assumed that the

hybrid system model is accurate and that all states, both discrete and continuous, can

be measured. The latter, however, is hardly ever the case in practice. For example,

in control, robotics and manufacturing, usually only a limited number of variables

are measurable. This renders the design of observers for hybrid systems, providing

good estimates of both continuous and discrete states, of crucial importance. The

observer design problem is formulated as follows:

• given a hybrid system and input/output measurements, construct an observer

that estimates the current state of the system as accurate as possible.

Despite this high practical relevance, there are only a few results on hybrid observer

design. In [2, 3, 87], the problem of constructing observers for switching systems

has been solved by assuming the perfect knowledge of the currently active mode.

For the design of most observers, see, e.g. [7, 10, 11, 13, 58, 81, 99] and the ref-

erences therein, the subsystems are required to be observable or detectable. For

other hybrid systems, observers are designed when the switching signal is known

a priori, see [93, 94]. Another approach of observer design is based on moving

horizon estimation (MHE). For the state estimation problem of a dynamic system

with nonlinearities and disturbances, MHE has emerged as a powerful technique,

see [1, 40] and references therein. This approach is applicable to the general class

of piecewise affine systems. However, implementing observers from this approach

may be limited by the high computational effort.

Theoretical results regarding the fundamental question of the existence of an ob-

server are related to notions such as final state observability, reconstructability and

final state determinability on which also some work in the area of hybrid systems

appeared, see, for instance, [8, 11, 15, 25, 93].

In this thesis we present observer design for a class of piecewise affine hybrid sys-

tems, of which the full details are presented in Chapter 7. The considered hybrid

system is autonomous with the mode dynamics consisting of constant drift and the

output within a mode being constant. Only at some times the output reveals informa-

tion about the currently active mode. In particular, this implies that all subsystems

are unobservable, eliminating many currently available solutions for synthesizing

hybrid observers proposed in the literature. A methodology is proposed for de-

signing continuous-time observers. This methodology consists of a few main steps.

First, the system is sampled (with varying sampling periods) at so-called visible

event times, i.e., times at which the output changes during a mode transition, result-

ing in a linear time-varying periodic system. Based on the resulting sampled system
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a periodic discrete-time observer is derived with the guarantee that the observer’s

state converges asymptotically to the (original) system’s state. Next, this observer is

used as a stepping stone for designing an observer in continuous time. This requires

the inclusion of additional modes in the observer structure and additional reset laws

at visible event times to ensure the asymptotic recovery of the system’s state.

2.5 Outlook

In this chapter, an overview of multi-queue switching servers has been given. Single

multi-queue switching servers and networks of switching servers are discussed. The

next chapters elaborate on the behavior of these multi-queue switching servers. In

Chapter 3, periodic behavior of single two-queue switching servers systems is inves-

tigated. These results are used in Chapter 4 to investigate the periodic behavior of

single multi-queue switching servers, focussing on signalized traffic intersections.

In these systems, the switching server can serve multiple queues simultaneously.

Also a case study of an intersection in the city of Eindhoven, the Netherlands is pre-

sented. This work is extended to periodic behavior of networks of switching server

in Chapter 5, where non-constant arrival rates at queues complicates the derivation.

Here, the Kumar-Seidman network is used throughout the chapter as an illustrative

example. Transient behavior, returning the system to the periodic behavior, is inves-

tigated for a two-queue switching server in Chapter 6. Chapters 7 and 8 investigate

observer design, respectively for a single switching server and a specific network,

given predefined control policies. In Chapter 9, some problems related to control

and observer design of fluid flow switching servers are discussed.



Chapter 3

Periodic behavior of a two-queue server

In this chapter we study the periodic behavior of a single two-queue switching server

with constant arrivals at each queue. For systems with setup times, setup costs,

backlog or a combination of these, the periodic behavior is presented. To study

the periodic behavior of switching servers, first the most simple system is studied, a

two-queue switching server. The approach to derive the periodic behavior presented

in this chapter, is used as a stepping stone for the derivation of the periodic behav-

ior for a multi-queue switching server in Chapter 4 and for a network of switching

servers in Chapter 5. Also, the periodic behavior is used as reference for the tran-

sient behavior to converge towards, presented in Chapter 6.

In most work, analysis and optimization is done within a given family of policies,

such as clearing policies where a queue is served until it is empty, or threshold poli-

cies where a queue is served until a certain queue content has been reached. In the

current chapter, we derive a schedule that is periodic, and, other than that, we do not

restrict to any policy a priori. Recall that, in Section 2.1, the two-queue switching

server has been introduced. In Section 3.1 a detailed system description is pre-

sented. The optimal steady-state problem is addressed in Section 3.2, along with a

few performance criteria. Illustrations of periodic behavior are given in Section 3.3.

3.1 System description

We consider a system of two queues (N = 2) served by a single switching server, see,

for instance, Figure 3.1 which depicts a two-queue switching server. Fluid arrives at

each queue n = 1,2 with arrival rate λn. The content of queue n at time t is denoted

by xn(t). In case of backlog, denoting an accumulation over time of work waiting

to be done or orders to be fulfilled, the queue contents can be negative. Therefore,

the queue contents are divided into an inventory level x+n (t) = max(xn(t),0) and a

backlog level x−n (t) = min(xn(t),0). Hence, xn(t) = x+n (t) + x−n (t) and at each time

instance either the backlog or inventory level is zero, i.e., x+n (t)x
−
n (t) = 0, ∀t. For a

This chapter is partly based on [107].
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system without backlog, xn(t) = x+n (t), and the indicator + is often omitted. With

two queues in the system, the server is limited to only serve one queue at a time.

Otherwise, if both queues can be served simultaneously, no switches are required

and the queues are always empty. For systems with multiple queues, a server can

serve multiple queues, if allowed, as presented in Chapter 4. If the server serves

queue n, the service rate is given by rn ∈ {0,λn,μn}. In [35] it is shown that for

systems without backlog, under optimal policies, a server, attending a queue, does

not idle and serves at maximal rate, i.e., either at rate λn or μn.

x1
μ1

μ2

σ1,2 σ2,1

λ1

x2

λ2

Figure 3.1: Switching server with two queues.

Typically, switching service between different queues implies a setup process, either

a setup time σi, j for switching from queue i to queue j, setup costs si, j or a combi-

nation of these. A setup time can be, for instance, reserved for vehicles to leave the

intersection after the queue has received a red light (end of service), thereby pre-

venting collisions, or for a machine to adjust configurations or to do some cleaning.

In the latter case, also switching costs might be involved.

When the server attends a queue, two successive periods can be distinguished, an

idle period and a service period. A service (idle) period is defined as the uninter-

rupted interval during which the queue is (not) served. Note that during a setup no

queue content is processed, hence a setup is part of the idle period. The duration of

a service (idle) period for queue n is nonnegative and is denoted by τn (τ0
n ). The idle

period is divided into a part during which the server sets up to serve the queue and a

part in which the server idles. When serving a queue without backlog, it is optimal

to serve the queue at the highest currently possible rate, after which the server might

idle, as shown in [35]. Therefore, the service period is also divided into two parts,

τn =τμ
n + τλ

n ,

where the duration of serving queue n at maximal rate is indicated by τμ
n and the du-

ration of serving at arrival rate by τλ
n . The latter duration is referred to as slow-mode,

since capacity is wasted. However, as indicated in [36] and shown in Section 3.3,

using a slow-mode might lead to optimal behavior, since it enlarges the cycle time

and thereby reduces the fraction of time spent on setups, which also wastes capac-

ity. Also note that the order of service rates of a server that attends a queue is fixed.

First the server sets up to serve the queue and possibly idles, i.e., service at rate 0.
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Second, the server serves the queue at the maximal rate and finally it can serve the

queue the at arrival rate.

We consider periodic behavior and a single period, or cycle, consists of succes-

sive service of both queues. That is, each queue is served once in a cycle. The state
x of the system not only consists of queue levels x1 and x2, but also of the remain-
ing idle time x0 and group g ∈ G . A group is a set of queues that can be served

simultaneously and the set of all groups is denoted by G . Given that both queues

can not be served simultaneously, only two groups exist for the system considered

in this chapter, denoted by g1 = {1} and g2 = {2} (G = {{1},{2}}), indicating

that the server sets up to or serves queue 1 and queue 2, respectively. Note that in

a multi-queue system multiple queues can be served simultaneously. Therefore, not

always all groups are regarded in a cycle, see Chapter 4. The remaining idle time x0

indicates the required idle time before the start of serving a queue, and is composed

of the setup time and (possible) idle time. Then, the state of the system is defined

by

x(t) =
[
x0(t) x1(t) x2(t) g(t)

]� ∈ R
3 ×G . (3.1)

The corresponding continuous dynamics are given by

ẋ0(t) =

{
−1 if x0(t)> 0,

0 if x0(t) = 0,
(3.2)

ẋn(t) =λn(t)− rn(t), ∀n = 1,2, (3.3)

and a switch from group i to group j causes jumps in both the state variable (g := j)
and the remaining setup time (x0 := σi, j), where := represents ’is set to’.

The cycle time T is the time it takes to serve both queues in a cycle. The cycle

time consists of idle and service periods for each queue, i.e.,

T = τ0
1 + τμ

1 + τλ
1 + τ0

2 + τμ
2 + τλ

2 . (3.4)

where the duration of the idle times includes the setup time,

σ j,i ≤ τ0
i , i, j = 1,2, j 	= i.

Define the workload of queue n by ρn =
λn
μn

. An important notion for periodic be-

havior is stability. A system is called stable if all queue contents remain bounded.

For switching servers, cf. [21, 26, 86], this definition is commonly used. To achieve

a stable system, the system characteristics should meet the inflow, i.e., is it possible

to process all incoming fluid? For the system in Figure 3.1, all incoming fluid can

be processed if ρ1 + ρ2 ≤ 1. Note that the total workload for systems with setup
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times should be strictly less than 1. If the total workload equals 1, the server lacks

capacity to serve the fluid that has arrived during setups. In a stable system the

service periods must satisfy

λnT = μnτμ
n +λnτλ

n n = 1,2. (3.5)

Condition (3.5) also ensures that the queue content at the start of the cycle is iden-

tical to the queue content at the end of the cycle, and therefore ensures periodic
behavior. If (3.5) is not satisfied, the system behavior is transient, which is dis-

cussed in Chapter 6. Given the system description above, we present a method to

derive the optimal periodic behavior in the next section.

3.2 Optimal periodic behavior

Multiple performance criteria exists for evaluating the behavior of the system. For

the two-queue switching server with backlog, costs or cycle time are commonly

used criteria. These criteria are discussed below. Other criteria, for the system with-

out backlog, such as flow time or queue contents, are presented in Section 4.5. Note

that in this chapter, only periodic trajectories at which each queue is served once are

considered. Non-periodic trajectories or periodic trajectories in which the queues

are served multiple times, are not taken into account. However, these trajectories

can have lower costs, as illustrated by an example in Chapter 6 for a system with

backlog.

Depending on the system under consideration, some restrictions can be imposed.

As presented below, these constraints can originate from operational or safety is-

sues. Note that these constraints are not mandatory, but can be included if required.

Cycle time constraints can originate from, for instance, limiting the cycle time of

a manufacturing system to the operator’s available time or requiring a minimal cy-

cle time for safety reasons in traffic intersections. Therefore, minimal and maximal

cycle times, respectively T min and T max, can be taken into account,

T min ≤ T ≤ T max. (3.6a)

Furthermore, bounds on service periods, denoted by τmin
n and τmax

n , can be required,

e.g., minimal and maximal service (green) periods for traffic intersections. The

service period constraints are imposed via

τmin
n ≤ τn ≤ τmax

n n = 1,2. (3.6b)

In addition to the constraints on cycle and service periods, the queue lengths can be

bounded, e.g., finite queue capacity, and also a minimal queue level can be desired,

i.e.,

xmin
n ≤ xn(t)≤ xmax

n , n = 1,2. (3.6c)
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where xmin
n ≥ 0 indicates a minimal queue capacity and xmin

n < 0 indicates that the

amount of backlog is bounded (x−n (t) ≥ −xmin
n ). Note that for xmin

n ≥ 0 backlog in

queue n is not allowed. Also, additional constraints can be imposed regarding ser-

vice periods and/or queue contents.

For the system with (some of) the constraints (3.6), the performance criteria and

optimal solutions are discussed below.

3.2.1 Cycle time

For the two-queue switching server, the minimal cycle time T ∗ required to serve all

arrivals during a cycle, can be easily derived. Both idling of the server or wast-

ing capacity due to service at arrival rate elongate the cycle time and are therefore

not optimal, unless required to satisfy the constraints. We denote the total setup

time in a cycle by σ = σ1,2 +σ2,1. For the unconstrained system, i.e., without con-

straints (3.6), the minimal cycle time follows from T = ρ1T +ρ2T +σ . Required

lower bounds on service periods, given by (3.6b) or by (3.6c) via

τn ≥ T − xmax
n − xmin

n
λn

, n = 1,2,

also affect the minimal cycle time. In the remainder of this chapter we assume that

τmin
n is such that

τmin
n ≥ T − xmax

n − xmin
n

λn
, n = 1,2.

Moreover, if we also consider the lower bound on the cycle time (3.6a), the minimal

cycle time follows from

T ∗ = max

(
T min,

σ
1−ρ1 −ρ2

,
σ + τmin

1

1−ρ2
,
σ + τmin

2

1−ρ1

)
. (3.7)

Then, τ1 = ρ1T ∗ and τ2 = T ∗ −σ − τ1 are, not necessarily unique, service periods

of a steady-state trajectory with minimal cycle time.

Hence, the minimal cycle time is easily derived for the two-queue switching server.

However, for a system with multiple queues (Chapter 4) or a network of switching

servers (Chapter 5), the derivation is, if possible, much more complex. Therefore,

we present another approach to derive the minimal cycle time, which is also used in

the aforementioned chapters. We formulate the problem as a Linear Programming

(LP) problem, given by

min
τ0

1 ,τ
μ
1 ,τ

λ
1 ,τ

0
2 ,τ

μ
2 ,τ

λ
2

T,

s.t. τmin
n ≤ τn ≤ τmax

n , n = 1,2,

τ0
j ≥ σi, j, i, j = 1,2, i 	= j,
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T min ≤ T ≤ T max,

λnT = μnτμ
n +λnτλ

n , n = 1,2,

τn = τμ
n + τλ

n , n = 1,2,

T = τ0
1 + τμ

1 + τλ
1 + τ0

2 + τμ
2 + τλ

2 .

The minimal cycle time is, next to being a performance criterion, also used for

deriving the minimal time average costs, presented below.

3.2.2 Total costs

Total costs during a cycle is another performance criterion. This criterion is used, for

instance, in [45]. Costs can arise during a switch from serving queue i to j, i.e., setup

costs si, j. Also, costs can be related to the queue contents. We consider inventory

costs c+n , which are proportional with x+n (t), and backlog costs c−n , proportional

with x−n (t), which for instance arise when production is behind on the demand for

the system depicted in Figure 3.1. This results in the following total costs Jc for the

steady-state behavior

Jc =
∫ T

0

[
c+1 x+1 (τ)+ c−1 x−1 (τ)+ c+2 x+2 (τ)+ c−2 x−2 (τ)

]
dτ + s2,1 + s1,2. (3.8)

The trajectory minimizing Jc is the optimal steady-state behavior. Total inventory

and backlog of a queue during a cycle can be derived regarding the service periods,

due to the fluid flows and cyclic behavior. It can be seen in (3.8) that the setup costs

s do not influence the optimal steady-state trajectory. However, these costs do play

a role for the time average costs as performance indicator. Figure 3.2 presents the

contents of queue n during a single cycle. All idle and service periods are indicated,

together with the slope rates. We denote the minimal content of queue n by xn.

τn

τn τn

T

xn

xn

τj τj

λnλn -μn

0

τn τj
μ λ μ λ0 0

Figure 3.2: Evolution of xn during a cycle, including setup and service periods and rates of

increase/decrease.

Lemma 3.2.1. For optimal periodic behavior it holds that

max(xmin
n ,(λn −μn)τμ

n )≤ xn ≤ min(xmax
n +(λn −μn)τμ

n ,0), n = 1,2. (3.9)
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Proof. The proof is twofold. First, consider a trajectory where xn > 0 and xmin
n < 0,

depicted by the solid line in Figure 3.3a. Then, an alternative trajectory exists with

identical service periods and xn = 0, depicted by the intersected line. The alternative

trajectory has lower costs, i.e., it has xnT less total inventory, presented by the gray

area. If xmin
n > 0, for the same reasoning, xn = xmin

n is optimal. Second, consider

a trajectory where xn < (λn − μn)τ
μ
n , i.e., the maximal queue content is less than

zero (xn(t) < 0 for all t ∈ [0,T )). This trajectory is presented by the solid line in

Figure 3.3b. Then, an alternative trajectory exists with identical service periods and

xn = 0, depicted by the intersected line. The alternative trajectory has lower costs,

i.e., it has (xn +(μn − λn)τ
μ
n )T less total backlog, presented by the gray area. If

xmax
n < 0, for the same reasoning, xn = xmax

n +(μn −λn)τ
μ
n is optimal.

T

xn

xn
0

(a) Trajectory with xn > 0.

T

xn

xn

0

(b) xn <−λn(τ0
j + τμ

j + τλ
j + τ0

n ).

Figure 3.3: Graphical representation of Lemma 3.2.1.

Based on Lemma 3.2.1, the inventory and backlog can be easily derived for a steady-

state trajectory, presented below. Note that, for a transient trajectory, Lemma 3.2.1

does not automatically hold for each cycle. Therefore another, more complex, ap-

proach to derive the inventory and backlog levels is presented in Chapter 6. Total

inventory of queue n during a cycle is denoted by w+
n and total backlog by w−

n .

These values depend on the queue content constraints xmin
n and xmax

n , n = 1,2. If

xmin
n ≤ 0∧ xmax

n ≥ 0, the total inventory and backlog are given by

w+
n =

∫ T

0
x+n (τ)dτ =

1

2

λnμn

μn −λn
(T − τn)

2 + xnT +w−
n , (3.10a)

w−
n =

∫ T

0
x−n (τ)dτ =

x2
n

2
(

1

μn −λn
+

1

λn
)+ τλ

n xn. (3.10b)

If xmin
n > 0, and therefore also xmax

n > 0, it holds that

w+
n =

∫ T

0
x+n (τ)dτ =

1

2

λnμn

μn −λn
(T − τn)

2 + xnT, (3.10c)

w−
n = 0, (3.10d)

and for xmax
n < 0, the contents are given by

w+
n = 0, (3.10e)
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w−
n =

∫ T

0
x−n (τ)dτ =

1

2

λnμn

μn −λn
(T − τn)

2 +λnτλ
n (T − τn)− (xn +(μn −λn)τμ

n )T.

(3.10f)

It can be seen that the expressions for w+
n and w−

n in (3.10) are quadratic in the opti-

mization variables τn and xn. In case of a fixed service order and regarding the total

costs, the setup costs do not influence the optimal steady-state trajectory. However,

these costs do play a role for the time average costs as performance indicator.

Remark 3.2.2. Note that the inventory of queue n during a cycle with xmin
n > 0 can

also be derived with (3.10a) from xmin
n = 0, and therefore xn = 0 (Lemma 3.2.1),

adding constant inventory xmin
n T . Similarly, for xmax

n < 0, total backlog can be de-
rived by adding the constant backlog −xmax

n T to the backlog for the system with
xmax

n = 0 in (3.10a) (where xn = xmax
n − (μn −λn)τ

μ
n ).

For the system without backlog, the minimal total costs J∗c can be analytically de-

rived, which is presented in Section 3.2.3. For the system with backlog and for

systems with multiple queues or networks of switching servers, discussed in the re-

mainder of this thesis, the analytical derivation is, if possible, much more complex.

Hence, we formulate the problem of finding minimal total costs as a mathematical

optimization problem. Since the objective is a quadratic function of the optimization

variables which are subject to linear constraints on these variables, the optimization

problem is formulated as a Quadratic Programming (QP) problem, given by

J∗c = s1,2 + s2,1 + min
τ0

n ,τ
μ
n ,τλ

n ,xn

2

∑
n=1

(
c+n w+

n + c−n w−
n
)
, (3.11)

s.t. τmin
n ≤ τn ≤ τmax

n , n = 1,2, (3.12a)

xn ≤ xmax
n − (μn −λn)τμ

n , n = 1,2, (3.12b)

λnT = μnτμ
n +λnτλ

n , n = 1,2, (3.12c)

T = τ0
1 + τμ

1 + τλ
1 + τ0

2 + τμ
2 + τλ

2 , (3.12d)

where (3.12b) follows from (3.6c), i.e., the maximal queue content is given by xn +
(μn − λn)τ

μ
n , as can be seen in Figure 3.2. Note that the objective is quadratic,

as the total inventory and backlog levels (3.10) are a quadratic combination of the

optimization variables.

3.2.3 Time average costs

The time average costs are commonly used as performance indicator, also referred

to as time average weighted work in process for manufacturing systems or time
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average weighted queue lengths. In [19, 33, 37, 53, 73], this performance indicator

is also considered. The time average costs, given a fixed cycle time T , are given by

Jw =
1

T
Jc. (3.13)

For the system without backlog, the minimal time average costs, as well as the total

costs, can be analytically derived. First, consider the unconstrained system. We

assume, without loss of generality, that c1λ1 ≥ c2λ2. Recall that, under optimal

policies the server, once attending a queue, does not idle, i.e., τ0
n = σ j,n. The time

average costs, see (3.10) for xmin
n ≥ 0, are given by

Jw(T ) =
1

T

[
a1(T −ρ1T − γ([1−ρ1 −ρ2]T −σ))2+

+a2(T −ρ2T − (1− γ)([1−ρ1 −ρ2]T −σ))2 + s
]
+ cnxmin

n , (3.14a)

an =
cn

2

λnμn

μn −λn
, n = 1,2, (3.14b)

σ = σ1,2 +σ2,1 ≥ 0,

s = s1,2 + s2,1.

The minimal required service time is given by (ρ1 + ρ2)T . The remainder of the

service time, i.e., ([1−ρ1−ρ2]T −σ), is divided in (3.14a) over both queues using

γ ∈ [0,1], which denotes the fraction of remaining service allocated at queue 1. The

optimum of (3.14a) for T > T ∗ with respect to γ is given by

γ∗ = min

(
(a1ρ1 +a2ρ1 −a1)T +a2σ

(a1ρ1 +a2ρ1 +a1ρ2 −a2 −a1 +a2ρ2)T +a1σ +a2σ
,1

)
. (3.14c)

Substituting (3.14b) into (3.14c) gives

γ∗ = min

⎛
⎝ [c1λ1(1−ρ2)− c2λ2ρ1]T − c2λ2σ[

c1λ1
1−ρ2

1−ρ1
+ c2λ2

]
(1−ρ1 −ρ2)T − c1λ1σ 1−ρ2

1−ρ1
− c2λ2σ

,1

⎞
⎠ .

(3.14d)

Note that γ∗ > 0 for T > T ∗, as the denominator of (3.14d) is strictly positive if

T > T ∗ and the nominator is zero if both T = T ∗ and c1λ = c2λ and strictly positive

otherwise. From (3.14d), it can be found that all additional service time is allocated

at serving the first queue, i.e., γ∗ = 1, if

T ≤ c1λ1σ
c2λ2(1−ρ1)− c1λ1ρ2

∨ c1λ1ρ2 ≥ c2λ2(1−ρ1). (3.14e)

Hence, for c1λ1ρ2 ≥ c2λ2(1−ρ1), additional service time (slow-mode) at queue 2

is never optimal. We first present the optimization problem if (3.14e) is satisfied.
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Given (3.14e), i.e., γ∗ = 1, and hence all additional service is allocated at queue 1,

the time average costs are given by

Jw(T ) =
a1(σ +ρ2T )2 +a2(T −ρ2T )2 + s

T
+ cnxmin

n ,

= (a1ρ2
2 +a2(1−ρ2)

2)T +2a1σρ2 + cnxmin
n +

a1σ2 + s
T

, (3.14f)

and the optimal cycle time T opt can be found by minimizing (3.14f) for T ≥ T ∗,

which yields

T opt =

√[
a1ρ2

2 +a2(1−ρ2)2
]
(s+a1σ2)

a1ρ2
2 +a2(1−ρ2)2

, (3.14g)

and J∗w = Jw(T opt). Note that (3.14f) is a convex function. Next, the effect of the

constraints on this system are regarded. By adding bounds on the cycle time (3.6a),

the feasible area changes, i.e., T ∈ [T ∗,T max]. Capacity constraints, i.e., bounds on

service times and bounds on queue lengths, both limit the service time duration, as

discussed in Section 3.2.1. For the system satisfying (3.14e) together with minimal

service period constraints, the time average costs are given by (3.14f) if τmin
2 ≤

ρ2T ∗, i.e., the constraint τ2 ≥ τmin
2 is inactive. Otherwise

Jw(T ) =
a1(σ + τmin

2 )2 +a2(T − τmin
2 )2 + s

T
+ cnxmin

n , if T <
τmin

2

ρ2
, (3.14h)

which exceeds the time average costs given by (3.14f), as additional service time is

allocated at queue 2. Note that the lower bound on the service period of queue 1 can

only affect the minimal cycle time, as all extra service time is allocated at queue 1.

Moreover, an upper bound on the service duration bounds the cycle time via

T ≤ τmax
n
ρn

, n = 1,2. (3.14i)

If both (3.14e) and (3.14i) are satisfied, the maximal service time constraints only

affect Jw if the constraint is active for queue 1, i.e, if τmax
1 ≤ T −σ −ρ2T , as for

these cycle times the duration of the slow-mode in queue 1 is limited. Then, the

time averaged costs are given by

Jw(T ) =
a1(T − τmax

1 )2 +a2(σ + τmax
1 )2 + s

T
+ cnxmin

n , if T >
τmax

1 +σ
1−ρ2

,

(3.14j)

which also exceeds the time averaged costs for the unconstrained system for sim-

ilar reasoning. Then, the optimal time averaged costs J∗w for the system satisfy-

ing (3.14e) is the minimum of the following optimization problems

minimum of (3.14h) for max
(

T ∗,T min
)
≤ T <

τmin
2

ρ2
,
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minimum of (3.14f) for max

(
T ∗,T min,

τmin
2

ρ2

)
≤ T ≤ min

(
T max,

τmax
1 −σ
1−ρ2

)
,

minimum of (3.14j) for
τmax

1 −σ
1−ρ2

< T ≤ T max,

which can be easily derived. As an example, consider a heterogenous (non-symmetric)

system without backlog, with parameters

λ1 = 2, λ2 = 1,

μ1 = 8, μ2 = 4,

σ2,1 = 3, σ1,2 = 7, (3.15)

c+1 = 8, c+2 = 1,

T min = 10, T max = 50.

A graphical representation of Jw(T ) for the system with parameters (3.15) (satisfy-

ing (3.14e)) is presented in Figure 3.4. The solid line presents the time average costs

for the unconstrained system. The costs for the system with τmin
2 = 10 is depicted

by the dashed line and the costs for the system with τmax
1 = 40 is depicted by the

dotted line. Note that the optimum for the unconstrained system and system with

the maximal service period constraint on queue 1 is located at T opt = 32. If the

minimal service period for queue 2 is required, the optimum is located at T = 40.

20 30 40 50 60 70 80 90 100
100

150

200

250

T

J w

unconstrained

τmin
2 = 10

τmax
1 = 40

Figure 3.4: Time average costs for the system with parameters (3.15).

If the additional service time is allocated at service of both queues, i.e., (3.14e) does

not hold, the time average costs are given by substituting (3.14d) into (3.14a), which

yields

Jw(T ) =
c1λ1c2λ2(T +σ)2

2[c1λ1(1−ρ2)+ c2λ2(1−ρ1)]T
+

s
T
+ cnxmin

n . (3.16a)

Furthermore, for the system with minimal and maximal service time constraints, the
costs are given by

Jw(T ) =
a1(T − τmax

1 )2 +a2(σ + τmax
1 )2 + s

T
+ cnxmin

n , if T >
τmax

1 + γ∗σ
ρ1 + γ∗(1−ρ1 −ρ2)

,

(3.16b)
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Jw(T ) =
a1(σ + τmax

2 )2 +a2(T − τmax
2 )2 + s

T
+ cnxmin

n , if T >
τmax

2 +(1− γ∗)σ
ρ2 +(1− γ∗)(1−ρ1 −ρ2)

,

(3.16c)

Jw(T ) =
a1(T − τmin

1 )2 +a2(σ + τmin
1 )2 + s

T
+ cnxmin

n , if T <
τmin

1 + γ∗σ
ρ1 + γ∗(1−ρ1 −ρ2)

,

(3.16d)

Jw(T ) =
a1(σ + τmin

2 )2 +a2(T − τmin
2 )2 + s

T
+ cnxmin

n , if T <
τmin

2 +(1− γ∗)σ
ρ2 +(1− γ∗)(1−ρ1 −ρ2)

,

(3.16e)

Then, similar as presented above, the optimum is given by the minimum of all opti-

mization results within the feasible cycle time range. If the objective is to optimize

the total costs, a similar approach can be used where Jc = T Jw.

To derive the optimal periodic behavior using QP, e.g., for the system with backlog

or for systems with multiple queues, the cycle time T is required to be a constant

value. Otherwise, as the cycle time depends on service and idle periods, the objec-

tive function (3.13) is non-linear. Then, the solution Jw(T ) with minimal costs for

cycle times within the range

T ∗ ≤ T ≤ min

(
T max,

τmax
n
ρn

)
, n = 1,2,

renders the optimal steady-state costs J∗w, which can be easily found.

The optimal trajectory, within the constraints, is a trade-off between loss of ca-

pacity due to setups or slow-modes and the average setup costs. Elongating the

cycle time, by including a slow-mode or creating backlog, results in less switches

over time where capacity is lost due to setups and thereby lowers the average setup

costs. For a system without backlog, a general steady-state trajectory is depicted in

Figure 3.5. The trajectory consists of six characteristic points, labeled in alphabet-

ical order A−F . The optimal trajectory for systems without constraints contains

at most one slow-mode, i.e., F = A or C = D. Furthermore, if no setup periods are

considered, D = E and A = B. Optimal policies consist of serving queue i until the

other queue j reaches a threshold. Therefore, the trajectory can include slow-modes

at both queues. A special case of this model, with μ1 = μ2 and c1 = c2 has been

studied in [19, 33, 49, 53, 73] and it is shown that the optimal policy is a clearing
policy, i.e., the server empties a queue and then switches to serve the other queue.

3.3 Illustrations

Using the method described above, we illustrate some optimal steady-state trajecto-

ries for the two-queue switching server. We consider again the system with param-

eters (3.15). Note that, at first, backlog is not allowed for this system. From (3.7),

we find the minimal cycle time T ∗ = 20. The corresponding periodic behavior with
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A

B
C
D

E

x2

x1 F

Figure 3.5: Optimal steady-state trajectory, with characteristic points A−F .

minimal costs is presented in Figure 3.6. Here, in the figure on the left, the evolu-

tion of the queue contents during a cycle are presented. In the figure on the right,

the periodic trajectory, i.e., x1 versus x2, is presented. It can be seen that no slow-

mode occurs in the trajectory, as expected by regarding the minimal cycle time. This

trajectory also yields the optimal total costs J∗c = 2550 (and Jw = 127.5).
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(a) Queue contents versus time.
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(b) Optimal trajectory.

Figure 3.6: Optimal queue contents over time (left) and periodic trajectory (right) during a

cycle for the system with parameters (3.15) and T = T ∗ = 20.

For the time average costs as performance indicator, the trajectory with minimal cy-

cle time does not result in the optimal trajectory. The steady-state costs versus the

(feasible) range of cycle times is depicted in Figure 3.7a. The minimum is located

at T = 32, and the corresponding trajectory, depicted in Figure 3.7b, is the optimal

steady-state trajectory. The optimal costs are J∗w = 120 with service periods τμ
1 = 6,

τλ
1 = 8, τμ

2 = 6 and τλ
2 = 0.

Next, the effects of setup costs, backlog and the constraints are presented in a step-

wise manner. Starting from the system with parameters (3.15), without setup costs,

without constraints on service periods and no backlog, we add parameters and re-

strictions step by step and analyze the periodic behavior optimizing the time aver-

aged costs. Note that the previous constraints are preserved. Adding setup costs

s2,1 = 300 and s1,2 = 200 to the system results in the optimal trajectory depicted

in Figure 3.8a. The optimal cycle time, costs, service periods and minimal queue

contents for each trajectory are presented in Table 3.1. Compared to the trajectory

depicted in 3.7b, it can be seen that the addition of setup costs elongates the cycle

time and increases the duration of the slow-mode. This is also expected, it is bene-
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Figure 3.7: Time average costs versus cycle time (left) and optimal trajectory for T = 32

(right) for the system with parameters (3.15).

ficial to enlarge the cycle time as the costs of switching increase.

Allowing backlog, with backlog costs c−1 = 50 and c−2 = 3, shifts the optimal tra-

jectory downwards and enlarges the cycle time, see Figure 3.8b. For queue 2, the

inventory and backlog costs are equal. Note that no backlog occurs at queue 1,

which is optimal due to the long slow-mode and the high costs of backlog. Next,

the service period of queue 1 is restricted (τmax
1 = 15), resulting in the optimal tra-

jectory depicted in Figure 3.8c. The service period of queue 1 for this trajectory is

the maximal service period, see Table 3.1. Adding upper bounds on the queue con-

tents, xmax
1 = 35 and xmax

2 = 16, also reduces the cycle time, see Figure 3.8d. Also,

both upper bounds are reached in the trajectory. In Figure 3.8e, the optimal trajec-

tory of the system with a maximal cycle time T max = 25 is depicted. This trajectory

has a cycle time of 20 time units, the minimal required cycle time (no slow-modes),

and also queue 1 has backlog.

For systems that require a minimal amount of products in the queue, or a maxi-

mal allowed amount of backlog, we add minimal queue constraints to the model.

In Figure 3.8f, the optimal trajectory is depicted where the content of queue 1 is at

least 2 and the backlog of queue 2 can not exceed 2, i.e., xmin
1 = 2 and xmin

2 = −2.

Unlike the previous trajectory, the optimal trajectory is not the trajectory with the

minimal cycle time and queue 2 reaches both boundaries. Finally, in Figure 3.8g

the optimal steady-state trajectory for this system without setup periods is depicted.

Due to the setup costs, this trajectory is not the fixed point (2,0). The optimal cycle

time is 20 time units, which is not the minimal cycle time for this system.
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Fig. T J∗w τμ
1 τλ

1 τμ
2 τλ

2 x1 x2

3.7b 32 120 6 8 8 0 0 0

3.8a 38,78 134,13 6,57 12,52 9,70 0 0 0

3.8b 40,65 130,41 6,72 13,77 10,16 0 0 -7,62

3.8c 33,33 131,93 6,11 8,89 8,33 0 0 -6,25

3.8d 30 134,06 5,83 6,67 7,5 0 0 -6,5

3.8e 20 134,07 5 0 5 0 -4,14 -3,75

3.8f 24 158,06 5,33 2,67 6 0 2 -2

3.8g 20 60,37 1,67 13,33 5 0 2 -2

Table 3.1: Optimal cycle times, costs, service periods and minimal queue contents for the

trajectories depicted in Figures 3.7-9.5.

3.4 Summary

In this chapter, the periodic behavior for a two-queue switching server has been in-

vestigated. Optimal periodic behavior, where each queue is served once in a cycle,

is derived using LP or QP, depending on the performance criteria. The problems

regarding cycle time, total costs or time average costs as criterion are presented. For

the time average costs, the optimization problem is formulated as a QP, given a fixed

cycle time. Then, the problem is solved over a range of cycle times, and the best

solution renders the optimal periodic behavior. The effect of setup costs, backlog,

bounds on cycle times, bounds on service periods and bounds on queue levels on

the periodic behavior is presented via illustrations.

In Chapter 4, we elaborate on these results and investigate the periodic behavior

for multi-queue switching servers. Here, the order of serving queues is taken into

account and it is possible for a server to serve multiple queues simultaneously. In

addition, in Chapter 5, the periodic behavior of a network of switching servers is

investigated. The steady-state trajectories derived in this chapter are also used in

Chapter 6 as reference for the transient behavior problem, i.e., returning the system

to the periodic behavior.
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(g) No setup periods.

Figure 3.8: Optimal steady-state trajectories for the system with parameters (3.15), mini-

mizing the time average costs. The system is subsequently extended with setup costs (a),

backlog (b), maximal service period (c), maximal queue contents (d), maximal cycle time

(e) and minimal queue contents (f). In (g), no setup periods are considered.



Chapter 4

Periodic behavior of a multi-queue switching
server

Two-queue switching servers have been studied in Chapter 3. Periodical behavior of

systems with setup periods, setup costs, backlog and bounds on cycle times, service

periods and queue lengths has been presented. Based on the performance criterion,

the optimal periodic behavior is derived using LP or QP techniques.

This chapter proceeds with the results in Chapter 3 and studies a single switching

server that serves multiple (N > 2) queues. If the server can serve more than two

queues, the complexity of the optimal behavior increases drastically. For the two-

queue server, the order in which the queues are served is fixed, i.e., serve queue

1, queue 2, queue 1, queue 2, etc. For the three-queue server, the order in which

the queues are served is not given a priori. If, for instance, the server has finished

serving queue 1, it can serve either queue 2 or queue 3. Also, serving a queue more

than once in a cycle can be a good option, especially when the load of the queues is

unbalanced.

Moreover, the server considered in this chapter can serve multiple queues simul-

taneously. Each queue is served at a queue-dependent rate, which is independent of

the number of queues being served. These kind of models may arise when studying,

e.g., multi-class tandem queues, multi-server polling systems with overtaking con-

straints and signalized traffic intersections. In addition to the system studied in [66],

where optimal control of a multiclass fluid flow network for which several queues

can be served simultaneously is presented, we include external arrival rates in each

queue and consider non-negligible setup periods.

The following class of queueing networks can be represented by a multi-queue sin-

gle switching server. If, in a queueing network, fluid arrives at a constant rate at all

queues, and switching between service of queues might take time, the network can

be represented by a multi-queue switching server that can serve multiple queues si-

multaneously. Examples of such networks are presented in Figure 4.1. The network

This chapter is partly based on [104, 108].

33
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on the left is a 4-queue two-server polling system with physical constraints such

that the servers can not serve consecutive queues and the servers can not overtake

each other, e.g., think of quay cranes at a container terminal serving vessels. In

the middle, a traffic intersection with four flows is presented, for which conflicting

flows can not be served simultaneously. The network on the right presents a four

queue tandem network where each of the three servers can serve two queues and

only one queue can be served at a time. Each of these networks can be modeled

as a single switching server with four queues that can serve several queues simul-

taneously, with a fixed service rate for each queue, i.e., capacity is not shared over

multiple queues.

2

3

1

4

1

2

3

4

1

2

3

4

Figure 4.1: Three examples of multiclass queueing networks which can be represented

by a multi-queue switching server: Two-server polling network (left), traffic intersection

(middle) and multiclass queueing tandem network (right).

In the remainder of this chapter, for ease of presentation, we focus on signalized

traffic intersections. Note that the presentation can also be in a general context, see

Section 2.1 for more details on the translation between traffic intersections and a

general system. By considering traffic intersections, backlog in the system is omit-

ted, as the content of vehicle lanes are non-negative. Backlog can be included, with

a similar, but tedious, approach as presented in Section 3.2.

The remainder of this chapter is organized as follows: An introduction to the schedul-

ing problem of signalized traffic intersections, along with a small description of the

approach is presented in Section 4.1. Section 4.2 introduces the model and problem,

along with an illustrative example that is used throughout the chapter. Feasible se-

quence generation, step 1, is addressed in Section 4.4. The performance criteria and

optimization of a sequence, step 2, is presented in Section 4.5. Section 4.6 presents

illustrations of a five-flow traffic intersection and a 3-queue switching server. A real-

life example is presented in Section 4.7 and a summary is provided in Section 4.8.

4.1 Signalized traffic intersections

The control problem for signalized traffic intersections consists of determining the

optimal periodic behavior or signal timing plan, i.e., scheduling the green and red

periods of each flow during one cycle at the intersection. This problem is obvi-
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ously important as optimal control can, for instance, improve mobility, decrease

congestion and lower emissions harmful for the environment. In this chapter we

decompose the pretimed traffic control problem into two steps that can be consid-

ered consecutively. First, all feasible sequences are generated. Second, for each

sequence the optimal green periods are derived.

The first step, generating all feasible sequences, consists of three subproblems. First

subproblem is staging of flows, i.e., which flows receive a green light, sometimes

also referred to as right of way, simultaneously? For complex intersections involv-

ing a large number of flows, the specification of the number and composition of

groups is a nontrivial task, that can have a major impact on intersection capacity

and efficiency. Unlike [54, 90, 102, 74] we take all possible groups into account,

i.e., not only the maximal groups, but also all subgroups of these groups. In [41, 56]

also subgroups are taken into account, though the resulting sequences are restricted

to a single green period for each flow only.

The second subproblem consists of combining the groups. Which groups can be

combined such that all flows receive a green period at least once? For computa-

tional reasons, we restrict ourselves to a reasonable maximal number of groups per

combination of groups. However, under this restriction, we evaluate all possible

combinations of groups. Hence, also combinations are considered with the same

flows appearing in multiple groups. Moreover, the same group can appear multiple

times in a combination.

For each combination of groups, the groups can be ordered in multiple ways, re-

sulting in different sequences (or cycles) with possibly different performance. This

renders the third subproblem. In a sequence it is possible that some flows are served

more often than others, i.e., multiple green periods are allowed for some flows in a

cycle. This has, to the best of our knowledge, not been addressed before and results

show that this can have significant impact on performance.

In the second step, the optimal periodic behavior (or cycle) is derived for each

sequence. By considering a fixed cycle time, the objective function is linear or

quadratic (depending on the criteria) with respect to the green periods and con-

straints are linear. Hence, we use linear or quadratic programming techniques to

optimize the performance, and repeat this over a range of cycle times. A variety of

performance indicators or criteria exists, see for instance [32]. We consider mini-

mizing the weighted average amount at vehicles on the intersection, weighted av-

erage waiting time at the intersection, maximal queue length, cycle time or a linear

combination of these. Furthermore, unlike for instance [46], we derive a schedule

that is periodic, and, other than that, we do not restrict to any policy a priori.

Computation of all sequences, as required in the above mentioned first step, is ex-

pensive. Instead of an exhaustive approach we use a recursive approach that elim-

inates unfeasible sequences as soon as possible by employing the constraints. To

illustrate that this method is computationally affordable for real-life intersections

we present the derivation of the optimal periodic behavior of the largest real-life
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intersection in Eindhoven, the Netherlands.

The contribution of this chapter is two-fold. First, we present a method to generate

all feasible sequences of groups, including sequences with multiple green periods

for flows, and which is still computationally affordable for large intersections. Sec-

ond, we formulate the timing optimization of a sequence as a linear or quadratic

programming problem. This formulation allows considerable flexibility in the con-

straints and performance criteria.

4.2 System description

A traffic intersection is modeled as a multi-queue single switching server that serves

a number of queues in a fixed cyclic order. Each flow of vehicles n = {1,2, ...,N}
corresponds to a queue at the intersection. The set of all flows is denoted by N .

The queue content of flow n at time t is denoted by xn(t), which is the number (or

amount) of vehicles behind the stop line at the intersection, and is bounded from

above:

xn(t)≤ xmax
n , n = 1,2, ...,N. (4.1)

If flow n receives a red light, the queue content xn increases linearly with rate λn.

While receiving a green light, the queue content depletes with rate μn−λn, i.e., ser-

vice at rate μn, if non-empty (xn > 0) and remains empty otherwise (xn = 0). Note

that in the latter case, vehicles leave the intersection at the arrival rate λn (slow-

mode).

Switching from a flow i to a flow j and i 	= j implies a setup period, denoted by

σi, j ≥ 0, also referred to as clearance time, lost time or intergreen time. This period

is reserved for vehicles to leave the intersection after the flow has received a red

light, preventing collisions. Note that σi, j and σ j,i need not be identical: Switching

to and from a flow does not imply that the same setup periods are needed, e.g., due

to the layout of the intersection. Furthermore, switching between non-conflicting

flows does not require a setup period. An illustrative example of a 5-flow traffic

intersection is presented in Figure 4.2. The intersection consists of three vehicle

flows (flows 1, 3 and 5) and two pedestrian/bicycle flows (flows 2 and 4).

4.2.1 Service schedule

The traffic lights on the intersection operate according to a service schedule. In a

schedule, the flows are divided into groups. A group g is a set of flows, that can

receive a green light simultaneously. For instance, flows 1 and 5 or flows 2 and

4 for the intersection depicted in Figure 4.2 do not conflict and these flows can

therefore receive green lights simultaneously. Corresponding groups are {1,5} or

{2,4}, respectively. The set of all groups is denoted by G . The setup period to
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Figure 4.2: Five-flow traffic intersection.

switch from a group g ∈ G to a flow n is the maximal setup period between all these

flows, denoted by:

σg,n = max
i∈g

σi,n.

A green (red) period is defined as the uninterrupted interval during which the signal

is green (red), i.e., the interval between the moment that the signal is switched to

green (red) and the moment that the signal is switched to red (green). The duration

of a green (red) period for flow n in group gi ∈ s is nonnegative and is labeled green

(red) period. The duration of a green period is denoted by τi,n. The amber/orange

signal is not considered. This could either be modeled as a part of a green signal, a

part of a red signal or a combination of both signals depending on the assumptions:

If during the first part of an amber signal traffic still departs and during the remain-

der of the amber signal traffic does not depart, the first part of the amber signal can

be considered as part of a green signal and the remainder as part of a red signal.

A green period starts after a red period, it can be spread over multiple consecutive

groups and it ends before another red period.

A sequence s consists of an ordered list of multiple groups, e.g., (g1,g2,g3) where

gi ∈ G , and it is a single repetition of the service operations at the network, some-

times referred to as signal or service cycle. The groups gi are numbered in the order

they occur in the sequence, i.e., g2 refers to the second group in a sequence. Note

that we focus on periodic schedules. The time it takes to serve all groups in a se-

quence is called the cycle time, denoted by T .

Determining an optimal sequence might be too difficult, if this sequence exists at all,

i.e., enlarging the sequences might result in ever increasing performance for partic-

ular situations. Therefore, we restrict the length and composition of the sequences.

Within these restrictions the optimal periodic behavior is determined. First, for op-

erational and computational reasons, the maximal number of groups in a sequence

s has an upper bound given by

|s| ≤ G. (4.2)

Second, as a flow can receive a green signal in multiple groups and can have multiple
green periods within a single sequence, let Θ denote the maximal number of green
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periods received by a specific flow during a cycle. Note that the maximal number

of green periods a flow can receive, which are interrupted by red periods, is at most

half of the number of groups. Receiving a green light at the first and last group of a

period also counts as a single green period, as the sequence is repeated. Hence,

Θ ≤
⌊

G
2

⌋
, (4.3)

where 
r� denotes the largest integer smaller than r ∈ R. Moreover, the maximal

number of green periods that a flow receives during one cycle for sequence s is

denoted by θs, therefore

θs ≤ Θ. (4.4)

A sequence is labeled feasible if all queues are served at least once and satisfies the

constraints (4.2) and (4.4). The set of feasible sequences is denoted by S . Stability

of a sequence is addressed in Section 4.3. For example, a feasible sequence for the

intersection depicted in Figure 4.2, also used throughout the chapter, is given by

ŝ = ({1,2,5},{1,5},{2,4},{1,5},{3,5}).
Note that sequence ŝ consists of five groups (|ŝ|= 5, where |ŝ| denotes the sequence

length), some of which identical (g2 = g4 = {1,5}). Also, some queues are served

more than others.

For operational purposes, it is desired to keep Θ low, since one can imagine that

drivers could get irritated when another queue is served multiple times. However,

allowing multiple green periods in a sequence, i.e., Θ > 1, can result in much better

performance, as shown via examples in Sections 4.6–4.7. For sequence s, we define

the set of numbers of the groups in which flow n is served by

Ps,n = {i ∈ {1,2, ..., |s|}|n ∈ gi}.
Let us consider sequence ŝ for the system depicted in Figure 4.2. Then, for example,

Pŝ,1 = {1,2,4} and Pŝ,2 = {3}.

Furthermore, we define αi as the total service period required by group gi, i.e.,

time to set up and serve all queues contained in group gi. Note that the service pe-

riod of a group includes a service period of a flow that belongs to that group and the

corresponding setup period, i.e.,

αi = σgi−1,n + τi,n ∀n ∈ gi,

where gi−1 denotes the group before gi, i.e., gi−1 = g1+(i−2) mod |s|. An example of

a service schedule for sequence ŝ is presented in Figure 4.3. For all flows, the red

and green periods are depicted during a single cycle, represented by the dark gray

and light gray areas, respectively. It can be seen that queue 5 receives a green signal

in four consecutive groups (4-5-1-2), hence no setups are required for this flow at

the start of the first, second and fifth group. Also, queues 1 and 2 receive two green
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Figure 4.3: Service schedule example for sequence ŝ for the system in Figure 4.2.

periods during a cycle.

Note that the start of a green period for a flow in a group depends on the duration

of the setup period. Therefore, the starting times of green signals of the flows in a

group can be different. However, the green periods do end at the same time, for all

flows in the group, provided that the flow is not contained in the successive group,

e.g., at the end of group g3 = {2,4} in the example.

For operational or safety purposes, minimal or maximal duration of green periods

can be required, denoted by τmin
n and τmax

n , respectively. As the green period of a

flow is not necessarily restricted to a single group, we define by Ps,n the set of max-

imal sets of consecutive groups in which flow n receives a green signal in sequence

s. Formally, for a sequence s =
(
g1,g2, ...,g|s|

)
, we define

Ps,n = { /0 	= g ⊆ Ps,n|∃!i ∈ g : 1+(i) mod |s| /∈ Ps,n∧
∧∃! j ∈ g : 1+( j−2) mod |s| /∈ Ps,n}.

Note that the maximal number of green periods θs that a flow receives during one

cycle for sequence s can be derived from Ps,n, i.e.,

θs = max
n=1,2,...,N

|Ps,n|.

The green period constraints for sequence s are imposed via

τmin
n ≤ ∑

i∈p
τi,n ≤ τmax

n ∀p ∈ Ps,n, n = 1,2, ...,N. (4.5)

For example, consider flow 1 in sequence ŝ for the example depicted in Figure 4.2:

Pŝ,1 = {1,2,4} ,
Pŝ,1 = {{1,2},{4}} ,

which yields the following green period restrictions:

τmin
1 ≤ τ1,1 + τ2,1 ≤ τmax

1 ,
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τmin
1 ≤ τ4,1 ≤ τmax

1 .

Also for operational or safety reasons, the cycle time can be restricted, similar to

the two-queue system presented in Chapter 3. For instance, minimal and maximal

cycle times, respectively T min and T max, have to be taken into account

T min ≤ T ≤ T max. (4.6)

4.3 Stability

An important aspect for control of systems is stability. Given arrival and departure

rates, is it possible for the intersection to serve all incoming vehicles? The system

is called stable if there exists a periodic schedule for which all incoming vehicles

during a cycle can be served, i.e., no accumulation of fluid in queues over multiple

cycles. For multi-queue switching servers, where a server can serve only one queue

at a time (|gi|= 1, i = 1,2, ..., |s|), stability is ensured if

N

∑
n=1

ρn < 1, (4.7)

with load ρn = λn
μn

. A system with two vehicle flows, or two queues as discussed

in Chapter 3, is stable if the total workload ρ1 +ρ2 < 1. This is obvious, as both

flows can not receive a green period simultaneously. Note that the total workload is

strictly smaller than 1, since this results in additional capacity to serve vehicles that

have arrived during the setup periods. Note that condition (4.7) is sequence inde-
pendent, i.e., if this condition is satisfied there exists a sequence (and green periods)

for which the system is stable.

The traffic intersections considered in this chapter are able to give a green signal

to multiple flows simultaneously, i.e., |gi| ≥ 1, i = 1,2, ..., |s|, rendering stability

condition (4.7) invalid. In [20], a stability condition is proven for a combination of

groups that allows green signals to multiple flows simultaneously, given that each

flow receives a single green signal during a cycle (Θ = 1). This condition is given

by
|s|
∑
i=1

max
n∈gi

ρn < 1, Θ = 1, (4.8)

and states that the sum of the maximal ρ’s of a group should be less than one, which

is quite intuitive. This condition is sequence dependent, i.e., it tells whether a spe-

cific combination of groups, and therefore a specific set of sequences, can be stable

or not. To find a stable sequence, it might be required to check whether there is a

combination of groups for which condition (4.16) holds for all possible combina-

tions of groups.
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A method to find the stability criteria for a traffic intersection that is sequence in-

dependent is presented below. For an isolated intersection, criteria are derived that

ensure existence of a stable schedule. These criteria are necessary and sufficient in

the absence of constraints on cycle and green periods, respectively (4.6) and (4.5).

Including these constraints renders the criteria necessary.

The flows and conflicts at an intersection can be represented by an undirected graph

Γ = (N ,E ), consisting of a set of vertices N together with a set of edges E .

The vertices represent the flows and the edges indicate conflicting flows, i.e., if

flows i and j conflict and can not receive a green signal simultaneously, there ex-

ists an edge (i, j) or ( j, i) between vertices i and j in the graph. For illustrating

the stability conditions, an intersection is considered with three vehicle flows and

two pedestrian flows, see Figure 4.4a. This specific intersection is presented, as it

is the smallest example which requires, next to the usual stability conditions, an

extra stability condition, which is discussed below. The corresponding undirected

graph of the intersection is presented in Figure 4.4b, with N = {1,2,3,4,5} and

E = {(1,2),(2,3),(3,4),(4,5),(5,1)}.

1

5

2

4

3

(a) Intersection layout.
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2
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(b) Intersection graph.

Figure 4.4: Layout (left) and graph (right) of an intersection with three vehicle lanes (1,3

and 5) and two pedestrian lanes (2 and 4).

Before the stability conditions are derived, let us first define allowed groups:

Definition 4.3.1. A group g ⊆ N is called an allowed group when g is an indepen-
dent set for graph Γ, i.e., for every two vertices in g there is no edge connecting the
two.

Recall that G denotes the set of allowed groups, which is thus the same as the set of

all independent sets of graph Γ. For the graph in Figure 4.4b, we have

G = {{1,3},{1,4},{2,4},{2,5},{3,5},{1},{2},{3},{4},{5}, /0}. (4.9)

For a set Q of groups, a maximal group is defined as follows:

Definition 4.3.2. A group of Q is a maximal group of Q if it is not properly contained
in another group of Q.
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The set of maximal groups of set Q is denoted by Qmax. The maximal allowed

groups for example (4.9) are given by

G max = {{1,3},{1,4},{2,4},{2,5},{3,5}}.

Definition 4.3.3. A clique is a graph in which every vertex is connected to every
other vertex in the graph. Let C denote the set of all cliques in graph Γ.

A clique of graph Γ indicates conflicting flows of the intersection depicted in Fig-

ure 4.4a. For the graph in Figure 4.4b the set of all cliques is given by

C = {{1,2},{2,3},{3,4},{4,5},{1,5},{1},{2},{3},{4},{5}, /0}. (4.10)

Clearly the sum of all ρi’s in a clique should be less than one, as these flows can

not receive a green signal simultaneously. This is a necessary condition for stability

characterized by the graph Γ, given by

∑
i∈C

ρi < 1, ∀C ∈ C max. (4.11)

Only the set of maximal cliques are considered, since the conditions for cliques that

are not maximal are redundant, e.g., for cliques {i, j} and {i} it holds that ρi+ρ j < 1

and ρi < 1, where the latter condition is incorporated in the first condition and can

therefore be omitted. Condition (4.11) for the system in Figure 4.4a results in

ρ1 +ρ2 < 1, (4.12a)

ρ3 +ρ4 < 1, (4.12b)

ρ1 +ρ5 < 1, (4.12c)

ρ2 +ρ3 < 1, (4.12d)

ρ4 +ρ5 < 1. (4.12e)

However, condition (4.11) is not (always) sufficient. For stability of the system in

Figure 4.4a, in addition to the conditions (4.12a)-(4.12e), it is also required that

1

2
(ρ1 +ρ2 +ρ3 +ρ4 +ρ5)< 1. (4.12f)

This last requirement, which is not intuitively derived, follows from the stability

problem discussed below. Without loss of generality, we assume that T = 1. Then,

the fraction of time spent on serving group gi during a cycle is given by αi. For ease

of reading, we abuse the notation a little bit, i.e., α{i, j} = αk with gk = {i, j}. For

stability, the load of flow i can not exceed the total fraction of time spent serving

flow i. For example,

ρ1 ≤ α{1,3}+α{1,4}+α{1} (4.13)

is required for stability of flow 1 for the system in Figure 4.4a. The fraction of

time spent serving queue 1 only, i.e., the third term on the right hand side of (4.11),
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can, without loss of performance, be added to the fractions of time spent serving

queue 1 in the maximal groups, i.e., the first and second term on the right hand side

of (4.13). This holds for all non-maximal groups. Therefore, only maximal groups

are considered below. The stability problem can be written as a multi-parametric

linear problem, i.e,

min
α

α{1,3}+α{1,4}+α{2,4}+α{2,5}+α{3,5},

s.t. ρ1 ≤ α{1,3}+α{1,4},
ρ2 ≤ α{2,4}+α{2,5},
ρ3 ≤ α{1,3}+α{3,5},
ρ4 ≤ α{1,4}+α{2,4},
ρ5 ≤ α{2,5}+α{3,5},
0 ≤ αi, i ∈ G max,

0 ≤ ρn ≤ 1, n = 1,2, ...,5.

Solving this problem results in different regions, each with corresponding costs (as

function of ρn). For the setup periods also a fraction of time is required. Therefore

the sum of fractions of time spent serving a group (the objective function) is strictly

less than 1, i.e., ∑α < 1. Then, the costs for each region from the optimization

problem represents the stability conditions (4.12). Therefore, if the stability condi-

tions (4.12) are satisfied, there exists a schedule for a stable (unconstrained) system.

For instance, for ρi = 0.4− ε , the only sequences that result in a stable system con-

sists of all maximal allowed groups, e.g., s = ({1,3},{1,4},{2,4},{2,5},{3,5}).
An example of a traffic intersection for which no stable schedules exist is for the

system in Figure 4.4a with parameters ρ1 = ρ3 = 0.9 and ρ2 = ρ4 = ρ5 = 0.08, cor-

responding to a lot of traffic on the one way street and a small amount of pedestrians

and traffic from the perpendicular road. This gives

ρ1 +ρ2 = 0.98 < 1, (4.14a)

ρ2 +ρ3 = 0.98 < 1, (4.14b)

ρ3 +ρ4 = 0.98 < 1, (4.14c)

ρ4 +ρ5 = 0.16 < 1, (4.14d)

ρ5 +ρ1 = 0.98 < 1, (4.14e)

ρ1 +ρ2 +ρ3 +ρ4 +ρ5 = 2.04 > 2, (4.14f)

and therefore no stable solution exists. In general, the stability problem is given by

min
α ∑

i∈G max

αi,

s.t. ρi ≤ ∑
i∈G max

αi�gi(n), n = 1,2, ...,N
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0 ≤ αi, ∀i ∈ G max,

0 ≤ ρi ≤ 1, i = 1,2, ...,N.

with indicator function

�gi =

{
1 if n ∈ gi,

0 if n /∈ gi.

The system presented in Figure 4.4b is the smallest example in which extra stability

conditions arise, i.e., in addition to the conditions given by (4.11). For the intersec-

tion with constraints on service or cycle time, the conditions (4.11) are necessary,

but not sufficient. Therefore, additional sequence-dependent stability conditions are

provided, given by

ρnT ≤∑
i∈g

τi,n, ∀g ∈ Ps,n, n = 1,2, ...,N, (4.15)

which states that all arriving fluid can be served within a cycle. Note that the cycle

time is a linear combination of service periods and setup periods.

This completes the formulation of the model and the schedule. Below we formulate

the problem of determining the optimal periodic schedule.

Problem formulation

For an isolated intersection, consisting of N flows and given arrival rates, satura-

tion rates and setup periods, derive the optimal periodic schedule satisfying con-

straints (4.2) and (4.4). In other words: Find the sequence s and periodic pretimed

green periods τi,n, ∀n ∈ gi,∀gi ∈ s, satisfying the constraints, that minimizes a per-

formance criterion.

This problem is solved in two steps. First, all feasible sequences are generated,

see Section 4.4. Second, for each feasible sequence, the optimal green periods are

derived, presented in Section 4.5.

4.4 Sequence generation

Feasible sequence generation is divided into three subproblems, that can be con-

sidered consecutively. These subproblems are the grouping of flows into groups,

grouping of groups and deriving all feasible sequences from these groups of groups.

4.4.1 Group generation

The group generation problem consists of finding all possible combinations of flows,

which can receive right of way simultaneously. This equals to finding all indepen-

dent sets in a graph. The undirected graph for the illustrative example is presented
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1 2

34

5

Figure 4.5: Five-flow traffic intersection undirected graph.

in Figure 4.5. Generating all groups amounts to finding all allowed groups, which

is performed recursively. Allowed groups need not necessarily be maximal groups.

The set G does not only include maximal groups, but also all subsets of the maximal

groups. It might seem counterintuitive to take subsets of maximal groups into ac-

count, but due to flow-dependent setup periods, this may yield better performance,

as shown by means of an example in Section 4.6. The set of allowed groups for the

example in depicted in Figure 4.2 is given by

G = {{1,2,5},{1,2},{1,5},{2,4},{2,5},{3,5},{1},{2},{3},{4},{5}, /0},
where G max = {{1,2,5},{2,4},{3,5}}.

4.4.2 Combining groups

The second subproblem towards generating sequences, is to derive all feasible com-

binations of groups g ∈ G . A combination of groups is feasible if all flows receive at

least one green period and the number of groups does not exceed G. The combina-

tions of groups are generated using a similar approach as in Section 4.4.1, by recur-

sively enumerating all possible combinations of groups, subject to the constraints

mentioned above. Next, combinations where each flow receives a single green pe-

riod are checked for stability, i.e., a schedule is stable if all arriving vehicles can be

served, see [20]:
|s|
∑
i=1

max
n∈gi

ρn < 1. (4.16)

This condition states that the sum of loads of the flows with maximal loads in each

group should be less than one, which is quite intuitive. This is a necessary and

sufficient condition in the absence of constraints on cycle and green periods. The

unstable combinations of groups can be removed. Note that, in addition, a lower

bound on the number of groups in a sequence can be imposed if desired. Stability

for a sequence including all constraints is ensured by constraint (4.15).

4.4.3 Feasible sequence generation

Last, for each combination of groups, the groups can be ordered in different ways

resulting in different sequences s ∈ S . If a combination of groups consists of i
groups, (i− 1)! different sequences arise, since w.l.o.g. it can be assumed that the
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first group is fixed in the sequence.

From all generated sequences, we discard the sequences that are infeasible. Se-

quences for which flows receive > Θ green periods are discarded. Also, sequences

with two or more identical groups in consecutive order are discarded, as these iden-

tical consecutive groups can be lumped together resulting in a sequence which is

already considered or not allowed. The resulting set of sequences is the set of feasi-

ble sequences S .

4.5 Sequence optimization

With all feasible sequences derived in Section 4.4, we now present the derivation of

optimal green periods for each s ∈ S . From these results, the best solution renders

the optimal periodic behavior. An individual sequence is optimized using linear

programming (LP) or quadratic programming (QP), depending on the performance

criteria.

The performance criteria are discussed first. Second, the objective functions are

presented. Third, the linear constraints are addressed, which are similar for both LP

and QP. Last, the generic optimization problem is presented.

4.5.1 Performance indicators

For each sequence, the optimal duration of green periods depends on the perfor-

mance criteria. There exist a variety of performance criteria, relevant to the setting

of traffic signals. We consider minimizing the weighted average amount of vehi-

cles at the intersection, weighted average waiting time at the intersection, maximal

queue content, cycle time, or a linear combination of these, which are discussed

below.

Weighted average amount of vehicles

The weighted average amount of vehicles, or queue content, at the intersection is

given by:

Jw =
N

∑
n=1

cnWn, (4.17)

with cn the weight factor and Wn the time-average queue content of flow n:

Wn =
1

T

∫ T

0
xn(τ)dτ. (4.18)

For ease of reading we denote W =W+, as systems with backlog are not considered.

The average queue content of a single flow can be described by the duration of the

green and red periods during a cycle, as discussed in Section 4.5.2. The performance

criterion (4.17) is used for the example in Section 4.6 and case study in Section 4.7.
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Weighted average waiting time

A second criterion is the weighted average waiting time, also known as delay or

flow time. The waiting time denotes the time from arriving at a queue until the

vehicle has left the intersection after passing the green signal. From Little’s law,

see [69, 89, 48] and references therein, the following relation holds between the

average waiting time ϕn and the average queue content Wn:

ϕn =
Wn

λn
.

Therefore, weighted average waiting time Jϕ of the intersection is given by:

Jϕ =
N

∑
n=1

cnWn

λn
. (4.19)

So, in fact, Jw and Jϕ can both be considered as a weighted average queue content.

Note that the choice of weight factor cn is important, e.g., for cn = 1, n = 1,2, ...,N,

Jϕ represents the sum of the waiting times per queue and for cn =
λn

∑N
i=1 λi

the objec-

tive Jϕ represents the average delay per vehicle.

Maximal queue content

The maximal queue content, denoted by χ , is another criterion that can be easily

incorporated in our framework, by adding constraint:

xn ≤ χ, n = 1,2, ...,N. (4.20)

The objective is to find the minimal χ for which (4.20) is valid.

Cycle time

Another important performance criterion concerns the minimal cycle time required

to handle the existing traffic flow pattern. Moreover, we use the minimal cycle

time to reduce the calculation time of optimizing the weighted average amount of

vehicles and waiting time, as shown in Section 4.5.2. The minimal cycle time does

not necessarily imply that the intersection is working at full capacity for the queues

with the highest load in each group. Due to both constraints (4.6) and (4.5), the

system might still have additional capacity at the minimal cycle time, as is shown

via example in Section 4.6, which is required to handle fluctuations in arrival rates,

that typically occur in practice. We return to this issue later, in Remark 4.7.1. Then,

the cycle time for sequence s can be described by:

T =
|s|
∑
i=1

αi. (4.21)
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Linear combination of criteria

Instead of optimizing a single performance criterion, they can also be linearly com-

bined. Consider, for instance, minimizing maximal queue content. If there exists a

solution, there exist infinitely many solutions governing the same result, due to com-

binations of processing at maximal and arrival rate. Combining this criterion with

another criterion, for instance minimal average queue content, results in a unique

solution. By adding weights to the criteria, emphasis can be put on a specific crite-

rion.

4.5.2 Objective functions

The problem is to find the green and red periods for each flow for a given sequence

such that overall performance is optimal. The red periods of flow n are a combina-

tion of setup periods and green periods of flows in groups, which do not contain this

flow. In [35] it is shown that for optimal policies, a flow that receives a green signal

is served at highest possible rate and does not idle, i.e., served at rate 0. Therefore,

a green period τi,n of flow n in group gi can be split into a duration τμ
i,n where the

vehicles are leaving the intersection at saturation flow rate, i.e., when queue content

xn > 0, and a duration τλ
i,n where the vehicles leave the intersection at arrival rate,

i.e., when xn = 0. Note that a green period is not bounded by a single group, e.g.,

if a flow n is contained in successive groups g1 and g2, the green period of flow n
covers both groups and is denoted by τ1,n + τ2,n.

Using these green periods as optimization variables, the objective functions can be

addressed per performance criterion. The cycle time (4.21) is the sum of green and

red periods of a flow. A red period is a combination of required setup periods and

green periods of other flows. Hence, the cycle time is a linear combination of sev-

eral green periods. The constraints on the green periods, presented in Section 4.5.3,

are linear. Note that, since the queue contents xn(t) can be expressed as linear com-

bination of the green periods, constraint (4.20) for the maximal queue content χ is

also linear. Hence, we can conclude that minimizing the cycle time and minimizing

maximal queue content result in LP problems.

The average queue content Wn for n = 1,2, ...,N, given by (4.18), is used to deter-

mine the weighted average amount of vehicles (4.17) and weighted average waiting

time (4.19).

By means of an example, we illustrate the derivation of the average queue content

in terms of τμ
i,n and τλ

i,n, i = 1,2, ..., |s|. Consider sequence ŝ for the system depicted

in Figure 4.2, consisting of five groups and flow 1 that receives a green period twice

during a sequence, e.g., Pŝ,1 = {1,2,4}. Note that flow 1 receives two separate

green periods although it is contained in three groups. The queue content during

a single cycle is presented in Figure 4.6. We denote the content of queue n at the

start of group gi by xi,n. For ease of exposition, the subscript ,1 (denoting flow 1) is

omitted in this example and we denote by βi the red period duration before giving
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flow 1 a green signal in group gi, which is a linear combination of service periods of

groups and setup periods. Note that if a flow is served multiple times in a sequence,

the queue is not necessarily emptied each time being served. The total queue con-

tent during this cycle equals the area beneath the graph.

Calculation of the total queue content can be split into |Ps,n| parts, three for this

example, where each part consists of a possible red period and successive green pe-

riod.

τ4

x4
x1

τ1μ

τ1
β4 β1

τ2

τ2μ

x2
τ2λ

τ4μ

g1 g3 g4 g5g2

Figure 4.6: Queue content evolution of flow 1 in sequence ŝ (served twice in a cycle).

Let us consider the first part of queue content x1 in Figure 4.6, i.e., the evolution

during β1 + τ1. The area can be easily computed, since this part consists of a linear

increase with rate λn during β1, decrease with rate λn − μn during τμ
1 and constant

level during τλ
1 . Therefore, the time average queue content during β1 + τ1 can be

described by

W1 =
1

T
[(x1 +λ1σg5,1)(τ1 +β1)− (μn −λn)(

1
2τμ

1 + τλ
1 )τ

μ
1 − 1

2λnβ 2
1 ],

with

x1 = (β1 −σg5,1 +σg3,1)λn + x4 − τμ
4 (μn −λn),

and, in general, we have

Wn =
1

T ∑
i∈Ps,n

(xi,n +λnσgi−1,n)(τi,n +βi,n)− (μn −λn)(
1
2τμ

i,n + τλ
i,n)τ

μ
i,n − 1

2λnβ 2
i,n,

(4.22)

xi,n =λn

(
T − τμ

i,n −σgi−1,n − ∑
j∈Ps,n

τλ
j,n

)
−μn

⎛
⎝ ∑

j∈Ps,n\i
τμ

j,n

⎞
⎠ , ∀i ∈ Ps,n.

With βi,n the sum of setup periods σgi,n and green periods τi,p, p 	= n (for example,

β1 = α5 +σg5,1), it can be seen that equation (4.22) is quadratic in the optimization

variables τμ
i,n and τλ

i,n, provided that cycle time T is a constant. Hence, to derive the

optimum for a given sequence using QP, the solution of the QP must be derived for

all cycle times in the range (4.6). However, by deriving the minimal required cycle
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time T ∗ for this sequence, using a LP as shown above, the range can be reduced

if T min < T ∗ or the sequence can be discarded if T max < T ∗. Next, the optimum

is found by minimizing the objective function over the range min(T min,T ∗)≤ T ≤
T max. Usually, this optimum is located at the lower bound of T and can be deter-

mined by solving the QP twice, i.e., if J(max(T min,T ∗)) < J(max(T min,T ∗)+ ε)
where J(T ) is the minimal objective value as function of cycle time T . Otherwise,

an algorithm, e.g., the bisection method, can be used to locate the optimum.

4.5.3 Constraints

We have already introduced constraints on green periods (4.5), cycle time (4.6) and

stability (4.15), which have to be taken into account. The maximal queue content

restriction, see (4.1), can be formulated as

xi,n ≤ xmax
n −λnσgi−1,n, ∀n ∈ gi, i = 1,2, ..., |s|,

since the maximal content of a queue is reached at the moment right before serving

that queue.

The green period consists of a part serving at maximal rate and a part serving at

arrival rate:

τi,n = τμ
i,n + τλ

i,n, ∀i ∈ Ps,n, n = 1,2, ...,N.

The time serving flow n at rate μn is bounded by the time needed to empty queue

xm,n, as backlog is not allowed. Therefore,

τμ
i,n ≤

xi,n

μn −λn
, ∀i ∈ Ps,n, n = 1,2, ...,N.

Moreover, all queue contents and green periods are nonnegative. Furthermore, as

periodic behavior is considered for stable systems, the queue lengths for all queus

at the start and the end of a cycle are identical, i.e., xn(0) = xn(T ), n = 1,2, ...,N.

Due to the topology of the intersection, it is conceivable that the setup period for

switching from group g1 to group g2 exceeds the total time required for switching

from group g1 to group g2 via other groups. Consequently, it is possible that for

switching from group g1 to group g2 via other groups, the cars in group g2 start

driving while the cars in conflicting group g1 have not cleared the intersection yet,

which is not allowed. Therefore, switching between groups g1 and g2 via other

groups should take at least as much time as the setup period from group g1 to group

g2, i.e., σg1,g2
. For ease of exposition, we present the constraint that the time re-

quired for switching from group g1 to g2 via g3 has a lower bound, given by the

setup period required for switching between groups g1 and g2:

σg1,g2
≤ αg3

+σg3,g2
.

Similarly, we restrict the duration of all possible trajectories between two groups by

imposing the constraint

σgi,g j ≤ σg j−1,g j +
j−1

∑
k=i+1

αk, ∀i, j = 1,2, ...,N, i 	= j. (4.23)
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Note that constraint (4.23) specifically holds for signalized traffic intersections. For

manufacturing systems, for instance, the setup periods are not linked to fluid leaving

the system and therefore constraint (4.23) is redundant.

4.5.4 Generic optimization problem

The generic optimization problem, given sequence s, for the different objectives

reads as follows

min J, J ∈ {Jw,Jϕ ,χ,T}

s.t. αi = σgi−1,n + τμ
i,n + τλ

i,n, ∀n ∈ gi, i = 1,2, ..., |s|,

T =
|s|
∑
i=1

αi,

τi,n = τμ
i,n + τλ

i,n, ∀i ∈ Ps,n, n = 1,2, ...,N,

xi,n = λn

(
T − τμ

i,n −σgi−1,n − ∑
j∈Ps,n

τλ
j,n

)
−

−μn

⎛
⎝ ∑

j∈Ps,n\i
τμ

j,n

⎞
⎠ , ∀i ∈ Ps,n,

τμ
i,n ≤

xi,n

μn −λn
, ∀i ∈ Ps,n, n = 1,2, ...,N,

τmin
n ≤ ∑

i∈p
τi,n ≤ τmax

n ∀p ∈ Ps,n, n = 1,2, ...,N,

xi,n ≤ xmax
n −λnσgi−1,n, ∀n ∈ gi, i = 1,2, ..., |s|,

xi,n ≤ χ −λnσgi−1,n if J = χ,
ρnT ≤ ∑

i∈g
τi,n, ∀g ∈ Ps,n, n = 1,2, ...,N,

σgi,g j ≤ σg j−1,g j +
j−1

∑
k=i+1

αk, ∀i, j = 1,2, ...,N, i 	= j,

in which the optimization variables are given by

τμ
i,n, τλ

i,n ∀n ∈ gi, i = 1,2, ..., |s|.

4.6 Illustrations

The intersection presented in Figure 4.2 is optimized below with respect to the

weighted average amount of users Jw (vehicles, pedestrians and bicyclists). For
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this intersection, we consider the parameters

Σ =

⎡
⎢⎢⎢⎢⎣

0 0 0 3 0

0 0 8 0 0

2 6 0 5 0

3 0 3 0 5

0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ , λ =

⎡
⎢⎢⎢⎢⎣

3

0.1
1

0.1
4

⎤
⎥⎥⎥⎥⎦ , μ =

⎡
⎢⎢⎢⎢⎣

10

2

10

2

10

⎤
⎥⎥⎥⎥⎦ ,

where Σ is the matrix with setup periods, i.e., switching from flow n to flow m re-

quires setup period Σnm = σn,m. The weight factors for all queues are 1. Restrictions

on the cycle time, minimal green periods and maximal queue contents are given by:

40 ≤ T ≤ 60, (4.24a)

τmin =
[
3 6 3 6 3

]
, (4.24b)

xmax
n = 100, n = 1,2, ...,N. (4.24c)

Using these parameters, we present a QP formulation for a sequence with three

groups. Next, the optimal periodic behavior of this intersection is investigated.

As an example, consider the sequence s = ({1,2,5},{4},{3}). The QP formulation

for this sequence is presented below. Each flow is contained in a single group and

therefore has a single green period. For ease of exposition, the group labels are

omitted, i.e., τm,n = τn. Note that constraints (4.23) are omitted, due to the setup

periods and minimal green periods these constraints can not be violated.

min
τ1,τ2,τ3,τ4,τ5

ciλi

2
(α2 +α3 +σ3,i)(T − τλ

i )+
c3λ3

2
(α1 +α2 +σ4,3)(T − τλ

3 )+

c4λ4

2
(α1 +α3 +σ{1,2,5},4)(T − τλ

4 ), i = 1,2,5

s.t. α1 = σ3,n + τμ
n + τλ

n , n = 1,2,5,

α2 = σ{1,2,5},4 + τμ
4 + τλ

4 ,

α3 = σ4,3 + τμ
3 + τλ

3 ,

T = α1 +α2 +α3,

τn = τμ
n + τλ

n , n = 1,2,3,4,5,

τmin
n ≤ τn, n = 1,2,3,4,5,

ρnT ≤ τn, n = 1,2,3,4,5,

τμ
n ≤ λn

μn −λn
(α2 +α3 +σ3,n), n = 1,2,5,

τμ
3 ≤ λ3

μ3 −λ3
(α1 +α2 +σ4,3),

τμ
4 ≤ λ4

μ4 −λ4
(α1 +α3 +σ{1,2,5},4).
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For this intersection a simple schedule is desired, therefore a sequence is limited to

contain maximally four groups, i.e., G = 4. The objective is to minimize the av-

erage amount of users (vehicles, pedestrians and cyclists) on the intersection. For

simplicity, all weights are equal to 1. First, we consider finding an optimal solu-

tion for Θ = 1, i.e., all flows receive a single green period in a cycle. The total

number of feasible sequences satisfying the constraints is 282. The five sequences

with lowest average queue contents are presented in Table 4.1. For each sequence,

denoted by s j, j = 1,2, ...,5, the composition of groups are given, labeled by gi with

i = 1,2, ..., |s|.
g1 g2 g3 g4

s1 1, 2, 5 2, 5 4 3, 5

s2 1, 2, 5 5 4 3, 5

s3 1, 2, 5 2, 4 4 3, 5

s4 1, 2, 5 2 4 3, 5

s5 1, 2, 5 4 3 3, 5

Table 4.1: Optimal sequences for Θ = 1 and G = 4.

The minimal average queue content W , corresponding cycle time T and service pe-

riods of groups α j for these sequences are presented in Table 4.2.

Jw T α1 α2 α3 α4

s1 49.36 41.77 25.59 2.00 7.00 7.18

s2 49.47 41.85 25.67 2.00 7.00 7.19

s3 53.24 45.49 28.94 4.00 5.00 7.55

s4 53.29 45.52 28.97 3.00 6.00 7.55

s5 53.43 45.63 29.07 9.00 5.00 2.56

Table 4.2: Optimal results for each sequence, Θ = 1 and G = 4.

This example illustrates that using maximal groups only is not optimal in this case,

i.e., it can be seen that the optimal periodic behavior, described by sequence s1,

does not consist of maximal groups only. In this case, group g2 is a subset of g1.

This occurs, since flow 1 has the largest setup period for setting up from group g1

to group g3, i.e. σ1,4 > σ2,4 and σ1,4 > σ5,4. Therefore, while the cars from flow 1

are clearing the intersection to make room for flow 4, flows 2 and 5 can both have

additional green periods (2 seconds in group g2). Since σ5,4 > σ2,4, the performance

would increase if an additional group is added between g2 and g3 consisting of flow

2. However, this is not possible due to the upper bound on the number of groups.

Note that adding these groups does not affect the cycle time, as the initial red period

of the subsequent group would decrease.

Next, let us investigate optimal behavior for sequences with Θ = 2. Note that this

is also the upper bound, which follows from (4.3). The total number of feasible
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sequences is 486. The five sequences with minimal average queue content are pre-

sented in Table 4.3. It can be seen that in all these sequences flows 1 and 5 are

served in groups g1 and g3 with groups containing either flow 3 or flow 4 in be-

tween. Intuitively, it makes sense to serve the flow with the highest load as much as

possible. Also, flow 5 is sometimes served in three groups, as it conflicts only with

flow 4. Note that for the best sequence s1, not every group is a maximal group, i.e.,

g3 is a subset of {1,2,5}.

g1 g2 g3 g4

s1 1, 2, 5 2, 4 1, 5 3, 5

s2 1, 2, 5 4 1, 5 3, 5

s3 1, 5 2, 4 1, 5 3, 5

s4 1, 5 3, 5 1, 5 2, 4

s5 1, 2, 5 2, 4 1, 5 3

Table 4.3: Optimal sequences for Θ = 2 and G = 4.

Table 4.4 presents the optimization results for the sequences presented in Table 4.3.

It can be seen that the optimal solution, with Θ= 2, has decreased the average queue

content by 8.8% compared to the best solution for Θ = 1.

Jw T α1 α2 α3 α4

s1 45.35 44.31 20.05 9.00 8.14 7.12

s2 45.90 44.67 20.51 9.00 8.14 7.02

s3 46.23 42.13 17.90 9.00 8.14 7.09

s4 46.24 41.00 14.33 6.85 10.81 9.00

s5 47.54 42.21 14.66 9.00 14.33 4.22

Table 4.4: Optimal results for each sequence, Θ = 2 and G = 4.

Omitting constraint (4.24a) gives that the minimal cycle time is T ∗ = 26 and corre-

sponding performance is W = 64.29. Note that the cycle time corresponding to the

optimal schedule is larger than the minimal required cycle time. Therefore, at least

one flow receives a green signal while the queue content is zero, i.e., at least one

group has a slow-mode.

The queue levels of all flows for sequence s1 are presented in Figure 4.7. The up-

per figure shows the queue levels of the vehicle flows and the pedestrian flows are

presented in the figure in the middle. The service schedule is presented in the lower

figure. It can be seen that in this sequence, all flows receive a green signal while the

queue is empty, i.e., all queues have a slow-mode. Therefore, all queues can han-

dle additional arrivals. If the arrivals increase by
[
74 1040 60 270 71

]
%, for

flows 1-5 respectively, the intersection operates at full capacity. This also indicates

that this sequence can handle some fluctuations in the arrivals. Additionally, note
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that only the duration of group 2 is determined by the minimal green period con-

straint of flow 4. Also, the restrictions on cycle time are inactive, where the minimal

cycle time (with green period constraints) is 26 seconds.
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Figure 4.7: Queue levels of vehicle flows 1,3 and 5 (upper), pedestrian flows 2 and 4

(middle) and corresponding service schedule (lower) for sequence s1 in Table 4.4.

Remark 4.6.1 (Fluctuating arrival rates). In this chapter we assume constant arrival
rates, whereas in practice the arrival rates may fluctuate. Nevertheless, slow-modes
in the schedule create extra capacity that can, for instance, cope with arrival fluc-
tuations, as the results in Figure 4.7 also indicate. The presence of slow-modes can
be caused by requiring minimal green periods, which exceed the minimal required
green periods, requiring the minimal cycle time to be longer than necessary to serve
all incoming vehicles. It can also be the result of a trade-off between losing capac-
ity due to a slow-mode or losing capacity due to spending a relative larger amount
of time on setups. Moreover, a robust schedule can also be derived by considering
larger arrival rates.

By varying the number of maximal groups G and Θ we get the following optimal

periodic results, presented in Table 4.5. The number between brackets indicates

the total number of feasible sequences corresponding to the problem. Note that the

results correspond to the sequence with exactly G groups and at least one flow has

Θ green periods in a cycle. Sequence ({1,2,5},{2,4},{1,5},{3,5},{1,5},{3,5})
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consisting of 6 groups and Θ = 3 has a 38.57% better performance, i.e., Jw = 35.62

compared to the optimal sequence with G= 4 and Θ= 1. It can be seen that schedul-

ing multiple green periods for some flows improves performance.

Θ\G 3 4 5 6

1 53.43 (18) 49.36 (282) 49.27 (1416) 49.27 (3382)

2 - 45.35 (204) 40.33 (6168) 37.26 (78950)

3 - - - 35.62 (12744)

Table 4.5: Optimal results J∗w, varying Θ and G. The number of feasible sequences are

indicated between brackets.

For the system with average waiting time as performance criteria, the optimal se-

quence is {{1,2,5},{2,4},{1,5},{3,5},} and minimal average waiting time J∗ϕ =
44.31. If the queue lengths are minimized, the optimal sequence is given by

{{1,2,5},{5},{4},{3,5},} and minimal queue length χ∗ = 54.

4.6.1 Three-queue manufacturing system

To illustrate the presented method for deriving optimal periodic behavior for other

types of systems, the optimal periodic behavior of a three-queue manufacturing

system is discussed below. A single server with three queues is considered, see Fig-

ure 4.8. The arrival and service rates are indicated in the figure, all setup periods

have a duration of 1 and all costs are equal (we consider c1 = c2 = c3 = c4 = 1).

Furthermore, the server is restricted to serve only one queue at a time.

x1 μ1 = 16
x2 μ2 = 16
x3 μ3 = 16

λ1 = 4
λ2 = 2
λ3 = 1

Figure 4.8: Three-queue switching server.

In [63] a theory is developed to compute a lower bound on the mean work in

progress, i.e., average queue contents, for a server with i ∈ N queues. This lower

bound is often not reachable in practice, i.e., for symmetrical systems (identical ar-

rival rates, service rates and setup periods for all queues) the theoretical lower bound

can be achieved, but for all other situations this might not be the case. However, this

lower bound is a good reference point. For the system depicted in Figure 4.8, the

theoretical lower bound according to [63] is 14.3875 and the number of setups per

time unit for queues 1, 2 and 3 are 0.242, 0.185 and 0.135 respectively. This ratio

is roughly 4:3:2. In [103], the performance of sequences with this ratio and several

other ratios is determined. Using the method presented in this chapter, the optimal

periodic behavior of this system is derived given the constraints G = 9 and Θ = 4.
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The four best sequences are presented in Table 4.6, minimizing the average queue

length. The optimal sequence, s1, has a 3:3:2 ratio and is a fraction higher than

the theoretical lower bound. Note that, for this example, allowing multiple service

periods to queues within a cycle results in better performance, i.e., compare Jw for

sequence s4, where each queue is served once, to the Jw of the other sequences.

Sequence Jw
s1 (1, 2, 3, 1, 2, 1, 3, 2) 14.897

s2 (1, 2, 1, 3) 14.926

s3 (1, 3, 2, 1, 2, 1, 3, 1, 2) 15.034

s4 (1, 2, 3) 15.167

Table 4.6: Optimal sequences for Θ = 4 and G = 9.

4.7 Case study

To illustrate that this method is computationally affordable for real-life intersec-

tions, we illustrate the derivation of the optimal periodic behavior of a large real-life

intersection. We consider the traffic intersection presented in Figure 4.9, which is

the most complicated intersection of the city Eindhoven, the Netherlands. This in-

tersection is a combination of a flared and channelized intersection between the John

F. Kennedylaan and Onze Lieve Vrouwestraat and is part of the main arterial around

the center of Eindhoven. Daily, almost 30000 motor vehicles cross this intersection,

see [20, 22]. In reality it contains 10 car signals and 16 signals for cyclists and

pedestrians. By taking certain nonconflicting signals together, this can be reduced

to seven car signals (flows 1–7) and four pedestrian/cyclist signals (flows 8–11).

1

2

3

4

6 75

10

11

9

8

Figure 4.9: Traffic intersection the city in Eindhoven, the Netherlands.

Arrival and saturation rates in vehicles per second during an evening rush-hour, to-
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gether with the weights of each flow, are presented in Table 4.7.

n 1 2 3 4 5 6 7

cn 0.1210 0.1580 0.1530 0.1750 0.0680 0.2030 0.1190

λn 0.0731 0.0956 0.0922 0.1058 0.0411 0.1228 0.0717

μn 0.4722 0.4722 0.4722 0.4722 0.4722 0.4722 0.4722

Table 4.7: Weights, arrival and saturation rates of the vehicle flows, see [22].

The number of pedestrians and cyclists crossing the intersection is far less than the

number of vehicles, λn = 0.01, μn = 0.4722 for n = 8,9,10,11. Also the weight

factor of the pedestrians and cyclists is lower (cn = 1e−4). The bicycle and pedes-

trians flows do not conflict. Instead of drawing a complex graph, we introduce the

confliction matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 1 1 1 0 1 0

1 0 1 1 0 0 1 0 1 0 1

0 1 0 0 0 1 1 1 0 1 0

1 1 0 0 0 1 1 0 0 1 1

1 0 0 0 0 0 0 0 0 1 1

1 0 1 1 0 0 0 0 1 0 1

1 1 1 1 0 0 0 1 0 0 1

1 0 1 0 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0

0 1 0 1 1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Ai, j = 1 indicates that flows i and j conflict and Ai, j = 0 otherwise. Further-

more, setup periods in seconds are given by

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 8 6 5 0 0 10 0

5 0 7 1 0 0 1 0 0 0 10

0 7 0 0 0 1 3 10 0 1 0

9 6 0 0 0 3 4 0 0 1 13

0 0 0 0 0 0 0 0 0 2 0

0 0 6 4 0 0 0 0 6 0 0

0 5 3 2 0 0 0 9 0 0 1

0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0

0 0 2 0 1 0 0 0 0 0 0

0 2 0 0 7 7 7 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

When addressing stability of the intersection, the flows are divided into groups

which can be served simultaneously, i.e. non-conflicting flows. The total num-

ber of groups for this system is 72. The maximal allowed groups are given by
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G max ={{5,6,7},{2,5,6,8},{3,4,5,9},{5,7,9},{1,3,9,11},{2,6,8,10},{6,7,10},
{7,9,10},{4,5,8,9},{8,9,10,11}}.

The maximal cliques are given by

C max ={{2,4,7,11},{1,2,4,7},{4,6,11},{3,7,8},{2,3,7},{1,7,8},{1,5,10},
{1,4,10},{1,4,6},{6,9},{5,11},{3,10},{3,6},{2,9}}

Using these groups, the stability conditions for the unconstrained system, derived

by (4.11), are the following

ρ11 +ρ2 +ρ4 +ρ7 ≤ 1, (4.25a)

ρ1 +ρ2 +ρ4 +ρ7 ≤ 1, (4.25b)

ρ3 +ρ7 +ρ8 ≤ 1, (4.25c)

ρ1 +ρ10 +ρ5 ≤ 1, (4.25d)

ρ6 +ρ9 ≤ 1, (4.25e)

ρ11 +ρ4 +ρ6 ≤ 1, (4.25f)

ρ1 +ρ7 +ρ8 ≤ 1, (4.25g)

ρ2 +ρ9 ≤ 1, (4.25h)

ρ2 +ρ3 +ρ7 ≤ 1, (4.25i)

ρ11 +ρ5 ≤ 1, (4.25j)

ρ1 +ρ4 +ρ6 ≤ 1, (4.25k)

ρ1 +ρ10 +ρ4 ≤ 1, (4.25l)

ρ3 +ρ6 ≤ 1, (4.25m)

ρ10 +ρ3 ≤ 1, (4.25n)

ρ10 +ρ11 +ρ2 +ρ3 +ρ5 +ρ7 ≤ 2, (4.25o)

ρ10 +ρ11 +ρ3 +ρ5 +ρ6 ≤ 2 (4.25p)

where the first part, equations (4.25a)-(4.25n) are conditions based on the cliques

and the conditions (4.25o)-(4.25p) are based on whole intersection graph. With the

parameters from Table 4.7, the stability conditions (4.25) are met. Therefore, there

exists a schedule that results in a stable system if constraints on cycle time and ser-

vice periods are omitted.

The constraints on cycle time and green periods are given by

90 ≤ T ≤ 110,

5 ≤τn, if n = 1,2, ...,7,

13 ≤τn, if n = 8,9,10,11.
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Note that the minimal green periods for the pedestrian/cycle lanes are 13 seconds

and these lanes intersect with the vehicle lanes. Therefore, although the arrival rates

and weights are low, these flows can not be ignored. In [22], a schedule of green

periods used for the current situation is given, which aims at minimizing the aver-

age waiting time. Using (4.19), this schedule results in an average waiting time of

Φ = 29.45 seconds.

The five sequences with best performance for a schedule with G = 4 and Θ = 1

are presented in Table 4.8 together with their optimal results presented Table 4.9.

Using the optimal schedule, average waiting time can be decreased by 17.0%. Note

that the results for both sequences s1 and s2 and sequences s4 and s5 are similar.

However, the presence of flow 9 in group g1 results in better performance, but it is

hardly visible due to the low costs.

g1 g2 g3 g4

s1 1, 3, 9, 11 3, 4, 5, 9 2, 5, 6, 8 6, 7, 10

s2 1, 3, 11 3, 4, 5, 9 2, 5, 6, 8 6, 7, 10

s3 1, 3, 9, 11 3, 4, 5 2, 5, 6, 8 6, 7, 10

s4 1, 3, 9, 11 3, 4, 9 2, 5, 6, 8 6, 7, 10

s5 1, 3, 11 3, 4, 9 2, 5, 6, 8 6, 7, 10

Table 4.8: Best sequences for the intersection in Figure 4.9, G = 4 and Θ = 1.

JΦ T α1 α2 α3 α4

s1 25.18 90.00 14.00 27.06 33.94 15.00

s2 25.18 90.00 14.00 27.06 33.94 15.00

s3 25.57 90.00 19.00 23.33 32.67 15.00

s4 25.82 90.00 14.00 22.73 38.27 15.00

s5 25.82 90.00 14.00 22.73 38.27 15.00

Table 4.9: Optimal results for sequences in Table 4.8.

Allowing multiple green periods, i.e., Θ = 2, results in better performance, see the

results presented in Tables 4.10 and 4.11. For all sequences s1–s5 it can be seen that

both flow 6, which is the flow with the highest load and cost, and flow 3 receive two

green periods in a cycle. The optimal periodic behavior lowers the performance by

20.9% compared to the schedule in [22]. Note that the sequence s1 for the optimal

periodic behavior does not consist of maximal groups only. Group g1 is a subset of

{1,3,9,11}. Adding flow 9 into group g1 decreases the performance by elongating

the time spent in this group, i.e., σ6,9 = 6 and τmin
9 = 13 results in αmin

1 = 19.

Also note that for all presented sequences, the lower bound constraint on the cycle

time is active. Removing this constraint would result in an weighted average wait-
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ing time of Φ = 18.26 for sequence {1,3,9,11},{3,4,5,9},{2,6,8,10},{5,6,7}
and T = 60.89.

g1 g2 g3 g4

s1 1, 3, 11 2, 5, 6, 8 3, 4, 5, 9 6, 7, 10

s2 1, 3, 11 2, 6, 8, 10 3, 4, 5, 9 5, 6, 7

s3 1, 3, 9, 11 2, 5, 6, 8 3, 4, 5, 9 6, 7, 10

s4 1, 3, 9, 11 2, 5, 6, 8 3, 4, 5 6, 7, 10

s5 1, 3, 9, 11 2, 6, 8, 10 3, 4, 5, 9 5, 6, 7

Table 4.10: Best sequences for the intersection in Figure 4.9, G = 4 and Θ = 2.

JΦ T α1 α2 α3 α4

s1 24.37 90.00 14.00 30.10 28.24 17.66

s2 24.47 90.00 14.00 25.21 30.25 20.53

s3 24.70 90.00 19.00 27.29 26.05 17.66

s4 24.70 90.00 19.00 27.30 26.04 17.66

s5 24.74 90.00 19.00 25.21 28.13 17.66

Table 4.11: Optimal results for sequences in Table 4.10.

Remark 4.7.1 (Computation times). For our case study we used MATLAB on a
3.2GHz Intel i5 CPU. Considering the case where Θ = 2 and G = 4, computation
time for generating all feasible groups (72) was 0.1 seconds, computation time for
generating all feasible sequences (2730) was 34.6 seconds and computation time
for deriving the optimal solution was 63.1 seconds.

4.8 Summary

This chapter presents a method to derive an optimal periodic signal timing plan for

a multi-queue switching server. In addition to the periodic behavior of two-queue

servers, presented in Chapter 3, multiple queues can be served simultaneously and

queues can be served multiple times in a cycle. These systems can represent a class

of queueing networks. Isolated signalized traffic intersections with fixed schedules

is one of these queueing networks, and periodic behavior of these networks has been

investigated. Instead of determining the number of groups, composition of groups

and order of groups in a sequence a priori, we solve a LP or QP optimization prob-

lem for every feasible sequence, i.e., computing green periods and cycle time. This

includes sequences, which serve some flows multiple times and serve some flows

more than others. The problem is attacked in two separate steps.

In the first step, all feasible sequences are derived. This requires the generation

of all groups, i.e, finding all possible combinations of flows which are compatible.
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Note that for all possible groups, also groups which are subsets of the maximal

allowed groups are considered, which sometimes can lead to an optimal periodic

solution, as shown by an example. Second, all possible combinations of groups are

constructed, regarding the constraint on the maximal number of groups. Third, all

feasible sequences are derived from these combinations. Scheduling some flows

more than others, i.e., giving multiple green periods to some flows, which has not

been addressed before, resulted in significant better performance for all examples

discussed.

The second step consists of deriving the optimal schedule, i.e., green period dura-

tions, for each possible sequence. These schedules are calculated separately with

respect to restrictions on cycle time, green periods and maximal queue content,

similar as in Chapter 3 for two-queue servers. From these solutions, the best one

is selected, which is the optimal periodic behavior for that intersection, given the

restrictions on total number of groups in a sequence and maximal number of green

periods for a flow. We show that the problem of finding the optimal green periods,

given a sequence, can be formulated as a QP or LP. This creates flexibility in setting

the constraints and objectives.

Due to all the calculations in each step, one might question the computational fea-

sibility in order to reach the optimal periodic solution. This certainly has its lim-

itations, but as a case study, we considered a complex intersection in Eindhoven

consisting of 11 different flows and the resulting computational effort was satisfac-

tory.

For a network of switching servers, fluid flows from one server to another server

and therefore the arrival rates at the queues are non-constant. Therefore, periodic

behavior of networks of switching servers is investigated in Chapter 5. Furthermore,

multi-queue switching servers are also considered in Chapter 7. Here, an observer

is derived for a multi-queue switching server with a specific policy. Based on the

measured arrival rates and partial information of the output rates, the queue contents

are reconstructed.



Chapter 5

Periodic behavior of a network of switching
servers

Periodical behavior of single switching servers has been studied for two-queue

servers in Chapter 3 and for multi-queue servers in Chapter 4. In this chapter net-

works of switching servers are considered. Here, fluid flows from one server to an-

other server and therefore the arrival rates at some queues are non-constant, which

differs from queues at single server systems. Examples of networks of switching

servers are manufacturing systems where flows of goods move through the factory

and require operations by multiple machines, or networks of signalized intersec-

tions, where flows of vehicles move from one intersection to another.

Fluid flows through the network of multi-queue switching servers via multiple pre-

defined routes. Each fluid flow originates from an external source and leaves the

network after visiting (multiple) servers. At each server visit, the fluid is stored in

a dedicated queue. As presented in Chapter 4, multi-queue switching servers can

serve multiple queues and switching between service of queues takes time. In the

network, fluid travels between queues, which leads to piecewise constant arrival

rates at queues, i.e., the piecewise constant departure rate from a queue is the arrival

rate at the downstream queue. This feature considerably extends the work presented

in Chapter 4. Again, we consider optimal periodic behavior, or the optimal periodic

scheduling problem, of these queueing networks.

By dividing for each queue its service period into multiple phases, characterized

by the different service rates, we are able to derive optimal schedules for a network

of switching servers with instant transportation of fluid, i.e., fluid from the queue

attended by a server immediately enters the successive queue. Here it is assumed

that all servers have identical cycle times and that switching moments are synchro-
nized. Queueing networks with non-negligible transportation delays, such as e.g.,

networks of signalized traffic intersections, where traveling between intersections

takes time, are not considered. Similar to the optimization problem of Chapters 3

This chapter is partly based on [105].

63
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and 4, the optimization of service and idle periods of all queues in a given sequence

is formulated as a linear or quadratic programming problem. This formulation al-

lows considerable flexibility in the constraints and performance criteria.

The optimal scheduling problem is decomposed into two consecutive steps, simi-

lar to the approach presented in Chapter 4. The first step consists of generating all

feasible sequences, i.e., forming groups of queues that can be served simultaneously

and combining these groups into sequences, satisfying the constraints. In the second

step, the optimal periodic service schedule, for which the queue lengths at the start

and end of a cycle are equal, is derived for each sequence.

In Section 2.2, an introduction of a network of switching servers has been already

presented. The remainder of this chapter is organized as follows. Section 5.1 in-

troduces the queueing network model, a well-known two-server network that will

serve as a running example, the service schedule and it introduces the problem.

Section 5.2 presents a brief description on the sequence generation, the preparation

stage. The optimization stage for a given sequence, based on the performance crite-

ria, is presented in Section 5.3. Section 5.4 presents examples of optimal schedules.

A summary is provided in Section 5.5.

5.1 System description

In this section we introduce the model, specify the service schedule along with con-

straints and conclude with the problem formulation.

In a fluid flow queuing network, fluid flows from one server to another, and even-

tually leaves the network. The network consists of multi-queue switching servers,

labeled by j = 1,2, ...,S. Fluid flows through the network via a single route or mul-

tiple predefined routes. A route, starting from an external source, indicates which

servers are visited and also in which order. Each server visited along a route has

a specific queue dedicated to the fluid following this route. Therefore, each queue

has a single source, i.e., fluid arrives at a queue either from an external source, or

after being served at the preceding queue on the same route. The queues are labeled

in the order of occurrence along the route(s), by n = 1,2, ...,N. Queues share the

capacity of a server, but in this chapter we assume that the server can serve only

one queue at a time. This is common behavior for, e.g., manufacturing networks,

where a robot can perform different tasks on several queues. However, for networks

of signalized traffic intersections, where at each intersection multiple flows can re-

ceive green lights simultaneously (depending on the layout of the intersection), the

servers can serve multiple queues simultaneously. This feature can be added, as

presented in Chapter 4, but it is omitted for ease of reading. The set of queues ex-

clusively served by server j is denoted by Z( j). So Z(1), ...,Z(S) is a partitioning

of the set of all queues. The arrival rate at queue n is denoted by λn(t), which is

constant if fluid arrives from an external source or piecewise constant if fluid arrives
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from an upstream queue along the route. Once attended by the server, queue n is

maximally served at a queue-dependent deterministic rate μn. Note that the depar-

ture rate from queue n, which is the arrival rate to queue n+1, can be less than μn,

e.g., if queue n is attended by the server and xn = 0, then λn+1(t) = max(λn(t),μn).
Switching of the server from queue k ∈ Z( j) to queue l ∈ Z( j), implies a setup pe-
riod with setup period σk,l , which can not be interrupted. Note that σk,k = 0.

Also, fluid transportation between queues is assumed to be instant, i.e., while be-

ing served, fluid instantaneously leaves the network or instantaneously arrives at the

downstream queue. For networks of manufacturing systems, the transportation time

in general is small compared to the service and setup periods and can therefore be

neglected. Due to this assumption, the problem can be formulated as a LP or QP

problem. However, this restricts the class of considered networks, as some networks

have non-negligible transportation times, such as networks of traffic intersections,

i.e., vehicles require a certain time driving from one intersection to the other. For

these networks, a heuristic to obtain a good service schedule, based on optimal pe-

riodic behavior of single multi-queue servers (Chapter 4) is presented in Section 9.1.

As illustrative and running example, we present a well-known manufacturing net-

work, as introduced in [62] and also discussed in Section 2.2. Consider the two

server queueing network presented in Figure 5.1. Server 1 serves queues 1 and 4

and server 2 serves queues 2 and 3, i.e., Z(1) = {1,4} and Z(2) = {2,3}. The net-

work processes a single fluid flow arriving from an external source with constant

rate λ1(t) = λ at queue 1. The fluid flow consecutively visits servers 1, 2, 2, and

1 via queues 1, 2, 3, and 4 respectively. Queue 1 is the only queue receiving fluid

from an external source, the other queues receive the fluid from preceding queues.

Switching between service of queues 1 and 4, and between service of queues 2 and

3 requires a setup period.

λ
x1 x2

x4 x3

A B
σ3,2

σ2,3

σ4,1

σ1,4
μ2

μ3

μ1

μ4
y

Figure 5.1: Two server, four queue network, introduced in [62].

5.1.1 Service schedule

The service schedule for a network of switching servers is similar to the service

schedules of single multi-queue switching servers, presented in Section 4.2. A short

description is presented here and differences between de schedules are indicated.

The queues that can be served simultaneously are divided into groups g ∈ G . Not
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assigning a queue from a server to a group results in undesired idling of that server

and is therefore not allowed. Also, each server can serve a single queue. Therefore,

each server assigns one of its queues, i.e., |g| = S. The maximal number of groups

in a sequence s has an upper bound G, i.e.,

|s| ≤ G. (5.1)

The number of service periods θs received by a queue in sequence s can not exceed

the maximal number of service periods Θ received by a specific queue during a

cycle, i.e.,

θs ≤ Θ. (5.2)

A sequence is feasible if all queues are served at least once and if constraints (5.1)–

(5.2) are satisfied. The set of feasible sequences is denoted by S . For example, a

feasible sequence for the network depicted in Figure 5.1 is ({1,2},{3,4}), i.e., the

sequence consists of two groups, g1 = {1,2} and g2 = {3,4}, which are successively

served. Serving group {1,2} indicates serving queues 1 and 2 simultaneously, each

by its own server.

The time it takes to serve all groups in a sequence is called the cycle time, de-

noted by T . We consider a class of schedules where the cycle time for each server

in the network is identical. However, as queues can be served multiple times in

a sequence, it is possible for a server to perform its series of operations multiple

times while another server completes a single series. For example, for sequence

({1,2},{2,4},{1,3},{3,4}) for the system depicted in Figure 5.1, server 1 serves

queues 1 and 4 twice in a cycle (possibly with different service periods), while

server 2 serves queues 2 and 3 once.

For operational or safety reasons, the cycle time can be restricted. For instance,

minimal and maximal cycle times, respectively T min and T max, can be taken into

account

T min ≤ T ≤ T max. (5.3)

The duration of a service period for queue n in group gi is denoted by τi,n.

A service schedule for sequence ŝ = ({1,2},{1,3},{1,2},{3,4}) is presented in

Figure 5.2. For both servers, the setup and service periods of each group are de-

picted during a single cycle. It can be seen that queue 1 is served in three consecutive

groups, hence no setups are required in the second and third group. Furthermore,

queues 2 and 3 both have two service periods in this sequence. For this sequence,

the service period of the second group α2 equals the service period of queue 1 in that

group τ2,1, as no setup period is required. This service period also equals the sum

of setup and service periods of queue 3 in that group, hence α2 = τ2,1 = σ2,3 + τ2,3.

Note that the start of serving a queue in a group depends on the setup period. There-

fore, the starting times of service of the queues in a group can be different. However,
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σ4,1

τ4,3τ2,3 τ3,2σ3,2 τ1,2 σ2,3
τ1,1 σ1,4 τ4,4

0 α1 α2 α3 α4

{1,2} {1,3} {1,2} {3,4}

σ3,2σ2,3
1
2

τ2,1 τ3,1

T

Figure 5.2: Service schedule for sequence ŝ for the system depicted in Figure 5.1.

the service periods do end at the same time, for all queues in the group, provided

that the server is not contained in the successive group, e.g., at the end of group

{3,4} in the example. Hence, switching groups indicates a synchronized switch

between serving queues, i.e., after the switch the servers start serving the queues

of the next group, with a possible setup time first. However, since queues can be

contained in multiple groups, a switch between groups does not imply that service

ends for all queues served before the switch.

Also, for operational or safety purposes, minimal or maximal duration of service

periods can be required, denoted by

τmin
n ≤ ∑

i∈g
τi,n ≤ τmax

n ∀g ∈ Ps,n, n = 1,2, ...,N. (5.4)

Below, the problem of determining the optimal periodic schedule is formulated.

Problem Formulation

The optimization problem considered in this chapter can be summarized as follows:

For a multiclass fluid flow queueing network, derive the optimal periodic feasible
service schedule

This problem is solved in two steps. First, all feasible sequences are generated.

This has been explained in detail in Section 4.4 and summarized below. Second, the

optimal service periods are derived for each feasible sequence, presented in Sec-

tion 5.3.

5.2 Sequence generation

With the approach presented in Section 4.4, the feasible sequences are derived in

three steps. First, all feasible groups are derived, i.e., groups of queues that can be

served simultaneously. Since we consider networks of servers, a group consists of

≥ S queues. Groups with < S queues are not considered since at least one server

is idle, which is not desired. Also, a group with > S queues is infeasible, as each

server is allowed to serve only one queue at a time. Therefore, the total number of

feasible groups is given by ΠS
j=1|Z( j)|. For the network presented in Figure 5.1, the
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set of all feasible groups is given by

G = {{1,2},{1,3},{2,4},{3,4}}.

Second, all feasible combinations of these groups are derived. Each combination

satisfies (5.1) and each queue is served at least once in a sequence. Last, all permu-

tations of these combinations of groups are derived. The resulting sequences that

satisfy the maximal number of service periods for a queue (5.2), provide all feasible

sequences. Note that increasing the bounds G and Θ results in (many) more feasible

sequences.

5.3 Sequence optimization

For each feasible sequence, we derive the optimal service schedule. From these

schedules, the schedule with the best performance renders the optimal periodic

schedule. The service schedule of a feasible sequence is optimized using linear

programming (LP) for minimizing the cycle time or quadratic programming (QP)

for minimizing the weighted average wip level or weighted average flow time. The

decision variables for sequence s are the service period durations τi,n, for all gi ∈ s
and n ∈ gi.

There exist a variety of performance criteria. Similar to Chapter 4, we consider

minimizing the cycle time, weighted average work in progress (wip) level (amount

of vehicles regarding traffic intersections), weighted average flow (waiting) time, or

a linear combination of these. For completeness, the different performance criteria,

along with the optimization problem, are briefly discussed below.

5.3.1 Cycle time

The minimal cycle time is the minimal time that is required for a feasible schedule,

i.e., to satisfy all constraints. The minimal required cycle time does not necessarily

imply that the network is working at full capacity for the queues with the highest

load in each group. Due to both constraints (5.3) and (5.4), the network might

still have additional capacity at the minimal cycle time (which may be necessary

to handle fluctuations in arrival rates, that typically occur in practice). Moreover,

we use the minimal cycle time of a schedule as a lower bound for the cycle time to

reduce the calculation effort of optimizing the weighted average wip level and flow

time, as shown in Section 5.3.2. The cycle time for sequence s can be expressed as

T =
|s|
∑
i=1

αi. (5.5)

Given this criterion, the problem is to find the optimal duration of service and idle

periods for each queue in a given sequence. Using τi,n, the service periods for
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queue n ∈ gi in group gi ∈ s, as decision variables, the cycle time T (5.5) can

be expressed as the sum of service and idle periods of a queue. The idle peri-

ods of queue n are a combination of setup periods and service periods of queues

in groups which do not contain queue n. For example, considering schedule ŝ,

T = 2σ3,2 + 2σ2,3 + τ1,2 + τ2,3 + τ3,2 + τ4,3. Hence, the cycle time is a linear com-

bination of several service periods of queues and setup periods.

Next, the constraints are introduced, which depend on both the route of each flow

through the network and the sequence. To do so, we first consider service of suc-

cessive queues. Since a network can contain multiple servers, a group can consists

of two or more successive queues, i.e., following the same flow, served by different

servers. In the remainder of this chapter we use the following distinction between

active and inactive queues. A queue n is active in group gi, if it is served in that

group, i.e., n ∈ gi, otherwise, queue n is inactive in group gi. Consider, for instance,

queue n and upstream queue p = n− 1, which are both part of group gi and there-

fore both active in group gi. Here, during service of group gi, queue n receives a

piecewise-constant rate of fluid from the upstream queue p, i.e., at rates 0, μp, and

λp, respectively, which complicates the formulation of the constraints for the service

periods in comparison to the situation in which all queues receive a constant inflow

(presented in Chapter 4). In order to derive constraints for the service periods, we

need to divide the setup and service period of queue n in group gi into three phases,

αi = τ0
i,n + τ1

i,n + τ2
i,n, ∀n ∈ gi, ∀gi ∈ s,

where the phases are defined by:

τ0
i,n : Setup period.

τ1
i,n : Service period of fluid that is in queue n at the start of serving group gi, i.e.,

fluid that has arrived before the start of serving group gi.

τ2
i,n : Service period of fluid that has arrived after the start of serving group gi.

Note that the phrase “start of serving group gi" indicates the start of (setting up to)

serving the queues in group gi. Service period constraints for queue n depend on

the number of active upstream queues. We present the constraints for a queue with-

out (active) upstream queue, with a single active upstream queue and with multiple

active upstream queues below.

No (active) upstream queue
Consider active queue n, in group gi, without a predecessor, i.e., λn(t) = λn > 0,

depicted in Figure 5.3 along with the successive service rates and phases. Let τr,k
i,n

denote the service period of queue n at rate r that occurs for the k-th time in group

gi. It can be seen that rate μn is present twice and the service durations at these rates

are labeled by τμn,1
i,n and τμn,2

i,n , respectively.
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nλn(t)
0
1 2 3

μn μn λn

Figure 5.3: Arrival and service rates of queue n during service of group gi. Fluid arrives

from an external source with constant rate λn(t) = λn > 0 or queue n has no active upstream

queue, so λn(t) = 0.

The first service rate, 0, of each queue is the rate during the setup period, i.e., phase

1. The second rate, μn, is the service rate during phase 2. The remaining rates indi-

cate the service rates during the final phase, i.e., serving arrived fluid after the start

of service of group gi. This phase consists of a duration τμn,2
i,n serving at maximal

rate, and thereby the server is able to serve the fluid that has arrived since the start of

serving this group, and duration τλn,1
i,n , which denotes the service period of serving at

arrival rate λn, i.e., when queue n has been emptied. The evolution of queue content

xn during service of group gi is presented in Figure 5.4. The content of queue n at

the start of serving group gi is denoted by xi,n. It can be seen that the queue content

increases with rate λn while the server sets up to serve queue n (phase 1). Next, the

queue is served at maximal rate for a duration of τμn,1
i,n (phase 2) and τμn,2

i,n (phase 3),

i.e., a slope of λn −μn in the figure. Finally, if the queue has been emptied, arrivals

are served at arrival rate, i.e., the queue remains empty. Note that in this figure the

queue is completely emptied, a switch to another group is also possible when the

queue has not been emptied yet. In that case, τλn,1
i,n = 0.

i,ni,ni,n

phase 1 phase 2 phase 3

τi,n
0,1 τ ,1μn τ ,2μn

xi+1,n

xi,n

τ ,1λn

Figure 5.4: Evolution of queue content xn during service in group gi.

Next, bounds on the service periods of the queues are presented. The initial queue

content xi,n is served at maximal rate for a duration of τμn,1
i,n (phase 2). The maximal

amount of fluid that can be served during this phase equals xi,n, rendering an upper

bound for the duration of this phase:

μnτμn,1
i,n ≤xi,n. (5.6a)

Moreover, queue content xn is non-negative, resulting in an upper bound on the

service periods at maximal rate:

(μn −λn)(τ
μn,1
i,n + τμn,2

i,n )≤xi,n +λnτ0,1
i,n . (5.6b)

Furthermore, the queue content at the end of serving group gi can be derived from

arrival and service periods:

xi+1,n =xi,n +λnτ0,1
i,n +(λn −μn)(τ

μn,1
i,n + τμn,2

i,n ). (5.6c)
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For periodic behavior, the amount of fluid processed in a single cycle equals the

amount of fluid arrived in a single cycle, i.e., if queue n is only served in group gi:

λnT =μn(τ
μn,1
i,n + τμn,2

i,n )+λnτλn,1
i,n . (5.7)

For queue n with inactive predecessor, i.e., λn = 0, constraints (5.6) are identical

and the queue evolution is similar as depicted in Figure 5.4, where the queue con-

tent is constant during phase 1. For (5.7), the arrival rate λn must be replaced with

the arrival rate at the first queue of the flow.

Single active upstream queue
Here, we consider a queue with a ‘single’ active upstream queue, i.e., the upstream

queue has no active upstream queue. For example, consider queue n in Figure 5.5

that is served in group gi with active upstream queue p, i.e., p,n ∈ m. Queue p
is the first queue on the route and therefore receives fluid from an external source

(λp(t) = λp > 0).

pλp(t)
0
1 2 3

μp μp λp
n

0
1 2 3

μn 0 μn μp λp

Figure 5.5: Arrival and service rates of two successive queues p and n during service of

group gi. Fluid arrives from an external source with constant rate λp(t) = λp > 0 or queue

p has no active upstream queue, so λp(t) = 0.

During service of queue n, the server can serve at six successive rates, as presented

in Figure 5.5. Compared to the queue without (active) predecessor, the third phase

differs. For queue n, phase 3 consists of an idle period τ0,2
i,n , which occurs if the setup

period in queue p takes longer than both the setup period for queue n and clearing

the fluid in queue n, i.e., if τ0,1
i,p > τ0,1

i,n + τμn,1
i,n . Note that transportation delays are

not taken into account, i.e., fluid is, while served, immediately transported to the

successive queue. Next, for a duration of τμn,2
i,n the fluid is served that has arrived

since the start of serving this group. Once queue n is empty and queue p is not,

which can only occur if μn > μp, queue n is served at arrival rate μp for a duration

of τμp,2
i,n . Finally, when both queues are empty, queue n is served at arrival rate λp

for a duration of τλp,1
i,n . For clarity, we list the service periods below:

τ0,1
i,n : Setup period.

τμ,1
i,n : Time serving the fluid that is initially in the queue, i.e., xi,n, at maximal rate.

τ0,2
i,n : Idling period. This idling period occurs when the initial fluid content of

queue n is served and queue p has not served any fluid yet due to the

setup, i.e., τ0,1
i,n + τμ ,1

i,n < τ0,1
i,p .
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τμ,2
i,n : Time serving fluid received from queue p since the start of serving this group

at rate μn.

τμp,1
i,n : Time serving arriving fluid at rate μp, when μp < μn and xn = 0.

τλp,1
i,n : Time serving arriving fluid at rate λp, i.e., the arrival rate of the upstream

queue.

These service period durations are bounded by the service periods of upstream

queue p and initial queue content xi,n, presented below. Since queues are served

at maximal rate, the time serving queue n at rate λp (that is, arrival rate of queue p)

can not exceed the time serving queue p at arrival rate:

τλp,1
i,n ≤τλp,1

i,p . (5.8a)

The time serving queue n, when empty, at rate μp can not exceed the time serving

queue p at rate μp in phase 3, i.e.,

τμp,1
i,n ≤τμp,1

i,p + τμp,2
i,p . (5.8b)

Total amount of fluid served in queue n in phase 3 can not exceed the total amount

of fluid served in queue p:

μnτμn,2
i,n +μpτμp,1

i,n +λpτλp,1
i,n ≤μp(τ

μp,1
i,p + τμp,2

i,p )+λpτλp,1
i,p . (5.8c)

In phase 2, the amount of fluid served in queue n can not exceed the initial amount

of fluid:

μnτμn,1
i,n ≤xi,n. (5.8d)

The server can start serving fluid from queue n that has arrived from queue p (phase

3) whenever queue p is served, i.e., when the setup period for server p has expired:

τ0,1
i,p ≤τ0,1

i,n + τμn,1
i,n + τ0,2

i,n . (5.8e)

The queue content xi+1,n at the end of serving group gi can be defined as:

xi+1,n =xi,n +μp(τ
μp,1
i,p + τμp,2

i,p )+λpτλp,1
i,p −μn(τ

μn,1
i,n + τμn,2

i,n )

−μpτμp,1
i,n −λpτλp,1

i,n . (5.8f)

For periodic behavior, the amount of fluid processed in a single cycle equals the

amount of fluid arrived in a single cycle, i.e., if queue n is only served in group gi:

λpT =μn(τ
μn,1
i,n + τμn,2

i,n )+μpτμp,1
i,n +λpτλp,1

i,n . (5.9)

If queue p is not the first queue on the route and the upstream queue p−1 is inac-

tive, i.e., λp = 0, constraints (5.8) are identical. For (5.9), the arrival rate λp must

be replaced with the arrival rate at the first queue of the flow.
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Multiple active upstream queues
For a server with multiple active upstream queues, constraints on service durations

and queue contents can be derived similarly, but these are omitted for ease of ex-

position. Note that, if q is the number of active upstream queues, without inter-

mediate inactive queues, then the number of successive service rates is given by

3+∑q
i=1(2+ i).

The presented service period constraints (5.6)-(5.9), along with (5.3) and (5.4), com-

plete the optimization problem. It can be seen that the constraints are all linear with

respect to the service periods. Combined with a linear objective function, we con-

clude that minimizing the cycle times is a LP problem.

5.3.2 Weighted average wip level

Another criterion is the weighted time averaged wip (work in progress) level, or

total queue contents in the network, given by:

Jw =
N

∑
n=1

cnWn, (5.10)

with cn the weight factor and Wn the time average wip of queue n, given by

Wn =
1

T
wn =

1

T

∫ T

0
xn(τ)dτ, (5.11)

where wn is the total wip during T . The average length of a single queue can be

described by the duration of the service and idle periods of the corresponding server

during a cycle, as shown below. Note that Wn in (5.11), by dividing by T , results

in a non-linear function of the service periods τi,n. Therefore, to use quadratic pro-

gramming, the cycle time is assumed constant. Then, for a range of cycle times, the

QP problems are solved and the best solution is chosen. For queue n in Figure 5.3,

without (active) upstream queue, the total wip during service of group gi, denoted

by wi,n, equals the area below the graph depicted in Figure 5.4, can be expressed by:

wi,n =xi,n(τ0,1
i,n + τμn,1

i,n + τμn,2
i,n )+λnτ0,1

i,n (
1
2τ0,1

i,n + τμn,1
i,n + τμn,2

i,n )−
(μn −λn)[τ

μn,1
i,n (1

2τμn,1
i,n + τμn,2

i,n )+ 1
2(τ

μn,2
i,n )2]. (5.12)

Using the service periods of the active queues, wip levels for the inactive queues

can be derived similarly. Then, the time averaged wip of queue n for sequence s, as

denoted in (5.11), follows from

Wn =
1

T

|s|
∑
i=1

wi,n. (5.13)

For queue n with a single active upstream queue p, as depicted in Figure 5.5, it

is complicated to provide an exact description of the evolution of queue n during
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the active period, due to the duration of service at different rates at both queues.

However, by regarding both queues as a single aggregate queue, it has a constant

input and known output, i.e., the input of the aggregated queues p and n is the

constant input λp and the output is given by the service rates and service durations

of queue n (which are linked to the service durations at queue p by (5.8a)-(5.8e)).

Note that instant transportation between queues n and p is assumed. The evolution

of the contents of the aggregate queue x̂n = xp + xn during service in group gi is

depicted in Figure 5.6. Note that the indicated phases in the figure correspond to the

phases of serving queue n.

i,n i,n i,n i,n i,n

phase 1 phase 2 phase 3

τ 0,1 τ ,1μn τ ,2μn τ ,1λpτ 0,2

xi,n

xi+1,n

i,nτ ,1μp

Figure 5.6: Evolution of x̂n during service in group gi.

The total wip ŵn of the aggregate queue x̂n during service of group gi is expressed

by:

ŵi,n =xi,n[αm − τλp,1
i,n ]+λpτ0,1

i,n [αm − τλp,1
i,n − 1

2τ0,1
i,n ]+

(λp −μn)τ
μn,1
i,n [1

2τμn,1
i,n + τ0,2

i,n + τμn,2
i,n + τ

μ̃(p,n),1

i,n ]+λpτ0,2
i,n [

1
2τ0,2

i,n + τμn,2
i,n + τ

μ̃(p,n),1

i,n ]+

(λp −μn)τ
μn,2
i,n [1

2τμn,2
i,n + τ

μ̃(p,n),1

i,n ]+ (λp −μ(p,n))τ
μp,1
i,n [1

2τμp,1
i,n ].

With wi,p from (5.12), the total wip of queue n during this period can be derived by

wi,n = ŵi,n −wp,m.

Then, the time average wip of queue n is derived by (5.13). It can be seen that

the objective functions are quadratic with respect to the service periods, provided

that the cycle time T is constant. Combined with the constraints (5.3), (5.4), (5.6)

and (5.8) this results in a QP problem.

To derive the optimum for a given sequence using QP, the solution of the QP prob-

lem must be derived for all cycle times in the range (5.3). However, by deriving the

minimal required cycle time T ∗, using LP as shown in Section 5.3.1, the optimum

is found by minimizing the objective function over the range max(T min,T ∗)≤ T ≤
T max. An efficient algorithm, e.g., the bisection method, can be used to locate the

optimum. Comparing the optima for each feasible sequence results in the optimal

periodic schedule.

The QP problem for the system depicted in Figure 5.1 and a given feasible se-

quence, with minimizing weighted average wip level as criterion, is presented, as

an example, in Section 5.4.1.
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5.3.3 Weighted average flow time

The weighted average flow time is also a criterion that we can consider. The flow

time is the duration between entering and leaving the network. From Little’s law,

the following relation holds between the average flow time ϕn and the average wip

Wn:

ϕn =
Wn

λn
.

Therefore, the weighted average flow time Jϕ is given by:

Jϕ =
N

∑
n=1

cnWn

λn
.

So, in fact, Jw and Jϕ can both be considered as a weighted average wip level.

5.3.4 Linear combination of criteria

Instead of optimizing a single performance criterion, these can also be linearly com-

bined. One can, for instance, minimize both weighted wip and flow time. By ad-

justing costs, emphasis can be put on a specific criterion.

Remark 5.3.1. Note that setup costs are not taken into account in these criteria.
Since, for a given sequence, the number of switches is fixed, and hence the setup
costs are fixed. Therefore, they do not play a role in the optimization process for a
single sequence, but can be taken into account when comparing sequences.

5.4 Illustrations

This section provides some examples of optimal service schedules for multi-queue

fluid flow networks. Optimal schedules for the Kumar-Seidman network and a

three-server network are presented.

5.4.1 Kumar-Seidman network

In [68] the problem of minimizing the weighted average wip is considered for the

Kumar-Seidman network. Using the method presented in this chapter, we also de-

rive the optimal periodic behavior for this network. As an example, a part of the QP

formulation for sequence ({1,2},{2,4},{3,4}) is presented below. For readability

purposes, only the constraints involving queue 2 are presented. The constraints of

the other queues are similar, and therefore omitted in this overview. The objective

function is given by

min
τ1,τ2,τ3,τ4,τ5

1

T
(c1W1 + c2W2 + c3W3 + c4W4)
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with

W2 =
1
T (w1,2 +w2,2 +w3,2),

w1,2 =x1,2[α1 − τλp,1
1,2 ]+λpτ0,1

1,2 [α1 − τλp,1
1,2 − 1

2τ0,1
1,2 ]+

(λp −μ2)τ
μ2,1
1,2 [1

2τμ2,1
1,2 + τ0,2

1,2 + τμ2,2
1,2 + τ

μ̃(p,2),1

1,2 ]+λpτ0,2
1,2 [

1
2τ0,2

1,2 + τμ2,2
1,2 + τ

μ̃(p,2),1

1,2 ]+

(λp −μ2)τ
μ2,2
1,2 [1

2τμ2,2
1,2 + τ

μ̃(p,2),1

1,2 ]+ (λp −μ(p,2))τ
μp,1
1,2 [1

2τμp,1
1,2 ]

− x1,1(τ0,1
1,1 + τμ1,1

1,1 + τμ1,2
1,1 )+λ1τ0,1

1,1 (
1
2τ0,1

1,1 + τμ1,1
1,1 + τμ1,2

1,1 )−
(μ1 −λ1)[τ

μ1,1
1,1 (1

2τμ1,1
1,1 + τμ1,2

1,1 )+ 1
2(τ

μ1,2
1,1 )2].

w2,2 =x2,2(τ0,1
2,2 + τμ2,1

2,2 + τμ1,2
2,2 )+λ1τ0,1

2,2 (
1
2τ0,1

2,2 + τμ2,1
2,2 + τμ2,2

2,2 )−
(μ1 −λ1)[τ

μ2,1
2,2 (1

2τμ2,1
2,2 + τμ1,2

2,2 )+ 1
2(τ

μ2,2
2,2 )2],

w3,2 =x3,2α3,

x2,2 =x1,2 +μ1(τ
μ1,1
1,1 + τμ1,2

1,1 )+λ1τλ1,1
1,1 −μ2(τ

μ2,1
1,2 + τμ2,2

1,2 )−μ1τμ1,1
1,2 −λ1τλ1,1

1,2 ,

x3,2 =x2,2 −μ2(τ
μ2,1
2,2 + τμ2,2

2,2 ).

The constraints, involving queue 2 only, are as follows:

α1 = σ3,2 + τμ2,1
1,2 + τ0,2

1,2 + τμ2,2
1,2 + τμ1,1

1,2 + τλ1,1
1,2 ,

α2 = τμ2,1
2,2 + τμ2,2

2,2 + τλ2,1
2,2 ,

T = α1 +α2 +α3,

λ1T = μ2(τ
μ2,1
1,2 + τμ2,2

1,2 + τμ2,1
2,2 + τμ2,2

2,2 )+μ1τμ1,1
1,2 +λ1τλ1,1

1,2 ,

τλp,1
1,2 ≤τλp,1

1,p ,

τμp,1
1,2 ≤τμp,1

1,p + τμp,2
1,p ,

μ2τμ2,2
1,2 +μpτμp,1

1,2 +λpτλp,1
1,2 ≤μp(τ

μp,1
1,p + τμp,2

1,p )+λpτλp,1
1,p ,

μ2τμ2,1
1,2 ≤x1,2,

τ0,1
1,1 ≤τ0,1

1,2 + τμ2,1
1,2 + τ0,2

1,2 ,

μ2τμ2,1
2,2 ≤x2,2,

(μ2 −λ2)(τ
μ2,1
2,2 + τμ2,2

2,2 )≤x2,2 +λ2τ0,1
2,2 .

The parameters considered in [68] are

λ1 = 1,

σ1,4 = σ4,1 = σ2,3 = σ3,2 = 50,

μ1 = μ3 =
1

0.3 , μ2 = μ4 =
1

0.6 .
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The objective is to minimize the weighted average wip level (5.10). Moreover, equal

costs are assumed for all queues, i.e., c1 = c2 = c3 = c4 = 1, and no setup costs are

considered. For these parameters, the minimal cycle time T ∗ = 1000 time units,

which follows from solving the LP problem presented in Section 5.3.1.

For G = 3, and therefore Θ = 1, we find two sequences, s∗1 = ({1,2},{2,4},{3,4})
and s∗2 = ({1,2},{3,4},{2,4}), with J∗w = 1350. Sequence s∗1 corresponds to the

sequence in [68]. The results are presented in Figure 5.7. Both sequences consist

of identical groups, but the ordering of the groups is different. Durations of serv-

ing groups are also the same, α{1,2} = 350, α{2,4} = 300 and α{3,4} = 350. It can

be seen that the queue contents of queues 1 and 3 are identical for both sequences,

as these queues are served only in a single group. Furthermore, the wip levels of

queues 2 and 4 are identical to the the wip levels of queues 4 and 2 of the other

sequence. For the network with emphasis on the first queues of the network, i.e.,

c2 > c4, sequence s∗1 is optimal, and s∗2 vice versa.
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(a) Sequence ({1,2},{2,4},{3,4}).
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(b) Sequence ({1,2},{3,4},{2,4}).
Figure 5.7: Optimal sequences, G = 3. Sequence ({1,2},{2,4},{3,4}) (left) and sequence

({1,2},{3,4},{2,4}) (right).

5.4.2 Three server network

As final example we introduce a network with three servers and two fluid flows, see

Figure 5.8, and minimize the weighted average wip. One flow visits servers 3, 2 and

1, while the other flow visits servers 1, 2, 3 and 1 again. Arrival rates and costs are

indicated in Figure 5.8. The service rate for all queues is 10. For this system, the

total number of groups is 12 and the minimal number of groups in a sequence is 3,

as server 1 has to process all queues at least once.
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c3 = 1

c4 = 6

c7 = 3

λ1 = 1

λ4 = 2

c2 = 3

c5 = 1

c1 = 1

c6 = 2x5 x6

x1

x7

x4

x2x3

Figure 5.8: Three server network with two fluid flows.

For G = 3, and therefore Θ = 1, there exist 72 feasible sequences and the op-

timal sequence is given by s∗1 = ({1,2,3},{1,4,5},{2,6,7}) with J∗w = 140.92.

For G = 4 and Θ = 1, 720 feasible sequences exist. The optimal solution s∗2 =
({1,2,4},{5,6,7},{3,5,6},{1,3,5}) has a 0.5% (J∗w = 140.20) better performance.

For G = 4 and Θ = 2, the number of feasible sequences grows to 1656. Then, the

optimal solution is given by s∗3 = ({1,2,3},{2,4,6},{5,6,7},{2,4,6}) and has a

21.9% (J∗w = 115.85) better performance! In this schedule, queue 4, which has the

highest load, is served twice and is the main contributor to the performance im-

provement. Note that the number of feasible sequences quickly grows by relaxing

the bounds on number of groups and total number of service periods per queue.

Since each sequence is optimized separately, the computational efforts increase

enormously. Therefore, the presented approach seems to be suitable for moderate

networks of switching servers.

5.5 Summary

This chapter elaborates on the results of Chapter 4 and presents a method to de-

rive an optimal periodic service schedule for a fluid flow queueing network with

switching servers. Without assuming a policy a priory, we start with an objective

and derive the optimal periodic service schedule with synchronized switches within

the formulated constraints.

Similar to Chapters 3 and 4, the problem is tackled in two consecutive steps. First,

all feasible sequences are derived. Second, for all feasible sequences, the optimal

schedule, i.e., service period durations, are derived. These schedules are calculated

separately with respect to possible restrictions on cycle time, service periods and

maximal queue content. From these solutions, the best one is selected, which is the

optimal periodic schedule for that network, given the restrictions on total number

of groups in a sequence and maximal number of service periods for a queue. We

show that the problem of finding the optimal service periods, given a sequence, can

be formulated as a QP or LP. This creates flexibility in setting the constraints and

objectives. Unlike aforementioned chapters, non-constant arrival patterns have been

investigated in this chapter. These non-constant arrival patters occur as successive

queues are served at the same time. This complicates the derivation of the queue

contents, but it is possible by dividing the service periods into multiple phases.
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By relaxing the bounds on the total number of groups in a sequence and the maxi-

mal number of service periods for a queue, the total number of feasible sequences

increases rapidly, and thereby the required computational effort. A suggestion to

decrease the computational effort is to regard a smaller set of feasible sequence, in-

stead of all feasible sequences. One could for instance dismiss families of sequences

beforehand or investigate the use of branch-and-bound techniques to derive the opti-

mal schedule. Also, by adding (operational) restrictions the total number of feasible

sequences, the computational effort can be decreased, e.g., after service of queue n
by server j, server j is obliged to serve queue p.

Furthermore, instant transportation of fluid between queues has been assumed through-

out the chapter, this may be a restrictive assumption in practice. By allowing trans-

portation times, more applications can be described by the current model frame-

work, such as, e.g., networks of signalized traffic intersections. To that end, for

a certain two-server network with transportation times, we present a heuristic that

provides a good service schedule in Chapter 9. First, the optimal service schedule

for the system without transportation times is derived. Second, a phase delay is

added to the schedule of one of the servers. Finally, this phase-delay is optimized.
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Chapter 6

Transient behavior of a switching server

The periodic behavior of a single switching server has been investigated for two-

queue servers in Chapter 3 and for multi-queue servers in Chapter 4. Starting from

any feasible initial state, the transient behavior, i.e., trajectory to reach the desired

periodic behavior, is presented in this chapter.

The transient optimization problem is that of steering the system towards the op-

timal steady-state trajectory at minimal costs. Machine failure in a manufacturing

application or bus priorities in a signalized traffic intersection are two examples that

can remove the system from the steady-state trajectory. We assume that deviations

from the steady-state trajectory rarely occur, allowing the system to recover to the

steady-state situation after each interruption, which is reasonable for systems such

as traffic intersections or manufacturing applications.

In this chapter, the emphasis is on the two-queue switching server model of Chap-

ter 3. For a two-queue server, a transient solution is defined as a trajectory in the

x1 − x2 space that leads to the optimal steady-state trajectory in a finite amount of

time. An optimal transient solution is a transient solution which minimizes the costs

of reaching the optimal steady-state trajectory. A concise system description is pro-

vided in Section 6.1. In this chapter, the transient behavior is discussed for two

classes of two-queue switching servers: servers without backlog and servers with

backlog. For systems without backlog, the queue contents can be easily derived and

the transient behavior is presented in Section 6.2. For systems with backlog, the

derivation of the total amount of backlog during the transient period is more com-

plex, and also the resulting transient behavior is more complicated, as discussed

in Section 6.3. Section 6.4 presents transient behavior of a multi-queue switching

server and a summary is provided in Section 6.5.

This chapter is partly based on [106, 108].

81
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6.1 System description

In this chapter a system of two queues served by a single switching server is con-

sidered, see Figure 6.1. Fluid arrives at each queue n = 1,2 with arrival rate λn.

The content of queue n at time t is denoted by xn(t). If backlog is allowed, the

backlog level is denoted by x−n (t) = min(xn(t),0) and the inventory level by x+n (t) =
max(xn(t),0). If the server serves queue n, the service rate is given by rn ∈{0,λn,μn}.

The workload of queue n is defined by ρn =
λn
μn

. A setup period σi, j is required for

switching from queue i to queue j. The duration of a service (idle) period for queue

n is nonnegative and is denoted by τn (τ0
n ). The idle period is divided into a part

during which the server sets up to serve the queue and a part in which the server

idles. The service period is also divided into two parts, i.e., a period of service at

maximal rate τμ
n and a period of service at arrival rate τλ

n .

x1
μ1

μ2

σ12 σ21

λ1

x2

λ2

Figure 6.1: Two-queue switching server.

The state x of the system not only consist of queue levels x1 and x2, but also of the

remaining idle time x0 and group g ∈ G . A group is a set of queues that can be

served simultaneously and the set of all groups is denoted by G . Given that both

queues can not be served simultaneously, only two groups exist for the system in

Figure 6.1, denoted by g1 = {1} and g2 = {2} (G = {{1},{2}}). The state of the

system is defined by

x(t) =
[
x0(t) x1(t) x2(t) g(t)

]� ∈ R
3 ×G . (6.1)

The cycle time T is the sum of idle and service periods for all queues, i.e.,

T = τ0
1 + τμ

1 + τλ
1 + τ0

2 + τμ
2 + τλ

2 . (6.2)

where the duration of the idle periods includes the setup period,

σ j,i ≤ τ0
i , i, j = 1,2, j 	= i. (6.3)

For stability of the system, i.e., the server is able to serve all arrivals in a cycle, the

service periods must satisfy

λnT = μnτμ
n +λnτλ

n n = 1,2, ...,N.

For a more detailed description of this system, the reader is referred to Section 3.1.
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6.2 System without backlog

In this section, backlog is not allowed for the considered two-queue switching

server, i.e., xn(t) = x+n (t)≥ 0, n = 1,2. Then, the transient costs are defined by

Jp= liminf
t→∞

∫ t

0
c+1 x1(τ)+ c+2 x2(τ)+ s2,1v1(τ)+ s1,2v2(τ)− J∗wdτ, (6.4)

where J∗w are the optimal time average steady-state costs (see Section 3.2) and

vn(t) = 1
σ j,n

, j 	= n during a setup to queue n and vn(t) = 0 otherwise. We denote by

x(0) the initial state immediately after moving away from the periodic solution, e.g.,

after the machine failure or bus priority. In order to reach the steady-state trajectory

from every possible initial state in finite time, the steady-state trajectory requires

a slow-mode, since serving at a lower rate, i.e., not at full capacity, provides the

transient trajectory to ‘catch up’ with the steady-state trajectory.

Similar to the steady-state trajectories, idling of the server results in non-optimal

behavior, as a counterexample can be derived without the idle periods that provides

better performance. Therefore,

τ0
i,c = σ j,i, for i, j = 1,2, i 	= j, c = 1,2, ...,C, (6.5)

and if queue n is served, the service rate is given by

rn(t) =

{
μn if xn(t)> 0,

λn if xn(t) = 0.

In other words, if the queue is nonempty, service is at maximal rate, otherwise at

arrival rate.

For a fixed number of cycles C, we present the transient optimization problem as

a QP problem. A cycle, starting at group g, is defined as the series of operations

until the end of service of the previous group (which is 2 for group 1 and 1 for group

2). Denote by τn,c the service period of queue n for the c-th cycle (c ≤C), consisting

of the service period at maximal rate τμ
n,c and the service period at arrival rate τλ

n,c.

In the remainder of this chapter we assume that the initial group is 1 and x0 = σ1,2,

i.e., start setting up to serve queue 1, and derive the QP problem for this particular

case. The QP problems for other initial situations can be derived similarly. Con-

straints for the transient problem are listed below. Minimal and maximal cycle time

constraints are:

T min ≤ Tc ≤ T max, c = 1,2, ...,C, (6.6a)

with Tc = τ0
1,c + τμ

1,c + τλ
1,c + τ0

2,c + τμ
2,c + τλ

2,c. Minimal and maximal service period

durations are given by

τmin
n ≤ τn,c ≤ τmax

n , for n = 1,2, c = 1,2, ...,C, (6.6b)
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and minimal idle time is given by

σ j,n ≤ τ0
n , n, j = 1,2, j 	= n, c = 1,2, ...,C. (6.6c)

The bounds on the queue contents are given by:

xmin
n ≤ xn(t)≤ xmax

n , for n = 1,2. (6.6d)

If the transient optimization problem is considered for an infinite number of cy-

cles, the transient trajectory would remain on the steady-state trajectory once it is

reached. However, due to the finite number of cycles considered in the QP prob-

lem, a termination effect occurs, e.g., elongating the cycle time and/or lowering the

accumulated queue contents in the final cycle (or even earlier) can lower the costs.

As an illustrative example, the queue levels of a transient trajectory with C = 5 is

presented in Figure 6.2, along with the setup and service periods.

x1

x2

t

τ1,1λτ1,1μ τ1,2λτ1,2μ τ1,3λτ1,3μ

τ2,1λτ2,1
μ τ2,2

μ τ2,3
μ

τ1,4λτ1,4μ

τ2,4
μ

τ1,20 τ1,30τ1,10 τ1,40 τ1,50

τ2,10 τ2,20 τ2,30 τ2,40 τ2,50

Figure 6.2: Queue levels during transient phase (C = 5), convergence to steady-state trajec-

tory during τλ
1,3.

Since the initial group is group 1 and x0(0) = τ0
1,c, cycle c starts in group 1 and

ends at the end of group 2, i.e., service at rate τλ
2,c. The transient trajectory con-

verges to the steady-state trajectory, presented in gray, during service of queue 1 at

arrival rate in the third cycle, i.e., during τλ
1,3. The trajectory remains on the steady-

state trajectory until the fifth, and final, cycle. In the final cycle, service periods are

zero and the steady-state trajectory is left, reflecting the termination effect. Note

that the depicted trajectory is not the optimal transient trajectory, as for instance

slow-modes τλ
1,1 and τλ

2,1 occur while the queues are non-empty. Let us denote by

xn,c the content of queue n at the end of the c-th cycle:

xn,c+1 =xn,c +λnTc −μnτμ
n,c, n = 1,2, c = 1,2, ...,C, (6.7)
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where xn,0 = xn(0). To negate the termination effect, we enforce the final state of

the final cycle C of the transient solution to be identical to the final state of the

steady-state solution, i.e.,

xn,C =x∗n, n = 1,2, (6.8)

where x∗n is the content of queue n at the start/end of the optimal steady-state tra-

jectory, i.e., the content at the start of the setup to serve queue 1. If (6.8) holds,

the trajectory is defined as a feasible transient trajectory, otherwise the trajectory is

infeasible. Note that in Figure 6.2 the trajectory is not feasible, as the final state

deviates from the optimal steady-state trajectory.

The total queue contents wn,c of queue n for cycle c can be derived by:

w1,c =(x1,c−1 +
1
2λ1τ0

1,c)τ
0
1,c +(x1,c−1 +λ1τ0

1,c − 1
2 μ1τμ

1,c)τ
μ
1,c+

+(x1,c−1 +λ1τ0
1,c −μ1τμ

1,c)τ
λ
1,c +(x1,c−1 +λ1τ0

1,c+ (6.9a)

+ 1
2λ1(τ0

2,c + τμ
2,c + τλ

2,c)−μ1τμ
1,c)(τ

0
2,c + τμ

2,c + τλ
2,c), c = 1,2, ...,C,

w2,c =(x2,c−1 +
1
2λ2(τ0

1,c + τμ
1,c + τλ

1,c + τ0
2,c))(τ

0
1,c + τμ

1,c + τλ
1,c + τ0

2,c)+

+(x2,c−1 +λ2(τ0
1,c + τμ

1,c + τλ
1,c + τ0

2,c)− 1
2 μ2τμ

2,c)τ
μ
2,c+ (6.9b)

+(x2,c−1 +λ2(τ0
1,c + τμ

1,c + τλ
1,c + τ0

2,c)−μ2τμ
2,c)τ

λ
2,c, c = 1,2, ...,C.

Using (6.9), the transient costs (6.4), considering C cycles, can be written as

Jp(C) =C(s1,2 + s2,1)+Qp(C).

Here, Qp(C) is the solution to the quadratic programming problem, for C cycles,

given by

Qp(C) = min
τμ

n,c,τλ
n,c

2

∑
n=1

C

∑
c=1

[
c+i wn,c − J∗w(τ

0
n,c + τμ

n,c + τλ
n,c)
]
, (6.10)

subject to constraints (6.6a)-(6.6c), (6.8) and

x1,c ≥ λ1(τ0
2,c + τμ

2,c + τλ
2,c), c = 1,2, ...,C, (6.11a)

x2,c ≥ 0, c = 1,2, ...,C, (6.11b)

x1,c−1 ≤ xmax
1 −λ1τ0

1,c, c = 1,2, ...,C, (6.11c)

x2,c ≤ xmax
2 − (μ2 −λ1)τ

μ
2,c, c = 1,2, ...,C, (6.11d)

where constraints (6.11a)-(6.11b) follow from xi(t) ≥ 0 and constraints (6.11c)-

(6.11d) follow from (6.6d).
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Given a system with the initial state outside the steady-state trajectory, the number

of cycles required to derive the optimal transient trajectory is not easily determined,

as shown by, for instance, the optimal trajectory in Figure 6.4. However, a lower

bound on the number of cycles required for a feasible transient trajectory Cmin can

be determined by using a clearing policy, regarding the initial state and considering a

system without capacity or service period constraints. For a system with capacity or

service period constraints, this number of cycles is usually not enough to reach the

steady-state trajectory. Starting from this lower bound, and by adding extra cycles,

we solve the QP problem until a feasible transient trajectory is derived. Note that

this transient trajectory is not necessarily the optimal trajectory, i.e., adding more

cycles may lower the costs. Therefore, the number of cycles considered in the QP

problem (6.10) is increased until the total costs required for the transient trajectory

to reach the steady-state trajectory does no longer change, i.e., J∗p(C) = J∗p(C+ i),
∀i > 0. Then, adding more cycles does not result in a different transient trajectory,

in the sense that it only adds steady-state cycles to the solution. Hence, we can then

conclude that the transient solution is the optimal one.

6.2.1 Illustrations

For the system with parameters

λ1 = 2, λ2 = 1,

μ1 = 8, μ2 = 4, (6.12)

σ2,1 = 3, σ1,2 = 7,

c+1 = 8, c+2 = 1,

and without constraints on queue length, cycle time and service periods, the op-

timal transient trajectory for initial state x(0) =
[
3 6 25 1

]�
is presented in

Figure 6.3a by the solid line. The optimal periodic behavior is depicted by the

intersected line. Note, that the initial group is 1, and that the steady-state tra-

jectory is reached during the second cycle. It can be seen that for this initial

state a clearing policy (until the steady-state trajectory is reached) yields the op-

timal performance. However, the optimal trajectory for the system with initial state

x(0) =
[
3 30 23 1

]�
, presented in Figure 6.3b, gives a different result. First,

after the setup, queue 1 is emptied. Second, after the setup, queue 2 is served until

a content of 3.43 is reached, then the system switches to serve queue 1. Note that

queue 2 is not emptied. Next, queues 1 and 2 are both cleared before reaching the

steady-state trajectory.

For the trajectory depicted in Figure 6.3b, it is clearly shown that a trade-off ex-

ists between a build-up of the much more expensive queue 1 and switching before

emptying queue 2. This behavior is not present in symmetric systems, as a clearing

policy is optimal for symmetric systems, see for instance [19, 73].
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Figure 6.3: Optimal transient trajectories with different initial states. In (a) the clearing

policy is optimal, in (b) it is not.

Each optimal transient trajectory contains switching points. A switching point is the

state x =
[
x0 x1 x2 g

]�
at which the system switches to serve the other queue,

i.e., switching between groups g = 1 and g = 2 and between groups g = 2 and g = 1.

Experimentally combining the switching points of optimal trajectories, i.e., solving

the transient problem for a set of initial states and collecting the switching points,

results in a switching curve. A switching curve characterizes the optimal transient

structure for any given initial state, provided that the server works at maximal rate.

The (experimentally determined) switching curves for the system with parame-

ters (6.12) are presented in Figure 6.4, along with a trajectory for initial state x(0) =[
3 40 80 1

]�
. The switching curve for a transition between groups g = 1 and

g = 2 is given by the line starting from x1 = 0 and x2 ≥ 17, where (0,17) is the

switching point of the optimal steady-state trajectory. The switching curve for a

transition between groups g = 2 and g = 1 is discontinuous with linear segments.

These segments do not overlap, i.e., each initial state has a single optimal trajectory.
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Figure 6.4: Discontinuous switching curves (black), for the system with parameters (6.12),

and transient trajectory (gray) for x(0) = [3 40 80 1]�.
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For the system with parameters (6.12) and c+1 = 2, the switching curve is contin-

uous, see Figure 6.5a. Here, the switching curve for a transition between groups

g = 2 and g = 1 is piecewise linear.
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(a) Unconstrained system
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(b) Bounds xmax

1 = 75 and xmax
1 = 92.

Figure 6.5: Switching curves (black), for the system with parameters (6.12) and c+1 = 2,

and transient trajectory (gray) for x(0) = [3 40 80 1]�.

Adding maximal queue length constraints xmax
1 = 75 and xmax

1 = 92 to this model

results in the switching curves depicted in Figure 6.5b. The figure also displays

the optimal transient trajectory for x(0) =
[
3 40 80 1

]�
. It can be seen that the

switching curves, originating from the queue level constraints, are located λnσ j,n be-

low xmax
n , as the queue length increases during the setup. The initial queue contents,

for starting in group 1, are limited to x1(0)≤ xmax
1 −λ1σ2,1 and x2(0)≤ xmax

2 −λ2σ .

Note that for a system with service period constraints, i.e., with at least one of the

constraints (6.6a)-(6.6b), switching curves may not exist in general, as the switch-

ing points are affected by the constraints and will depend on the initial state. This is

illustrated in Figure 6.6. This figure presents, for the system with parameters (6.12)

and with maximal service period τmax
1 = 15, the optimal transient trajectory starting

at x(0) =
[
3 100 10 1

]�
by the solid line and the optimal transient trajectory

starting at x(0) =
[
3 130 5 1

]�
by the dotted line. For both trajectories, the first

service period of queue 1 equals τmax
1 = 15. Therefore, although both trajectories

converge during the first cycle, the switching points are different. Also the subse-

quent switches depend on the initial state. Note that for the dotted trajectory, the

server omits service of queue 2 in the first cycle.

For an optimal transient policy, the switching curves can be used to indicate the

switching moments. From our experiments we find that for c+n μn ≥ c+j μ j, queue n
is always emptied and the optimal policy for c+n μn = c+j μ j is, as expected, a clearing

policy (unless prohibited by restrictions (6.6a)-(6.6d)).

For the system without service period and capacity constraints, the switching curves

can also be derived analytically. We present this for a system with setup periods only

and, without loss of generality, c+1 μ1 ≥ c+2 μ2. Therefore, we assume that queue 1
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Figure 6.6: Optimal transient trajectory for x(0) = [3 100 10 1]�, with τmax
1 = 15.

is always emptied once served. Also, the optimal steady-state trajectory includes a

slow-mode (while serving queue 1), so that the transient trajectory can converge to it

in finite time. Furthermore, we assume that once the transient trajectory converges

to the steady-state trajectory, the system remains on this trajectory during normal

service. To derive the transient trajectory, convergence to the steady-state trajectory

is regarded step by step. Here, a step indicates a setup and service period. First, the

final step is considered, i.e., the optimal trajectory to converge to the steady-state

trajectory after a single step. Second, the optimal trajectory to reach the final step

is considered. This approach is continued and results in the switching curves. Con-

sider the optimal steady-state trajectory depicted in Figure 6.7a with x̃2,1 the content

of queue 2 at which the server switches to serve queue 1.

x̃2,1

x1

x 2

(a) Optimal steady-state trajectory

with 1-step convergence areas.

x̃2,1

x̃2,2

x1

x 2

(b) Optimal steady-state trajectory

with 2-step convergence areas.

Figure 6.7: Optimal steady-state trajectory with different convergence areas.

We suppose that the transient trajectory converges to the steady-state trajectory at

the start of setting up to serve queue 1, i.e., x1 = 0 and x2 = x̃2,1, which follows

from the optimal periodic behavior. The slow-mode in the steady-state trajectory is

the only part of the trajectory at which capacity is lost during service. Therefore,

it is the only part at which the transient trajectory can ‘catch up’. Note that the

trajectory can converge during the slow-mode or for some specific initial points it
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can converge at other points on the steady-state trajectory. However, once on the

steady-state trajectory, the system will remain on this trajectory and therefore we

also assume convergence at x1 = 0 and x2 = x̃2,1 for these particular cases.

The queue contents for which convergence during service of queue 1 is possible

are depicted by the (dark and light) gray areas depicted in Figure 6.7a. The corre-

sponding states are given by

x2 ≤ x̃2,1 − λ2

μ1 −λ1
x1, if x0 = 0 ∧ g = 1. (6.13a)

The dark gray area depicts the queue contents for which the system converges to

the steady-state trajectory after the setup to queue 1, i.e., x0 = σ2,1. These states are

given by

x2 ≤ x̃2,1 −λ2σ1

[
1+

λ1

μ1 −λ1

]
− λ2

μ1 −λ1
x1, if x0 = σ2,1 ∧ g = 1. (6.13b)

We denote the areas (6.13a) and (6.13b) as 1-step convergence areas, since the tran-

sient trajectory can converge after a single service step (serving queue 1) to the

steady-state trajectory. Given an initial state satisfying (6.13a), queue 1 must be

emptied within 1
λ2
(x̃2,1−x2(0)) time units to converge to the steady-state trajectory.

It is optimal to serve the queue at the highest possible rate. The optimal service time

durations for the system to converge to the steady-state trajectory at once, i.e., the

duration of serving queue 1 at maximal process rate τμ∗
1,1 and duration of serving at

arrival rate τλ∗
1,1, are given by

τμ∗
1,1 =

x1(t)
μ1 −λ1

, (6.14a)

τλ∗
1,1 =

1

λ2

[
x̃2,1 − (x2(t)+λ1τμ

1 )
]
, (6.14b)

where t is the time at which the server starts serving queue 1. It is possible for

the system to start in area (6.13a) and converge to the steady-state trajectory in the

second cycle (second time serving queue 1), or even later. Below we show that this

behavior is not optimal. Consider the system with initial state satisfying (6.13a),

and we assume that the system converges to the steady-state behavior in the second

cycle with service rates (6.14). Then, the first cycle results in additional decision

variables τμ
1 ,τ

λ
1 ,τ

μ
2 ,τ

λ
2 before convergence to the steady-state trajectory. Also, after

this first cycle, the state of the system must satisfy (6.13a). While serving a queue

there are two options, clear the queue at maximal rate (which determines τμ
n ) and

use a slow-mode or switch when the queue is not yet empty (no slow-mode, i.e.,

τλ
n = 0). This leaves us with the following four cases, for each of which the optimal

service periods are derived. For ease of exposition, the calculations are omitted.

• Clear queues 1 and 2
When both queues are cleared, the duration of the slow-modes have to be
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determined. Minimal costs are reached when τλ
1 = τλ ∗

1 and τλ
2 = 0. Therefore,

after the first service period of queue 1 the transient trajectory has converged

to the steady-state trajectory and follows it during the next cycle.

• Clear queue 1
When queue 1 is cleared and a slow-mode while serving queue 2 is not al-

lowed, the variables are τλ
1 and τμ

2 , as τμ
1 is determined by clearing queue 1

and τλ
2 = 0 since the queue is not cleared. Minimal costs are reached when

the service duration τμ
2 is maximal, i.e., clearing queue 2, and τλ

1 = τλ ∗
1 as

shown above. Therefore, the resulting transient behavior is identical to the

first case.

• Clear queue 2
If a slow-mode while serving queue 1 is not allowed and queue 2 is cleared,

the variables are τμ
1 and τλ

2 . Minimal costs are reached when queue 1 is

cleared and τλ
2 = 0, and are higher than the solutions above, except for x2(0)≤

x∗2 − λ2
μ1−λ1

x1(0) where the costs are identical. In this case, the system starts

exactly on the outer edge of the light gray area depicted in Figure 6.7a and no

slow-modes are required for convergence to the steady-state trajectory during

service of queue 1.

• Do not clear queues
When no slow-modes are allowed in the first cycle, the durations τμ

1 and τμ
2

are the optimization variables. Here, the optimal solution is identical to the

previous case, i.e., empty both queues.

This illustrates that if the system is in (6.13a), it is optimal to converge to the steady-

state trajectory using (6.14). Once the system reaches the steady-state trajectory, it

remains on this trajectory. Note that this is not always optimal for the system with

backlog, as presented in Section 6.3. Furthermore, denote by Ri(x1(t),x2(t)) the

inventory costs during service in step i by Rσ
i (x1(t),x2(t)) the costs during the setup

period at the start of step i. Hence, for the system with initial state in (6.13b), the

optimal costs are given by

J∗p =Rσ
1 (x1(0),x2(0))+R1(x1(0)+λ1σ2,1,x2(0)+λ2σ2,1)−
− J∗w(σ2,1 + τμ∗

1,1 + τλ∗
1,1),

Next, the service time durations of queue 2 that lead the system to (6.13b) are in-

vestigated. Figure 6.7b presents the 2-step convergence areas, i.e., area for which

the system can converge in 2 steps (successively serving queue 2 and queue 1) to

the steady state behavior. These areas are given by

x2 ≤ x̃2,2 − λ1

μ2 −λ2
x1, if x0 = 0 ∧ g = 2, (6.15a)

x2 ≤ x̃2,2 −μ2σ2 − λ1

μ2 −λ2
x1, if x0 = σ1,2 ∧ g = 2, (6.15b)



Chapter 6: Transient behavior of a switching server 92

x̃2,2 =
μ1 −λ1

λ2

(
x̃2,1 −λ2σ1

[
1+

λ1

μ1 −λ1

])
.

The dark area in Figure 6.7b, given by (6.15b), represents the states for which the

system can reach the area (6.13b), given initial setup times σ1,2. From area (6.15a),

represented by the light and dark gray areas in Figure 6.7b, the area (6.13b) can be

reached while serving queue 2 without initial setup time.

The transient costs, starting from (6.15a) are given by

Jp = R2(x1(0),x2(0))+Rσ
1 +R1 − J∗wδ (τμ

2,2 + τλ
2,2 +σ2,1 + τμ∗

1,1 + τλ∗
1,1), (6.16)

where, for ease of reading, the parameters of R1 and Rσ
1 are omitted, i.e., the queue

contents after step 2 and the setup period in step 1, respectively. For optimal

costs (6.16), the optimal service durations during step 2 are required. Using a similar

method as described above, we can conclude that slow-modes in the transient trajec-

tory, except the final slow-mode to converge to the steady-state trajectory, result in

non-optimal trajectories and are therefore not taken into account. Therefore, for the

system in (6.15a), the service period in step 2 (τμ
2,2) is required that optimizes (6.16).

This service period has a lower bound τμ
2,2 to ensure reach area (6.13a) is reached,

and an upper bound τ̄ μ
2,2 which is the time required to empty queue 2, i.e.,

τμ
2,2 ≤ τμ

2,2 ≤ τ̄ μ
2,2, (6.17)

τμ
2,2 =

x2(0)+
μ2−λ2

λ1
x1(0)− x̃2,1 +λ2σ2,1 +

λ2
μ1−λ1

λ1σ2,1

μ2 −λ2 − λ1λ2
μ1−λ1

− x1(0)

λ1
, (6.18)

τ̄ μ
2,2 =

x2(0)

μ2 −λ2
. (6.19)

Then, the optimal service period τμ∗
2,2 for starting in area (6.15a) is given by

τμ∗
2,2(x1(0),x2(0)) = min

τμ
2,2

R2(x1(0),x2(0))+Rσ
1 +R1−

− J∗w(τ
μ
2,2 +σ2,1 + τμ∗

1,1 + τλ∗
1,1), (6.20)

subject to (6.17). By continuing this step-by-step approach, the optimal service pe-

riods for all states can be derived and these can be presented as switching curves.

Alongside the switching curves, for an optimal transient policy, also the optimal

initial group (given contents x(0)), if it is not predefined, can be derived. Together

with the switching curves, this gives the policy for optimal transient behavior given

initial queue contents. Once the optimal initial state is known, the queues are served

until a switching point is reached, switch to the successive group, until converging

to the optimal steady-state trajectory. If all initial states are allowed, the states with

x0(0)> 0 are of course not optimal. Therefore, a comparison of the transient costs

for the system with x0(0) = 0 and g(0) = 1 or g(0) = 2 results in the optimal initial
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state. For the system with parameters (6.12), the optimal initial states are presented

in Figure 6.8, along with the switching curves. For initial queue contents in the gray

area the optimal initial state is x(0) =
[
0 x1 x2 1

]�
, and x(0) =

[
0 x1 x2 2

]�
otherwise.
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Figure 6.8: Switching curves (black) and optimal initial group for the system with param-

eters (6.12) and c+1 = 2, x0(0) = 0, g(0) = 1 in the gray area and g(0) = 2 otherwise.

Also for the system with parameters (6.12), where c+1 = 2 and with queue length

constraints xmax
1 = 75 and xmax

1 = 92, the optimal initial groups, with x0(0) = 0, are

presented in Figure 6.9. The dark gray area indicates that g(0) = 1 is optimal and

the light gray area indicates optimal group g(0) = 2. For the remaining area, no

trajectories exist as these would violate the queue constraints.
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Figure 6.9: Switching curves (black) and optimal initial group for the system with parame-

ters (6.12), c+1 = 2, xmax
1 = 75 and xmax

1 = 92. x0(0) = 0, g(0) = 1 in the dark gray area and

g(0) = 2 in the light gray area.

Note that, for the system without backlog, the optimal transient trajectory does not

include idling of the server. Also, a slow-mode only occurs while on the steady-state

trajectory or to converge to this trajectory. For the system with backlog, presented in

Section 6.3, idling of the server and slow-modes can occur in the optimal transient

behavior.
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6.3 System with backlog

For the system with backlog, the transient costs are defined by

Jp = liminf
t→∞

∫ t

0
[c+1 x+1 (τ)+ c−1 x−1 (τ)+ c+2 x+2 (τ)+ c−2 x−2 (τ)+

+ s2,1v1(τ)+ s1,2v2(τ)− J∗w]dτ. (6.21)

Deriving optimal transient trajectories for systems with backlog requires another

approach as for the steady-state trajectory to derive the backlog and inventory levels

per cycle, since Lemma 3.2.1 does not hold for each cycle, i.e., it is unknown if a

queue content in a cycle becomes zero, and therefore the inventory and backlog can

not be calculated by (3.10). Therefore, extra variables are introduced to calculate

the inventory and backlog. Consider queue 1 that starts cycle c in group 1. The

queue contents during this cycle are depicted in Figure 6.10.

τ1,c τ1,c τ2,c τ2,c

0

τ1,c τ2,cμ λ μ λ0 0

x1,c

x1,c

x1,c

x1,c-1
δ1,c δ1,cβ1,cβ1,cδ1,cβ1,c

Figure 6.10: Evolution of x1 during cycle c.

The periods in which the queue contents change, i.e., all periods except those serv-

ing at arrival rate, are divided into a part in which the content of queue n is positive,

with a duration of δn,c ≥ 0, and a part in which the content is negative, with a dura-

tion of βn,c ≥ 0. For queue 1 it holds that

δ̄1,c + β̄1,c = τ0
1,c, (6.22a)

δ̂1,c + β̂1,c = τμ
1,c, (6.22b)

δ1,c +β1,c = τ0
2,c + τμ

2,c + τλ
2,c. (6.22c)

Furthermore, we denote by x̄1,c the content of queue 1 in cycle c after the idle period

τ0
1,c and by x̂1,c the content of queue 1 in cycle c after the period of maximal service

τμ
1,c, see Figure 6.10. The queue levels at these time instances are divided into a

positive and negative part, i.e.,

xn,c = x+n,c + x−n,c, n = 1,2, (6.23a)

x+n,c ≤ max(0,xn,c), n = 1,2, (6.23b)

x−n,c ≤ min(0,xn,c), n = 1,2. (6.23c)

Note that (6.23b) and (6.23c) are non-linear. One can see from Figure 6.10 that

β̄1,c = 0 if x+1,c−1 > 0, as the queue content remains positive during the idle period.
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Also, x+1,c−1 = 0 if β̄1,c > 0, as the queue contents increase during the idle period.

Therefore, and for similar reasons for all other periods, the following constraints

hold

x+1,c−1β̄1,c = 0, (6.24a)

x̄−1,cδ̄1,c = 0, (6.24b)

x̂+1,cβ̂1,c = 0, (6.24c)

x̄−1,cδ̂1,c = 0, (6.24d)

x̄+1,cβ1,c = 0, (6.24e)

x−1,cδ1,c = 0. (6.24f)

Note that these constraints are non-linear, and therefore can not be included in a QP

problem. However, by adding these products of variables to the objective function,

multiplied by a large gain to ensure that the constraints hold, minimization of the

objective function results in (6.24).

Given these new variables, the total inventory of queue 1 in cycle c is defined by

w+
1,c = w̄+

1,c + ŵ+
1,c + x̂+1,cτλ

1,c + w̃+
1,c,

w̄+
1,c =

1
2 δ̄1,c(x+1,c−1 + x̄+1,c),

ŵ+
1,c =

1
2 δ̂1,c(x̄+1,c + x̂+1,c),

w̃+
1,c =

1
2δ1,c(x̂+1,c + x+1,c),

and the total backlog of queue 1 in cycle c is defined by

w−
1,c = w̄−

1,c + ŵ−
1,c − x̂−1,cτλ

1,c + w̃−
1,c,

w̄−
1,c =−1

2 β̄1,c(x−1,c−1 + x̄−1,c),

ŵ−
1,c =−1

2 β̂1,c(x̄−1,c + x̂−1,c),

w̃−
1,c =−1

2β1,c(x̂−1,c + x−1,c).

The evolution between the positive and negative queue contents is given by

x̄+1,c = x+1,c−1 +λ1δ̄1,c, (6.25a)

x̂+1,c = x̄+1,c − (μ1 −λ1)δ̂1,c, (6.25b)

x+1,c = x̂+1,c +λ1δ1,c, (6.25c)

x̄−1,c = x−1,c−1 +λ1β̄1,c, (6.25d)

x̂−1,c = x̄−1,c − (μ1 −λ1)β̂1,c, (6.25e)

x−1,c = x̂−1,c +λ1β1,c. (6.25f)

For queue 2, we use a similar approach to derive the backlog and inventory during

cycle c. The queue contents during this cycle are depicted in Figure 6.11. Denote
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Figure 6.11: Evolution of x2 during cycle c

by x̄2,c the content of queue 2 in cycle c after the idle period τ0
2,c.

The periods during which queue 2 is not served at arrival rate are divided according

to

δ̄2,c + β̄2,c = τ0
1,c + τμ

1,c + τλ
1,c + τ0

2,c, (6.26a)

δ2,c +β2,c = τμ
2,c. (6.26b)

Then, the total inventory in cycle c is given by

w+
2,c = w̄+

2,c +w+
2,c + x̂+2,cτλ

2,c,

w̄+
2,c =

1
2 δ̄2,c(x+2,c−1 + x̄+2,c),

w̃+
2,c =

1
2δ2,c(x̄+2,c + x+2,c),

and total backlog by

w−
2,c = w̄−

2,c +w−
2,c − x̂−2,cτλ

2,c,

w̄−
2,c =−1

2 β̄2,c(x−2,c−1 + x̄−2,c),

w̃−
2,c =−1

2β2,c(x̄−2,c + x−2,c).

The evolution between the positive and negative queue contents is given by

x̄+2,c = x+2,c−1 +λ2δ̄2,c, (6.27a)

x+2,c = x̄+2,c − (μ2 −λ2)δ2,c, (6.27b)

x̄−2,c = x−2,c−1 +λ2β̄2,c, (6.27c)

x−2,c = x̂−2,c − (μ2 −λ2)β2,c, (6.27d)

and the constraints, derived similar to (6.24), are given by

x+2,c−1β̄2,c = 0, (6.28a)

x̄−2,cδ̄2,c = 0, (6.28b)

x+2,cβ2,c = 0, (6.28c)

x̄−2,cδ2,c = 0. (6.28d)
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Also these products of variables, multiplied by a large gain, are added to the objec-

tive function. Then, the transient costs (6.21) for the system with backlog, consid-

ering C cycles, can be written as

Jb(C) =C(s1,2 + s2,1)+Qb(C).

Here, Qb(C) is the solution to the quadratic programming problem, for C cycles,

given by

Qb(C) = min
τμ

n,c,τλ
n,c

2

∑
n=1

C

∑
c=1

[
c+n w+

n,c + c−n w−
n,c − J∗w(σn, j + τμ

n,c + τλ
n,c)
]
+ΛΩ, n 	= j,

(6.29)

where Λ is a large gain an Ω is the sum of non-linear variables, i.e., the sum

of the left hand sides of equations (6.24) and (6.28). Note that ΛΩ = 0 ensures

that the non-linear constraints are met. Objective function (6.29) is subject to con-

straints (6.22), (6.23a), (6.25), (6.26), and (6.27) and

x1,c ≤ xmax
1 , (6.30a)

x̄1,c ≤ xmax
1 , (6.30b)

x̄2,c ≤ xmax
2 , (6.30c)

where (6.30) follows from (6.6d).

6.3.1 Illustrations

Consider the system with the following parameters

λ1 = 3, λ2 = 1,

μ1 = 8, μ2 = 9,

σ2,1 = 1, σ1,2 = 3, (6.31)

c+1 = 2, c+2 = 1,

c−1 = 20, c−2 = 10,

and without setup costs or constraints on capacity or service periods. Figure 6.12

presents the optimal steady-state trajectory by the intersected line. The other tra-

jectory, depicted with the solid line, starts and ends at the same state as the opti-

mal steady-state trajectory and in between, each queue is served three times. Fur-

thermore, this trajectory, which is also periodic, has lower costs than the optimal

steady-state trajectory. As we consider the optimal steady-state trajectory derived

in Section 3.2, periodic trajectories where each queue is served multiple times are

not taken into account. Therefore, once the steady-state trajectory is reached, the

system remains on this trajectory, and constraint (6.8) enforces the trajectory to con-

verge to the steady-state trajectory.
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Figure 6.12: Steady-state trajectories where each flow is served once (intersected line) and

each flow is served three times (solid line), for the system with parameters (6.31).

In Figure 6.13 the optimal steady-state trajectory (black intersected line) and three

optimal transient trajectories are depicted. The solid (gray) line represents the tran-

sient trajectory with x(0) =
[
3 10 −10 1

]�
, where the server sets up to serve

queue 2 directly after the setup to queue 1. The intersected line depicts the trajectory

starting from x(0) =
[
3 −10 −10 1

]�
. Here, after the setup, the server idles

until x1 = 0 and then converges to the steady-state cycle using a slow-mode. This

example shows that optimal transient trajectories can include idling of the server,

unlike the trajectories for the system without backlog. This is also intuitive, as

idling of the server is the quickest way to remove backlog. A third trajectory, de-

picted by the dotted line in Figure 6.13, starts from x(0) =
[
3 −10 10 1

]�
and

also converges directly after emptying queue 1 and continuing service at arrival rate.

−10 −5 0 5 10 15 20
−10

0

10

x1

x 2

Figure 6.13: Optimal transient trajectories with different initial states, for the system with

parameters (6.31).

In Figure 6.14, three optimal periodic trajectories are presented starting with a large

backlog in queue 1. The initial state for the trajectory depicted by the gray solid

line is x(0) =
[
3 −30 −5 1

]�
, the trajectory depicted by intersected line x(0) =[

3 −30 0 1
]�

and the trajectory depicted by dotted line x(0)=
[
3 −30 15 1

]�
.

It can be seen that the backlog is minimized as fast as possible, by switching to serve
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queue 2 and serving this queue or idling until x2 = 0. Note that, for convergence to

the steady-state trajectory, the server can switch earlier to serve queue 1. However,

this reduction in time does not outweigh the extra backlog costs. Moreover, when

the trajectory reaches the origin, the server can immediately switch to serve queue

1, resulting in a lower total inventory. For this system, this reduction in costs does

not outweigh the cost reduction by elongating the cycle time. Therefore, queue 2 is

served at arrival rate a little longer, i.e., until x2 = 2.06.

−30 −20 −10 0 10 20
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20
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Figure 6.14: Optimal transient trajectories with different initial states, for the system with

parameters (6.31).

In some cases, the optimal transient trajectory requires a few additional cycles to

converge to the steady-state trajectory after the queue levels are directed to the

vicinity of the steady-state trajectory. This trajectory has optimal costs, but another

transient trajectory, which converges with less cycles to the steady-state trajectory

and almost identical costs, might be desired by the operator, e.g., for simplicity of

the trajectory. As an illustrative example, Figure 6.15 presents two different tran-

sient trajectories, both with initial state
[
3 10 0 1

]�
. Figure 6.15a depicts the

optimal transient trajectory, which requires four cycles to converge to the steady-

state trajectory. In Figure 6.15b, a transient trajectory is depicted which converges

after two cycles, with almost similar costs, i.e., a difference of 1,7%. This trajectory

might be desired over the optimal trajectory, as the costs are almost similar and the

trajectory converges faster to the steady-state trajectory.

Also, switching curves for the system with backlog, as presented for the system

without backlog, provide no insight in the optimal transient behavior, due to this

complex convergence for some of the optimal transient trajectories. To negate the

occurrence of extra cycles just before converging, we add costs to the number of

cycles required to converge. Denote by cc the additional transient costs of requiring

an extra cycle to converge to the steady-state behavior. Then, the transient costs J̄b
are denoted by

J̄b(C) =C(s1,2 + s2,1 + cc)+Qb(C). (6.32)

Using (6.32), for the system with parameters (6.31) and cc = 5, which is only 31%
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(a) Convergence after 4 cycles,

J∗P=105.85.
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(b) Convergence after 2 cycles,

JP=107.64.

Figure 6.15: Two trajectories for x(0) = [3 10 10 1]�.

of the optimal steady-state costs J∗w, the switching curves and three transient tra-

jectories are depicted in Figure 6.16. These switching curves are depicted with

the black solid lines, and are generated by optimizing trajectories for the system

without backlog in the initial states. Also the optimal steady-state trajectory is de-

picted (gray) with corresponding switching points. It can be seen that the switch-

ing curves on the left side, which represent a transition between groups g = 1 and

g = 2, consists of three line segments and single switching point on the steady-

state trajectory. In Figure 6.16a a transient trajectory is depicted, which starts at

x(0) =
[
3 10 11 1

]�
and converges to the steady-state trajectory during the

slow-mode in the second cycle. The transient trajectory presented in Figure 6.16b,

with initial state x(0) =
[
3 10 7 1

]�
, converges to the steady-state trajectory

during service of queue 2 in the first cycle. Due to allowed backlog, this is possible

for a whole range of trajectories, as they switch at the second line segment of the

switching curve. Finally, in Figure 6.16c a transient trajectory is depicted for the

system with initial state x(0) =
[
3 10 0 1

]�
. Note that the trajectory converges

to the steady-state trajectory during service of queue 1 in the second cycle, while

convergence was already possible during service of queue 1 in the first cycle. How-

ever, using two cycles results in lower costs (even with the added costs cc). For a

larger cost cc, the use of the second cycle can be removed. Trajectories that reach

a point on the intersected line, while serving queue 1, converge to the steady-state

trajectory by using a slow-mode from that point.

6.4 Transient behavior of multi-queue switching servers

So far, the transient behavior of a two-queue switching server has been addressed.

Extending this work to multi-queue servers imposes a couple of problems. First

problem is the order of serving the queues until reaching the periodic behavior. If

this order is not predefined, there exist lots of different transient service sequences,

i.e., order of serving queues until reaching the periodic behavior. These sequences
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(a) x(0) =
[
3 10 11 1
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(b) x(0) =
[
3 10 7 1

]�
.
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(c) x(0) =
[
3 10 2 1

]�
.

Figure 6.16: Switching curves, optimal steady-state trajectory and three transient trajecto-

ries.

can be generated similar to the sequence generation process of multi-queue switch-

ing servers, as presented in Section 4.4. Then for each sequence an optimization

problem can be formulated and solved, similar to the method presented in Chap-

ter 4. If the order of serving queues is predefined, for instance due to safety issues

at traffic intersections or a fixed order of assembly at manufacturing systems, the

optimization method follows directly from the method presented in this chapter.

x1 μ1 = 16
x2 μ2 = 16
x3 μ3 = 16

λ1 = 4
λ2 = 2
λ3 = 1

Figure 6.17: Three-queue switching server.

A second problem is the interpretation of the switching curves and optimal transient

trajectories. If, for any initial state, the transient trajectories can be derived, a com-

mon policy (as depicted by the switching curves) is not easily found or does not

exist. For example, let us consider the three-queue switching server presented in

Section 4.6.1. The layout of this system is presented in Figure 6.17. The state of the

3-queue server is given by x =
[
x0 x1 x2 x3 g

]�
. The arrival and service rates

are indicated in the figure, all setup periods have a duration of 1 and the costs are

given by c1 = 4, c2 = 2, c3 = 1. Note that the costs differ from the system considered

in Section 4.6.1, so that cnμn is not constant. Furthermore, the server is restricted

to serve only one queue at a time. Due to, for example, operator requirements, the
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service order of queues is fixed, i.e., assume without loss of generality that queues

are served in the order 1, 2, 3 and then queue 1 again and so on. Also, backlog is

not allowed, i.e., the queue lengths are nonnegative. Furthermore, no restrictions

are imposed on the service periods or queue lengths. The optimal periodic behavior

is presented in Figure 6.18.
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(b) Trajectory.

Figure 6.18: Optimal steady-state behavior of the 3-queue system.

Then, the optimal transient trajectory is derived similar as presented in Section 6.2,

with the addition of service of queue 3. The combined switching points, derived by

experiments, result in the switching areas. A switch to serve queue 2 or queue

3 occurs when queues 1 or 2 are emptied, i.e., x =
[
0 0 R R 1

]�
or x =[

0 R 0 R 2
]�

, respectively. The switching area indicating a switch between

serving queue 3 and setting up to serve queue 1 is presented in Figure 6.19. It can

be seen that, queue 3 is, once served, not always emptied, as the switching area is

not represented by x =
[
0 R R 0 3

]�
. This behavior is similar to the transient

behavior of a two-queue system.

Figure 6.19: Switching area, switch from serving queue 3 to serve queue 1.

For this illustrative example, no constraints are imposed on the service or cycle

times. Therefore, the server is allowed to switch to serve the next queue right af-

ter finishing a setup. This occurs for instance if x(0) =
[
1 200 200 200 1

]�
.

The corresponding optimal transient behavior is presented in Figure 6.20. It can be
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clearly seen that queue 3 is not served in the first cycle, i.e., after emptying queue

2, the system starts serving queue 1 again. To do this, first a setup to queue 3 is

performed, followed by a setup to serve queue 1. This indicates that, if the order of

service is not predefined, another sequence can result in better performance.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

time

x1
x2
x3

Figure 6.20: Optimal transient behavior for x(0) = [1 200 200 200 1]�.

6.5 Summary

In this chapter, the transient behavior of a two-queue switching server has been

investigated intensively. For the system without backlog, the transient costs can

be easily derived and given a number of cycles, a QP problem is presented. The

solutions of the QP problem for different cycles are compared and the best one re-

sults yields the optimal transient behavior, given that the transient trajectory has

converged to the optimal periodic trajectory. Given this method, the optimal tran-

sient trajectory can be derived given any initial state of the system. Next, for the

unconstrained system, we combined the switching points, i.e., states at which the

system in the optimal transient behavior switches to serve another queue. These

combined points resulted into switching curves. Given the switching curves, the

system knows exactly when to switch between queues to result in minimal transient

costs. By bounding the queue lengths, the switching curves are also bounded. For

a system with constraints on cycle time or service periods, switching curves may

not exist in general, as the switching points are affected by the constraints and will

depend on the initial state.

For a system with backlog, the QP problem formulation is more complex. De-

riving the total amount of inventory and backlog is more tedious as for the periodic

behavior (Chapter 3), as the queue content is not always zero once in a cycle. For

a given initial state, the optimal transient behavior can be derived. The final state

of the transient behavior is fixed, given the periodic behavior. This ensures that

the transient trajectory converges to the periodic trajectory, as periods with multiple

cycles, which is not allowed, can result in better performance. The resulting opti-

mal trajectories showed complex switching behavior close to the periodic behavior

which made the derivation of general switching curves impossible. However, the
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performance gain by the complex switching behavior is minimal compared to the

switching considering less cycles. Therefore, additional costs on the number of

cycles required to converge to the periodic behavior have been introduced. Using

these additional costs, which just are a fraction of the average periodic costs, yield

less complicated trajectories and also switching curves can be generated.

It is also shown that transient behavior for multi-queue switching servers can be

derived similarly. However, for these servers, the order of serving queues is not

fixed. Therefore, an excess of possible service orders exist to converge to the pe-

riodic behavior. Similar to the generation of all feasible sequences presented in

Chapter 4, all possible sequences can be generated. Then, for each sequence an

optimization problem can be formulated and solved and the best result yields the

optimal transient behavior. Furthermore, as illustrated by the optimal periodic and

transient behavior of a three-queue switching server, a common policy (as depicted

by the switching curves for the two-queue system) is not easily found or does not

exist.



Chapter 7

Observer design for a multi-queue single
server

In Chapters 3-6, the control of switching servers has been studied. For a class of

servers with two queues, the optimal periodic behavior has been derived in Chap-

ter 3 and the optimal transient behavior in Chapter 6, for both unconstrained and

constrained systems. Periodical behavior of multi-queue switching servers has been

investigated in Chapter 4 and periodic behavior of networks of switching servers,

without transportation times, has been studied in Chapter 5.

The controllers resulting from the aforementioned approaches are central controllers
and determine the switching behavior of each server, based on the state of the entire

system, i.e., global state information. Switching servers not only describe the behav-

ior of man-made systems, but also describe the behavior of non-artificial systems,

such as traffic intersection for example. For the latter systems, access to global state

information is hardly ever the case in practice. This renders the design of observers,

providing good estimates of the global state of the system, of crucial importance.

In this chapter the design of observers for a special class of piecewise affine hy-

brid systems (PWAHS), see [28], is investigated. This is motivated by multi-queue

switching servers using a clearing policy, where one queue can be served at a time

and the order of serving the queues is fixed. For this system, observers are inves-

tigated that, based on the measured input and output of the system, reconstruct the

global state. An illustrative example of a manufacturing system that is used as run-

ning example throughout the chapter is presented in Figure 7.1 and we will refer to

this system as the example system. This single switching server serves two queues

n = 1,2. Fluid arrives at queue 1 with a constant arrival rate λ1 > 0. After service

in queue 1, the fluid moves to queue 2. The server can only serve one queue at

a time and operates based on a clearing policy, i.e., it completely empties a queue

before it switches to serve another queue. The service rate of queue n is denoted

by μn > 0. Note that, since the server switches when the queue is emptied, the

This chapter is partly based on [110].

105
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queues are served at the maximal rate only, i.e., not also at arrival rate. Switching

to queue n requires a setup time with duration σn ≥ 0 and at least one setup time is

non-zero, i.e., σ1 +σ2 > 0. Note that for ease of reading, the notation σi, j = σ j is

used throughout the chapter, since the order of serving queues is fixed.

x1

x2

σ2 σ1

μ1

μ2

λ1

y

Figure 7.1: Two-queue switching server.

To model this example system, we use a continuous state that consists next to the

queue contents xn, n = 1,2, also of the remaining setup time at the server, denoted

by x0. Therefore, x =
[
x0 x1 x2

]� ∈ R
N+1
+ with N = 2 being the number of

queues and R+ = [0,∞). For each queue n the system has two modes, one for

setting up to serve the queue and the other for serving the queue. Hence, this re-

sults in M = 4 modes (discrete states) in this case and the modes are denoted by

m ∈ M := {1,2, . . . ,M}. The modes 1, 2, 3, and 4 represent setting up the server to

serve queue 1, serving queue 1, setting up the server to serve queue 2, and serving

queue 2, respectively. Note that the order in which the modes are traversed is fixed.

The system evolves from mode 1 via modes 2, 3, and mode 4 back to mode 1 af-

ter which the cycle is repeated. Only at some times the output reveals information

about the currently active mode. If measurable, the output y indicates the current

mode of the system. For the example system, the only (measurement) information

that is received is when the server is processing queue 2 in mode 4. Hence, the

output is either 0 (system in modes 1, 2 or 3) or 4 if the system is in mode 4. Note

that an output rate of μ2 corresponds with y = 4.

The considered hybrid system is autonomous with the mode dynamics consisting

of constant drift and the output within a mode being constant. For the example sys-

tem, the modes 1 and 3 represent setup periods and in these modes the remaining

setup time x0 decreases with rate 1 and queue x1 increases with rate λ1. While serv-

ing queue 1 (mode 2), x1 decreases with rate μ1 −λ1 and x2 increases with rate μ2.

In mode 4, i.e., serving queue 2, x1 increases with rate λ1 and x2 decreases with

rate x2. In particular, this implies that all subsystems are unobservable, eliminating

many currently available solutions for synthesizing hybrid observers proposed in

the literature. Furthermore, the mode transitions are unknown a priori. However,

the mode transitions are state-dependent, e.g., switch when the queue is empty or

when the setup time has expired, and the order in which the modes are traversed is

fixed and periodic, which are properties that will turn out to be useful. In addition,

during a mode transition some specific state variables might exhibit jumps, e.g., the

remaining setup times in the example system.
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For this class of PWAHS, of which the full details are specified later, a methodology

is proposed for designing continuous-time observers. This methodology consists of

a few main steps. First, the system is sampled (with varying sampling periods) at so-

called visible event times tv
j , j ∈N≥1, i.e., times at which the output changes during

a mode transition. This results in a linear time-varying periodic system. Based on

the resulting sampled system, a periodic discrete-time observer is derived with the

guarantee that the observer’s state converges asymptotically to the (original) sys-

tem’s state. Next, this observer is used as a stepping stone for designing an observer

in continuous time. This requires the inclusion of additional modes in the observer

structure and additional reset laws at visible event times to ensure the asymptotic

recovery of the system’s state. A formal proof of the asymptotic recovery of the

system’s state is provided. Via an example of a traffic application we demonstrate

the effectiveness of the proposed observer.

A visual representation of the observer design process for the example system is

presented in Figure 7.2. In the lower figure, the (observed) output is presented to-

gether with the visible event times. At these visible event times, the discrete-time

observer estimates the current state of the system. This is illustrated in the upper

figure for queue x1 (the estimated state is denoted by x̂1). The crosses represent

the estimated queue content at the visible event times. Although omitted in the fig-

ure, similar estimations are provided for the other states. Finally, a continuous-time

observer is derived for which the estimated states at the visible event times coin-

cide with the estimates of the discrete-time observer. The estimated state of the

continuous-time observer is represented by the intersected line. This is basically

a (smart) connection between the estimates of the discrete-time observer, based on

the system dynamics. The details of each step can be found in the remainder of this

chapter.

tv
1 tv

2 tv
3 tv

4

4

time

y
x̂ 1

Figure 7.2: Visual representation of the observer design process: The output signal in

the lower figure and the estimation of x1 in the upper figure by the discrete-time observer

(crosses) and continuous-time observer (dashed line).

The remainder of this chapter is organized as follows. Section 7.1 introduces the

considered class of PWAHS and presents the dynamics of the example system. Sec-
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tion 7.2 presents the sampled system at the event times. In Section 7.3 the method

for the observer design is presented. First, a discrete-time observer is presented

for the sampled system. Next, the continuous-time observer is presented. In Sec-

tion 7.4, both a signalized traffic intersection with three flows and a 4-queue switch-

ing server are presented for which an observer is derived. A summary is provided

in Section 7.5.

Nomenclature
In this chapter we use {e1,e2, . . . ,eM} as the standard orthonormal basis in R

M in

which ei is the vector which contains a 1 at the i-th entry, and zeros elsewhere. By

R+ we denote the set of non-negative reals, i.e., R+ := [0,∞). Furthermore, the

product of matrices is considered as a left multiplication, i.e., ∏3
i=1 Ai = A3A2A1.

7.1 Class of piecewise affine hybrid systems

This section presents the dynamics of the class of piecewise affine hybrid systems

(PWAHS) studied in this chapter. Before doing so, the remaining dynamics of the

example system are presented.

7.1.1 Example continued

Recall that the example system is autonomous. In each mode m∈M the continuous

state x has a constant drift vector, denoted by fm, i.e., ẋ = fm. For the example

system, these drift vectors are given by

f1 = f3 =

⎡
⎣−1

λ1

0

⎤
⎦ , f2 =

⎡
⎣ 0

λ1 −μ1

μ1

⎤
⎦ , f4 =

⎡
⎣ 0

λ1

−μ2

⎤
⎦ .

Furthermore, a transition occurs in modes 1 and 3 to the next modes 2 and 4, respec-

tively, when x0 = 0 indicating that the setup time has elapsed. As a result from the

clearing policy, a transition from mode 2 to mode 3 occurs when x1 = 0 and from

mode 4 to mode 1 when x2 = 0.

Due to the cyclic behavior in the way the modes are traversed, it holds at the k-th

event time tk, k∈N≥1, that the system switches from mode m=((k−1) mod M)+1

to the next mode δ (m) where δ : M → M is given by

δ (m) := 1+(m mod M). (7.1)

In addition, at the event time tk the setup time x0 instantaneously increases with

constant ωm(t−k ) ∈ R
+, m ∈ M , given by

ω1 = ω3 = 0, ω2 = σ2, ω4 = σ1,
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i.e., we have a reset of the continuous state variable given by

x(t+k ) =
[
x0(t+k ) x1(t+k ) x2(t+k )

]�
=[

ωm(t−k ) x1(t−k ) x2(t−k )
]�

= x(t−k )+ωme1 (7.2)

(as x0(t−k ) = 0, see also Lemma 7.1.7 below), where t−k denotes the time just before

the k-th event. Note that e1 is the unit vector with a 1 at the first entry and zeros

elsewhere.

This reset law shows that discontinuities only appear in x0, while xn, n = 1,2, ...,N,

evolve continuously in time. Combining the above, leads to the following overall

dynamics that can be compactly written as

ẋ = fm

ṁ = 0

y = hm

⎫⎪⎬
⎪⎭ if e�κm

x ≥ 0, (7.3a)

x+ = x+ωme1

m+ = δ (m)

}
if e�κm

x = 0 (7.3b)

with κ1 = κ3 = 1, κ2 = 2 and κ4 = 3 selecting the flow and jump sets (recall that eκm

is the κm-th unit vector in {e1,e2, . . . ,eN+1}), i.e., κ1 = 1 indicates that in mode 1 the

first state variable (x0) triggers the switch to another mode. Note that we expressed

the example in terms of the modeling framework of jump-flow systems advocated

in [43]. In fact, solutions/executions of the system under study can be interpreted in

the sense of [43]. Initial conditions for this system are given by x(0) ∈ R
N+1
+ with

x0(0) = ωM, and m(0) = 1. Besides we use the convention that t0 = 0.

Measurement information regarding the knowledge of when the server is in mode

4, i.e., processing queue 2, is included via the output y, with

h1 = h2 = h3 = 0, h4 = 4.

Hence, as long as the system is in mode 4, this is directly seen in the output y. When

the system is in one of the other modes m ∈ M \{4}, the output y is equal to 0 and

no information is available from the server. Note that, actually, the service rate

of queue 4 is measured in the example system. However, since the output y = μ4

indicates that the system is in mode 4, we use y = 4 in the remainder of this chapter.

7.1.2 General dynamics

In this section we provide the general description of the class of PWAHS under

study, which includes the two-queue switching server discussed in the previous sec-

tion as a particular case. Essentially, the general dynamics of the class of systems is

given by (7.3) with continuous state

x =
[
x0 x1 . . . xN

]� ∈ R
N+1
+
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with N ∈ N≥1, discrete state m ∈ M = {1,2, . . . ,M} with M ∈ N≥1 and output y ∈
M0 := M ∪{0}. The data of the system are given by the drift vectors fm ∈ R

N+1,

the outputs hm ∈ M0, and κm ∈ {1,2, . . . ,N + 1} for each mode m ∈ M , together

with the reset parameters ωm, m ∈ M . In addition, we have for outputs hm, m ∈ M
that hm ∈ {0,m} for all m ∈ M . Here, hm = m if the measured output indicates the

current mode of the system, hm = 0 otherwise. As in the two-queue switching server

example, the general dynamics exhibits a cycle, i.e., a sequence of M consecutive

modes being repeated over time. Some other special characteristics in the data

being inherited from server-like systems in manufacturing and traffic applications

are summarized below.

Assumption 7.1.1. For all m ∈ M it holds that e�κm
fm < 0 and e�i fm ≥ 0 when

i ∈ {1, . . . ,N +1}\{κm}.

This assumption guarantees that only one continuous state component decreases

(being the one that also triggers the mode transition).

Assumption 7.1.2. For all m ∈ M

e�1 fm =−1, if κm = 1, (7.4a)

e�1 fm = 0, if κm 	= 1. (7.4b)

This assumption expresses that x0 is indeed a timer-related variable with only 0 and

−1 as slopes. In case x0 acts as a timer that triggers the next event (i.e., κm = 1)

then e�1 fm =−1, otherwise it is 0. The mode m for which κm = 1 corresponds to a

setup for a switching server.

Assumption 7.1.3. For all m ∈ M it holds that

ωm > 0 ⇔ κδ (m) = 1. (7.5)

This assumption states that if a mode transition in mode m governs a jump in the

state x0, this state x0 decreases in mode δ (m) and triggers the next mode transition

(and vice versa).

Assumption 7.1.4.

M

∑
m=1

ωm > 0. (7.6)

If translated in terms of a switching server, this assumption states that during a cycle

of modes at least one setup of non-zero duration is present.

Assumption 7.1.5. For all m ∈ M it holds that

κm = 1 ⇒ κδ (m) 	= 1. (7.7)
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This assumption expresses that a setup mode is followed by an operational mode

(κm 	= 1). Note that successive setup modes can be combined into a single setup

mode.

Assumption 7.1.6. There is at least one m ∈ M such that hm = m.

This assumption states that at least some information from the system is received.

Throughout the chapter we assume that all the mentioned assumptions are true

(without further reference).

7.1.3 Basic results

In this section we derive some basic results for the class of PWAHS under study.

To do so, let us denote, as before, by tk the k-th time occurrence of a transition

and t0 = 0. Then we can prove the following lemmas, which are required for the

observer design. At the end of a mode, for the example system, the remaining setup

time is zero.

Lemma 7.1.7. For any trajectory of the PWAHS (7.3) it holds that x0(t−k ) = 0 for
all k ∈ N≥1.

Proof. We prove this statement using induction. Suppose the statement holds for

some k ∈ N≥1, i.e., x0(t−k ) = 0. At event time tk, when going from mode m to

mode δ (m), two situations can occur, being ωm > 0 or ωm = 0. In the first case,

it holds that x0(t+k ) = x0(t−k )+ωm. Then due to (7.3), (7.4a) and (7.5) it follows

that ẋ0 = −1 for t ∈ [tk, tk+1) until x0 = 0. Hence x0(t−k+1) = 0. In the second case,

i.e., ωm = 0, no jump occurs and x0(t−k+1) = x0(t−k ) and ẋ = 0 for t ∈ [tk, tk+1) due

to (7.4b) and (7.5). Therefore, x0(t−k+1) = x0(t−k ) = 0. To complete the proof we

need x0(t−1 ) = 0. If ωM > 0, x0(t−1 ) = 0 follows by the same reasoning as in the first

case above. If ωM = 0, we immediately have x0(t0) = 0 and can use the reasoning

in the second case to conclude x0(t−1 ) = 0, thereby completing the proof.

Lemma 7.1.8. Consider m ∈ M such that ωm > 0. The dwell time in mode δ (m) is
equal to ωm.

Proof. From Assumption 7.1.2 and Assumption 7.1.3 we know that if ωm > 0 we

have e�1 fδ (m) = −1 and κδ (m) = 1. Due to (7.3b) and Lemma 7.1.7 it holds that

x0(t+k ) = ωm for the event at time tk where the system switches from mode m to

mode δ (m). In addition, in mode δ (m) state x0 decreases according to ẋ0 = −1

until x0(t−k+1) = 0. Hence, the dwell time in mode δ (m) is therefore given by

ωm

−e�1 fδ (m)

= ωm.
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For the class of PWAHS the following statements can be made regarding Zeno be-

havior and fixed points:

Lemma 7.1.9. Zeno behavior, i.e., making an infinite number of jumps in a finite
amount of time, is not present in system (7.3).

Proof. Assumption 7.1.3 and Assumption 7.1.4 imply that there exists at least one

mode in the cycle with ωm > 0, m ∈ M . Lemma 7.1.8 shows that the dwell time in

mode δ (m) is ωm. Therefore, the dwell time of a cycle is bounded away from zero

given the cyclic behavior, and no Zeno behavior occurs.

Lemma 7.1.10. System (7.3) does not contain any fixed points, i.e., the system al-
ways jumps to another mode in finite time.

Proof. The condition e�κm
fm < 0 in Assumption 7.1.1 guarantees that e�κm

x decreases

at constant rate, until it reaches the jump criterion e�κm
x = 0. Therefore, every mode

is left in finite time. Since Zeno behavior is excluded, the system has no fixed

points.

Lemma 7.1.11. System (7.3) is a positive system in the sense that if x(0) ∈ R
N+1
+

with x0(0) = ωM, and m(0) = 1, then x(t) ∈ R
N+1
+ for all t ∈ R+.

Proof. The proof follows similar reasoning as the proof of Lemma 7.1.7 using As-

sumptions 7.1.1 and 7.1.2.

7.1.4 Visible and invisible modes and event times

In the remainder of this chapter we use the following notations in which we make a

distinction between visible and invisible modes, and visible and invisible events.

A mode m ∈ M is called visible if hm = m and otherwise it is called invisible.

The set of visible modes is denoted by Mv, i.e.,

Mv = {m ∈ M | hm = m}. (7.8)

Transitions to and from visible modes are called visible events and transitions from

invisible modes to invisible modes are called invisible events. To describe the visible

events we define the set

V = Mv ∪{m ∈ M | δ (m) ∈ Mv},

which is enumerated as {v1,v2, . . . ,vV} ⊆M with 1 ≤ v1 < v2 < .. . < vV ≤ M. Us-

ing the above notation, if at time tk the k-th event occurs jumping from mode m(t−k )
to mode δ (m(t−k )), this event is visible if and only if m(t−k ) ∈ V . Hence, loosely

speaking, we know when the system enters or leaves visible modes and we know

when the corresponding events occur.
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In the remainder we will use j as the visible event counter and denote visible event

times by tv
j = tk( j), j ∈ N≥1, where k( j) translates the visible event j into the corre-

sponding ordinary event k, i.e.,

k( j) = v1+( j−1 mod V ) + 
( j−1)/V� ·M, (7.9)

where 
r� denotes the largest integer smaller than r ∈R. Due to the cyclic behavior

in the way the (visible) nodes are traversed, it holds that visible event v1+( j−1 mod V )

has successive visible event δv(v1+( j−1 mod V )) where δv : V → V , given by

δv(vl) := v1+(l mod V ), l = 1,2, ...,V. (7.10)

Example continued
For the example system, the set of visible modes is Mv = {4} and the set of vis-

ible events is V = {3,4}. The evolution of the modes of the example system and

corresponding events and visible events is presented in Figure 7.3. Here, the visi-

ble modes are presented by the gray areas and it can be clearly seen that the events

leading to or from visible modes are the visible events.

timet1
tv
1

t2 t3 t4
tv
2

t5
tv
3

m = 4

h4 = 4

m = 1

h1 = 0

m = 2

h2 = 0

m = 3

h3 = 0

m = 4

h4 = 4

m = 1

h1 = 0

Figure 7.3: Mode evolution and corresponding events and visible events.

7.2 Sampling the hybrid system

One of the main ideas in the observer design methodology is to derive the desired

continuous-time observer for system (7.3) from a discrete-time observer. To that

end, we sample the system at the visible event times tv
j , j ∈N≥1. To easily derive the

sampled data, we split its computation into three parts. First the system is sampled

at all events tk, k ∈ N≥1. Second, the state dimension is reduced by removing the

timer variable x0. In the third step the sampled system description is limited to only

the visible events.

7.2.1 Sampling at all event times

Let x(t−k ) denote the state at time tk just before the jump from mode m(t−k ) to mode

δ (m(t−k )). Sampling at all event times tk, k ∈ N≥1, results in the system

x(t−k+1) = Ãm(t−k )x(t
−
k )+ ãm(t−k ), (7.11a)
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tk+1 = tk +C̃m(t−k )x(t
−
k )+ c̃m(t−k ) (7.11b)

in which

Ãm(t−k ) = I +
fδ (m(t−k ))e

�
κδ (m(k))

−e�κδ (m(t−k ))
fδ (m(t−k ))

, ãm(t−k ) = ωm(t−k )Am(t−k )e1, (7.12a)

C̃m(t−k ) =

e�κδ (m(t−k ))

−e�κδ (m(t−k ))
fδ (m(t−k ))

, c̃m(t−k ) = ωm(t−k )Cm(t−k )e1 (7.12b)

as can be derived from system (7.3). Note that the system (7.11) is periodic with

period M in the sense that Ãk+M = Ãk for k ∈ N≥1, and similar expressions hold for

ãk, C̃k and c̃k.

Remark 7.2.1. Notice that from Assumptions 7.1.1 and 7.1.2 we obtain that Ãk, ãk,
C̃k, and c̃k only contain non-negative elements, resulting in a positive system, which
is to be expected given Lemma 7.1.11.

The sampled system (7.11) can be used to write the system as a timed automaton [6]

with a single clock, due to the linear dynamics and cyclic behavior. Then, the con-

tinuous state can be derived via a linear combination of the clock and the sampled

state. However, observability and observer design for timed automata considers the

discrete state reconstruction, see e.g., [77], which is straightforward for the class of

systems under consideration. Furthermore, we are also interested in reconstructing

the continuous state.

Example continued
By sampling the example system, we obtain a 4-periodic system for which the ma-

trices in (7.12) are given as

Ã1 =

⎡
⎣1 0 0

0 0 0

0
μ1

μ1−λ1
1

⎤
⎦ , ã1 =

⎡
⎣0

0

0

⎤
⎦ , C̃1 =

[
0 1

μ1−λ1
0
]
, c̃1 = 0,

Ã2 =

⎡
⎣ 0 0 0

λ1 1 0

0 0 1

⎤
⎦ , ã2 =

⎡
⎣ 0

σ2λ1

0

⎤
⎦ , C̃2 =

[
1 0 0

]
, c̃2 = σ2,

Ã3 =

⎡
⎣1 0 0

0 1 λ1
μ2

0 0 0

⎤
⎦ , ã3 =

⎡
⎣0

0

0

⎤
⎦ , C̃3 =

[
0 0 1

μ2

]
, c̃3 = 0,

Ã4 =

⎡
⎣ 0 0 0

λ1 1 0

0 0 1

⎤
⎦ , ã4 =

⎡
⎣ 0

σ1λ1

0

⎤
⎦ , C̃4 =

[
1 0 0

]
, c̃4 = σ1.
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7.2.2 State reduction

From Lemma 7.1.7 we have x0(t−k ) = 0 for all k ∈ N≥1 and therefore this state is

neglected. This results in the reduced state x̄ =
[
x1 . . . xN

]�
=
[
0N IN

]
x ∈ R

N
+,

with 0N a zero column vector of length N and IN the N ×N identity matrix. For the

reduced state, the dynamics at the event times become

x̄(t−k+1) = Ām(t−k )x̄(t
−
k )+ ām(t−k ), (7.13a)

tk+1 = tk +C̄m(t−k )x̄(t
−
k )+ c̄m(t−k ). (7.13b)

where

Ām(t−k ) =
[
0 I
]

Ãm(t−k )

[
0 I
]�

, ām(t−k ) =
[
0 I
]

ãm(t−k ),

C̄m(t−k ) = C̃m(t−k )

[
0 I
]�

, c̄m(t−k ) = c̃m(t−k ).

Note that due to this reduction no discontinuities in x̄(t) occur, as they only appear

in x0, see (7.2). Hence, x̄(t−k ) = x̄(t+k ) = x̄(tk).

Example continued
For the example system, these reduced matrices are as follows:

Ā1 =

[
0 0
μ1

μ1−λ1
1

]
, ā1 =

[
0

0

]
, C̄1 =

[
1

μ1−λ1
0
]
, c̄1 = 0,

Ā2 =

[
1 0

0 1

]
, ā2 =

[
σ2λ1

0

]
, C̄2 =

[
0 0

]
, c̄2 = σ2,

Ā3 =

[
1 λ1

μ2

0 0

]
, ā3 =

[
0

0

]
, C̄3 =

[
0 1

μ2

]
, c̄3 = 0,

Ā4 =

[
1 0

0 1

]
, ā4 =

[
σ1λ1

0

]
, C̄4 =

[
0 0

]
, c̄4 = σ1.

7.2.3 Sampling at visible event times

Let x̄(tv
j ) denote the reduced state vector at tv

j , the jth visible event. From (7.13) it is

clear that sampling at the visible events results in the system

x̄(tv
j+1) = Am(tv−

j )x̄(t
v
j )+am(tv−

j ), (7.14a)

tv
j+1 = tv

j +Cm(tv−
j )x̄(t

v
j )+ cm(tv−

j ). (7.14b)

Since we have V different visible events, the system (7.14) is a periodic linear sys-

tem with period V . The system matrices in (7.14) for all j ∈ N≥1 are presented

below. For j 	= lV , l ∈ N≥1, we have

A j =
δv(v j)−1

∏
m=v j

Ām, (7.15a)
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a j =
δv(v j)−1

∑
m=v j

(
δv(v j)−1

∏
r=m+1

Ār

)
ām, (7.15b)

Cj =
δv(v j)−1

∑
m=v j

C̄m

m−1

∏
r=v j

Ār, (7.15c)

c j =
δv(v j)−1

∑
m=v j

c̄m +
δv(v j)−1

∑
m=v j+1

C̄m

m−1

∑
r=v j

(
m−1

∏
s=r+1

Ās

)
ār (7.15d)

For j = lV , l ∈ N≥1, we have

A j =
δv(v j)−1

∏
m=1

Ām

M

∏
m=v j

Ām, (7.15e)

a j =
M+δv(v j)−1

∑
m=v j

(
M+δv(v j)−1

∏
r=m+1

Ār

)
ām, (7.15f)

Cj =
M+δv(v j)−1

∑
m=v j

C̄m

m−1

∏
r=v j

Ār, (7.15g)

c j =
M+δv(v j)−1

∑
m=v j

c̄m +
M+δv(v j)−1

∑
m=v j+1

C̄m

m−1

∑
r=v j

(
m−1

∏
s=r+1

Ās

)
ār (7.15h)

with A j+V = A j, j,N≥1, and similar expressions for a j, Cj, c j and v j.

Example continued
For the example system, we obtain a 2-periodic system (7.14) for which the matrices

above are given by

A1 =

[
1 λ1

μ2

0 0

]
, a1 =

[
0

0

]
,

C1 =
[
0 1

μ2

]
, c1 = 0,

A2 =

[
0 0
μ1

μ1−λ1
1

]
, a2 =

[
σ2λ1
λ1μ1σ1

μ1−λ1

]
,

C2 =
[

1
μ1−λ1

0
]
, c2 =

σ1μ1

μ1 −λ1
+σ2.

7.3 Observer design

Notice that information about the system’s state is only received when visible events

occur. Therefore, from the occurrence of visible events, the system’s state is recon-

structed.
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To do so, an observer is build in two steps. First, starting from the dynamics (7.14),

a linear time-varying (periodic) discrete-time observer is build to reconstruct the

system’s state at visible event times. Next, the dynamics (7.3) are used to make an

open-loop prediction of the system’s state, which is corrected (if necessary) at the

next visible event time.

7.3.1 Discrete-time observer at visible event times

Our first goal is to build an observer which reconstructs the state at visible event

times tv
j , as described by the dynamics (7.14). To that end, we can use a Luenberger

observer

ˆ̄x(tv
j+1) = Am(tv−

j )
ˆ̄x(tv

j )+am(tv−
j ) +Lm(tv−

j )(t
v
j+1 − t̂v

j+1), (7.16a)

t̂v
j+1 = tv

j +Cm(tv−
j )

ˆ̄x(tv
j )+ cm(tv−

j ), (7.16b)

where L1,L2, ...,LV are the observer gains. Evolution of the observation error

ē(tv
j ) = x̄(tv

j )− ˆ̄x(tv
j )

is given by

ē(tv
j+1) =

[
Am(tv−

j )−Lm(tv−
j )Cm(tv−

j )

]
ē(tv

j ).

Assumption 7.3.1. There exist L1,L2, ...,LV such that the observer (7.16) leads to

lim
j→∞

‖ē(tv
j )‖= 0.

Finding observer gains for this periodic system satisfying Assumption 7.3.1 is a

known observer design problem, cf. [51, 75, 85]. For the illustrations presented in

the next section, the periodicity of this system is exploited and a simple sequential

algorithm presented in [50] is used to determine the time-varying observer gains to

guarantee deadbeat convergence to zero at visible event times.

7.3.2 Continuous-time observer

Starting from the reduced state estimates at visible event times, as generated by the

discrete-time observer (7.16), we will now provide a state estimate x̂ ∈ R
N+1 of the

full state x of (7.3), i.e., including x0. In fact, we will guarantee that the estimated

states x̂(tv+
j ) just after visible events satisfy

[
0N IN

]
x̂(tv+

j ) = ˆ̄x(tv
j ), j ∈ N≥1, (7.17)

indicating that just after the visible events the estimated states (without timer x0)

and the estimates ˆ̄x(tv
j ) of the discrete-time observer (7.16) coincide. In addition,

the dynamics (7.3) are used to make an open-loop prediction of the system’s state
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after visible events. This open-loop prediction is updated using the observer (7.16)

as soon as a new visible event happens.

However, notice that due to estimation errors, the predicted occurrence of the next

visible event, t̂v
j+1 based on (7.16b), can be either sooner or later than the actual

occurrence of the next visible event tv
j+1. In the latter case (tv

j+1 ≤ t̂v
j+1) the observer

state can simply be updated according to (7.16), but in the former case (7.16) can-

not (yet) be used, as the duration to the next visible event tv
j+1 − t̂v

j+1 is not known

yet. Hence, in this case (tv
j+1 > t̂v

j+1), we have to determine the continuous-time

observer dynamics for the period from predicted to actual occurrence of the next

visible event. To do so, we introduce additional modes (called waiting modes) for

the continuous-time observer. We therefore extend the set M of modes, by defining

the set of observer modes as

M̂ := M ∪
{

vl +
1

2

∣∣∣∣ l = 1,2, . . . ,V
}
,

where vl +
1
2 , l = 1,2, . . . ,V are labels to denote the waiting modes. Furthermore,

we define the mode transition map δ̂ : M̂ → M̂ , as

δ̂ (m̂) :=

⎧⎪⎨
⎪⎩

m̂+ 1
2 if m̂ ∈ V

δ (m̂) if m̂ ∈ M \V

δ
(
m̂− 1

2

)
if m̂ ∈ M̂ \M

The waiting modes will only be used after an expected visible event which has not

yet happened, i.e., when t̂v
j+1 ≤ t < tv

j+1. For the additional waiting modes of the

observer, we have to determine a drift vector for the state estimate. Notice from the

observer (7.16) that at the visible event times the state estimate is updated according

to (7.16a). That is, Lm(tv−
j ) times the amount of time that the actual visible event is

later than predicted is added. From this, a continuous evolution of the state estimate

is derived which keeps x̂0 constant (at zero) and uses a drift vector of Lm(tv−
j ) for the

remaining state, i.e., ˙̂x = [0 L�
m(tv−

j )
]�, to avoid the need to reset the states at tv

j+1,

j ∈N≥1 (although other choices guaranteeing (7.17) are fine as well). Furthermore,

the output in the waiting mode is identical to the output of the preceding mode, i.e.,

hm̂ = hm̂− 1
2

for m̂ ∈ M̂ \M .

Using the above reasoning, a continuous-time observer is deduced in the form of

a jump-flow system [43]. The discrete-time observer (7.16) is embedded in the ob-

server by including the state variables x̃ ∈ R
N and t̃ ∈ R in the continuous-time

observer, which will satisfy x̃(t) = ˆ̄x(tv
j ), t ∈ [tv

j , t
v
j+1) (solutions to (7.16)), and

t̃(t) = tv
j , t ∈ [tv

j , t
v
j+1). In between visible events x̃ and t̃ will be constant. This

leads to the flow expressions for the continuous-time observer (7.18). When the

measurement information equals the estimated output, i.e., y = ŷ with y = hm and
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ŷ = hm̂, see (7.3), the flow expressions are given by

˙̂x = fm̂

˙̂m = 0

˙̃x = 0

˙̃t = 0

ŷ = hm̂

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

if e�κm̂
x̂ ≥ 0∧ m̂ ∈ M ∧ y = ŷ, (7.18a)

˙̂x =

[
0

L
δ−1

v (m̂−1
2 )

]

˙̂m = 0

˙̃x = 0

˙̃t = 0

ŷ = hm̂

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

if m̂ ∈ M̂ \M ∧ y = ŷ. (7.18b)

Note that (7.18a) describes the normal flow predictions based on model (7.3), while

(7.18b) corresponds to the predictions in the waiting modes. The jump expressions

for the normal flow predictions are given by

x̂+ = x̂+ωm̂e1

x̃+ = x̃

m̂+ = δ̂ (m̂)

t̃+ = t̃

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

if e�κm̂
x̂ = 0∧ m̂ ∈ M ∧ y = ŷ, (7.18c)

following the normal jump expressions based on model (7.3). Furthermore, (7.18c)

also describes that if a predicted visible event occurs before the actual visible event

(t̂v
j+1 < tv

j+1), the discrete state jumps to a waiting mode.

If the measurement information differs from the estimated output, i.e., y 	= ŷ, a jump

is required, since the system is in a different mode than the observer. Apart from an

initial mode mismatch, the measurement difference y 	= ŷ occurs via a change in y.

In this case, a distinction is made between jumping from a mode without measure-

ment information to a mode with measurement information, i.e., y 	= ŷ and y 	= 0,

and jumping from a mode with measurement information to a mode without mea-

surement information, i.e., y 	= ŷ and y = 0. In the former case, the measurement

information provides information about the mode after the jump (m̂+ = y). In the

latter case, the mode after the jump is derived by using the cyclic mode transitions

(m̂+ = δ (ŷ)). The jump expressions are given by

ζ = t̃ +Cp(y)x̃+ cp(y)

x̂+ =

[
0

Ap(y)

]
x̃+
[

ωδ−1(y)
ap(y)

]
+

[
0

Lp(y)

]
(t −ζ )

m̂+ = y

x̃+ = ˆ̄x+

t̃+ = t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

if y 	= ŷ∧ y 	= 0, (7.18d)
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ζ = t̃ +Cδ−1(ŷ)x̃+ cδ−1(ŷ)

x̂+ =

[
0

Aδ−1(ŷ)

]
x̃+
[

ωδ (ŷ)
aδ−1(ŷ)

]
+

[
0

Lδ−1(ŷ)

]
(t −ζ )

m̂+ = δ (ŷ)
x̃+ = ˆ̄x+

t̃+ = t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

if y 	= ŷ∧ y = 0, (7.18e)

where we denoted p(y) = δ−1
v (δ−1(y)) and introduced ζ for ease of exposition. Re-

call that ˆ̄x(t) = [0 I]x̂(t). Note that (7.18d) and (7.18e) describe the jump expressions

at occurrence of a visible event. Based on some knowledge of initial conditions of

the original system (7.3), we initialize the observer as x̂(0)∈R
N+1
+ with x̃(0) = ˆ̄x(0)

and t̃(0) = 0.

Proposition 7.3.2. Suppose Assumption 7.3.1 holds. Then the continuous-time ob-
server (7.18) asymptotically reconstructs the states x̄ of the system (7.3), i.e.,

lim
t→∞

‖x̄(t)− ˆ̄x(t)‖= 0.

Proof. Since the continuous-time observer was designed to satisfy ‖[0 I]x(tv+
j )−

[0 I]x̂(tv+
j )‖ = ‖x̄(tv

j )− ˆ̄x(tv
j )‖, j ∈ N≥1, it suffices to show that there exists a con-

stant P such that ‖x̄(t)− ˆ̄x(t)‖ ≤ P‖x̄(tv
j )− ˆ̄x(tv

j )‖ for t ∈ [tv
j , t

v
j+1), j ∈ N≥1. The

latter will follow from the observation that the observation error only changes when

the observer is in a different mode than the actual system, as shown below.

Notice that (7.11) describes the evolution of the mode changes of the system, i.e., the

state updates at the switching times tk. Let t̂k denote the switching times as predicted

by the continuous-time observer. Then we have from (7.11b):

tk+1 − t̂k+1 = tk − t̂k +C̃m(t−k )[x(t
−
k )− x̂(t−k )]. (7.19)

Since at time tv
j we have t̂k( j) = tk( j), it follows from (7.19) that the duration of the

mode difference is a linear function of the initial observer error, i.e., and so is the

sum of the durations of mode differences. Finally, since during mode differences

the rate of increase is bounded, and the number of invisible modes between two

consecutive visible modes is finite, the observation error ‖x̄(t)− ˆ̄x(t)‖ on the inter-

val t ∈ [t j, t j+1) can be upperbounded by ‖x̄(t)− ˆ̄x(t)‖ ≤ P‖x̄(tv
j )− ˆ̄x(tv

j )‖.

Notice that from (7.19) we also have that limk→∞ |tk − t̂k|= 0.

Remark 7.3.3. Using a deadbeat (or exact) observer, the complete state can be
asymptotically reconstructed, i.e., limt→∞ ‖x(t)− x̂(t)‖ = 0. For non-deadbeat ob-
servers, peaking occurs in ‖x0(t)− x̂0(t)‖ due to mismatch in event times combined
with system jumps (7.2). However, in most manufacturing and traffic applications
one is interested in the queue sizes or queue lengths, i.e., ˆ̄x(t).
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Remark 7.3.4. As we observed in Lemma 7.1.11 and Remark 7.2.1, we are es-
sentially dealing with a positive system. However, the observer (7.16) does not
necessarily guarantee positivity of the state estimates x̂(t), t ∈ R. Though the ob-
server (7.18) is well defined and asymptotically recovers the state of the original
system, from a physical point of view it would be better to have non-negative state
estimates. As we show in the next section by means of an example, it is possible
to derive observers that respect the positivity property by generating non-negative
state estimates. Note that observer gains satisfying (Av −LvCv) ≥ 0 and LvCv ≥ 0,
v ∈ V , suffice since

ˆ̄x(tv−
j+1) =(Am(tv−

j )−Lm(tv−
j )Cm(tv−

j ))x̄(t
v−
j )+Lm(tv−

j )Cm(tv−
j )x(t

v−
j )+am(tv−

j ).

In fact, designing directly positive observers is one of the questions for future re-
search.

One direction to pursue in this context is considering the dynamics (7.14) only once
every J time-instances and lift the system (see, for instance, [27]) leading to a linear
time-invariant positive system. The positive observation problem for linear discrete
time-invariant positive systems has been dealt with in [83], where a necessary and
sufficient condition for the existence and the design of a positive linear observer
of Luenberger form has been given by means of the feasibility of a linear program
(LP). This could form an interesting starting point to obtain positive discrete-time
observers of the form (7.16a) (which is doable under certain assumptions). The step
towards a continuous-time observers could follow then mutatis mutandis the line of
reasoning as indicated above.

An alternative solution leading to positive estimates is to use a projection of ˆ̄x(t)
on the positive cone Ω = R

N
+ as the estimated state instead of ˆ̄x(t), i.e., use PΩ ˆ̄x(t)

with PΩ : RN → R
N
+, given for z ∈ R

N

(PΩz)i =max(0,zi).

This projected estimate also asymptotically recovers the true state, i.e.,

lim
t→∞

‖PΩ ˆ̄x(t)− x̄(t)‖= 0.

7.4 Illustrations

To demonstrate the observer design, two illustrations are presented below. First, the

observer design of a signalized 3-queue traffic intersection is illustrated. Second,

observer design of a 4-queue re-entrant switching server is presented.
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7.4.1 Traffic intersection

Consider a signalized T-junction consisting of three flows of cars, see Figure 7.4.

Each flow can go into two directions. For this example we assume that each flow

has a single signal, i.e., if a car receives a green light it can move in two different

directions. Therefore, it is not possible to give multiple flows a green light simulta-

neously. The flows are served in order 1, 2, 3, and then back to flow 1 after which

the cycle is repeated. The intersection uses a clearing policy, i.e., it completely emp-

ties the queue of a flow before switching to serve the next flow. Switching to serve

cars from flow i requires a clearing/setup time σi to make sure all vehicles from the

previously served flow have cleared the intersection. Vehicles arrive at flow i with

arrival rate λi and are served with process rates μi, i = 1,2,3. A sensor measures

the crossing of vehicles in lane 1.

x1

y x2

μ1

μ2

γ1 2γ

1

2

3

Figure 7.4: Signalized T-junction containing three vehicle flows 1-3.

The dynamics can be written in the form (7.3) with

f1 = f3 = f5 =

⎡
⎢⎢⎣
−1

λ1

λ2

λ3

⎤
⎥⎥⎦ ,

f2 =

⎡
⎢⎢⎣

0

λ1 −μ1

λ2

λ3

⎤
⎥⎥⎦ , f4 =

⎡
⎢⎢⎣

0

λ1

λ2 −μ2

λ3

⎤
⎥⎥⎦ , f6 =

⎡
⎢⎢⎣

0

λ1

λ2

λ3 −μ3

⎤
⎥⎥⎦

ω1 = ω3 = ω5 = 0, ω2 = σ2, ω4 = σ3, ω6 = σ1,

κ1 = κ3 = κ5 = 1, κ2 = 2, κ4 = 3, κ6 = 4,

h1 = h3 = h4 = h5 = h6 = 0, h2 = 2.

The modes 1,3 and 5 denote setting up to serve flow 1,2 and 3, respectively. Modes

2,4 and 6 denote serving flow 1,2 and 3, respectively. Writing this system in the

form (7.14) gives

A1 =

⎡
⎢⎣

0 0 0
λ2

μ1−λ1
1 0

λ3

μ1−λ1
0 1

⎤
⎥⎦ , C1 =

[
1

μ1−λ1
0 0

]
,
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A2 =

⎡
⎢⎣1

λ1μ3

(μ2−λ2)(μ3−λ3)
λ1

μ3−λ3

0 λ2λ3

(μ2−λ2)(μ3−λ3)
λ2

μ3−λ3

0 0 0

⎤
⎥⎦ , C2 =

[
0

μ3

(μ2−λ2)(μ3−λ3)
1

μ3−λ3

]
.

Note that ai and ci are omitted as they cancel out in the observer error dynamics.

Also note that though the pairs (A1,C1) and (A2,C2) are unobservable, we can build

a periodic deadbeat observer by using the observer gains

L1 =
[
0 λ2 λ3

]�
, (7.20a)

L2 =
[
λ1

λ2λ3
μ3

0
]�

. (7.20b)

Using these gains, the matrices Av −LvCv and LvCv (v = 1,2) are positive matrices,

yielding a positive observer. In this example the observer estimation starts at t = 50.

For parameters

λ =
[
1 2 3

]�
, μ =

[
8 10 12

]�
,

σ =
[
5 10 15

]�
,

and initial estimated state x̂(50)=
[
0 70 20 30

]�
and mode m̂(50)= 4, i.e., serv-

ing vehicles from flow 2, a simulation result is presented in Figure 7.5. The queue

lengths at the intersection are presented by dashed lines and the estimated queue

lengths are presented by solid lines. Since the measurement information equals the

estimated output, i.e., y(50) = ŷ(50), the observer dynamics are given by (7.18a)–

(7.18e) until measurement and estimated output differ. This occurs at t = 70.7, when

the system starts serving vehicles from queue 1. At this time instant y 	= ŷ and the

system jumps according to (7.18d). According to the initial estimated state ˆ̄x(50),

this event was predicted at t̃ = 81.7 with x̃(t̃) =
[
101.7 58.3 15

]�
. Therefore,

ˆ̄x(70.7+) =
[
90.7 52.8 15

]�
, causing jumps in x̂2 and x̂3. Also, the estimated

mode changes to serving products from flow 1.

The second visible event occurs at t = 79.2 when x1 = 0, also earlier than pre-

dicted since x̂1 is estimated too large. At this moment y 	= ŷ and y = 0, therefore

jump (7.18e) results in x̂1(79.2+) = 0. Note that at this moment both x̂1(t) and x̂3(t)
are correctly estimated. The observer predicts the next visible event at t̃ = 137.

However, since x̂2(79.2+) < x2(79.2+) the actual event occurs later. Therefore

the observer switches to the additional waiting mode (7.18b) via jump (7.18c). At

t = 140.3, detection of the next visible event, the estimated queue levels have con-

verged exactly to the actual queue levels, due to the deadbeat observer.

7.4.2 Switching server

Another example presents the observer design and performance of a switching server

with four queues. A graphical representation of the server is presented in Figure 7.6.

Fluid served in queue 1 requires another service at the server in queue 2, i.e., this is
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time
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Figure 7.5: Actual (dashed lines) and estimated (solid lines) queue lengths of the 3-flow

T-junction.

a re-entrant flow. The queues are served in the order from 1–4 after which the cycle

is repeated. Furthermore, the system uses a clearing policy. The only measurable

output of the system is the service rate of queue 2.

x1

x2
μ1

μ2

λ1

y
x3λ3
x4λ4

μ3

μ4

Figure 7.6: Layout of 4-queue switching server.

For the system with parameters

λ =
[
1 0 3 4

]�
,

μ =
[
10 12 15 18

]�
,

σ =
[
5 10 15 20

]�
,
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and initial estimated state x̂(50) =
[
0 20 40 80 60

]�
, the actual and observed

queue contents are presented in Figure 7.7. At the first visible event tv
1 = 101.4 (start

serving queue 2), the observer state is updated. Since the estimated queue contents

are lower than the actual queue contents, a waiting mode (m̂ = 31
2) occurs during

t ∈ [214.6,228.7]. For the same reasoning, the observer is in waiting mode (m̂= 31
2)

during t ∈ [354.5,355.8]. Finally, at tv
5 = 366.4, the estimated state has converged

to the actual state.
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time
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Figure 7.7: Actual (dashed lines) and estimated (solid lines) queue lengths of the 4-queue

switching server.

7.5 Summary

This chapter presented a methodology to design observers for multi-queue switch-

ing servers which uses a clearing policy. Moreover, these systems, being highly

relevant in the context of manufacturing and traffic applications, are part of a spe-

cial class of piecewise affine hybrid systems (PWAHS). Although all subsystems

are unobservable and not all events are visible, a continuous-time observer was con-

structed which guarantees that the estimated state converges to the actual state of

the system under suitable conditions.
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One of the main ideas in the construction of the continuous-time observer was sam-

pling of the system at the visible events leading to a discrete-time periodic linear

system, for which an observer can be designed using standard techniques from con-

trol theory. If this step is successfully performed, a continuous-time observer that

asymptotically recovers the true state of the original hybrid systems can be syn-

thesized. Indeed, the discrete-time observer can then be used as a blueprint for

the continuous-time observer, where besides the plant dynamics additional ‘wait-

ing’ modes are assigned to the observer. Occurrence of visible events before the

time that the event was predicted to occur results in a discrete state switch and an

update of the continuous states. The observer switches to a ‘waiting’ mode if an

event occurs later than predicted. These principles are formally shown to result in

a successful observer design. Via illustrations of a three-way traffic intersection

and a 4-queue re-entrant switching server, the observer design and performance is

presented. Important insights have been obtained, such as sampling at visible event

times or the use of waiting modes, that might be fruitfully exploited into various

research directions.

In the next chapter, observer design is extended towards networks of switching

servers. For the Kumar Seidman network and a specific service policy, an observer

is designed that reconstructs the state of the system. For the network, a visible event

does not imply that the mode of the system is known, which is in contrast to the

visible events for a single server system. Also, in Section 9.3.5, observer design for

supply networks is presented.



Chapter 8

Observer design for the Kumar Seidman
network

Observer design for a multi-queue single switching server with a clearing policy

has been presented in Chapter 7. Some insights gained from this observer design

are exploited in the current chapter to design an observer for a special two server

network, i.e., the Kumar Seidman network using a specific policy. This is a first

attempt in the direction of observer design for networks of switched systems.

In this chapter we focus on observer design for a well known network of switch-

ing servers, the Kumar Seidman network, which is also discussed in Chapter 5 re-

garding optimal periodic behavior. For this network, a control policy steering the

network towards the desired periodic behavior is presented in [68]. In this chapter,

an observer is derived that estimates the state of the network with the control policy

from [68]. Given this control policy, the considered network is autonomous with

linear dynamics, generates a constant output in each mode and the mode transitions

are state-dependent. Only at some switches between modes the output reveals a

minimal amount of information about the network, i.e., it reveals a set of possible

modes. Furthermore, the switching pattern, or order of traversing modes, is not pre-

defined, i.e., it is sometimes possible to switch to multiple modes. This complicates

the observer design process compared to the process presented in Chapter 7, as for

single server systems the measured output exactly indicates the current mode of the

system and the order of switching between modes is fixed.

An approach to reconstruct the continuous and discrete state of the network with

the control policy from [68] is presented, by measuring the output of the network.

The approach is threefold. First, based on the policy and network dynamics, the

switching pattern, i.e., the order in which the modes are traversed, is determined.

Unlike the switching pattern for the single switching servers, see Chapter 7, this

pattern is not fixed. However, this pattern is cyclic, which is exploited. Second, the

network is sampled with varying sampling periods at so-called visible event times,

i.e., times at which the output changes, and the dynamics between these times are

127



Chapter 8: Observer design for the Kumar Seidman network 128

derived. Third, the observer evaluates all possible predicted states at the visible

event times. By eliminating unfeasible possibilities, it is shown that a single esti-

mated state remains, which is equal to the actual network state.

The remainder of this chapter is organized as follows. Section 8.1 presents the

Kumar Seidman network and the implemented control policy. The observer design

is presented in Section 8.2. An example of the state reconstruction is presented in

Section 8.3 and a summary is provided in Section 8.4.

8.1 System description

In this section the considered network is briefly discussed and the network policy is

introduced, along with the problem formulation.

Kumar Seidman network

The Kumar Seidman network is depicted in Figure 8.1, which consists of two

switching servers A and B. The fluid content of queue n = 1,2,3,4 at time t is

denoted by xn(t). The observable output of the network is denoted by y(t), which

is the departure rate of queue 4. The service rate of queue n at time t is denoted by

rn(t) ≥ 0. Switching of a server between serving queues i and j requires a setup

time σi, j.

λ
x1 x2

x4 x3

A B
σ3,2

σ2,3

σ4,1

σ1,4
μ2

μ3

μ1

μ4
y

Figure 8.1: The switching server network introduced by Kumar and Seidman.

The state of this system x(t) at time t is not only given by the queue contents, but

also by the remaining setup time xA
0 at server A and the remaining setup time xB

0 at

server B, i.e.,

x =
[
xA

0 xB
0 x1 x2 x3 x4

]� ∈ R
N+2
+ ,

with N = 4 being the number of queues and R+ = [0,∞). The mode of server j
is denoted by m j, j = A,B, and the mode of the system is given by m = (mA,mB).
For each queue n, server j has three server-dependent modes. Server mode m j = n
indicates that server j is serving queue n at maximal rate μn, server mode m j = n
indicates that server j is serving queue n at arrival rate (r < μn), e.g., if x1 = 0, and

finally, server mode is m j = nσ indicates that server j is setting up to serve queue n.
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The dynamics of this system are hybrid. The continuous dynamics are described

by

ẋA
0 (t) =

{
−1 if mA∈ {1σ ,4σ},
0 if mA∈ {1,4}, ẋB

0 (t) =

{
−1 if mB∈ {2σ ,3σ},
0 if mB∈ {2,3}, (8.1a)

ẋ1(t) = λ − r1(t), ẋ2(t) = r1(t)− r2(t), (8.1b)

ẋ4(t) = r3(t)− r4(t), ẋ3(t) = r2(t)− r3(t). (8.1c)

The servers in this network work at maximal rate, i.e., the service rate for queue n
is the maximal rate μn if xn > 0 or the service rate equals the arrival rate if xn = 0,

given that this rate does not exceed the maximal service rate. Therefore, at each

time instant the service rates are subject to the constraints:

mA ∈ {1σ ,4σ} r1 = 0 r4 = 0 for xA
0 > 0, (8.2a)

mA = 1 r1 = μ1 r4 = 0 for xA
0 = 0,x1 > 0, (8.2b)

mA = 1 r1 = λ r4 = 0 for xA
0 = 0,x1 = 0, (8.2c)

mA = 4 r1 = 0 r4 = μ4 for xA
0 = 0,x4 > 0, (8.2d)

mA = 4 r1 = 0 r4 = min(r3,μ4) for xA
0 = 0,x4 = 0, (8.2e)

mB ∈ {2σ ,3σ} r2 = 0 r3 = 0 for xB
0 > 0, (8.2f)

mB = 2 r2 = μ2 r3 = 0 for xB
0 = 0,x2 > 0, (8.2g)

mB = 2 r2 = min(r1,μ2) r3 = 0 for xB
0 = 0,x2 = 0, (8.2h)

mB = 3 r2 = 0 r3 = μ3 for xB
0 = 0,x3 > 0, (8.2i)

mB = 3 r2 = 0 r3 = 0 for xB
0 = 0,x3 = 0. (8.2j)

Constraints (8.2) describe that in case of a setup, no queues can be served and that

a server, once serving a queue, serves that queue at maximal rate. Furthermore, we

assume that service of a queue is only allowed after the server has finished the setup

to that queue and that the network operates under ideal conditions, i.e., there are no

server failures or breakdowns.

A transition in modes is triggered by an event ε , i.e., a switch between serving

queues or a switch in service rates in a single server or in both servers. An event

occurs if a specific queue in a mode reaches a threshold, such as, e.g., when the

remaining setup time for the switch to serving queue 1 has expired, i.e., xA
0 = 0 and

mA = 1σ .

The measurement information, which is the output of the network, is given by y(t).
Hence, as long as server A is in mode mA = 4, this is directly seen in the output

y = μ4 or if mA = 4, this is seen in the output if y = r4 > 0. When server A is in

one of the other modes, the output y is equal to 0 and no information is available

from the network. Note that in Chapter 7 the output, if measured, directly indicated

the mode of the system. For the network in the current chapter, a measured output

only indicates the state of server A. Hence, the state of the entire network is not
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necessarily known.

In the remainder of this chapter we use the following notations in which we make

a distinction between visible and invisible modes, and visible and invisible events.

A mode m is called visible if it generates an observable output y = r4 > 0, i.e.,

mA = 4 or mA = 4 and r4 > 0. Otherwise, a mode is called invisible. Transitions

to and from visible modes are called visible events and transitions from invisible

modes to invisible modes are called invisible events. Moreover, via the observable

output, a distinction can be made between visible events leading to a visible mode,

denoted by εv, or visible events leading to an invisible mode, denoted by ε i. Hence,

loosely speaking, we know when a visible event occurs and when the system enters

or leaves a visible mode (which visible mode is not necessarily known).

Control policy

The control policy for this network, presented in [68] is summarized below.

• If in mA ∈ {1,1} and mB ∈ {3,3}: switch to mode (1,2). (8.3a)

• In mA ∈ {1,1} and mB ∈ {2,2}: switch to mode (4,2) when x1 = 0. (8.3b)

• In mA ∈ {4,4} and mB ∈ {2,2}: switch to mode (4,3) when x2 = 0 and x4 ≤ β .

(8.3c)

• In mA ∈ {4,4} and mB ∈ {3,3}): switch to mode (1,2) when x3 = 0. (8.3d)

Given the network dynamics (8.1) and the policy (8.3), a cyclic evolution of events

can be distinguished, which is presented in Figure 8.2. This cyclic mode evolution

is required by the observer, as discussed at the end of this section. Modes are in-

dicated by the circles and the transition between modes, triggered by an event, are

indicated by arrows. For ease of reading, the brackets representing the modes are

omitted in the figure, i.e., (1,2) = 1,2. The transitions that are triggered from visible

events and the visible modes are represented by dashed lines. Note that in modes

(4,2) and (4,3σ ) the output of the system is zero, as server A serves queue 4 at the

arrival rate which is zero, and these modes are therefore invisible. Under normal

operation, queue content x2 = 0 at mode (1σ ,2σ ). Hence, the successive mode of

mode (1σ ,2σ ) is (1σ ,2) if σ4,1 > σ3,2 and the successive mode of mode (1,2σ ) is

(4σ ,2) if σ4,1 < σ3,2.

Remark 8.1.1. Based on the parameters of the system, some modes can be excluded
from the mode evolution depicted in Figure 8.2. Only if μ1 < μ2, the mode m= (1,2)
exists and m = (4,3) only exists if μ3 < μ4. Moreover, m = (1,2σ ) and m = (1,2σ )
are not possible if σ4,1 > σ3,2 and m = (1σ ,2) and m = (1σ ,2) if σ4,1 < σ3,2.

The visible events leading to and from m = (4,3) are unique, i.e., each transition

identifies the current mode of the system. The visible event given by a transition in

output from 0 to rate μ3 indicates the visible event that triggers the transition from

mode (4,3σ ) to mode (4,3). A change in output from μ4 to μ3 indicates the event
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triggering the transition between modes (4,3) and (4,3) and a change in output

from μ3 tot 0 indicates the transition between modes (4,3) and (1σ ,2σ ). These

observable changes in output occur only at the aforementioned transitions. Hence,

the modes following this transition can be directly observed. For all other visible

events, no unique distinction is possible.

1,2

1,2

4σ ,2

4σ ,2

4,2

4,2

4,2

4,3σ

4,3σ

4,3

4,3

1σ ,2σ

1,2σ

1σ ,2
1,2σ

Figure 8.2: Cyclic evolution of modes. Dashed lines indicate visible modes and transitions

triggered by visible events.

In the remainder of this chapter, we consider the parameters presented in [68], i.e.,

λ = 1, β = 250
3 , (8.4a)

σ1,4 = σ4,1 = σ2,3 = σ3,2 = 50, (8.4b)

μ1 = μ3 =
1

0.3 , μ2 = μ4 =
1

0.6 . (8.4c)

Since μ1 > μ2, μ3 > μ4 and all setups times are identical, some modes in Figure 8.2

can not be reached, as mentioned in Remark 8.1.1. The mode evolution for the sys-

tem with parameters (8.4) is depicted in Figure 8.3. All events, visible and invisible,

are labeled. To ensure that event εv
2 occurs, x2 ≥ 831

3 is required at the start of mode

(4σ ,2). Otherwise, while in mode (4σ ,2), a switch to mode (4σ ,2) occurs when

x2 = 0. However, this transition is discarded as it requires x1 < 1662
3 at the start of

mode (1,2), which is impossible at normal operation, i.e., queue 1 is only served at

mode (1,2) (until it is empty) and receives a constant arrival rate λ = 1, between

service of queue 1 a total of 150 time units is spend on setups and the remaining

required 162
3 time units is spend in other modes. Moreover, as σ4,1 = σ3,2, a di-

rect transition from mode (1σ ,2σ ) tot mode (1,2) is possible. Also, mode (1,2)
does not exist, since x2 > 0 as μ1 > μ2. For similar reasons, m = (4,3) can not be

reached, since x4 > 0 as μ3 > μ4 and herewith also the events that uniquely identify

the current mode of the system are not present. Furthermore, the service rate at

server A for mode 4 is zero when mB 	= 3, hence the modes (4,2) and (4,3σ ) are

unobservable. For m = (1,2) the service rate at both queues is λ .

The discrete dynamics for the network with policy (8.3) and parameters (8.4), along



Chapter 8: Observer design for the Kumar Seidman network 132

1,2

4σ ,2 4,2

4,2

4,2

4,3σ

4,3σ 4,3

1σ ,2σ

ε1

εv
2

ε3

ε i
4 ε8

ε5

ε7
ε i

6

εv
9

ε i
10

ε11

Figure 8.3: Cyclic evolution of modes for the system with parameters (8.4). Dashed lines

indicate visible modes and transitions triggered by visible events.

with the event labels, are as follows,

m :=(4σ ,2) ∧ x0 := σ1,4 if m = (1,2) ∧ x1 = 0 (event ε1), (8.5a)

m :=(4,2) if m = (4σ ,2) ∧ x0 = 0 (event εv
2), (8.5b)

m :=(4,2) if m = (4,2) ∧ x2 = 0 (event ε3), (8.5c)

m :=(4,2) if m = (4,2) ∧ x4 = 0 (event ε i
4), (8.5d)

m :=(4,3σ ) ∧ x0 := σ2,3 if m = (4,2) ∧ x4 ≤ β (event ε5), (8.5e)

m :=(4,3σ ) if m = (4,3σ ) ∧ x4 = 0 (event ε i
6), (8.5f)

m :=(4,3) if m = (4,3σ ) ∧ x0 = 0 (event ε7), (8.5g)

m :=(4,3σ ) ∧ x0 := σ2,3 if m = (4,2) ∧ x2 = 0 (event ε8), (8.5h)

m :=(4,3) if m = (4,3σ ) ∧ x0 = 0 (event εv
9), (8.5i)

m :=(1σ ,2σ ) ∧ x0 := σ4,1 if m = (4,3) ∧ x3 = 0 (event ε i
10), (8.5j)

m :=(1,2) if m = (4,3σ ) ∧ x0 = 0 (event ε11). (8.5k)

The cyclic evolution of modes is a requirement for the observer design, as it bounds

the number of possible events and number of possible modes. Furthermore, it is

also required that the visible events are created by an unique trajectory of the sys-

tem, i.e., if multiple trajectories create identical visible events, the observer is not

able to distinguish between the trajectories. From the cyclic evolution of modes, we

make the following observations. It can be seen in Figure 8.3 that between modes

(4,2) and (4,3) multiple routes are possible, listed below

Route 1: (4,2)→ (4,2)→ (4,3σ )→ (4,3) if β + x(4,2)2 < x(4,2)4

Route 2: (4,2)→ (4,2)→ (4,3σ )→ (4,3σ )→ (4,3) if x(4,2)4 ≤ β + x(4,2)2

(4,2)→ (4,2)→ (4,3σ )→ (4,3),

where xm
n denotes the content of queue n at the start of mode m. Route 2 contains

two different trajectories, the state at the start of mode (4,3) is however identical

in both trajectories, as both queues 2 and 4 are emptied. The duration of route 1 is
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given by
x(4,2)4

μ4
and the duration of route 2 equals

x(4,2)2
μ2

+σ2,3. Then, by regarding the

system dynamics in the traversed modes, the transition maps from the start of mode

(4,3) in cycle k to the start of mode (4,3) in the successive cycle (k+1) are given

by

x(4,2)(k+1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 5
7

3
14

3
14

3
7

0 0 5
7

3
14

3
14

3
7

0 0 0 1
2

1
2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

x(4,2)(k)+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

50

−1000
21

2500
21
0

⎤
⎥⎥⎥⎥⎥⎥⎦

if x(4,2)4 (k)> β + x(4,2)2 (k),

(8.6a)

x(4,2)(k+1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 5
7

9
14

3
14 0

0 0 5
7

9
14

3
14 0

0 0 0 1
2

1
2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

x(4,2)(k)+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

50

−250
21

3250
21
0

⎤
⎥⎥⎥⎥⎥⎥⎦

if x(4,2)4 (k)≤ β + x(4,2)2 (k).

(8.6b)

Using (8.6), it can be shown that, for the system with initial mode (4,2), after three

cycles the system does not switch anymore between routes, i.e., the system either

follows route 1 or route 2, and the system eventually converges to state

x(4,2)(∞) =
[
0 0 50 4162

3 5831
3 500

]�
,

which is a part of the desired periodic behavior given in [68]. Then, the time be-

tween visible events are unique, i.e., there exists only a single trajectory generating

these events. This completes the formulation of the model and the policy. Below

we formulate the problem of reconstructing the network’s state.

Problem Formulation

For the deterministic fluid flow network presented in Figure 8.1 with parameters (8.4)

and policy (8.3), reconstruct the network’s state based on the measurement informa-

tion y(t).

8.2 Observer design

Notice that information about the network’s state is only received when visible

events occur. Furthermore, as can be seen in Figure 8.3, observing a visible event

that leads to a visible mode does not include enough information to distinguish be-

tween events εv
2 or εv

9. Likewise, for visible events that lead to an invisible mode,

no distinction is possible between events ε i
4, ε i

6 or ε i
10. To cope with this issue, the
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proposed observer estimates a set of all possible states and, by receiving additional

information at visible events, eliminates infeasible possibilities until the entire net-

work’s state is reconstructed.

Extra system information, used to derive the observer, can be obtained from the

cyclic mode evolution and discrete dynamics (8.5), i.e., some states are known at

the start of each mode. For instance, at the start of mode (1,2), x0 is zero, since

there are no setups. Also, x2 = x3 = 0, as these queues are emptied in, or before,

arriving in mode (4,3), and no fluid arrives at these queues thereafter. The queue

contents at the start of each mode are presented in Table 8.1. If an ∗ is displayed,

the queue content at the start of that mode is (initially) unknown.

Table 8.1: System state at start of mode m.

m xA,m
0 xB,m

0 xm
1 xm

2 xm
3 xm

4

(1,2) 0 0 ∗ 0 0 ∗
(4σ ,2) σ1,4 0 0 ∗ ∗ ∗
(4,2) 0 0 λσ1,4 ∗ ∗ ∗
(4,2) 0 0 ∗ 0 ∗ ∗
(4,3σ ) 0 σ2,3 0 ∗ ∗ ∗
(4,2) 0 0 ∗ ∗ ∗ 0

(4,3σ ) 0 [0,σ2,3] ∗ 0 ∗ 0

(4,3) 0 0 ∗ 0 ∗ 0

(1σ ,2σ ) σ4,1 σ3,2 ∗ 0 0 ∗

With the network depicted in Figure 8.1 and policy (8.3), we derive an observer that,

given the arrival rate and by measuring the output rate, estimates the current state of

the system. To do so, first the dynamics between visible events are considered, and

will be presented below.

Event dynamics

In a mode, the dynamics are linear and jumps in the state occur only in x0, right

after events leading to a mode with a setup. In the remainder, j is used as the visible

event counter and visible event times are denoted by tv
j . Moreover, let Δt j = tv

j+1−tv
j

denote the time between visible event j and j+1. For visible event j+1, we deter-

mine the state of the system directly after the event, which is based on Δt j. Also, the

time it takes for the next event to occur is predicted, i.e., Δt j+1. Since sometimes

multiple routes between visible events are possible, multiple times to the next event

can be predicted, e.g., after visible event εv
2 the successive visible event can be either

ε i
4, ε i

6 or ε i
10. Below, for each visible event, the state of the system directly after the

event and the estimated time(s) to the next event(s) are presented.



135 Chapter 8: Observer design for the Kumar Seidman network

Event εv
2

Consider event εv
2, i.e., the transition between modes (4σ ,2) and (4,2), that occurs

at t = tv
j+1. Then, from Table 8.1 it can be seen that xA

0 (t
v
j+1) = xB

0 (t
v
j+1) = 0 and

x1(tv
j+1) = λσ1,4. Furthermore, queue contents x2 and x3 are zero at the preceding

visible event, i.e., event ε i
10 at t = tv

j . Also, the time spent in modes (1σ ,2σ ), (1,2)
and (4σ ,2) can be derived, which are σ4,1, Δt j −σ4,1 −σ1,4 and σ1,4 respectively.

Therefore, the contents at t = tv
j+1 of queues 2 and 3 can be derived. Queue 2 in-

creases with rate μ1 during mode (1,2) and decreases with rate μ2 during modes

(1,2) and (4σ ,2). The fluid that leaves queue 2 flows to queue 3. The content of

queue 4 does not change between the visible events, as both queues 3 and 4 are not

served. Hence, the state of the system directly after event εv
2 is given by

xA
0 (t

v
j+1) = 0,

xB
0 (t

v
j+1) = 0,

x1(tv
j+1) = λσ1,4,

x2(tv
j+1) = μ1(Δt j −σ1,4 −σ4,1)−μ2(Δt j −σ1,4),

x3(tv
j+1) = μ2(Δt j −σ1,4),

x4(tv
j+1) = x4(tv

j ).

It can be seen that the content of queue 4 is the only unknown queue content in this

case, as the remainder of the state is either known or can be derived from the time

between the visible events. Furthermore, given the queue contents at time tv
j+1, the

duration Δt j+1 between the event j+1 and the successive visible event j+2 can be

predicted. The successive visible event of εv
2 can be either event ε i

4, ε i
6 or ε i

10, based

on the state information. These events occur if

event ε i
4, if Δt j+1 =

x4

μ4
∧ Δt j+1 ≤ x2

μ2
, (8.8a)

event ε i
6, if Δt j+1 =

x4

μ4
∧ Δt j+1 ≥ x2

μ2
, (8.8b)

event ε i
10via εv

2, if Δt j+1 =
x4

μ4
+

x2 + x3

μ3
∧ Δt j+1 >

x2

μ2
+σ2,3, (8.8c)

where, for ease of reading, xn(tv
j+1) is denoted by xn. Note that event ε i

10 can be

reached via multiple routes, therefore we denoted in (8.8c) that ε i
10 occurs after

visible event εv
2, which results in different dynamics as arriving via a route with

visible event εv
9. Moreover, along with the estimated successive event, also extra

information about the unknown queue content x4 is derived. For (8.8a), we know

that x4 − x2 ≤ 0, for (8.8b) we have 0 ≤ x4 − x2 ≤ μ2σ2,3 and for (8.8c) we have

μ2σ2,3 ≤ x4 − x2. This information is used by the observer to determine the feasi-

bility of the estimated state.
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For the other visible events, the queue contents and successive estimated events

are derived similarly and are listed below. Note that for events εv
9 and ε i

10, the pre-

ceding events are required to derive the dynamics, as multiple routes can lead to

these events.

Event ε i
4

xA
0 (t

v
j+1) = 0,

xB
0 (t

v
j+1) = 0,

x1(tv
j+1) = λ (σ1,4 +Δt j),

x2(tv
j+1) = x2(tv

j )−μ2Δt j,

x3(tv
j+1) = x3(tv

j )+μ2Δt j,

x4(tv
j+1) = 0.

εv
9via ε i

4 if Δt j+1 =
x2

μ2
+σ2,3.

Event ε i
6

xA
0 (t

v
j+1) = 0,

xB
0 (t

v
j+1) ∈ [0,σ2,3],

x1(tv
j+1) = λ (σ1,4 +Δt j),

x2(tv
j+1) = 0,

x3(tv
j+1) = x2(tv

j )+ x3(tv
j ),

x4(tv
j+1) = 0.

εv
9via εv

9 if Δt j+1 ≤ σ2,3.

Event εv
9 , via εv

2

xA
0 (t

v
j+1) = 0,

xB
0 (t

v
j+1) = 0,

x1(tv
j+1) = x1(tv

j )+λΔt j,

x2(tv
j+1) = 0,

x3(tv
j+1) = x3(tv

j ),

x4(tv
j+1) = 0.

ε i
10via (4,3σ ) if Δt j+1 =

x3

μ3
.

Event εv
9 , via ε i

4

xA
0 (t

v
j+1) = 0,

xB
0 (t

v
j+1) = 0,

x1(tv
j+1) = x1(tv

j )+λΔt j,

x2(tv
j+1) = 0,

x3(tv
j+1) = x3(tv

j )+μ2(Δt j −σ2,3),

x4(tv
j+1) = 0.

ε i
10via (4,3σ ) if Δt j+1 =

x3

μ3
.

Event ε i
10, via εv

2

xA
0 (t

v
j+1) = σ4,1,

xB
0 (t

v
j+1) = σ3,2,

x1(tv
j+1) = x1(tv

j )+λΔt j,

x2(tv
j+1) = 0,

x3(tv
j+1) = 0,

x4(tv
j+1) =

μ3 −μ4

μ3
(x2(tv

j )+ x3(tv
j )).

εv
2if Δt j+1 =

x1 +λσ4,1

μ1 −λ
+σ4,1 +σ1,4.

Event ε i
10, via εv

9

xA
0 (t

v
j+1) = σ4,1,

xB
0 (t

v
j+1) = σ3,2,

x1(tv
j+1) = x1(tv

j )+λΔt j,

x2(tv
j+1) = 0,

x3(tv
j+1) = 0,

x4(tv
j+1) = (μ3 −μ4)Δt j.

εv
2if Δt j+1 =

x1 +λσ4,1

μ1 −λ
+σ4,1 +σ1,4.



137 Chapter 8: Observer design for the Kumar Seidman network

Observer

Given the dynamics of the network between visible events and the estimated times

to a successive visible event presented above, the observer is designed. At the initial

visible event, multiple options for the system’s state are possible, i.e., the system is

in one of the modes (4,2) or (4,3) when the visible event leads to a visible mode

(εv) and the system is in one of the modes (4,2), (4,3σ ) and (1σ ,2σ ) otherwise

(ε i), see Figure 8.3. An observed variable i is indicated by î. In the remainder, we

denote by χ̂(ti) the set of estimated states at event i. An estimated state is given by[
x̂A

0 x̂B
0 x̂1 x̂2 x̂3 x̂4 m̂ Δt̂ j+1

]�
,

i.e., the estimated system state, estimated mode and estimated time(s) to the next

event. By evaluating the estimated time to the next event Δt̂ j+1, based on the (par-

tially known) state of the system, and by comparing this time to the actual occur-

rence of the next event, the observer’s states are updated. The number of possible

states can increase, when a specific queue content required to determine the time

to the next event is unknown, e.g., if x4 is unknown after event εv
2 multiple mode

routes are possible, see (8.8). The number of possible states decreases when a possi-

ble state becomes infeasible, i.e., when the estimated time to the next event does not

match the actual time to the next event or at negative estimated queue contents. The

evaluation of estimated states at the visible events continues until a single estimated

state remains. Then, this state is the estimated state and is equal to the network’s

state, as shown by experiments below.

To ensure that the observer eventually ends up with a single state estimation, we

evaluate the performance of the observer, by initiating the network at mode (1,2),
as for all possible initial states the network will (eventually) be in this mode due to

the cyclic behavior. The network initiates in mode (1,2) with xA
0 = xB

0 = x2 = x3 = 0,

see Table 8.1, and by evaluating all possible initial contents of queues 1 and 4, i.e.,

x1(0)≥ 1662
3 and x4(0)≥ 0, the number of visible events required by the observer

to end up at a single estimated state are counted. The results of these simulations

are presented in Figure 8.4. It can be seen that after maximally six visible events the

observer ends up with a single state estimate. Moreover, once a single state estimate

remains, the estimated state has also converged to the actual state of the system.

Also, for larger initial queue contents, which are not depicted in the figure, the ob-

server ends with a single estimated state. This suggests that the proposed observer

works as desired. However, no rigorous proof is provided. To gain more insight in

the observer, an illustration of the state estimation process is presented next.

8.3 Illustration

Consider the network with initial queue contents at t = 0 given by

x(0) =
[
50 50 650 0 0 500

]�
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Figure 8.4: Number of visible events required by the observer before a single solution

remains, starting in mode (1,2) and xA
0 = xB

0 = x2 = x3 = 0.

and initial mode m(0) = (1σ ,2σ ), which is part of the desired periodic behavior

described in [68]. The queue content evolution is presented in Figure 8.5. The

upper figure presents the queue contents of server A, the figure in the middle the

queue contents of server B and the measured output is presented in the figure at the

bottom.
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1.67

time
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Figure 8.5: Queue contents and output for the network with m(0) = (1σ ,2σ ) and x(0) =
[50,50,650,0,0,500]�.

The observer starts to estimate the state of the system at time of the first visible

event, i.e., at t = tv
1 = 400 (event εv

2 at the actual network). This event leads to a

visible mode, therefore, the set of estimated modes is m̂(tv
1) = {(4,2),(4,3)}. Mode

(4,3) can be reached in two ways, via visible event εv
2 or visible event εv

9. However,

at tv
1 the queue contents are unknown, hence these estimated states are identical.
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Then the set of estimated states at the first visible event is given by:

χ̂(tv
1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

50

∗
∗
∗

(4,2)
∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

∗
0

∗
0

(4,3)
≥ 121.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (8.15)

It can be seen that, despite the contents of many queues are unknown, a lower bound

of the estimate for the time to the next event can be derived. The second visible event

ε i
10 is measured at tv

2 = 1000, hence Δt1 = 600 and both estimated states at time of

the first event are feasible. The corresponding estimated states at t = tv
2 are given by

χ̂(tv
2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

650

∗−1000

∗+1000

0

(4,2)
∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

[0,σ2,3]
650

0

∗
0

(4,3σ )
[0−50]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

50

50

650

0

0

∗
(1σ ,2σ )

400

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

50

50

∗+600

0

0

1000

(1σ ,2σ )
≥ 357

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (8.16)

Note that the number of estimated states has grown to four possible states, as after

event εv
2 three different successive visible events are possible. At tv

3 = 1400, the third

event is observed. The second estimated state of χ̂(tv
2) does not satisfy Δt2 = 400,

and is therefore discarded. Then, the estimated states at t = tv
3 are as follows

χ̂(tv
3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1050

0

∗+15831
3

0

(4,3)((4,2))
≥ 475

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

50

4162
3

5831
3∗

(4,2)
≤ 250,> 250,≥ 300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

50

4162
3

5831
3

1000

(4,2)
600,900

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (8.17)

As in mode (4,2) multiple options for the next event are possible, see (8.8), multiple

times are presented for the final two estimated states. At tv
4 = 2000, the fourth event

is measured, Δt4 = 600, this eliminates two estimated states. Right after this event,
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the estimated state are

χ̂(tv
4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1650

0

0

1000

(4,3)((4,3σ ))
826.6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

[0,σ2,3]
650

0

1000

0

(4,3σ )
≤ 50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

650

0

0

500

(1σ ,2σ )
400

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (8.18)

Finally, at t = 2400 the fifth visible event is measured. Then, since Δt5 = 400, a

single state set remains, for which the estimated states have converged to the actual

states.

8.4 Summary

In this chapter, a methodology is presented for observer design for the Kumar Seid-

man network with a given and known policy. This chapter elaborated on the single

switching server observer design method presented in Chapter 7. The network ob-

server design approach is a first step towards observer design for fluid flow networks

of switching servers. Although a minimal amount of information is measured, an

observer can be derived which converges to the current network state. Given the

network topology and the policy, a cyclic evolution of modes, and therefore also

events, has been determined. Furthermore, the policy and used parameters resulted

in a system for which each trajectory has unique visible events, which is also a

required for the observer design. By deriving the dynamics between observable

(visible) events, an observer has been derived which estimates a set of all possible

states and, by receiving additional information at visible events, eliminates infea-

sible estimated state sets until the entire state of the network is reconstructed. Via

simulation it is shown that for a wide range of initial states, the observer results in a

single estimated state and converges to both the discrete and continuous state of the

network after at most six visible events. This suggests that the proposed observer

works as desired. However, no rigorous proof of the state convergence is provided.



Chapter 9

Related Problems

Control and observer design of systems of switching servers have been presented in

the previous chapters. In this chapter, some related problems are discussed. These

problems are presented in two categories: traffic intersections and supply networks.

For vehicles in a network of signalized traffic intersections, the transportation time

(travel time) between intersections is non-negligible, as the vehicles require to cover

some distance to arrive at the next intersection. Therefore, the assumption on instant

transportation in Chapter 5 is not valid for a network of traffic intersections. There-

fore, a heuristic based on optimal behavior of single multi-queue switching servers

is presented in Section 9.1 that provides good, not necessarily optimal, schedules

for networks of traffic intersections. This heuristic is based on the optimal periodic

behavior of single multi-queue switching servers, as presented in Chapter 4. Fur-

thermore, in Section 9.2, we present an approach to derive service schedules for

traffic intersections where the time between arrivals is stochastic.

In Section 9.3, optimal control and observer design for a class of supply networks

are presented. The control strategy to organize the flow of goods is extremely rele-

vant in managing supply networks. Handling of uncertainty, e.g. customer demand,

is often a considerable challenge. We introduce methods of constrained robust opti-

mal control, a technique from control theory, to compute the explicit control strategy

for small-sized demand-driven discrete-time controlled dynamical systems with un-

certainties. This allows avoiding any assumptions about the form of the policy a

priori. The aim is to show the applicability of the methods, instead of finding inno-

vative policies, as the resulting policies are well known. Another control problem

arises when control actions depend on the information of multiple states and these

states are not (completely) known, e.g. due to communication issues. Here ob-

servers are used, if possible, to derive the required state information based on the

in- and output of the network. By means of an example, it is shown that by using

these observers, the control policy can be perfectly utilized and no longer depends

on communication.

141
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9.1 Network with transportation times

In Chapter 4, networks with no or negligible transportation times are considered,

and for these networks the periodic behavior can be derived. However, regarding

networks of traffic intersections for example, vehicles travel between the intersec-

tions and this requires travel (or transportation) times which can not be neglected.

Therefore, a heuristic to derive a good schedule for networks with transportation,

based on optimal behavior of single multi-queue switching servers, is presented be-

low.

As illustration, consider the network of two signalized traffic intersections, depicted

in Figure 9.1. The network consists of four routes and six queues. The routes

through queues 3 and 4 travel perpendicular to the other two routes. Once the ve-

hicles in queue 1 are served, they travel to queue 2 at the other intersection. Total

transportation time from leaving the first intersection and arriving at the queue of

the next intersection is denoted by γ1. The same holds for vehicles that travel from

queue 5 to queue 6 with a transportation time denoted by γ2. Note that the trans-

portation times γ1 and γ2 can be different, e.g., due to the layout of the intersection

or road quality.

γ1λ3

λ4

λ5

x2x1

x5x6

x4

x3

λ1

γ2
Figure 9.1: Two intersection network with four flows.

For a network where traffic is allowed to flow between two intersections in a sin-

gle direction via a single route, the optimal periodic behavior can be derived using

optimal behavior of a single intersections. For instance, consider the network in

Figure 9.1 without the route leading through queues 5 and 6. In this case, vehicles

can only travel between intersections in one direction, i.e., from queue 1 to queue

2. Then, given the green period of queue 1, it is possible to set the green period

of queue 2 such that it stays empty. The optimal service periods for the queues 1,

3 and 4, for the system without transportation times, can be derived by the method

presented in Chapter 4, i.e., by neglecting the transportation time the network can

be seen as a single intersection (without queue 2, and treating queues 1 and 4 as

conflicting). Next, we take the service period of queue 2 identical to the derived

service period of queue 1. Then, this schedule with the start of the service period

of queues 2 and 4 delayed with γ1, with respect to queues 1 and 3 of the system

without transportation times, yields the optimal schedule for this system with trans-

portation times. For this schedule, vehicles always receive a green light when arriv-
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ing at queue 2, hence x2(t) = 0. The delay between initiating the service periods of

queues 1 and 2 is referred to as the phase delay, denoted by ξ . So, for the system

with queues 1-4, the phase delay equals the transportation time ξ = γ1.

If vehicles flow in both directions between intersections in the network, i.e., consid-

ering all routes in Figure 9.1, this approach does not work anymore, as it is impossi-

ble to achieve empty queues 2 and 6 for all possible transportation times γ1,γ2 ≥ 0,

given the optimal schedule for the system without transportation times. Note that

for some specific time delays it is possible to find a phase delay that ensures both

intermediate queues are zero. We propose a method based on the techniques of

Chapter 4 to derive a service schedule. This is discussed below.

To derive a schedule using techniques from Chapter 4, the network depicted in Fig-

ure 9.1 can be abstracted to a single intersection by neglecting the transport between

queues 1 and 2 and between queues 5 and 6. To ensure stability of the system, the ar-

rival rates at queues 2 and 6 are chosen identical to the arrival rates of queues 1 and

5, respectively, as the amount of vehicles served in these intermediate queues are

equal to the amount of vehicles served in the preceding queues. Moreover, queues

2 and 6 are relocated next to queues 3 and 4 respectively, in such a way that they are

conflicting. This abstracted system is depicted in Figure 9.2.

For the abstracted system, the optimal service schedule can be easily derived. From

this schedule, the schedule for the network with transportation times is derived in

two steps. First, the service schedule is chosen identical to the service schedule of

the system without transportation times. Second, service of queues at the intersec-

tion on the right (queues 2, 4 and 5) is delayed with phase delay ξ . The phase delay

is chosen such that sum of the intermediate queue contents, i.e., queues 2 and 6, is

minimal.

λ3

λ4

λ5

x1

x5

x4

x3

λ1

λ5
x6

λ1

x2

Figure 9.2: Two intersection network regarded as a single intersection.

To derive the optimal phase delay, i.e., the phase delay minimizing the sum of the

average intermediate queue contents, we first focus on a two-queue network with

transportation times in Section 9.1.1. For this network, given the service periods

and transportation time, the optimal phase delay is determined. It is assumed that

each queue only receives a single service period during a cycle and that the maximal

service rates of queues on a route are identical. For the system with these assump-

tions, already 18 different situations exist. The results are used in Section 9.1.2
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to derive the optimal phase delay for a four-queue network where fluid flows in

both directions between two servers. Finally, the optimal phase delay for the traffic

intersection network are derived.

9.1.1 Two-queue network

The smallest network for which fluid is transported between servers is the two-

queue network depicted in Figure 9.3. Here, both servers serve a single queue and

fluid is transported, with transportation time γ , to queue 2 after service by server 1.

The servers have identical cycle times T , a predefined service period (τ1,τ2 < T )

and both queues are served once in a cycle. For this system, we derive the phase

delay that minimizes the total queue contents W2. Note that the time averaged queue

contents or time averaged flow time can be used similarly as performance criterion.

λ1
x1 x2

1 2
γ

Figure 9.3: Two queue network.

The start of service of queue 2 is delayed by a phase delay ξ . The content of the

intermediate queue x2 depends on the service periods of both queues 1 and 2 and on

the phase delay. Since the arrival process at queue 2 is non-constant, as it depends on

the service period of queue 1 and the transportation time, the optimization problem

is a timing issue, i.e., timing between arrival of fluid in queue 2 and start of service

of queue 2. Given a fixed service period of queue 1 and the fixed service duration of

queue 2, the total queue content during a cycle of queue 2 can be determined based

on the the transportation time γ and phase-delay ξ . Denote the time that service of

queue i = 1,2 starts at gi ∈ [0,T ] and the service ends at ri ∈ [0,T ]. The service

periods are given by

τi = (ri −gi) mod T, i = 1,2,

τλ
1 =

τ1 −ρ1T
1−ρ1

,

τμ
1 = τ1 − τλ

1 ,

and the time that the server starts serving queue 1 at arrival rate, i.e., x1 = 0, is given

by gλ
1 = (r1 − τλ

1 ) mod T . Let a "¯" indicate the actual times of the arrival and the

departure process of fluid at queue 2, i.e.,

ḡ1 = (g1 + γ) mod T, ḡ2 = (g2 +ξ ) mod T,

ḡλ
1 = (gλ

1 + γ) mod T, r̄2 = (r2 +ξ ) mod T,
r̄1 = (r1 + γ) mod T.

Next, we distinguish between the start and the end of service at the different arrival

rates. Service of queue 2 can start during arrival at maximal rate (indicated by
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phase �), during arrival at arrival rate (�) or queue 2 can start service when no fluid

arrives (�). These phases are given by

� if ḡ1 ≤ ḡ2 < ḡλ
1 +Pμ

1 T ∨ ḡ2 < ḡλ
1 − (1−Pμ

1 )T,

� if ḡλ
1 ≤ ḡ2 < r̄1 +Pλ

1 T ∨ ḡ2 < r̄1 − (1−Pλ
1 )T,

� if P1r̄1 < ḡ2 ≤ ḡ1 ∨ r̄1 +P1T < T,

with indicator functions

�1 =

{
1 if ḡ1 > r̄1

0 otherwise
, �

λ
1 =

{
1 if ḡλ

1 > r̄1

0 otherwise
,

�
μ
1 =

{
1 if ḡ1 > ḡλ

1

0 otherwise
, �2 =

{
1 if ḡ2 > r̄2

0 otherwise
.

Moreover, service of queue 2 can end during arrival of fluid at arrival rate (denoted

by phase �), during arrival at maximal rate (�) or in between arrivals of fluid �.

These phases are given by:

� if ḡ1 ≤ r̄2 < ḡλ
1 +Pμ

1 T ∨ r̄2 < ḡλ
1 − (1−Pμ

1 )T,

� if ḡλ
1 ≤ r̄2 < r̄1 +Pλ

1 T ∨ r̄2 < r̄1 − (1−Pλ
1 )T,

� if P1r̄1 < r̄2 ≤ ḡ1 ∨ r̄1 +P1T < T.

For all combinations of phases of starting and ending service of queue 2, differ-

ent queue levels arise. An example of a situation where service of queue 2 starts

between arrivals (�) and service ends while fluid arrives at arrival rate (�) is pre-

sented in Figure 9.4. The arrival rate profile is presented by the black solid lines,

i.e., fluid arrives at rate μ during the interval [ḡ1, ḡλ
1 ) and at rate λ during [ḡλ

1 , r̄1).
The gray solid line indicates the service period at queue 2, i.e., queue 2 is served

during [ḡ2, r̄2). We assume that the maximal service rates at both queues are identi-

cal (μ1 = μ2), to reduce the total number of situations. Note that for systems with

μ1 	= μ2, the mean queue contents can be derived similarly.

0 Tg1 g1 r1λ
g2 r2

Figure 9.4: Arrival and service pattern example, corresponding to (�,�).

The different situations based on the arrival and departure processes are indicated

by Roman numbers (I-IX). A graphical representation of all different situations is

presented in Figure 9.5. Note that, for ease of reading, the arrival rate profiles are

identical for all situations and hence the service and arrival rates can differ between

situations. Auxiliary variables, indicated by capital letters, represent the time dura-

tions at which the queue levels increase/decrease at a fixed rate.
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0 T

Ia

A B

Ib

0 TA C

II

0 TAB C

IIIa

0 TA B

IIIb

0 TA C 0 T

IVa

A B C

0 T

IVb

A B D 0 T

Va

AB C

T

Vb

0 A B T

Vc

0 A C D

T

Vd

0 A CE 0 T

VIa

A B

0 T

VIb

A C 0 T

VII

A BC

0 T

VIIIa

A BC 0 T

VIIIb

BAD E

0 T

IXa

A B 0 T

IXb

Figure 9.5: Different situations for μ1 = μ2. Each situation displays the arrival rate profile

(black line), the total service period (gray line) and queue content (gray area) of queue 2

during a cycle.
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Given the arrival process at queue 2, the problem is to find the optimal phase de-

lay. For the entire range ξ ∈ [0,T ], the arrival and departure process of the system

is represented by several situations depicted in Figure 9.5. For each of these these

situations, the minimal queue contents can be easily derived. Then, the phase delay

yielding the lowest queue content is the optimal phase delay. For each of the sit-

uations in Figure 9.5, the total content of queue 2 during a cycle is derived below,

denoted by w j
2 for situation j. The total queue content equals the gray area in the

figure. By splitting up the area into triangles, trapezoids and rectangles, the total

queue lengths are computed. For stability, it is required that all fluid arriving at

queue 2 can be served, i.e., μ2τ2 ≥ λ1T .

• Situation I: (�,�).
Auxiliary variables

A = (ḡλ
1 − ḡ2) mod T, B = μ1(T−τ2)

μ2−λ1
,

C = 1
μ2
(μ1(T − τ2)+(λ1 −μ2)τλ

1 ).

Total queue contents are

wIa
2 =

1

2
μ1(T − τ2)

2 +μ1(T − τ2)

(
A+

1

2
B
)
, if B ≤ τλ

1 , (9.1a)

wIb
2 =

1

2
μ1(T − τ2)

2 +μ1(T − τ2)A+[μ1(T − τ2)+ (9.1b)

+
1

2
(λ1 −μ2)τλ

1 ]τ
λ
1 μ1 +

μ2

2
C2, if B > τλ

1 . (9.1c)

• Situation II: (�,�).
Auxiliary variables

A = (r̄1 − r̄2) mod T, B = (ḡ2 − ḡ1) mod T,

C = 1
μ2−λ1

(λ1A+μ1B).

Total queue contents are

wII
2 = λ1A

(
1

2
A+T − τλ

1

)
+μ1B

(
τμ

1 − 1

2
B
)
+

μ2 −λ1

2
C2. (9.1d)

• Situation III: (�,�).
Auxiliary variables

A = (ḡ2 − ḡ1) mod T, B = μ1A
μ2−λ1

,

C = 1
μ2
(μ1A+(λ1 −μ2)τλ

1 ).

Total queue contents are

wIIIa
2 = μ1A

(
τμ

1 − 1

2
A
)
+

μ2 −λ1

2
B2, if B ≤ τλ

1 , (9.1e)

wIIIb
2 = μ1A

(
τ1 − 1

2
A
)
+(λ1 −μ2)[τλ

1 ]
2 +

μ2

2
C2, if B > τλ

1 . (9.1f)
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• Situation IV: (�,�).
Auxiliary variables

A = (ḡλ
1 − r̄2) mod T, B = T − τ1 −A,

C = 1
μ2−λ1

(μ1A+λ1B), D = 1
μ2
(μ1A+λ1B+(λ1 −μ2)τλ

1 ).

Total queue contents are

wIVa
2 = μ1A

(
1

2
A+B

)
+

1

2
λ1B2 +

μ2 −λ1

2
C2, if C ≤ τλ

1 , (9.1g)

wIV b
2 = μ1A

(
1

2
A+ τλ

1

)
+λ1B

(
τλ

1 − 1

2
B
)
+

+
1

2
(λ1 −μ2)(τλ

1 −B)2 +
μ2

2
D2, if C > τλ

1 . (9.1h)

• Situation V: (�,�).

– Situation Va: (r̄1 − r̄2) mod T ≤ (r̄1 − ḡ2) mod T
Auxiliary variables

A = (r̄1 − r̄2) mod T, B = (ḡ2 − ḡλ
1 ) mod T,

C = 1
μ2−λ1

(λ1A+μ1τμ
1 +λ1B).

Total queue contents are

wVa
2 = λ1A

(
1

2
A+T − τλ

1 +B
)
+μ1τμ

1

(
1

2
τμ

1 +N
)
+

1

2
λ1B2 μ2 −λ1

2
C2.

(9.1i)

– Situation Vb-Vd: (r̄1 − r̄2) mod T > (r̄1 − ḡ2) mod T
Auxiliary variables

A = T − τ2, B = 1
μ2−λ1

(λ1A),

C = (r̄1 − ḡ2) mod T, D = 1
μ2
(λ1A+(λ1 −μ2)C),

E = 1
μ2−λ1

(λ1A+(λ1−μ2)C−μ2(T − τ1)) .

Total queue contents are

wV b
2 =

1

2
λ1A2 +

μ2 −λ1

2
B2, if B ≤C,

(9.1j)

wV c
2 = λ1A

(
1

2
A+C

)
+(λ1 −μ2)C+

μ2

2
D2, if B >C∧D ≤ T − τ1,

(9.1k)
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wV d
2 = λ1A

(
1

2
A+C+T − τλ

1

)
+

+(λ1 −μ2)C
[

1

2
C+T − τλ

1

]
−

−μ2(T − τ1)

[
1

2
T − 1

2
τ1 + τμ

1

]
+

μ2 −λ1

2
E2, if B >C∧D > T − τ1.

(9.1l)

• Situation VI: (�,�).
Auxiliary variables

A = (ḡ2 − ḡλ
1 ) mod T, B = 1

μ2−λ1
(μ1τμ

1 +λ1A),

C = 1
μ2
(μ1τμ

1 +λ1A+(μ2 −λ1)(τλ
1 −A).

Total queue contents are

wV Ia
2 = μ1τμ

1

(
1

2
τμ

1 +A
)
+

1

2
λ1A2 +

μ2 −λ1

2
B2, if B ≤ τλ

1 −A, (9.1m)

wV Ib
2 = μ1τμ

1

(
1

2
τμ

1 + τλ
1

)
+λ1A

(
τλ

1 − 1

2
A
)
+ (9.1n)

+
1

2
(λ1 −μ2)(τλ

1 −A)2 +
μ2

2
C2, if B > τλ

1 −A. (9.1o)

• Situation VII: (�,�).
Auxiliary variables

A = (ḡλ
1 − r̄2) mod T, (ḡ2 − r̄1) mod T,

C = 1
μ2
(μ1A+λ1τλ

1 ).

Total queue contents are

wV II
2 = μ1A

(
1

2
A+ τλ

1 +B
)
+λ1τλ

1

(
1

2
τλ

1 +B
)
+

μ2

2
C2. (9.1p)

• Situation VIII: (�,�).
Auxiliary variables

A = (r̄1 − r̄2) mod T, B = (ḡ2 − r̄1) mod T,

C = 1
μ2

λ1A, D = T − τ1 −B,

E = 1
μ2−λ1

(λ1A+(λ1−μ2)D) .

Total queue contents are

wV IIIa
2 = λ1A

(
1

2
A+B

)
+

μ2

2
C2, if C ≤ D,

(9.1q)
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wV IIIb
2 = λ1A

(
1

2
A+B+D+ τμ

1

)
+(λ1 −μ2)D

(
1

2
D+ τμ

1

)
+ (9.1r)

+
μ2 −λ1

2
E2, if C > D.

(9.1s)

• Situation IX: (�,�).
Auxiliary variables

A = (ḡ2 − r̄1) mod T, B = 1
μ2
(λ1T ).

Total queue contents are

wIXa
2 = μ1τμ

1

(
1

2
τμ

1 + τλ
1 +A

)
+λ1τλ

1

(
1

2
τλ

1 +A
)
+

μ2

2
B2, (9.1t)

wIXb
2 = 0, if (ḡ1 − r̄2) mod T > (ḡ1 − ḡ2) mod T. (9.1u)

Optimal phase delay

For a system with known transportation time and service periods, it is desired that

the phase delay is chosen such that the total queue contents are minimal. Hence, we

want to minimize the total contents of queue 2, as the total contents of queue 1 are

not affected by the phase delay. For a phase delay ξ ∈ [0,T ], all different situations

are optimized within their range. For each situation, the total queue content W2 is

either a linear or quadratic function with respect to the phase delay. Therefore, the

optimum can be quickly derived. Then, the phase delay that yields the lowest total

queue contents is the optimal phase delay ξ ∗.

As illustration, consider the system with T = 36, λ1 = 6, μ1 = μ2 = 12, g1 = 4,

r1 = 18, g2 = 2 and r2 = 22. Since ρ1 = T
τ1

= 1
2 , queue 1 is only served at maxi-

mal rate. Furthermore, a transportation time of γ = 8 is considered. For the phase

delay ξ ∈ [0,36], the total queue contents of queue 2 are presented in Figure 9.6.

In Table 9.1 the different situations and corresponding range of phase delays are

presented. For each situation, the total queue contents w2 are linear with respect

to the phase delay. Minimizing w2 for each situation yields that the phase delay

ξ ∈ [8−10] is optimal.

It is shown that the optimal phase delay for the two-queue network can be derived

by finding the minimal queue content for all possible situations over the range ξ ∈
[0,T ]. Next, a similar approach is presented for a network is where fluid flows in

both directions between servers.

9.1.2 Four-queue network

Here, the queue contents of a network with two servers and four queues are dis-

cussed. In the considered network, presented in Figure 9.7, fluid flows to and from
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20
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ξ

w2

Figure 9.6: Total queue contents w2 for ξ ∈ [0,36].

range ξ situation w2

[0−8] VII 51
3(8−ξ )

[8−10] IXb 0

[10−26] IIIb 6(ξ −10)

[26−28] Ib 96−51
3(ξ −26)

[28−36] VII 851
3 −51

3(ξ −28)

Table 9.1: Situations of queue 2.

each server via two different routes. Transportation from server 1 to server 2 re-

quires a transportation time γ1 and a transportation time γ2 is required for the oppo-

site direction. Similar to the two queue network, we derive the optimal phase delay

minimizing the total queue contents of the intermediate queues (w2 +w4).

λ1
x1 x2

x4 x3

1 2

γ1

γ2
λ3

Figure 9.7: System with delay.

Given the service periods of each queue in the network, the intermediate queue

contents (x2 and x4) can be derived based on the transportation times and phase

delay ξ similar as for the two queue network presented in Figure 9.3. Without loss

of generality, we assume that the service periods at server 1 are fixed. Hence, the

service times at server 2 have a phase delay ξ . Then, the total contents of queue 2

during a cycle can be derived by (9.1). The contents of queue 4 can also be derived

by (9.1), given that

ḡ1 = (g3 + γ2 +ξ ) mod T, ḡ2 = g4,

ḡλ
1 = (gλ

3 + γ2 +ξ ) mod T, r̄2 = r4,

r̄1 = (r3 + γ2 +ξ ) mod T.
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Optimal phase delay

The optimal phase delay for the four-queue network is derived similar to deriving

the optimal phase delay for the two-queue system, discussed in Section 9.1.1. For

a phase delay ξ ∈ [0,T ], all different situations are derived. Next, the phase delay

for which the sum of the average queue contents is minimal, results in the optimal

phase delay.

For example, consider the network presented in Section 9.1.1 again. This network

is extended with queues 3 and 4 with λ3 = 4, μ3 = μ4 = 12, g3 = 4, r3 = 26, g4 = 2,

r4 = 20 and γ1 = γ2 = 8. Since ρ3 < T
τ3

, queue 3 is served at both maximal and

arrival rate during a cycle. For the phase delay ξ ∈ [0,36], the total queue contents

w2 and w4 are presented in Figure 9.8. For this example, all situations and corre-

sponding phase delay ranges of queue 4 are also in Table 9.2. For ξ ∗ = 10, the sum

of the total intermediate queue contents is minimal (552
3).

0 5 10 15 20 25 30 35
0
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40
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80

100

ξ

w2
w4

Figure 9.8: Total queue contents w2 and w4 for ξ ∈ [0,36].

range ξ situation w4

[1−4] VII 212
3 +6(ξ −1)

[4−8] IVb 452
3 +6(ξ −4)

[8−16] VIb 632
3 −4(ξ −8)

[16−19] VIa 1
12ξ 2 − 20

3 ξ +117

[19−22] IIIa 1
12ξ 2 − 20

3 ξ +117

[22−26] II 102
3

[26−28] VIIIa 102
3

[28−1] VIIIb 102
3 +

14
9 (ξ −28) mod T−

−5 1
27((ξ −28) mod T )2

Table 9.2: Situations of queue 4.
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Traffic Example

We now consider the traffic network depicted in Figure 9.1 again with parameters

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 2 0 0 0

0 0 0 4 0 0

4 0 0 0 0 2

0 2 0 0 4 0

0 0 0 2 0 0

0 0 4 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, λ =

⎡
⎢⎢⎢⎢⎢⎢⎣

6

0

4

3

4

0

⎤
⎥⎥⎥⎥⎥⎥⎦
, μ =

⎡
⎢⎢⎢⎢⎢⎢⎣

12

12

12

12

12

12

⎤
⎥⎥⎥⎥⎥⎥⎦
, c =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

1

1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (9.2)

For the abstracted system, depicted in Figure 9.2, the optimal service schedule

has a cycle time T = 36, service periods τ =
[
18 20 12 10 22 18

]�
and

g =
[
4 2 24 26 2 6

]�
.

As the service rates of the intermediate queues are equal to their preceding queues,

the optimal phase delay can be derived in a similar way as presented in Section 9.1.2.

The resulting minimal average weighted queue contents JW , for a time delay γ1 =
γ2 = γ ∈ [0,T ] is presented in Figure 9.9. The upper figure presents the total

queue contents and the lower figure presents the corresponding phase delay. For

14 < γ < 18 and 32 < γ < 36 a range of phase delays results in the minimal average

queue contents.
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Figure 9.9: Minimal total queue content and corresponding phase delay.

Note that the resulting service schedule is not necessarily the optimal service sched-

ule for the network of intersections with transportation times. However, as the queue

contents of the non-intermediate queues have been optimized and an optimal phase

delay has been derived to minimize the intermediate queue contents, we believe that
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this approach results in a good schedule. For networks with multiple intermediate

queues the intermediate queue contents can be similarly derived. For networks with

S > 1 (multiple) servers, S−1 phase delays have to be optimized. This can be done

with a similar approach and is a tedious job, due to a large number of different

situations for the arrival and service processes.

9.2 Stochastic arrival process

Throughout the thesis, deterministic fluid flow switching servers are considered. In

reality, inter-arrival times of products at manufacturing systems or vehicles at traffic

intersections can fluctuate over time. In this section, the effect of stochastic arrivals

are discussed and a method to derive service schedules is presented. A model that

often gives a (good) description of fluctuations in the arrival process is the Poisson

process where the time between consecutive arrivals is exponentially distributed and

independent of other inter-arrival times.

We consider a system with discrete objects arriving according to a Poisson arrival

process. Still, the service times are assumed to be constant, which seems reason-

able for, e.g., vehicles leaving an intersection. We present approximations for the

average queue length and average waiting time in systems with fixed time control

and arrivals described by a Poisson process. Using these approximations, service

schedules are derived which are compared to the service schedules derived from

deterministic fluid flow switching servers.

The outline of this section is as follows: In Section 9.2.1, a short system description

is given. Section 9.2.2 provides a brief comparison between discrete determinis-

tic and stochastic simulations. Section 9.2.3 presents a brief overview of existing

approximations of the average queue length and average waiting time. An approx-

imation of the average queue length and average waiting time for a system where

the queue is served multiple times is presented in Section 9.2.4.

9.2.1 System description

The considered system is a discrete event system, i.e., with discrete objects, e.g.,

products or vehicles. Objects arrive at queue n according to a Poisson process with

arrival rate λn, which is assumed to be constant. The Poisson process is charac-

terized as a renewal process and inter-arrival times tA are exponentially distributed,

i.e., P(tA ≤ t) = 1− e−λnt for all t ≥ 0. The duration of service period τn and cycle

time T are fixed. The service time of objects of queue n, during the service pe-

riod, is constant and equal to 1
μn

. The load of the system is denoted by ρn =
λn
μn

and

the degree of saturation, i.e., the average capacity used by the server, is denoted by

ρ∗
n = λnT

μnτn
.
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When the service period of queue n ends, i.e., at the start of an idle period, and

when service is not completely finished, we assume that the service of the object is

preempted and the service resumes at the beginning of the next service period at the

point where it was interrupted (preemptive resume). The queue length increases by

one when an object arrives and the queue length decreases by one when an object

has been served (entirely).

9.2.2 Discrete-event simulations

In this section, we investigate the applicability of the derived service schedules for

discrete-event systems. Recall the five-flow traffic intersection introduced in Chap-

ter 4, presented in Figure 9.10a.

5
1

3

4

2

(a) Five-flow traffic intersec-

tion.

0 5 10 15 20 25 30 35 40 44.31

1

2
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4

5

timeGreen Red

(b) Optimal fluid flow service schedule.

Figure 9.10: Layout (left) and graph (right) of an intersection with three vehicle lanes (1,3

and 5) and two pedestrian lanes (2 and 4).

For this system, the parameters are

Σ =

⎡
⎢⎢⎢⎢⎣

0 0 0 3 0

0 0 8 0 0

2 6 0 5 0

3 0 3 0 5

0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ , λ =

⎡
⎢⎢⎢⎢⎣

3

0.1
1

0.1
4

⎤
⎥⎥⎥⎥⎦ , μ =

⎡
⎢⎢⎢⎢⎣

10

2

10

2

10

⎤
⎥⎥⎥⎥⎦ ,

the weight factors for all queues are equal to 1 and restrictions on the cycle time,

minimal green periods and maximal queue contents are given by

40 ≤ T ≤ 60,

τmin =
[
3 6 3 6 3

]
,

xmax
n = 100, n = 1,2, ...,N.

The optimal periodic behavior for this system has been derived in Chapter 4. If

Θ = 2 and G = 4, i.e., the maximal number of service periods for a queue in a
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cycle is two and at most four groups are allowed in a sequence, the service schedule

resulting in optimal behavior J∗w = 45.35 is presented in Figure 9.10b. The average

queue contents Wn of each queue and the total average queue content of the system

Jw are presented in Table 9.3. In this table a comparison is shown between the

performance of the fluid model and for the discrete event model with deterministic

and Poisson arrivals. The latter results are generated using 400 simulations where

in each simulation 30000 objects have been served. The average queue contents are

presented together with the 95% confidence intervals.

Fluid Discrete Discrete

Deterministic Poisson

W1 10.986 11.432 12.437 ± 0.387

W2 0.537 0.600 0.617 ± 0.064

W3 17.341 17.475 17.544 ± 0.475

W4 1.743 1.811 1.837 ± 0.137

W5 14.745 15.196 15.511 ± 0.404

Jw 45.352 46.514 47.945 ± 0.364

Table 9.3: Average queue contents for the schedule depicted in Figure 9.10b.

Note that both simulations with discrete objects result in slightly larger queue con-

tents, as expected. This service schedule is able to serve all arrivals for the system

with Poisson arrivals, since additional capacity is available at each queue.

Remark 9.2.1. In this example, the service schedule is able to serve all objects,
regardless of a deterministic or stochastic arrival process, since additional service
capacity is available at each queue. This is not always the case, as servers for the
derived service schedules, based on fluid flow models, often switch to serve another
queue directly after the queue has been emptied. For these queues, the service
capacity is fully utilized and variability in the arrival process causes the waiting
time (and thus also queue content) to go to infinity, resulting in undesired behavior.

We offer several solutions to prevent this undesired behavior discussed in the remark

above.

• Take possible fluctuations into account in the deterministic fluid flow switch-

ing server schedule derivation process. The schedules can be derived such

that additional service capacity is present at all queues. This is possible by

deriving schedules for the system by considering larger arrival rates or im-

posing a maximal capacity threshold, for instance 90%. Both can be easily

implemented, the latter, e.g., by adapting (4.15).

• Take the stochastic arrival process into account and define the problem as

a non-linear programming problem (NLP). Here, the average waiting time
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is approximated and used as objective function for the NLP problem. The

method of deriving the schedule and constraints do not change. Several ap-

proximations are discussed below.

9.2.3 Approximations for average delay

Approximation formulas for the average delay E[ϕn] (or waiting time) of an object

in queue n are presented below. In steady-state, the average number of waiting

objects E[xn] relates to the average delay via Little’s law, i.e.,

E[xn] = λnE[ϕn]. (9.3)

A well-known, and still widely used, approximation of the average delay of objects

at queue n, developed by [96], is given by

E[ϕn] =
(T − τn)

2

2T (1−ρn)
+

ρnT 2

2τn(μnτn −λnT )
−0.65

(
T
λ 2

n

)1
3
(

λnT
μnτn

)2+5
τn
T
. (9.4)

This formula is based on a M/D/1 system, i.e., exponentially distributed inter-

arrival times and deterministic service times, with cyclic service and idle periods

of the server. Each cycle consists of a single service period τn and a single idle

period T − τn. The first term of (9.4) corresponds to the delay of the fluid model,

which is a fairly good approximation for the delay at low ρ∗
n , as the influence of the

random nature of the arrivals is minor. The second term of (9.4) compensates for

the random nature of the arrivals. It is the average delay for a M/D/1 system if the

service times are stretched with a factor T
g , i.e., the server is always serving queue

n and objects have a service time of T
μnτn

. The third term of (9.4) is a correction

term based on simulation results and the value of this term accounts for 5-15% of

the total value.

Another approximation for the considered system is given in [22]:

E[ϕn] =
ln
λn

+
(T − τn)

2

2T (1−ρn)
+(ρ∗

n )
4 T − τn

2(1−ρn)(μnτn −λnT )
, (9.5)

with ln being the expected number of objects in an M/D/1 system, i.e.,

ln =ρn +
ρ2

n
2(1−ρn)

.

In (9.5), the first term corresponds to the average delay of objects in an M/D/1

system. The second term is the average delay for the fluid model and the third

term is a correction term. Via a discrete-event simulation, these terms are discussed

below. The discrete-event simulation model has only three events, arrival of an

object, queue length measurement at regular points in time and departure of an

object. For reliability of the results, 1000 cycles are considered per simulation and
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100 simulations are performed. In Figure 9.11, the mean number of objects during

a single period are presented for the system with parameters λn = 0.15, μn = 0.5,

τn = 50 and T = 100 (ρ∗
n = 0.6). The solid lines represent the mean number of

objects for the system with Poisson arrivals and the dotted lines represent the sum

of ln and the number of objects for deterministic arrivals, i.e., the first two terms

in (9.5), if translated to the mean number of objects via Little’s law. The third

term of (9.5) is a correction term which compensates for the underestimation, as

can be seen in the figure. This term is based on an educated guess multiplied by the

expected number of waiting objects at the end of a service period. As shown in [22],

approximation (9.5) yields better results than (9.4).
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Figure 9.11: Mean number of objects during a cycle (solid) and number of objects for the

fluid system plus ln (dashed).

9.2.4 Multiple service periods

In this thesis, fluid flow switching servers are considered that can serve a queue

multiple times in a cycle. An example of the average queue content during a cycle

where the queue is served twice is presented in Figure 9.12 by the solid line. In

each cycle, the queue is served for a duration of 10 time units ([0,10]) and 40 time

units ([30,70]). The intersected line indicates the sum of the average queue content

for the deterministic system added to ln. It can be clearly seen that during the first

service period in the cycle not all objects can be served that have arrived during the

preceding idle period.

For the systems with Poisson arrivals, this phenomenon has been addressed in [34].

In that work, the authors assumed stability of all subcycles, i.e., a consecutive red

and green period. In [95], approximations are presented for the average queue con-

tent for the considered system which is able to serve a queue multiple times in a

cycle without a stability requirement on subcycles, identical to the problems dis-

cussed in Chapter 4. Next, these approximations are used to derive service sched-

ules via NLP and the performance of the approximations is evaluated by comparing

the performances at multiple different scenarios. The approximation, based on the

approximation derived in [96], which results in schedules with the overall best per-
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Figure 9.12: Mean number of objects during a cycle (solid) and number of objects for the

fluid system plus ln (dashed).

formance is given by

E[ϕn] =ρ∗
n +

ρ∗
n

2

2(1−ρ∗
n )

+ϕfluid
n , (9.6)

where ϕfluid
n is the average waiting time for the fluid flow model, see Chapter 4 for

more details. Furthermore, [95] also implemented approximation (9.6) in a tool to

derive service schedules.

9.3 Supply networks

A supply network is a generalization of the original concept of a supply chain where

mainly linear or tree-structured facilities and material flows are considered. In to-

day’s network economy more complex structures exist where, in principle, any of

the involved components can supply each other, and these are captured in the term

’supply network’.

Managers face increasing pressure to control inventories and costs along the net-

work while maximizing customer service performance. Their most important task

is organizing the flow of products and information within the supply network. This

includes both the design of the network as well as the control of the material flow.

Due to evolving networks, it remains a major challenge to achieve optimal perfor-

mance. In particular, managing uncertainties, such as the buyers demand, material

availability or variabilities in transport and service times, is of great importance.

This problem is classified as a Supply Chain Operations Planning problem, with the

objective to coordinate the release of items in the supply network at minimal cost,

cf. [61, 60]. They also derived optimization models considering either the network

structure or control policies. Typically, a control strategy is given and influence of

the parameters on the dynamics are studied, see for instance [31].

This section is partly based on [109].
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For the problem of finding an optimal control strategy for supply networks with-

out any strategy assumptions a priori we believe techniques from control theory are

helpful. By way of illustration a supply network is considered where a retailer can

order products at multiple sources with different lead times and costs, and faces

an unknown customer demand. A well-known method from control theory is intro-

duced to find optimal control strategies for flows in demand-driven supply networks,

independent of structural assumptions about the network and therefore without any

prior assumptions of a certain family of strategies. It is not our aim to derive new

policies, as the resulting policies are well known, but our aim is to show that ideas

from control theory can be applicable for supply networks and that these therefore

can be a stepping stone for future results. Note that introducing control theory appli-

cations to a production-inventory problem is not a new phenomenon, cf. [76], [64]

and [57] and references therein.

An additional complexity in the management of material flows through a supply

chain is introduced by the organizational structure and barriers within the network.

Nowadays multiple sites worldwide are working together to deliver a product, while

reporting to different organizational units within the corporation. Each of these sites

has its unique culture, constraints, and objectives. Therefore, for some networks

complete centralized control of material flows would be optimal but may not be fea-

sible. For these cases, global information is required throughout the network with

proper communication between warehouses.

However, proper communication is not always possible, as for instance indicated

in [29] and [30]. One could think of complicated communication due to the infras-

tructure or competition. Therefore, the combination of a network with control laws

concerning multiple states of the system and poor communication could yield non-

optimal results. In control theory similar problems exist where the complete state

of the system is not directly measurable. A solution to this problem is to derive ob-
servers which estimate the state based on measurements, see for instance [75, 85].

We show that this method is also applicable in a supply network setting. Measur-

ing inputs and outputs of the system for a while enables the observer to reconstruct

unknown states. In other words, by estimating the unknown states in the supply net-

work the control laws can be perfectly utilized. The estimation is performed using a

state estimator which employs only the available directly measurable input and out-

put signals. [71] introduced this method for linear systems. Hence, the problem of

designing controllers for systems with incomplete state measurements is equivalent

to constructing observer-based controllers.

The remainder of this section is organized as follows. The supply network dynamics

and constraints are presented in Section 9.3.1. Section 9.3.2 introduces constrained

robust optimal control. An illustrative example of a supply network is presented

in Section 9.3.3, used to determine the optimal control. State dependent control

based on observers is presented with an example in Section 9.3.5. Conclusions are

provided in Section 9.3.7.
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9.3.1 System description

The supply network consists of production units, introduced by [16], separated by

stock points. A production unit may be a single machine, a production line or a

production facility. A supply network is a set of production units, separated by

controlled stock points, to which production orders are released. We consider the

supply network as a discrete time controlled dynamical system with uncertainty.

Two representations of a network consisting of two stock points x1 and x2 with a

production unit PU in between is presented in Figure 9.13. The upper representa-

tion in OR-framework is well known. The lower figure represents the network as

a discrete time controlled dynamical system. An item in stock x2 has lead time L,

i.e., the time between the release of an order and availability of the goods in the

next stock point x1. This lead time is assumed to be deterministic and integer, and

is divided over L−1 intermediate stock points x1,L−1, ...,x1,1, cf. [64].

x2,0 x1,0x1,1...

PUx2 x1

x1,L-1

Figure 9.13: Representation of two stock points x1 and x2 and production unit PU with lead

time L in OR-framework (top) and as a discrete time dynamical system (bottom).

The dynamics of a supply network with uncertain demand can be written as

x(k+1) = Ax(k)+Bu(k)+Ed(k), (9.7)

where x(k) denotes the state vector. For a supply network one can think of states

describing the physical inventory of an item at a warehouse, backlog of an item or

the number of ordered items waiting to be received. The vector u(k) denotes the in-

put, which consists of order quantities of items at warehouses. This vector belongs

to the set U (k) ⊆ R
nu . The exogenous disturbance d(k) ∈ D(k) ⊆ R

nd describes

the customer demand and is assumed to be restricted to [0,dmax]. Linear combina-

tions between these vectors are implied by system matrix A ∈ R
nx×nx , input matrix

B ∈ R
nx×nu and disturbance matrix E ∈ R

nx×nd .

This system is constrained by

Fx(k)+Gu(k)≤ g,

with F ∈ R
ng×nx , G ∈ R

ng×nu , g ∈ R
ng and ng ∈ N0. These constraints are used to

model lower bounds, e.g. nonnegativity constraints of the physical inventories or

order quantities, or upper bounds, e.g limited storage capacity or maximum order

quantity. By setting nonnegative inventories the allowed order quantities become

state-dependent, e.g. a warehouse can not send more items than available.

We consider the problem of finding optimal inputs u(k) to the system with respect
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to the constraints and costs on state and control variables.

The costs C(k) are described by

C(k) = Qx(k)+Ru(k),

where one can denote costs on inventory, backlog etc. in state cost matrix Q∈R
1×nx

and cost depending on the input, e.g. order costs, in input cost matrix R ∈ R
1×nu .

9.3.2 Constrained robust optimal control

Any policy (sequence of control input decisions) produces a sequence of costs. The

goal in constrained robust optimal control is to find inputs that guarantee satisfaction

of the constraints for all possible combinations of disturbances and that are favor-

able with respect to the resulting cost distribution due to the disturbances. In many

practical situations, a stochastic description of the uncertainty may not be available,

and one may have information with less detailed structure, such as bounds on the

magnitude of the uncertain quantities. Under these circumstances one may use a

min-max approach, whereby the worst possible values of the uncertain disturbance

within the given set are assumed to occur, see for instance [17]. For this system, the

approach is to minimize the worst case cost via a minimum over u and maximum

over d. Given that system (9.7) is in state x(t0) at time t0 = 0 and given a horizon

K ∈ N, we are looking for an optimal control input sequence (u∗(k))K−1
k=0 , i.e., se-

quence of all u∗(k) from k = 0 until k = K−1, such that the cost-to-go is defined by

J∗[k](x(k)) = min
u(k)

J[k](x(k),u(k)) (9.8)

subject to

Fx(k)+Gu(k)≤ g,

Ax(k)+Bu(k)+Ed(k) ∈ X (k+1),

∀d(k) ∈ [0,dmax].

J[k](x(k),u(k)) =Qx(k)+Ru(k)+ max
d(k)∈[0,dmax]

J∗[k+1](Ax(k)+Bu(k)+Ed(k))

for k = K − 1, ...,0. Here x(k) is the state vector at time t0 + k given the system

started in x0 = x(t0) and was exposed to input sequence (u( j))k
j=0 and disturbance

sequence (d( j))k
j=0 and where the system remained in the set of feasible states

X (k). This set is described by

X (k) ={x ∈ R
nx |∀d ∈ D∃u ∈ R

nu with
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Fx(k) +Gu(k) ≤ g∧Ax(k) +Bu(k) +Ed(k) ∈ X (k+1)}

meaning that for all possible disturbances there exists an input which respects the

constraints and makes sure that the state at the next step is within the feasible set.

As boundary condition zero costs are assumed

J∗[K](x(K)) = 0

and

X (k) = {x ∈ R
nx |Fx ≤ g}.

Then, the optimal control law u∗ can be computed by dynamic programming (DP)

over k

J[K](x(K)) =0,

J[k](x(k)) = min
u(k)∈U

Qx(k)+Ru(k)+ (9.9)

+ max
d(k)∈[0,dmax]

J[k+1](Ax(k)+Bu(k)+Ed(k)), k = 0,1, ...,K −1.

Applying this algorithm results in the optimal cost-to-go J[0](x(0)). Also, if u∗(k)
minimizes the right hand side of (9.9) for both x(k) and k, the policy (u∗(k))K−1

k=0 is

optimal. In each iteration the DP algorithm gives the optimal cost-to-go for every

possible state, denoted by J∗[k].
Using this method, optimal control of a supply network is derived by multipara-

metric linear programming (mpLP). In the next section this method is presented by

using an illustrative example of a supply network.

9.3.3 Illustrative example

A supply network is considered to illustrate the method of finding optimal inputs

with robust optimal control as described in the previous section. A graphical rep-

resentation of this network is given in Figure 9.14, where nodes are stages in the

network, solid arcs denote that an upstream stage supplies a downstream stage and

intersected arcs denote the upstream orders. The network consists of a retailer R, the

manufacturer M as first source and the subcontractor S as the second source. Note

that this is not a convergent system, i.e., there is no assembly of items. For each

step k, the retailer faces an uncertain demand d(k) by its customers and can choose

to order u1(k) number of items with lead time 2 from the manufacturer and u2(k)
number of items with lead time 1 from the subcontractor. The inventory level of the

retailer is denoted by xR. The intermediate states xR1 and xR2 denote the number of

intermediate items, i.e., xR2(k) are the number of items ordered at M at time k− 1



Chapter 9: Related Problems 164

and xR1(k) are the number of items ordered at M at time k− 2 plus the number of

items ordered at S at time k− 1. The number of items supplied to the customer is

denoted by s(k). Furthermore, the retailer supplies items to the customer with a lead

time of 1, and xd(k) denotes the number of ordered items at time k−1.

xd

RxR1xR2

M

S

d

s

u1

u2

Figure 9.14: Supply network consisting of a retailer (R) and two suppliers (M and S). The

retailer faces demand d, orders u1 and u2, and sells s items.

The dynamics of the system are described by

x(k+1) =

⎡
⎢⎢⎣

1 1 0 −1

0 0 1 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎦x(k)+

⎡
⎢⎢⎣

0 0

0 1

1 0

0 0

⎤
⎥⎥⎦u(k)+

⎡
⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎦d(k),

with x =
[
xR xR1 xR2 xd

]� ∈ R
4
+ with R+ = [0,∞) and u =

[
u1 u2

]� ∈ R
2
+.

The orders u j(k) (j=1,2) are bounded by [0,umax
j ], representing for instance a maxi-

mal transportation capacity. Demand d(k) is bounded by [0,dmax]. We assume that

the retailer always meets the customers demand, i.e., s = xd . Therefore, all buffer

levels are nonnegative, i.e., no backlog. This introduces an extra constraint on the

system, dmax ≤ umax
1 + umax

2 since the demand can always be fulfilled by both sup-

pliers. Furthermore, it is assumed that the manufacturer and subcontractor to have

an infinite stock, i.e., retailer orders can always be supplied. The retailer faces c+

inventory costs per item on inventory in stock (xR) and order costs cu1
and cu2

per

ordered item for ordering at the manufacturer and the subcontractor, respectively.

Total costs are expressed by

C(k) = c+xR(k)+ cu1
u1(k)+ cu2

u2(k). (9.10)

Throughout the section the following parameters are assumed: dmax = 8, umax
1 = 9,

umax
2 = 5, c+ = 1, cu1

= 1 and cu2
= 4.

By solving optimization problem (9.8), it follows that the feasible region, i.e., set of

feasible states X ∞, is given by

xR + xR1 − xd ≥ 0, (9.11)

xR + xR1 + xR2 − xd ≥ 3, (9.12)
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where (9.11) makes sure that the physical inventory of xR is nonnegative at a single

order with maximal demand and (9.12) makes sure that the physical inventory of xR
remains nonnegative at a sequence of orders with maximal demand. The resulting

robust optimal control is given by

u∗1(k) = min[max(14− z(k),0),6], (9.13)

u∗2(k) = max(8− z(k),0), (9.14)

with echelon inventory position z(k) = xR(k)+ xR1(k)+ xR2(k)− xd(k). In this pol-

icy, items are ordered from the manufacturer M with a maximal amount of 6 items

when the inventory falls below threshold 14− z(k), see (9.13). Items are ordered

from the subcontractor S when the inventory falls below 8− z(k), see (9.14). In the

next subsection these order-up-to levels are determined analytically. Note that this

is not a new policy, as [92] proved that this dual-basestock policy is optimal for this

system. However, the robust optimal control approach leads to the optimal ordering

policy without any prior assumption about the structure of the policy. This indicates

that the control theory approach is promising.

9.3.4 Order-up-to level

In order to process all orders without backlog we have umax
1 + umax

2 ≥ dmax and

u1 + u2 ≤ dmax. Let us denote the desired order quantity at manufacturer M by ū1

and the maximal remaining order quantity at subcontractor S by ū2 = dmax − ū1.

Given that backlog is not allowed, the lower bound on the order-up-to level of the

retailer is given by

L = 2dmax − ū2 = dmax + ū1. (9.15)

Note that this lower bound is also the desired level since a higher order-up-to level

increases the inventory costs. The order policy is given by

u1(k) = min[max(L− z(k),0), ū1)], (9.16a)

u2(k) = min[max(L− ū1 − z(k),0), ū2], (9.16b)

where the retailer orders between zero and ū1 products at M and the remainder, if

necessary, at S. If cu1
< cu2

, one is inclined to order the products at the cheaper

manufacturer M. However, due to the larger lead time, ordering more products at M
results in a larger order-up-to level, see (9.15), and complementary higher inventory

costs. Therefore, a trade-off exists between order costs and inventory costs, which
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are related to ū1. The desired order quantities ū1 can be derived by regarding the

extreme cases: maximal order costs CO and maximal inventory costs CI . With ro-

bust control the maximal costs (max(CO,CI)) are minimized. The maximal cost of

ordering is given by

CO = (cu1
− cu2

)ū1 + cu2
dmax, (9.17)

which can be derived by regarding ordering at maximal demand. Note that in this

case, the inventory costs are zero. The maximal costs spent on inventory, denoted

by CI , depend on the maximal inventory level. The inventory level is maximal if

d = 0 for at least two time-units and is equal to the order-up-to level L. Therefore,

maximal costs spent on inventory are:

CI = c+L. (9.18)

It can be seen that CO is decreasing and CI is increasing for increasing ū1. There-

fore, maximal costs are minimal when CO =CI , this results in

ū1 =
(cu2

− c+)dmax

cu2
+ c+− cu1

. (9.19)

If the retailer is able to order the maximal order quantity from the manufacturer

ū1 ≤ umax
1 and the maximal remaining quantity from the subcontractor ū2 ≤ umax

2 ,

the basestock policy is given by (9.16). This policy was also used in the numerical

example.

Otherwise, if the retailer is not able to order the maximum order quantity from the

manufacturer the basestock level follows from ū1 = umax
1 and solving CO =CI:

L =
(cu1

− cu2
)umax

1 + cu2
dmax

c+
− z, if ū1 > umax

1 .

Furthermore, if the retailer is not able to order ū2 from the subcontractor the base-

stock level grows such that backlog is prevented. In this case ū2 = umax
2 , therefore

ū1 = dmax −umax
2 and from (9.15) it follows that

L =2dmax −umax
2 , if ū2 < dmax − ū1. (9.20)

The feasible region of this network is given by

xR + xR2 − xd ≥ 0, (9.21)

z ≥ dmax −umax
2 , (9.22)
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For completeness, optimal control for cu1
≥ cu2

is presented here. This might oc-

cur due to special offers from the subcontractor. Logically, the maximal amount

of products are ordered at the cheaper and faster subcontractor. Therefore, ū2 =
min(dmax,umax

2 ) and ū1 = max(dmax − ū2,0).

In this section we have shown by example that using the method of constrained

robust optimal control for a given supply network results in an optimal control pol-

icy. This policy was derived without any knowledge of policies a priori. However,

a drawback of the method is the limitation to consider small networks. Due to DP,

it involves an enormous amount of storage to even record the solution to a moderate

complicated problem. For larger networks, the optimal solution can not be solved

any more with DP, and a possible solution could be to use an approach of the cost-

to-go function, e.g. quadratic function instead of piecewise linear function, where

the solution remains close to the optimal solution. Another option is to consider

MPC to derive controllers, see for instance [42].

9.3.5 Observers: State dependent control

Often control depends on multiple states. To achieve optimal performance, com-

munication within the network is very important. Ideally, the retailer and suppliers

should treat each other as strategic partners in the supply chain with flawless com-

munication. However, as [29] and [30] also indicate, in many cases communication

is a problem. For instance, the retailer can get inaccurate or no information about the

supplier stock levels due to competition, organization or infrastructure. Therefore,

we introduce the use of observers in the supply chain network to derive the control

based on local information. An observer predicts unobservable or unmeasurable

states based on observable/measurable parameters. For instance, in an airplane it

could be difficult to measure the velocity of the plane directly while measuring time

and position are easy. By measuring the time and position of the plane for a while,

one can observe the velocity. Analogous for the supply network, by measuring the

order and supply quantity long enough, the stock levels can be observed. We illus-

trate this approach by expanding the supply network from the previous example.

9.3.6 Example

In order to create a lack of state information due to communication issues we ex-

tend the example from Section 9.3.3 with warehouses that supply the manufacturer

M and subcontractor S, as illustrated in Figure 9.15. Inventory levels of the retailer,

manufacturer and subcontractor are denoted by xR, xM and xS, respectively. Prod-

ucts ordered at the warehouses have a lead time of 2. Ordered products that have not

been received by M or S are stored in intermediate states xM1 and xS1, respectively.

Resulting from the robust optimal control (9.8)-(9.9), both the manufacturer M and

subcontractor S order their items with a basestock policy at a warehouse with infi-
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nite stock (∞) via channels uM and uS, respectively.

uM(k) = LM − xM(k)− xM1(k),
uS(k) = LS − xS(k)− xS1(k),

where Li are the basestock levels for xi, i ∈ {M,S}.

xd

RxR1xR2

MxM1∞

SxS1∞

d

u1

u2

uM

uS

Figure 9.15: Supply network consisting of a retailer (R) and two suppliers (M and S).

The retailer faces demand d, orders u1 and u2. The suppliers order via uM and uS from a

warehouse with infinite stock (∞).

The retailer uses the policy

u1(k) =min[max(LR − z(k),0),xM(k)], (9.23a)

u2(k) =min[max(dmax − z(k),0),xS(k)], (9.23b)

with basestock level LR. The resulting controller for the retailer clearly depends on

the stock levels of both suppliers. Therefore, proper communication between re-

tailer and both suppliers is necessary to fulfill the customers demand.

Assuming that the retailer can get no information on the stock levels of both sup-

pliers, the retailer faces a problem to ensure that the customers demand is met. We

assume that the policies and base stock levels of the suppliers are known by the

retailer. However, the actual stock levels are unknown which introduces a problem

concerning the amount of products to order at the suppliers. To solve this problem

we introduce observers, which are well-known in the control community, see for

instance [75, 85]. First, consider the affine dynamics of the manufacturer M:

[
xM(k+1)
xM1(k+1)

]
=

[
1 1

−1 −1

][
xM(k)
xM1(k)

]
+

[−1

0

]
u1(k)+

[
0

LM

]
. (9.24)

y(k) =
[
0 0

][ xM(k)
xM1(k)

]
+
[
1
]

u1(k), (9.25)
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where u1 is the input from the retailer and y the output from the manufacturer.

A useful property to determine the states is detectability. A system is detectable

when the states are asymptotically determined by the in- and outputs. Detectability

of system (9.24)-(9.25) is addressed by considering the difference between the ac-

tual states and estimated states. This is denoted by the error dynamics

e(k) = |x(k)− x̂(k)|,

where x̂ indicates the estimated state. For system (9.24)-(9.25) the error dynamics

are given by

e(k+1) =

[
1 1

−1 −1

]
e(k). (9.26)

It can be seen from the error dynamics for x2 and xM1 in (9.26) that after two itera-

tions the errors are zero. Therefore, system (9.24)-(9.25) is detectable. Furthermore,

this indicates that the states xM and xM1 can be exactly observed after two steps:

xM(k+2) = LM −u1(k+1)−u1(k),
xM1(k+2) = u1(k).

Similar results are obtained for states xS and xS1 of subcontractor S via input u2:

xS(k+2) = LS −u2(k+1)−u2(k),
xS1(k+2) = u2(k).

With this approach, the retailer can imply the control defined in (9.23) using the

estimation of the states of both the manufacturer and subcontractor:

u1(k) =min[max(LR − z(k),0),LM −u1(k−1)−u1(k−2)], (9.27a)

u2(k) =min[max(dmax − z(k),0),LS −u2(k−1)−u2(k−2)]. (9.27b)

The resulting-observer based controller (9.27) does not depend on communication

anymore. The observers estimate the unknown supplier stock levels in two steps,

whereafter the controller operates as desired.
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9.3.7 Summary

First, we presented the use of techniques from robust optimal control to derive op-

timal control policies for discrete-time controlled dynamical systems with uncer-

tainty. For the considered example of a supply network this led to the traditional,

optimal ordering policy. However, this approach differs from other approaches by

not assuming a certain strategy, or family of strategies, a priori. Also, instead of

considering a fixed parameter setting, it is possible to derive optimal control for a

network with unknown parameters. Due to use of Dynamic Programming, it in-

volves an enormous amount of storage to even record the solution to a moderate

complicated problem. For larger networks, the optimal solution can not be solved

any more with Dynamic Programming, and a possible solution could be to use an

approach of the cost-to-go function, e.g. quadratic function instead of piecewise

linear function, where the solution remains close to the optimal solution. Another

promising option from control theory is to consider the multi-variable control algo-

rithm Model Predictive Control to derive controllers.

Second, the use of observers in supply networks is presented to derive explicit state-

feedback control. The performance in a supply network for which the control of

each state depends on more than the state itself can be non-optimal, due to a lack

of information or incomplete information about other states in the network. Using

observers in a observable/detectable supply network reduces the control to an ex-

plicit state-feedback control, i.e., there is no need for communication. An example

is presented to illustrate this approach.
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Conclusions and recommendations

In this chapter, the conclusions from this thesis are summarized. Subsequently,

some recommendations for further research on control and observer design of fluid

flow networks are given.

10.1 Conclusions

This research is focussed on control and observer design for fluid flow switching

servers. Control of switching servers is decoupled into an optimal periodic behavior

problem and an optimal transient behavior problem. The optimal periodic behavior

is the desired periodic reference trajectory, which leads to optimal long-term perfor-

mance of the system. The optimal transient behavior is the trajectory that optimally

steers the system towards the periodic behavior, if the system is removed from the

optimal periodic behavior, e.g., due to disturbances.

In Chapter 3, a method is presented to derive the optimal periodic behavior for a

two-queue switching server. The method can be applied in a variety of settings,

e.g., setup times, setup costs and/or backlog, and generalizes a number of existing

results. The optimal periodic behavior is formulated as a Linear Programming (LP)

problem, or a Quadratic Programming (QP) problem and additional constraints can

be easily implemented, e.g., bounds on queue contents and bounds on service and

cycle times can be incorporated. For switching servers with multiple queues and

where multiple queues can be served simultaneously, this method is extended in

Chapter 4. For these servers, multiple sequences exist. For each sequence the opti-

mal periodic behavior is derived and the sequence with the best performance yields

the optimal periodic behavior. Reasonable bounds on the number of groups in a

sequence and the number of service times allowed for a single queue in a sequence

are imposed to limit the number of possible sequences. It is shown that allowing

multiple service periods for a queue in a cycle can have a substantial (positive)

effect on the performance of the system. In Chapter 5, optimal periodic behav-

ior for a network of switching servers with instant transportation between queues

171
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is presented. Due to the network topology, arrival rates at queues can be noncon-

stant. By aggregation of queues, the problem of deriving optimal periodic behavior

can also be formulated as a QP problem. The number of sequences quickly grows

by relaxing the bounds on number of groups and total number of service periods

per queue. Since each sequence is optimized separately, the computational efforts

increase enormously. Therefore, the presented approach seems to be suitable for

moderate networks of switching servers.

Given a switching server and the optimal periodic behavior, a method is presented

in Chapter 6 that derives the optimal transient behavior from any initial state of the

system. For the unconstrained system without backlog, the optimal control policy

is derived using switching curves.

In practice, the complete state of the system is hardly ever completely known. How-

ever, control policies might require the complete state of the system to perform as

is desired. Hence, observer design, i.e., reconstructing the unknown states based

on measured information, is important for implementing the control policy. For

multi-queue switching servers with a clearing policy, we designed observers which

recover the state of the system in Chapter 7. By measuring the input and the limited

information from the system, observers are designed in a stepwise approach. The

design principles for the single server are also used to design an observer for a spe-

cific network with a specific control policy, as a step towards observer design for

networks of switching servers, presented in Chapter 8. Here, the cyclic evolution of

modes allows the observer to reconstruct the state of the network.

In Chapter 9, some related problems are addressed. For a network with non-zero

transportation times, a heuristic is presented to derive a good service schedule based

on the optimal periodic behavior of the individual switching servers. Also, switch-

ing servers with discrete objects and poisson distributed inter-arrival times are con-

sidered. For this system, we present an approximation of the average queue content

during a cycle and derive service schedules using this approximation. The result-

ing schedule is compared to the schedule derived for the fluid flow model and it is

shown that it performs better for systems with high loads. Finally, it is shown that

by using techniques from robust optimal control, without assuming a certain strat-

egy a priori, the optimal policy can be derived for supply networks. It is also shown

that by the use of observers, for detectable or observable supply networks, unknown

states can be reconstructed.

10.2 Recommendations

In this thesis, control and observer design of fluid flow switching systems are pre-

sented. There are many possibilities and directions for further research. Some rec-

ommendations for further research are discussed below.
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The presented methods to derive the optimal periodic and optimal transient behavior

of a system consists of generating all feasible sequences and solving an optimiza-

tion problem for each sequence. For large systems, this results in a vast amount

of sequences, which all need to be optimized, which is computationally expensive.

Hence, we proposed bounds on the number of groups in a sequence and a maxi-

mal number of service periods per queue in a sequence to embank the number of

feasible sequences. To avoid this ‘brute force’ optimization of all sequences, it is

interesting to look into methods to derive a class of sequences, or subset of all fea-

sible sequences, which governs the sequence resulting in the optimal behavior. For

some sequences, or classes of sequences, it might be possible to show that these are

non-optimal, and therefore can be omitted in the optimization step. Also, heuristics

can be developed that minimize the number of sequences to optimize, which result

in a good (not necessarily optimal) service schedule.

For networks of switching servers, as also touched upon in Section 9.1, the opti-

mal control problem for networks with transportation times remains open. A step

towards solving this problem could be to use ‘negative’ setup times to compen-

sate for the transportation times, i.e., before the end of a service period of a queue

a conflicting queue can start its service period. This requires a reformulation of

the sequence composition and constraints. Also, the problem of optimal transient

behavior for networks of switching servers has not been discussed in this thesis.

This problem is similar to the transient behavior problem for multi-queue switching

servers and therefore it is expected that this problem can be solved similarly.

In this thesis, fluid flow switching servers are considered. However, for systems

with low-volume discrete objects, the fluid flow approximation is inappropriate.

Hence, the problem of control and observer design for such discrete systems re-

mains a topic for further research. The results presented in this thesis might serve

as a guideline towards optimal control and observer design.

The presented methods use constant arrival and service rates for deriving the op-

timal behavior. Variations are not taken into account, except for a brief discussion

on Poisson arrivals in Section 9.2. The question remains whether the schedules are

still optimal in a stochastic environment. In order to derive the controllers for a

real-life environment, stochastic processes in the control and observer design needs

to be looked into.

The results from the observer design for a single switching server (Chapter 7) lead to

various questions. First of all, it would be of interest to take the positivity of the state

variable into account leading to observers that always create positive state estimates

as well (positive observers). Some first hints were already provided in this direction.

In addition, it is relevant to formulate necessary and sufficient conditions in terms

of the data of the original system when the proposed design is indeed successful and

how this relates to fundamental observability and detectability properties. Further-

more, systems with disturbances, such as, e.g., server failure or stochastic arrival or
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service processes, are not taken into account. As in practice the arrival or service

rates may fluctuate or servers can break down, the design of observers for systems

with stochastic behavior is of interest for future work. For observer design of net-

works of switching servers, for which a first attempt is presented in Chapter 8, also

questions remain which can be valuable for further research. Some of these ques-

tions are identical to the questions for the single server observer design problem.

First of all, it is shown that for a specific network and with a specific policy, an

observer can be designed by estimating all feasible states and eliminating infeasible

states. Convergence to the actual state of the network is presented via simulation,

proving the convergence is a topic for further research. Also, the elimination of fea-

sible states is based on perfect timing of the next expected visible event. Therefore,

for a network with disturbances, the observer may not be able to reconstruct the net-

work’s state. Hence, the design of observers for networks with stochastic behavior

is of interest for future work. Second, it is relevant to investigate the applicability

to other networks or other policies. For the presented observer design approach, a

cyclic evolution of modes is required by the observer and it is also required that the

visible events are created by an unique trajectory of the system. In addition, it is

also of importance to formulate necessary and sufficient conditions for the observer

design and their relation to observability and detectability properties. Finally, it is

interesting to investigate to what extent the observer design principles put forward

in this thesis can be applied to more general classes of hybrid systems. As such, the

provided ideas might be fruitfully exploited into various future research directions.

A further step in the modeling and control framework is the implementation of the

proposed controllers on actual systems.
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Nederlandse samenvatting

In een wereld waar de complexiteit van systemen alleen maar groeit is de vraag

om besturingsstrategieën overal te vinden. In dit onderzoek bekijken we deze vraag

met betrekking tot systemen van schakelende werkstations. In een geschakeld werk-

station worden meerdere wachtrijen bedient en schakelen tussen de bediening van

wachtrijen kan tijd en/of geld kosten. Dit soort systemen komen overal voor, zoals in

productiesystemen, voedselverwerkingsfaciliteiten of computercommunicatienetwer-

ken. Geschakelde werkstations kunnen ook de dynamiek van alledaagse situaties

beschrijven, denk aan verkeersstromen op kruispunten met verkeerslichten of wacht-

rijen in ziekenhuizen. Om meer inzicht in de (basis) dynamiek van schakelende

werkstations te verkrijgen, beschouwen we een werkstation als een vloeistofmodel.

In dit model komt vloeistof met een constante snelheid aan, wordt de vloeistof in

de wachtrij met een constante snelheid bediend en zijn er geen verstoringen. Het is

normaal om een continue stroom van objecten aan te nemen als de discrete objecten

in een grote hoeveelheid aankomen. Systemen waar de objecten in een kleine hoe-

veelheid aankomen vallen buiten het bereik van dit onderzoek. Dit komt doordat

modellen voor discrete objecten hier beter bij passen, want elk individueel object

kan een grote invloed hebben op het systeem.

In dit onderzoek is het besturen van schakelende werkstations opgesplitst in het

bepalen van optimaal periodiek gedrag en het bepalen van optimaal transiënt gedrag.

Het optimale periodieke gedrag is het gewenste referentietraject dat leidt tot een op-

timale prestatie van het systeem over de lange termijn. Het optimale transiënte

gedrag is het traject dat het systeem optimaal naar het periodieke gedrag stuurt. Dit

kan nodig zijn als het systeem van het periodieke gedrag verwijderd is, bijvoorbeeld

door onderhoudswerkzaamheden of bedieningsprioriteiten.

We presenteren een methode om het optimale periodieke gedrag van een enkel

schakelend werkstation met twee wachtrijen te bepalen. Een analytische afleiding

van het optimale periodieke gedrag voor schakelende werkstations met meer dan

twee wachtrijen of met beperkingen op de wachtrijlengtes of bedieningsperiodes

wordt snel te complex, als het al mogelijk is om dit af te leiden. Daarom formuleren

we het probleem van optimaal periodiek gedrag als een lineair programmerings-

(LP) of kwadratisch programmeringsprobleem (QP). Dit geldt voor systemen met

omsteltijden, omstelkosten en/of achterstallig werk. Deze methode is flexibel met

betrekking tot verschillende prestatiecriteria. Ook kunnen additionele systeem-
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beperkingen makkelijk toegevoegd worden, zoals beperkingen op de wachtrijlengtes

of bedienings- en cyclustijden

Vervolgens is deze methode uitgebreid om het optimale periodieke gedrag van een

enkel geschakeld werkstation met meer dan twee wachtrijen te bepalen. In deze sys-

temen kunnen meerdere wachtrijen tegelijkertijd bediend worden met een wachtrij-

afhankelijke snelheid. Vandaar kunnen kruispunten met verkeerslichten, waar meer-

dere voertuigstromen op hetzelfde moment een groen licht mogen krijgen, ook

gemodelleerd worden. De methode bestaat uit twee opeenvolgende stappen. Eerst

worden alle uitvoerbare sequenties gegenereerd, omdat voor systemen met meer dan

twee wachtrijen de volgorde van het bedienen van de wachtrijen onbekend is. Als

tweede worden de optimale bedieningstijden per sequentie berekend. We staan toe

dat een wachtrij meerdere bedieningsperiodes heeft in een cyclus. Door middel van

voorbeelden laten we zien dat dit een substantieel (positief) effect kan hebben op

het resultaat.’

Voor een netwerk van schakelende werkstations, waar objecten via vastgestelde

routes naar (verscheidene) werkstations in het netwerk stromen presenteren we een

zelfde aanpak om het optimale periodieke gedrag te bepalen. Het verschil met een

enkel schakelend werkstation is dat de aankomstsnelheid van stromen niet meer

altijd constant is. In het netwerk beweegt de vloeistof tussen de wachtrijen, wat

leidt tot een stuksgewijs constante aankomstsnelheid bij wachtrijen (de stuksge-

wijze vertreksnelheid van een wachtrij in een werkstation is de aankomstsnelheid

van de wachtrij verderop langs de route). Daarom zijn bedieningsperiodes verdeeld

in meerdere fasen en gebruiken we aggregatie van wachtrijen om de wachtrijlengtes

in het netwerk te bepalen. Voor de aggregatie van wachtrijen is aangenomen dat

er geen transporttijden tussen werkstations zijn. Na bediening van een stroom is

de vloeistof onmiddellijk aanwezig in de volgende wachtrij. Dan kan de optima-

lisatie van elke sequentie geformuleerd worden als een QP-probleem en optimaal

periodiek gedrag voor netwerken met schakelende werkstations bepaald worden.

Vervolgens is het optimale transiënte gedrag van een enkel geschakeld werkstation

onderzocht, met een van te voren bepaald optimaal periodiek gedrag. We presen-

teren een methode dat het systeem optimaal naar het periodieke gedrag stuurt. Voor

een willekeurige begintoestand is het optimale transiënte probleem geformuleerd

als een QP-probleem. Voor een werkstation met twee wachtrijen is het systeem

met én zonder achterstallig werk apart beschouwd. Door het combineren van om-

schakelpunten, systeemtoestanden voor welke het werkstation omschakelt naar de

andere wachtrij, kan de optimale besturingsstrategie afgeleid worden voor een sys-

teem zonder beperkingen en zonder achterstallig werk. Deze strategie is uitgedrukt

in omschakelcurves: als een punt op deze curve bereikt wordt moet het systeem

omschakelen naar de andere wachtrij. De omschakelpunten zijn afhankelijk van

beperkingen op wachtrijlengtes of bedieningsperiodes. Hierdoor zijn er voor sys-

temen met deze beperkingen geen omschakelcurves. Deze methode kan uitgebreid

worden naar werkstations met meerdere wachtrijen. Alleen is voor deze werksta-
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tions de volgorde van het bedienen van de wachtrijen (gewoonlijk) niet bekend.

Vergelijkbaar met de methode voor optimaal periodiek gedrag kunnen alle sequen-

ties gegenereerd worden en voor elke sequentie kan de optimale oplossing gevonden

worden. Dan geeft de beste oplossing van alle sequenties het optimale transiënte

gedrag.

De besturingen die volgen uit de voorgenoemde methodes zijn allen centrale be-

sturingen en bepalen het schakelgedrag van elk werkstation, gebaseerd op de toe-

stand van het gehele systeem (globale toestand). Voor niet-kunstmatige systemen,

zoals kruispunten met verkeerslichten, is in de werkelijkheid de globale toestand

bijna nooit beschikbaar. Dit maakt het ontwerpen van waarnemers van cruciaal be-

lang. Een waarnemer bepaalt een goede schatting voor de globale toestand van het

systeem, gebaseerd op de in- en output van het systeem. Als een eerste stap rich-

ting een waarnemerontwerp voor een generiek geschakeld werkstation presenteren

wij een waarnemerontwerp voor een geschakeld werkstation, dat werkt volgens

een bepaalde besturingsstrategie. Deze systemen, welke relevant zijn in de con-

text van productie- en verkeersapplicaties, zijn onderdeel van een speciale klasse

van stuksgewijs affine hybride systemen. Ondanks het feit dat alle subsystemen niet

waarneembaar zijn en niet alle gebeurtenissen zichtbaar zijn, kan een waarnemer in

continue tijd geconstrueerd worden. Deze garandeert dat de schatting convergeert

naar de toestand van het werkelijke systeem. Het basisidee is om het systeem te

evalueren op zichtbare gebeurtenissen. Hiervoor kan via de standaardtechnieken uit

de regeltechniek een waarnemer in discrete tijd ontworpen worden. Deze waarne-

mer wordt vervolgens als blauwdruk voor de waarnemer in continue tijd gebruikt.

Naast de systeemdynamica worden additionele ‘wacht’modes toegeschreven aan de

ontwerpen. Uiteindelijk laten we zien dat deze principes resulteren in een succesvol

waarnemerontwerp.

Voor het Kumar Seidman netwerk en een specifieke besturing is een soortgelijke

aanpak gebruikt om een waarnemer te ontwerpen. Dit is een eerste poging in de

richting van een waarnemerontwerp voor netwerken van schakelende werkstations.

Ondanks een minimale hoeveelheid gemeten informatie is een waarnemer ontwor-

pen, welke naar de huidige toestand van het netwerk convergeert. Deze aanpak

is drievoudig. Eerst is het (periodieke) schakelsysteem bepaald, gebaseerd op de

besturing en de dynamica van het netwerk. Ten tweede wordt het netwerk geëval-

ueerd op zichtbare gebeurtenissen en wordt de dynamica tussen deze gebeurtenissen

afgeleid. Ten derde evalueert de waarnemer alle mogelijke voorspelde toestanden

op de zichtbare gebeurtenissen. Door eliminatie van onmogelijke toestanden blijft

er uiteindelijk een enkele geschatte toestand voor het netwerk over. Door middel

van simulatie is aangetoond dat deze toestand convergeert naar de actuele toestand

van het netwerk.

Uiteindelijk worden enkele problemen gerelateerd aan besturing en waarnemer-

ontwerp voor schakelende werkstations besproken. Voor een netwerk, bestaande uit

twee schakelende werkstations en met transporttijden tussen de werkstations, is een
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heuristiek gepresenteerd om een goed bedieningsschema te verkrijgen. Allereerst

wordt het netwerk als een enkel werkstation beschouwd en wordt het optimale peri-

odieke schema bepaald. Vervolgens is dit schema geïmplementeerd in het netwerk

en wordt voor elk werkstation de optimale faseverschuiving bepaald. Geschakelde

werkstations met stochastische aankomstprocessen zijn ook besproken. Hier be-

naderen we de gemiddelde wachtrijlengte voor systemen met stochastische aankomst-

processen en gebruiken deze approximaties om de bedieningsschemas via een niet-

lineair programmeringsprobleem af te leiden. Als laatste zijn optimale besturings-

strategieën afgeleid voor dynamische systemen in discrete tijd met een onzekere

vraag. Gebruik makende van technieken uit de theorie van optimale robuuste bes-

turing (robust optimal control) kan een strategie bepaald worden, zonder zich van

te voren te beperken tot een klasse van strategieën. We laten ook zien dat met het

gebruik van waarnemers voor detecteerbare- of waarneembare systemen onbekende

toestanden gereconstrueerd kunnen worden.

Dit proefschrift kan dienen als een beginpunt voor toekomstig onderzoek over be-

sturing en een waarnemerontwerp voor schakelende werkstations. De geïntroduceer-

de methoden voor het bepalen van periodiek- en transiënt gedrag en het waarne-

merontwerp kan uitgebreid worden naar netwerken met stochastisch gedrag en kan

onderzocht worden voor realistische besturingsproblemen.
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