
Observer Design for a Class of
Piecewise Affine Hybrid Systems

D.A.J. van Zwieten
Eindhoven University of

Technology
P.O. Box 513

5600 MB Eindhoven, The
Netherlands

D.A.J.v.Zwieten@tue.nl

E. Lefeber
Eindhoven University of

Technology
P.O. Box 513

5600 MB Eindhoven, The
Netherlands

A.A.J.Lefeber@tue.nl

W.P.M.H. Heemels
Eindhoven University of

Technology
P.O. Box 513

5600 MB Eindhoven, The
Netherlands

M.Heemels@tue.nl

ABSTRACT
A methodology for the design of observers is proposed for a
special class of hybrid dynamical systems, which are moti-
vated by traffic and manufacturing applications. The class
of hybrid systems is characterized as switched system mod-
els with constant drift and constant output, rendering all
subsystems unobservable by themselves. However, an ob-
server can still be derived due to the fixed switching pattern,
even though the switching times may be unknown. A main
step in the observer design methodology is the usage of a
discrete-time linear observer based on the discretized hybrid
dynamics at the event times that are visible. Using this step,
a continuous-time observer is built that incorporates addi-
tional modes compared to the original hybrid system. This
continuous-time observer is shown to asymptotically recon-
struct the state of the original system under suitable as-
sumptions. Manufacturing and traffic applications are used
to illustrate the proposed observer design methodology.

Categories and Subject Descriptors
D.4.8 [Performance]: Modeling and prediction

Keywords
Observer design, Piecewise affine hybrid systems, Manufac-
turing systems, Traffic applications

1. INTRODUCTION
Nowadays, logic decision making and control actions are

combined with continuous (physical) processes in many tech-
nological (cyber-physical) systems. Such systems are labeled
hybrid as they have interacting continuous and discrete dy-
namics. Hybrid models are not only important in such man-
made systems, but also in describing the behavior of many
mechanical, biological, electrical and economical systems.
Therefore, in the past decades, the structural properties of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’13, April 8–11, 2013, Philadelphia, Pennsylvania, USA.
Copyright 2013 ACM 978-1-4503-1567-8/13/04 ...$15.00.

hybrid systems have been investigated by many researchers.
This led to various techniques for controller synthesis, see
e.g. [14, 18] for recent overviews. However, many of these
controller synthesis methods are based on the assumption
that the full state variable of the hybrid system is avail-
able, which is hardly ever the case in practice. This ren-
ders the design of observers for hybrid systems, providing
good estimates of both continuous and discrete states, of
crucial importance. Despite this high practical relevance,
there are only a few results on hybrid observer design, see,
e.g., [2, 5, 7, 12, 17, 21, 24] and the references therein. The-
oretical results regarding the fundamental question of the
existence of an observer are related to notions such as final
state observability, reconstructability and final state deter-
minability on which also some work in the area of hybrid
systems appeared, see, for instance, [4, 6, 8, 9, 11, 23].

In this paper we are interested in designing observers for a
special class of piecewise affine hybrid systems (PWAHS) [11],
motivated by switching servers in manufacturing systems
serving multiple products consecutively, and traffic applica-
tions such as signalized intersections. The considered hybrid
system is autonomous with the mode dynamics consisting
of constant drift and the output within a mode being con-
stant. Only at some times the output reveals information
about the currently active mode. In particular, this implies
that all subsystems are unobservable, eliminating many cur-
rently available solutions for synthesizing hybrid observers
proposed in the literature. Furthermore, the mode transi-
tions are state-dependent, which is a property that will turn
out to be useful, and are therefore a priori unknown. In
addition, during a mode transition some specific state vari-
ables might exhibit jumps. The order in which the modes
are traversed is fixed and periodic.

For this class of PWAHS, of which the full details are speci-
fied later, we propose a methodology for designing continuous-
time observers. This methodology consists of a few main
steps. First, the system is sampled (with varying sampling
periods) at so-called visible event times, i.e., times at which
the output changes during a mode transition, resulting in
a linear time-varying periodic system. Based on the result-
ing sampled system a periodic discrete-time observer is de-
rived with the guarantee that the observer’s state converges
asymptotically to the (original) system’s state. Next, this
observer is used as a stepping stone for designing an observer

153

in continuous time. This requires the inclusion of additional
modes in the observer structure and additional reset laws at
visible event times to ensure the asymptotic recovery of the
system’s state. A formal proof of the asymptotic recovery of
the system’s state is provided. Via an example of a traffic
application we demonstrate the effectiveness of the proposed
observer.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the considered class of PWAHS and presents
a two-buffer switching server as an introductory example.
Section 3 presents the sampled system at the event times.
In Section 4 the method for the observer design is presented.
First, a discrete-time observer is presented for the sampled
system. Next, the continuous-time observer is presented. In
Section 5, a signalized traffic intersection with three flows is
presented for which an observer is derived. Conclusions are
provided in Section 6.

Nomenclature
In this paper we use {e1, e2, . . . , eM} as the standard or-
thonormal basis in R

M in which ei is the vector which con-
tains a 1 at the i-th entry, and zeros elsewhere. By R+

we denote the set of non-negative reals, i.e., R+ := [0,∞).
Furthermore, the product of matrices is considered as a left
multiplication, i.e.,

∏3
i=1 Ai = A3A2A1.

2. CLASS OF PIECEWISE AFFINE HYBRID
SYSTEMS

In this section, we present the dynamics of the class of
piecewise affine hybrid systems (PWAHS) studied in this
paper. Before doing so, we first present an illustrative ex-
ample of a manufacturing system to motivate the structure
of the class. In fact, this manufacturing system is used as a
running example throughout the paper.

2.1 Illustrative example
Consider a single server that serves two different job types

denoted by n = 1, 2, see Figure 1. Each job type n has a
separate buffer in which xn jobs are stored. Jobs arrive at
buffer 1 with a constant arrival rate denoted by λ1 > 0. Af-
ter service in buffer 1 the jobs move to buffer 2. The server
can only serve one job type at a time and operates based on
a clearing policy, i.e., it completely empties the buffer of one
job type before it switches to the next job type. The pro-
cessing speed of job type n is denoted by μn > 0. Switching
to job type n requires a setup time with duration γn ≥ 0
and at least one setup time is non-zero, i.e., γ1 + γ2 > 0.
The only (measurement) information we get from the server
is when the server is processing job type 2.

Figure 1: Two-product switching server.

To model this server system, we use a continuous state that
consists next to the buffer contents xn, n = 1, 2, also of the

remaining setup time at the server, denoted by x0. There-

fore, x =
[
x0 x1 x2

]� ∈ R
N+1
+ with N = 2 being the

number of job types and R+ = [0,∞). For each job type n
the system has two modes, one for setting up to serve the
job type and the other for serving the job type. Hence, this
results in Q = 4 modes (discrete states) in this case and the
modes are denoted by q ∈ Q := {1, 2, . . . , Q}. The modes
1, 2, 3, and 4 represent setting up the server to serve job
type 1, serving job type 1, setting up the server to serve job
type 2, and serving job type 2, respectively. Note that the
order in which the modes are traversed is fixed. The sys-
tem evolves from mode 1 via modes 2, 3, and mode 4 back
to mode 1 after which the cycle is repeated. In each mode
q ∈ Q the continuous state x has a constant drift vector,
denoted by fq , i.e., ẋ = fq. For the example system, these
drift vectors are given by

f1 = f3 =

⎡
⎣−1
λ1

0

⎤
⎦ , f2 =

⎡
⎣ 0
λ1 − μ1

μ1

⎤
⎦ , f4 =

⎡
⎣ 0

λ1

−μ2

⎤
⎦ .

Furthermore, a transition occurs in modes 1 and 3 to the
next modes 2 and 4, respectively, when x0 = 0 indicating
that the setup time has elapsed. A transition from mode 2
to mode 3 occurs when x1 = 0 (buffer of job type 1 is empty)
and from mode 4 to mode 1 when x2 = 0 (buffer of job type
2 is empty).

Due to the cyclic behavior in the way the nodes are tra-
versed, it holds at the k-th event time tk, k ∈ N≥1, that the
system switches from mode q = ((k − 1) mod Q) + 1 to the
next mode σ(q) where σ : Q → Q is given by

σ(q) := 1 + (q mod Q). (1)

In addition, at the event time tk the setup time x0 instanta-
neously increases with constant αq(t

−
k) ∈ R

+, q ∈ Q, given
by

α1 = α3 = 0, α2 = γ2, α4 = γ1,

i.e., we have a reset of the continuous state variable given
by

x(t+k) =
[
x0(t

+
k) x1(t

+
k) x2(t

+
k)

]�
=[

α
q(t−

k
)

x1(t
−
k) x2(t

−
k)

]�
= x(t−k) + αqe1 (2)

(as x0(t
−
k) = 0, see also Lemma 2.7 below), where t−k de-

notes the time just before the k-th event. Note that e1 is
the unit vector with a 1 at the first entry and zeros elsewhere.

This reset law shows that discontinuities only appear in x0,
while xn, n = 1 . . . , N , evolve continuously in time. Com-
bining the above, leads to the following overall dynamics
that can be compactly written as

ẋ = fq

q̇ = 0

y = hq

⎫⎪⎬
⎪⎭ if e�kq

x ≥ 0, (3a)

x+ = x+ αqe1

q+ = σ(q)

}
if e�kq

x = 0 (3b)

with k1 = k3 = 1, k2 = 2 and k4 = 3 selecting the flow
and jump sets (recall that ekq is the kq-th unit vector in

154

{e1, e2, . . . , eN+1}). Note that we expressed the example in
terms of the modeling framework of jump-flow systems ad-
vocated in [13]. In fact, solutions/executions of the system
under study can be interpreted in the sense of [13]. Initial
conditions for this system are given by x(0) ∈ R

N+1
+ with

x0(0) = αQ, and q(0) = 1. Besides we use the convention
that t0 = 0.

Measurement information regarding the knowledge of when
the server is processing job type 2 is included via the output
y, with

h1 = h2 = h3 = 0, h4 = 4.

Hence, as long as the system is in mode 4, this is directly
seen in the output y. When the system is in one of the
other modes q ∈ Q \ {4}, the output y is equal to 0 and no
information is available from the server.

2.2 General dynamics
In this section we provide the general description of the

class of PWAHS under study, which includes the single server
system discussed in the previous section as a particular case.
Essentially, the general dynamics of the class of systems is
given by (3) with continuous state

x =
[
x0 x1 . . . xN

]� ∈ R
N+1
+

with N ∈ N≥1, discrete state q ∈ Q = {1, 2, . . . , Q} with
Q ∈ N≥1 and output y ∈ Q0 := Q ∪ {0}. The data of the
system are given by the drift vectors fq ∈ R

N+1, the outputs
hq ∈ Q0, and kq ∈ {1, 2, . . . , N + 1} for each mode q ∈ Q
together with the reset parameters αq, q ∈ Q. In addition,
we have for outputs hq , q ∈ Q that hq ∈ {0, q} for all q ∈ Q.
As in the single server system example, the general dynam-
ics exhibits a cycle, i.e., a sequence of Q consecutive modes
being repeated over time. Some other special characteristics
in the data being inherited from server-like systems in man-
ufacturing and traffic applications are summarized below.

Assumption 2.1. For all q ∈ Q it holds that e�kq
fq < 0

and e�i fq ≥ 0 when i ∈ {1, . . . , N + 1} \ {kq}.
This assumption guarantees that only one continuous state
component decreases (being the one that also triggers the
mode transition).

Assumption 2.2. For all q ∈ Q
e�1 fq = −1, if kq = 1, (4a)

e�1 fq = 0, if kq �= 1. (4b)

This assumption expresses that x0 is indeed a timer-related
variable with only 0 and −1 as slopes. In case x0 acts as a
timer that triggers the next event (i.e., kq = 1) then e�1 fq =
−1, otherwise it is 0.

Assumption 2.3. For all q ∈ Q it holds that

αq > 0 ⇔ kσ(q) = 1. (5)

This assumption states that if a mode transition in mode q
governs a jump in the state x0, this state x0 decreases in
mode σ(q) and triggers the next mode transition (and vice
versa).

Assumption 2.4.

Q∑
q=1

αq > 0. (6)

If translated in terms of the server system example, this
assumption states that during a cycle of modes at least one
setup of non-zero duration is present.

Assumption 2.5. For all q ∈ Q it holds that

kq = 1 ⇒ kσ(q) �= 1. (7)

This assumption expresses that a setup mode is followed by
an operational mode (kq �= 1).

Assumption 2.6. There is at least one q ∈ Q such that
hq = q.

This assumption states that we get at least some informa-
tion from the system.

Throughout the paper we assume that all the mentioned
assumptions are true (without further reference).

2.3 Basic results
In this section we derive some basic results for the class

of PWAHS under study. To do so, let us denote, as before,
by tk the k-th time occurrence of a transition and t0 = 0.
Then we can prove the following lemma.

Lemma 2.7. For any trajectory of the PWAHS (3) it holds
that x0(t

−
k) = 0 for all k ∈ N≥1.

Proof. We prove this statement using induction. Sup-
pose the statement holds for some k ∈ N≥1, i.e., x0(t

−
k) = 0.

At event time tk, when going from mode q to mode σ(q),
two situations can occur, being αq > 0 or αq = 0. In the
first case, it holds that x0(t

+
k) = x0(t

−
k) + αq . Then due

to (3), (4a) and (5) it follows that ẋ0 = −1 for t ∈ [tk, tk+1)
until x0 = 0. Hence x0(t

−
k+1) = 0. In the second case,

i.e., αq = 0, no jump occurs and x0(t
−
k+1) = x0(t

−
k) and

ẋ = 0 for t ∈ [tk, tk+1) due to (4b) and (5). Therefore,
x0(t

−
k+1) = x0(t

−
k) = 0. To complete the proof we need

x0(t
−
1) = 0. If αQ > 0, x0(t

−
1) = 0 follows by the same rea-

soning as in the first case above. If αQ = 0, we immediately
have x0(t0) = 0 and can use the reasoning in the second case
to conclude x0(t

−
1) = 0, thereby completing the proof. �

Lemma 2.8. Consider q ∈ Q such that αq > 0. The dwell
time in mode σ(q) is equal to αq.

Proof. From Assumption 2.2 and Assumption 2.3 we
know that if αq > 0 we have e�1 fσ(q) = −1 and kσ(q) = 1.

Due to (3b) and Lemma 2.7 it holds that x0(t
+
k) = αq for

the event at time tk where the system switches from mode q
to mode σ(q). In addition, in mode σ(q) state x0 decreases
according to ẋ0 = −1 until x0(t

−
k+1) = 0. Hence, the dwell

time in mode σ(q) is therefore given by

αq

−e�1 fσ(q)

= αq .

�

For the class of PWAHS the following statements can be
made regarding Zeno behavior and fixed points:

Lemma 2.9. Zeno behavior is not present in system (3).

155

Proof. Assumption 2.3 and Assumption 2.4 imply that
there exists at least one mode in the cycle with αq > 0,
q ∈ Q. Lemma 2.8 shows that the dwell time in mode σ(q)
is αq. Therefore, the dwell time of a cycle is bounded away
from zero given the cyclic behavior, and no Zeno behavior
occurs. �

Lemma 2.10. System (3) does not contain any fixed points.

Proof. The condition e�kq
fq < 0 in Assumption 2.1 guar-

antees that e�kq
x decreases at constant rate, until it reaches

the jump criterion e�kq
x = 0. Therefore, every mode is left

in finite time. Since Zeno behavior is excluded, the system
has no fixed points. �

Lemma 2.11. The system (3) is a positive system in the
sense that if x(0) ∈ R

N+1
+ with x0(0) = αQ, and q(0) = 1,

then x(t) ∈ R
N+1
+ for all t ∈ R+.

Proof. The proof follows similar reasoning as the proof
of Lemma 2.7 using Assumptions 2.1 and 2.2. �

2.4 Visible and invisible modes and event times
In the remainder of this paper we use the following no-

tations in which we make a distinction between visible and
invisible modes, and visible and invisible events.

A mode q ∈ Q is called visible if h(q) = q and otherwise
it is called invisible. The set of visible modes is denoted by
Qv, i.e,

Qv = {q ∈ Q | hq = q}. (8)

Transitions to and from visible modes are called visible events
and transitions from invisible modes to invisible modes are
called invisible events. To describe the visible events we de-
fine the set

V = Qv ∪ {q ∈ Q | σ(q) ∈ Qv},
which is enumerated as {v1, v2, . . . , vV } ⊆ Q with 1 ≤ v1 <
v2 < . . . < vV ≤ Q. Using the above notation, if at time
tk the k-th event occurs jumping from mode q(t−k) to mode
σ(q(t−k)), this event is visible if and only if q(t−k) ∈ V. Hence,
loosely speaking, we know when the system enters or leaves
visible modes and we know when the corresponding events
occur.

In the remainder we will use j as the visible event counter
and denote visible event times by tvj = tk(j), j ∈ N≥1. where
k(j) translates the visible event j into the corresponding
ordinary event k, i.e.,

k(j) = v1+(j−1 mod V + �(j − 1)/V
 ·Q, (9)

where �r
 denotes the largest integer smaller than r ∈ R.
Due to the cyclic behavior in the way the (visible) nodes
are traversed, it holds that visible event v1+(j−1 mod V) has
successive visible event σv(v1+(j−1 mod V)) where σv : V →
V, given by

σv(vl) := v1+(l mod V), l = 1, 2, ..., V. (10)

3. SAMPLING THE HYBRID SYSTEM
One of the main ideas in the observer design methodology

is to derive the desired continuous-time observer for system
(3) from a discrete-time observer. To that end, we sample
the system at the visible event times tvj , j ∈ N≥1. To easily
derive the sampled data, we split its computation into three
parts. First the system is sampled at all events tk, k ∈
N≥1. Second, the state dimension is reduced by removing
the timer variable x0. In the third step the sampled system
description is limited to only the visible events.

3.1 Sampling at all event times
Let x(t−k) denote the state at time tk just before the jump

from mode q(t−k) to mode σ(q(t−k)). Sampling at all event
times tk, k ∈ N≥1, results in the system

x(t−k+1) = Ã
q(t−

k
)
x(t−k) + ã

q(t−
k
)
, (11a)

tk+1 = tk + C̃
q(t

−
k
)
x(t−k) + c̃

q(t
−
k
)

(11b)

in which

Ã
q(t−

k
)
= I +

f
σ(q(t

−
k
))
e�kσ(q(k))

−e�k
σ(q(t

−
k

))

f
σ(q(t−

k
))

, ã
q(t−

k
)
= α

q(t−
k

)
A

q(t−
k
)
e1,

(12a)

C̃
q(t−

k
)
=

e�k
σ(q(t

−
k

))

−e�k
σ(q(t

−
k

))

f
σ(q(t−

k
))

, c̃
q(t−

k
)
= α

q(t−
k

)
C

q(t−
k
)
e1

(12b)

as can be derived from system (3). Note that the system

(11) is periodic with period Q in the sense that Ãk+Q = Ãk

for k ∈ N≥1, and similar expressions hold for ãk, C̃k and c̃k.

Remark 3.1. 3 Notice that from Assumptions 2.1 and 2.2
we obtain that Ãk, ãk, C̃k, and c̃k only contain non-negative
elements, resulting in a positive system, which is to be ex-
pected given Lemma 2.11.

The sampled system (11) can be used to write the system as
a timed automaton [3] with a single clock, due to the linear
dynamics and cyclic behavior. Then, the continuous state
can be derived via a linear combination of the clock and the
sampled state. However, observability and observer design
for timed automata considers the discrete state reconstruc-
tion, see e.g., [20], which is straightforward for the class of
systems under consideration. Furthermore, we are also in-
terested in reconstructing the continuous state.

Example
For the illustrative system in Section 2.1, we obtain a 4-
periodic system for which the matrices in (12) are given as

Ã1 =

⎡
⎣1 0 0
0 0 0
0 μ1

μ1−λ1
1

⎤
⎦ , ã1 =

⎡
⎣00
0

⎤
⎦ ,

C̃1 =
[
0 1

μ1−λ1
0
]
, c̃1 = 0,

Ã2 =

⎡
⎣ 0 0 0
λ1 1 0
0 0 1

⎤
⎦ , ã2 =

⎡
⎣ 0
γ2λ1

0

⎤
⎦ ,

C̃2 =
[
1 0 0

]
, c̃2 = γ2,

156

Ã3 =

⎡
⎣1 0 0

0 1 λ1
μ2

0 0 0

⎤
⎦ , ã3 =

⎡
⎣00
0

⎤
⎦ ,

C̃3 =
[
0 0 1

μ2

]
, c̃3 = 0,

Ã4 =

⎡
⎣ 0 0 0
λ1 1 0
0 0 1

⎤
⎦ , ã4 =

⎡
⎣ 0
γ1λ1

0

⎤
⎦ ,

C̃4 =
[
1 0 0

]
, c̃4 = γ1.

3.2 State reduction
From Lemma 2.7 we have x0(t

−
k) = 0 for all k ∈ N≥1.

Therefore, we can consider the reduced state x̄ =
[
x1 . . . xN

]�
=[

0 I
]
x ∈ R

N
+ , for which the dynamics at the event times

becomes

x̄(t−k+1) = Ā
q(t−

k
)
x̄(t−k) + ā

q(t−
k
)
, (13a)

tk+1 = tk + C̄
q(t−

k
)
x̄(t−k) + c̄

q(t−
k

)
. (13b)

where

Ā
q(t−

k
)
=

[
0 I

]
Ã

q(t−
k
)

[
0 I

]�
, ā

q(t−
k
)
=

[
0 I

]
ã
q(t−

k
)
,

C̄
q(t−

k
)
= C̃

q(t−
k
)

[
0 I

]�
, c̄

q(t−
k
)
= c̃

q(t−
k

)
.

Note that due to this reduction no discontinuities in x̄(t) oc-
cur, as they only appear in x0 (2). Hence, x̄(t−k) = x̄(t+k) =
x̄(tk).

Example
For the illustrative system in Section 2.1, these reduced ma-
trices are as follows:

Ā1 =

[
0 0
μ1

μ1−λ1
1

]
, ā1 =

[
0
0

]
, C̄1 =

[
1

μ1−λ1
0
]
, c̄1 = 0,

Ā2 =

[
1 0
0 1

]
, ā2 =

[
γ2λ1

0

]
, C̄2 =

[
0 0

]
, c̄2 = γ2,

Ā3 =

[
1 λ1

μ2

0 0

]
, ā3 =

[
0
0

]
, C̄3 =

[
0 1

μ2

]
, c̄3 = 0,

Ā4 =

[
1 0
0 1

]
, ā4 =

[
γ1λ1

0

]
, C̄4 =

[
0 0

]
, c̄4 = γ1.

3.3 Sampling at visible event times
Let x̄(tvj) denote the reduced state vector at tvj , the jth

visible event. From (13) it is clear that sampling at the
visible events results in the system

x̄(tvj+1) = A
q(tv−

j
)
x̄(tvj) + a

q(tv−
j

)
, (14a)

tvj+1 = tvj + C
q(tv−j)

x̄(tvj) + c
q(tv−j)

. (14b)

Since we have V different visible events, the system (14) is a
periodic linear system with period V . The system matrices
in (14) for all j ∈ N≥1 are presented below. For j �= lV ,
l ∈ N≥1, we have

Aj =

σv(vj)−1∏
q=vj

Āq, (15a)

aj =

σv(vj)−1∑
q=vj

⎛
⎝σv(vj)−1∏

r=q+1

Ār

⎞
⎠ āq, (15b)

Cj =

σv(vj)−1∑
q=vj

C̄q

q−1∏
r=vj

Ār, (15c)

cj =

σv(vj)−1∑
q=vj

c̄q +

σv(vj)−1∑
q=vj+1

C̄q

q−1∑
r=vj

(
q−1∏

s=r+1

Ās

)
ār (15d)

For j = lV , l ∈ N≥1, we have

Aj =

σv(vj)−1∏
q=1

Āq

Q∏
q=vj

Āq, (15e)

aj =

Q+σv(vj)−1∑
q=vj

⎛
⎝Q+σv(vj)−1∏

r=q+1

Ār

⎞
⎠ āq, (15f)

Cj =

Q+σv(vj)−1∑
q=vj

C̄q

q−1∏
r=vj

Ār, (15g)

cj =

Q+σv(vj)−1∑
q=vj

c̄q +

Q+σv(vj)−1∑
q=vj+1

C̄q

q−1∑
r=vj

(
q−1∏

s=r+1

Ās

)
ār

(15h)

with Aj+V = Aj , j,N≥1, and similar expressions for aj , Cj ,
cj and vj , j ∈ N≥1.

Example
For the illustrative system in Section 2.1, we obtain a 2-
periodic system (14) for which the matrices above are given
by

A1 =

[
1 λ1

μ2

0 0

]
, a1 =

[
0
0

]
,

C1 =
[
0 1

μ2

]
, c1 = 0,

A2 =

[
0 0
μ1

μ1−λ1
1

]
, a2 =

[
γ2λ1

λ1μ1γ1
μ1−λ1

]
,

C2 =
[

1
μ1−λ1

0
]
, c2 =

γ1μ1

μ1 − λ1
+ γ2.

4. OBSERVER DESIGN
Notice that we only receive information about the sys-

tem’s state when visible events occur. Therefore, from the
occurrence of visible events we need to reconstruct the sys-
tem’s state.

We therefore build an observer in two steps. First, start-
ing from the dynamics (14) we build a linear time-varying
(periodic) discrete-time observer to reconstruct the system’s
state at visible event times. Next, we use the dynamics (3)
to make an open-loop prediction of the system’s state, which
is corrected (if necessary) at the next visible event time.

4.1 Discrete-time observer at visible event times
Our first goal is to build an observer which reconstructs

the state at visible event times tvj , as described by the dy-
namics (14). To that end, we can use a Luenberger observer

ˆ̄x(tvj+1) = A
q(tv−j)

ˆ̄x(tvj) + a
q(tv−j)

+ L
q(tv−j)

(tvj+1 − t̂vj+1),

(16a)

t̂vj+1 = tvj + C
q(tv−

j
)
ˆ̄x(tvj) + c

q(tv−
j

)
, (16b)

157

where L1, L2, ..., LV are the observer gains. Evolution of the
observation error ē(tvj) = x̄(tvj)− ˆ̄x(tvj) is given by

ē(tvj+1) =
[
A

q(tv−j)
− L

q(tv−j)
C

q(tv−j)

]
ē(tvj).

Assumption 4.1. There exist L1, L2, ..., LV such that the
observer (16) leads to

lim
j→∞

‖ē(tvj)‖ = 0.

Finding observer gains for this periodic system satisfying
(4.1) is a known observer design problem, cf. [16, 19, 22].
For the example presented in the next section, we exploit
the periodicity of this system and use a simple sequential
algorithm presented in [15] for determining the time-varying
observer gains to guarantee deadbeat convergence to zero at
visible event times.

4.2 Continuous-time observer
Starting from the reduced state estimates at visible event

times, as generated by the observer (16), we will now provide
a state estimate x̂ ∈ R

N+1 of the full state x of (3) (i.e., in-
cluding x0). In fact, we will guarantee that the estimated
states x̂(tv+j) just after visible events satisfy

[0 I]x̂(tv+j) = ˆ̄x(tvj), (17)

j ∈ N≥1, indicating that just after the visible events the es-
timated states (without timer x0) and the estimates ˆ̄x(tvj)
of the discrete-time observer (16) coincide. In addition, we
use the dynamics (3) to make an open-loop prediction of
the system’s state after visible events. This open-loop pre-
diction is updated using the observer (16) as soon as a new
visible event happens.

However, notice that due to estimation errors, the predicted
occurrence of the next visible event, t̂vj+1 based on (16b),
can be either sooner or later than the actual occurrence of
the next visible event tvj+1. In the latter case (tvj+1 ≤ t̂vj+1)
we can simply update the observer state according to (16),
but in the former case we cannot (yet) use (16), as the du-
ration to the next visible event tvj+1 − t̂vj+1 is not known

yet. Hence in this case (tvj+1 > t̂vj+1), we have to determine
the continuous-time observer dynamics for the period from
predicted to actual occurrence of the next visible event. To
do so, we introduce additional modes (called waiting modes)
for the continuous-time observer. We therefore extend the
set Q of modes, by defining the set of observer modes as

Q̂ := Q ∪
{
vl +

1

2

∣∣∣∣ l = 1, 2, . . . , V

}
,

where vl+
1
2
, l = 1, 2, . . . , V are labels to denote the waiting

modes. Furthermore, we define the mode transition map
σ̂ : Q̂ → Q̂, as

σ̂(q̂) :=

⎧⎪⎨
⎪⎩
q̂ + 1

2
if q̂ ∈ V

σ(q̂) if q̂ ∈ Q \ V
σ
(
q̂ − 1

2

)
if q̂ ∈ Q̂ \ Q

The waiting modes will only be used after an expected vis-
ible event which has not yet happened, i.e., when t̂vj+1 ≤
t < tvj+1. For the additional waiting modes of the observer,
we have to determine a drift vector for the state estimate.
Notice from the observer (16) that at the visible event times

we update the state estimate according to (16a). That is,
we add L

q(t
v−
j)

times the amount of time that the actual

visible event is later than predicted. From this we can de-
rive a continuous evolution of the state estimate keeping x̂0

constant (at zero) and using a drift vector of L
q(tv−j)

for the

remaining state, i.e., ˙̂x = [0 L�
q(tv−j)

]�, to avoid the need

to reset the states at tvj+1, j ∈ N≥1 (although other choices
guaranteeing (17) are fine as well). Furthermore, the output
in the waiting mode is identical to the output of the preced-
ing mode, i.e., hq̂ = hq̂− 1

2
for q̂ ∈ Q̂ \ Q.

Using the above reasoning, we can deduce a continuous-
time observer in the form of a jump-flow system [13]. The
discrete-time observer (16) will be embedded in the observer
by including the state variables x̃ ∈ R

N and t̃ ∈ R in the
continuous-time observer, which will satisfy x̃(t) = ˆ̄x(tvj),

t ∈ [tvj , t
v
j+1) (solutions to (16)), and t̃(t) = tvj , t ∈ [tvj , t

v
j+1).

In between visible events x̃ and t̃ will be constant. This
leads to the following flow expressions for the continuous-
time observer. When the measurement information equals
the estimated output, i.e., y = ŷ with y = hq and ŷ = hq̂

see (3), the flow expressions are given by

˙̂x = fq̂

˙̂q = 0

˙̃x = 0

˙̃t = 0

ŷ = hq̂

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

if e�kq̂
x̂ ≥ 0 ∧ q̂ ∈ Q ∧ y = ŷ,

(18a)

˙̂x =

[
0

L
σ−1
v (q̂− 1

2
)

]

˙̂q = 0

˙̃x = 0

˙̃t = 0

ŷ = hq̂

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

if q̂ ∈ Q̂ \ Q ∧ y = ŷ. (18b)

Note that (18a) describes the normal flow predictions based
on model (3), while (18b) corresponds to the predictions in
the waiting modes. The jump expressions for the normal
flow predictions are given by

x̂+ = x̂+ αq̂e1

x̃+ = x̃

q̂+ = σ̂(q̂)

t̃+ = t̃

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

if e�kq̂
x̂ = 0 ∧ q̂ ∈ Q ∧ y = ŷ, (18c)

following the normal jump expressions based on model (3).
Furthermore, (18c) also describes that if a predicted visible
event occurs before the actual visible event (t̂vj+1 < tvj+1),
the discrete state jumps to a waiting mode.

If the measurement information differs from the estimated
output, i.e., y �= ŷ, a jump is required, since the system is
in a different mode than the observer. Apart from an initial
mode mismatch, the measurement difference y �= ŷ occurs
via a change in y. In this case, a distinction is made between
jumping from a mode without measurement information to a

158

mode with measurement information, i.e., y �= ŷ and y �= 0,
and jumping from a mode with measurement information to
a mode without measurement information, i.e., y �= ŷ and
y = 0. In the former case, the measurement information pro-
vides information about the mode after the jump (q̂+ = y).
In the latter case, the mode after the jump is derived by
using the cyclic mode transitions (q̂+ = σ(ŷ)). The jump
expressions are given by

ξ = t̃+ Cp(y)x̃+ cp(y)

x̂+ =

[
0

Ap(y)

]
x̃+

[
ασ−1(y)

ap(y)

]
+

[
0

Lp(y)

]
(t− ξ)

q̂+ = y

x̃+ = ˆ̄x+

t̃+ = t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

...

...if y �= ŷ ∧ y �= 0, (18d)

ξ = t̃+ Cσ−1(ŷ)x̃+ cσ−1(ŷ)

x̂+ =

[
0

Aσ−1(ŷ)

]
x̃+

[
ασ(ŷ)

aσ−1(ŷ)

]
+

[
0

Lσ−1(ŷ)

]
(t− ξ)

q̂+ = σ(ŷ)

x̃+ = ˆ̄x+

t̃+ = t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

...

...if y �= ŷ ∧ y = 0, (18e)

where we denoted p(y) = σ−1
v (σ−1(y)) and introduced ξ

for ease of exposition. Recall that ˆ̄x(t) = [0 I]x̂(t). Note
that (18d) and (18e) describe the jump expressions at oc-
currence of a visible event. Based on some knowledge of
initial conditions of the original system (3), we initialize
the observer as x̂(0) ∈ R

N+1
+ with x̂0(0) = αQ, q̂(0) = 1,

x̃(0) = ˆ̄x(0) and t̃(0) = 0.

Proposition 4.2. Suppose Assumption 4.1 holds. Then
the continuous-time observer (18) asymptotically reconstructs
the states x̄ of the system (3), i.e.,

lim
t→∞

‖x̄(t)− ˆ̄x(t)‖ = 0.

Proof. Since the continuous-time observer was designed
to satisfy ‖[0 I]x(tv+j) − [0 I]x̂(tv+j)‖ = ‖x̄(tvj) − ˆ̄x(tvj)‖,
j ∈ N≥1, it suffices to show that there exists a constant P
such that ‖x̄(t)− ˆ̄x(t)‖ ≤ P‖x̄(tvj)− ˆ̄x(tvj)‖ for t ∈ [tvj , t

v
j+1),

j ∈ N≥1. The latter will follow from the observation that
the observation error only changes when the observer is in
a different mode than the actual system, as we will show
below.

Notice that (11) describes the evolution of the mode changes
of the system, i.e., the state updates at the switching times
tk. Let t̂k denote the switching times as predicted by the
continuous-time observer. Then we have from (11b):

tk+1 − t̂k+1 = tk − t̂k + C̃
q(t−

k
)
[x(t−k)− x̂(t−k)]. (19)

Since at time tvj we have t̂k(j) = tk(j), it follows from (19)
that the duration of the mode difference is a linear function
of the initial observer error, i.e., and so is the sum of the
durations of mode differences. Finally, since during mode
differences the rate of increase is bounded, and the number
of invisible modes between two consecutive visible modes

is finite, the observation error ‖x̄(t) − ˆ̄x(t)‖ on the inter-
val t ∈ [tj , tj+1) can be upperbounded by ‖x̄(t) − ˆ̄x(t)‖ ≤
P‖x̄(tvj)− ˆ̄x(tvj)‖.

Notice that from (19) we also have that limk→∞ |tk− t̂k| = 0.
�

Remark 4.3. Using a deadbeat observer the complete state
can be asymptotically reconstructed, i.e., limt→∞ ‖x(t)−x̂(t)‖ =
0. For non-deadbeat observers peaking occurs in ‖x0(t) −
x̂0(t)‖ due to mismatch in event times combined with sys-
tem jumps (2). However, in most manufacturing and traffic
applications one is interested in the buffer sizes or queue
lengths, i.e., ˆ̄x(t).

Remark 4.4. As we observed in Lemma 2.11 and Re-
mark 3.1, we are essentially dealing with a positive system.
However, the observer (16) does not necessarily guarantee
positivity of the state estimates x̂(t), t ∈ R. Though the ob-
server (18) is well defined and asymptotically recovers the
state of the original system, from a physical point of view it
would be better to have non-negative state estimates. As we
show in the next section by means of an example, it is possi-
ble to derive observers that respect the positivity property by
generating non-negative state estimates. Note that observer
gains satisfying (Av − LvCv) ≥ 0 and LvCv ≥ 0, v ∈ V,
suffice since

ˆ̄x(tv−j+1) =(A
q(tv−j)

− L
q(tv−j)

C
q(tv−j)

)x̄(tv−j) + ...

...L
q(tv−j)

C
q(tv−j)

x(tv−j) + a
q(tv−j)

.

In fact, designing directly positive observers is one of the
questions for future research.

One direction to pursue in this context is considering the
dynamics (14) only once every J time-instances and lift the
system (see, for instance, [10]) leading to a linear time-
invariant positive system. The positive observation problem
for linear discrete time-invariant positive systems has been
dealt with in [1], where a necessary and sufficient condition
for the existence and the design of a positive linear observer
of Luenberger form has been given by means of the feasibil-
ity of a linear program (LP). This could form an interest-
ing starting point to obtain positive discrete-time observers
of the form (16a) (which is doable under certain assump-
tions). The step towards a continuous-time observers could
follow then mutatis mutandis the line of reasoning as indi-
cated above.

An alternative solution leading to positive estimates is to
use a projection of ˆ̄x(t) on the positive cone Ω = R

N
+ as

the estimated state instead of ˆ̄x(t), i.e., use PΩ ˆ̄x(t) with
PΩ : RN → R

N
+ , given for z ∈ R

N

(PΩz)i =max(0, zi).

This projected estimate also asymptotically recovers the true
state, i.e.,

lim
t→∞

‖PΩ ˆ̄x(t)− x̄(t)‖ = 0.

159

5. TRAFFIC INTERSECTION
To demonstrate the observer design, we introduce a signal-

ized T-junction consisting of three flows of cars, see Figure 2.
Each flow can go into two directions. For this example we
assume that each flow has a single signal, i.e., if a car receives
a green light it can move in two different directions. There-
fore, it is not possible to give multiple flows a green light
simultaneously. The flows are served in order 1, 2, 3, and
then back to flow 1 after which the cycle is repeated. The
intersection uses a clearing policy, i.e., it completely empties
the queue of a flow before switching to serve the next flow.
Switching to serve cars from flow i requires a clearing/setup
time γi to make sure all vehicles from the previously served
flow have cleared the intersection. Vehicles arrive at flow
i with arrival rate λi and are served with process rates μi,
i = 1, 2, 3. A sensor measures the crossing of vehicles in lane
1.

Figure 2: Signalized T-junction containing three ve-
hicle flows 1-3.

The dynamics can be written in the form (3) with

f1 = f3 = f5 =

⎡
⎢⎢⎣
−1
λ1

λ2

λ3

⎤
⎥⎥⎦ ,

f2 =

⎡
⎢⎢⎣

0
λ1 − μ1

λ2

λ3

⎤
⎥⎥⎦ , f4 =

⎡
⎢⎢⎣

0
λ1

λ2 − μ2

λ3

⎤
⎥⎥⎦ , f6 =

⎡
⎢⎢⎣

0
λ1

λ2

λ3 − μ3

⎤
⎥⎥⎦

α1 = α3 = α5 = 0, α2 = γ2, α4 = γ3, α6 = γ1,

k1 = k3 = k5 = 1, k2 = 2, k4 = 3, k6 = 4,

h1 = h3 = h4 = h5 = h6 = 0, h2 = 2.

The modes 1,3 and 5 denote setting up to serve flow 1,2 and
3, respectively. Modes 2,4 and 6 denote serving flow 1,2 and
3, respectively. Writing this system in the form (14) gives

A1 =

⎡
⎣ 0 0 0

λ2
μ1−λ1

1 0
λ3

μ1−λ1
0 1

⎤
⎦ , C1 =

[
1

μ1−λ1
0 0

]
,

A2 =

⎡
⎣1

λ1μ3
(μ2−λ2)(μ3−λ3)

λ1
μ3−λ3

0 λ2λ3
(μ2−λ2)(μ3−λ3)

λ2
μ3−λ3

0 0 0

⎤
⎦ ,

C2 =
[
0 μ3

(μ2−λ2)(μ3−λ3)
1

μ3−λ3

]
.

we omitted ai and ci as they cancel out in the observer error
dynamics. Note that though the pairs (A1, C1) and (A2, C2)
are unobservable, we can build a periodic deadbeat observer
by using the observer gains

L1 =
[
0 λ2 λ3

]�
, (20a)

L2 =
[
λ1

λ2λ3
μ3

0
]�

, (20b)

Using these gains, the matrices Av − LvCv and LvCv (v =
1, 2) are positive matrices, yielding a positive observer. In
this example the observer estimation starts at t = 50. For
parameters

λ =
[
1 2 3

]�
, μ =

[
8 10 12

]�
,

γ =
[
5 10 15

]�
,

and initial estimated state x̂(50) =
[
70 20 30

]�
and mode

q̂(50) = 4, i.e., serving vehicles from flow 2, a simulation
result is presented in Figure 3. The queue lengths at the in-
tersection are presented by dashed lines and the estimated
queue lengths are presented by solid lines. Since the mea-
surement information equals the estimated output, i.e., y(50) =
ŷ(50), the observer dynamics are given by (18a)–(18e) un-
til measurement and estimated output differ. This occurs
at t = 70.7, when the system starts serving vehicles from
queue 1. At this time instant y �= ŷ and the system jumps
according to (18d). According to the initial estimated state
x̂(50), this event was predicted at t̃ = 81.7 with x̃(t̃) =[
101.7 58.3 15

]�
. Therefore, x̂(70.7+) =

[
90.7 52.8 15

]�
,

causing jumps in x̂2 and x̂3. Also, the estimated mode
changes to serving products from flow 1.

Figure 3: Actual (dashed lines) and estimated (solid
lines) queue lengths of the 3-flow T-junction.

The second visible event occurs at t = 79.2 when x1 = 0,
also earlier than predicted since x̂1 is estimated too large.
At this moment y �= ŷ and y = 0, therefore jump (18e) re-
sults in x̂1(79.2

+) = 0. Note that at this moment both x̂1(t)
and x̂3(t) are correctly estimated. The observer predicts the
next visible event at t̃ = 137. However, since x̂2(79.2

+) <
x2(79.2

+) the actual event occurs later. Therefore the ob-
server switches to the additional waiting mode (18b) via
jump (18c). At t = 140.3, detection of the next visible
event, the estimated buffer levels have converged exactly to
the actual buffer levels, due to the deadbeat observer.

160

6. CONCLUSIONS
This paper presented a methodology to design observers

for a special class of piecewise affine hybrid systems (PWAHS),
being highly relevant in the context of manufacturing and
traffic applications. Although all subsystems are unobserv-
able and not all events are visible, a continuous-time ob-
server was constructed which guarantees that the estimate
converges to the state of the plant under suitable condi-
tions. One of the main ideas in the construction of the
continuous-time observer was sampling of the system at the
visible events leading to a discrete-time periodic linear sys-
tem, for which an observer can be designed using standard
techniques from control theory. If this step is successfully
performed, a continuous-time observer that asymptotically
recovers the true state of the original hybrid systems can be
synthesized. Indeed, the discrete-time observer can then be
used as a blueprint for the continuous-time observer, where
besides the plant dynamics additional ‘waiting’ modes are
assigned to the observer. Occurrence of visible events before
the time that the event was predicted to occur results in a
discrete state switch and an update of the continuous states.
The observer switches to a ‘waiting’ mode if an event occurs
later than predicted. These principles are formally shown to
result in a successful observer design.

The results in this paper lead to various other questions
that will be considered in future work. First of all, it would
be of interest to take the positivity of the state variable
into account leading to observers that always create positive
state estimates as well (positive observers). Some first hints
were already provided in this direction. In addition, it is of
interest to formulate necessary and sufficient conditions in
terms of the data of the original PWAHS system when the
proposed design is indeed successful and how this relates
to fundamental observability and detectability properties.
Finally, it is of interest to investigate to what extent the
observer design principles put forward in this paper can be
applied to more general classes of hybrid systems. As such,
this paper provides ideas that might be fruitfully exploited
into various future research directions.

7. ACKNOWLEDGMENTS
This work is supported by the Netherlands Organization

for Scientific Research (NWO-VIDI grant 639.072.072).

8. REFERENCES
[1] M. Ait Rami and F. Tadeo. Positive observation

problem for linear discrete positive systems. In
Proceedings of the 45th IEEE Conference on Decision
and Control, pages 4729–4733, San Diego, CA, USA,
2006.

[2] A. Alessandri and P. Coletta. Design of Luenberger
observers for a class of hybrid linear systems. In Proc.
of Hybrid Systems: Computation and Control, volume
2034 of Lecture Notes in Computer Science, pages
7–18, Rome, 2001. Springer.

[3] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[4] M. Babaali and M. Egerstedt. Observability for
switched linear systems. In Hybrid Systems:
Computation and Control, volume 2623 of Lecture

Notes in Computer Science. Hybrid Systems:
Computation and Control. Springer, 2004.

[5] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and
A. L. Sangiovanni-Vincentelli. Design of observers for
hybrid systems. In C. Tomlin and J. Greenstreet,
editors, Hybrid Systems: Computation and Control,
volume 2289 of Lecture Notes in Computer Science,
pages 76–89. Springer-Verlag, Stanford, CA, 2002.

[6] A. Balluchi, M. Di Benedetto, L. Benvenuti, and
A. Sangiovanni-Vincentelli. Observability for hybrid
systems. In Proceedings of the 42nd IEEE Conference
on Decision and Control, volume 2, pages 1159–1164,
2003.

[7] G. Bara, J. Daafouz, F. Kratz, and J. Ragot.
Parameter dependent state observer design for affine
LPV systems. International Journal of Control,
74(16):1601–1611, 2001.

[8] A. Bemporad, G. Ferrari-Trecate, and M. Morari.
Observability and controllability of piecewise affine
and hybrid systems. IEEE Transactions on Automatic
Control, 45(10):1864–1876, 2000.

[9] M. Camlibel, J. Pang, and J. Shen. Conewise linear
systems: non-zenoness and observability. SIAM J.
Control Optimizaton, 45:1769–1800, 2006.

[10] T. Chen and B. Francis. Optimal sampled-data control
systems. Springer-Verlag, London, 1995.

[11] P. Collins and J. van Schuppen. Observability of
Piecewise-Affine Hybrid Systems, volume 2993 of
Lecture Notes in Computer Science. Hybrid Systems:
Computation and Control, pages 265–279. Springer
Berlin - Heidelberg, 2004.

[12] G. Ferrari-Trecate, D. Mignone, and M. Morari.
Moving horizon estimation for hybrid systems. IEEE
Transactions on Automatic Control, 47:1663–1676,
2002.

[13] R. Goebel, R. Sanfelice, and A. Teel. Hybrid
dynamical systems. IEEE Control Systems Magazine,
29(2):28–93, 2009.

[14] W. Heemels, B. De Schutter, J. Lunze, and M. Lazar.
Stability analysis and controller synthesis for hybrid
dynamical systems. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and
Engineering Sciences, 368(1930):4937–4960, 2010.

[15] G. H. Hostetter. Ongoing deadbeat observers for
linear time-varying systems. In American Control
Conference, pages 1099–1101, 1982.

[16] J. Hu. Discrete-time linear periodically time-varying
systems: Analysis, realization and model reduction.
Master’s thesis, Rice University, July 2003.

[17] A. Juloski, W. Heemels, and S. Weiland. Observer
design for a class of piecewise linear systems.
Intern. J. Robust and Nonlinear Control,
17(15):1387–1404, 2007.

[18] J. Lunze and F. Lamnabhi-Lagarrigue. The HYCON
Handbook of Hybrid Systems Control: Theory, Tools,
Applications. Cambridge University Press, Cambridge,
2009.

[19] J. O’Reilly. Observers for linear systems. Academic
Press: Mathematics in Science & Engineering,
London, 1983.

[20] C. Ozveren and A. Willsky. Observability of discrete

161

event dynamic systems. Automatic Control, IEEE
Transactions on, 35(7):797–806, 1990.

[21] S. Petterson. Switched state jump observers for
switched systems. In Proc. IFAC World Congress,
Prague, Czech Republic, 2005.

[22] W. Rugh. Linear System Theory (2nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1996.

[23] A. Tanwani, H. Shim, and D. Liberzon. Observability
implies observer design for switched linear systems.
Proceedings of the 2011 Hybrid Systems: Computation
and Control, pages 3–12, 2011.

[24] N. van de Wouw and A. Pavlov. Tracking and
synchronisation for a class of PWA systems.
Automatica, 44(11):2909–2915, 2008.

162

