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Abstract We generalize the standard multi-class queueing network model by
allowing both standard queues and infinite virtual queues which have an infi-
nite supply of work. We pose the general problem of finding policies which
allow some of the nodes of the network to work with full utilization, and yet
keep all the standard queues in the system stable. Toward this end we show that
re-entrant lines, systems of two re-entrant lines through two service stations, and
rings of service stations can be stabilized with priority policies under certain parame-
ter restrictions. The analysis throughout the paper depends on model and policy and
illustrates the difficulty in solving the general problem.
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1 Introduction

Stability and performance analysis of multi-class queueing networks (MCQN) is by
now a well-researched field. While there are established theoretical foundations with
respect to stability, diffusion approximations and near optimal control, many challeng-
ing theoretical open problems remain unsolved. Some notable papers which have set
the tone of this research field in the past 25 years are [7,8,15,21]. Notable contribu-
tions with respect to stability analysis are [3,10,14,25,29]. Landmark contributions
with respect to heavy traffic diffusion approximations are [4,33]. Many additional
contributions are summarized in the books [5,9,24], as well as mentioned further
below.

In the next paragraphs we give an informal overview of the purpose and contribution
of this paper, the reader will find further details and exact definitions in Sect. 2. The
dynamics of a standard MCQN are given by:

Qk(t) = Qk(0) + Ak(t) − Sk(Tk(t)) +
∑

k′∈K
Φk′,k

(
Sk′(Tk′(t))

) ≥ 0, (1)

where k ∈ K = {1 . . . , K } denote the queues (classes, buffers) in the network, Qk(t)
records the number of customers in queue k at time t , which equals the initial queue
level Qk(0) plus the exogenous input count up to time t, Ak(t), minus service com-
pletions at the queue, counted by Sk(Tk(t)), plus feedback from other queues, where
Φk′,k(Sk′(Tk′(t))) counts the customers that upon completion of service at queue k′
were routed to queue k. Buffer contents are required to be non-negative. Tk(t) is the
total cumulative processing time devoted to queue k over (0, t]. Processing of the
queues is provided by service stations (servers, machines, nodes) i ∈ {1, . . . , L}, with
i = s(k) the server of queue k, and C(i) = {k : s(k) = i} the queues served by i ,
the constituency of server i . The L × K constituency matrix C has Ci,k = 1 if node
i serves k, and is 0 elsewhere. This is a discrete event system, with buffer levels chang-
ing by 0,±1, at each exogenous arrival or service completion, and it is controlled at
each time t by the assigning of servers to customers, summarized by the Tk(t). We
assume each server can serve only one customer at a time, and that service may be
pre-emptive (where we assume preemptive resume), but it is head of the line (HOL),
so that only the first customer in each queue is being served or has been pre-empted
at any time. The assumption of HOL service simplifies the analytic expression of the
service completion processes.

Harrison defines a static planning problem that involves the average rates at which
the system operates (cf. [16] or [31] and references there-in). For the standard MCQN
Harrison’s static planning problem is the linear program:

min
u

ρ

s.t. R u = α,

Cu ≤ 1ρ,

u ≥ 0.
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Here α is the vector of exogenous input rates, and the K × K matrix R is the input-
output matrix, determined by the processing rates of the queues, μk , and the routing
fractions Pk′,k , so that Rk′,k measures the rate of decrease in buffer k′ due to processing
of customers at buffer k. Throughout this paper we assume that R is non-singular. The
unknown uk is the fraction of time that server s(k) devotes to buffer k, equivalently
it is the average rate of increase of Tk(t). The static planning problem calculates the
workload of the busiest servers. For the standard MCQN its solution does not involve
optimization (it does for networks with discretionary routing, or for more general
processing networks). The workloads ρi of the servers are given by the elements of
the vector C R−1α, and,

ρ = max{ρ1, . . . , ρL} = max{C R−1α}.

The main result on standard MCQN, stated here in a way to be made more precise
in Sect. 2, is that ρ ≤ 1 is a necessary condition for stability, that stability depends on
the policy, and that if ρ < 1 then there exist policies for which the MCQN is stable.
In particular, the maximum pressure policy [11] (to be discussed in Sect. 2.5) will
achieve stability if ρ < 1, and (weaker) rate stability if ρ = 1. Nevertheless, as ρ

approaches 1 the standard MCQN becomes more and more congested, typically with
queues of size O(1 − ρ)−1.

In this paper we consider a generalization of MCQN in which some of the queues
have an infinite supply of work. We call these queues infinite virtual queues (IVQ)
to distinguish them from the remaining standard queues. This is motivated by the
observation that in many practical systems arrival of items for the various queues can
be monitored and regulated in such a way that the queue never runs out.

The MCQN with IVQs model (MCQN-IVQ) partitions the set of queues (classes)
into standard queues K0 and IVQs K∞, with K = K0 ∪K∞, the dynamics of MCQN–
IVQ are:

Qk(t) =
{

Qk(0) − Sk(Tk(t)) +∑k′∈K Φk′,k
(
Sk′(Tk′(t))

) ≥ 0, k ∈ K0,

Qk(0) + αk t − Sk(Tk(t)), k ∈ K∞.
(2)

The dynamics of the standard queues are as before, except that there is no exogenous
input. Instead, input is now provided by the IVQs. For the IVQs there is no real level
of the queue, instead we define a level which records the deviation between production
at a nominal input rate αk , and the actual number of departures from the IVQ given
by Sk(Tk(t)). Note that Qk(t) of an IVQ is not sign restricted.

MCQN–IVQ is a generalization, since standard MCQN can be regarded as a special
case in which the external arrivals are generated by additional nodes, each with a
single IVQ operating non-stop. At the same time we can also regard MCQN–IVQ as
a closed queueing network in which some of the buffers contain an infinite number of
customers.

In this formulation αk can be viewed as decision (planning) variables, which set
the desired rate at which customers enter the system via IVQ k. In the service con-
text this is the service provided to type k ∈ K∞, in the manufacturing context it is
the rate of production of type k items. For MCQN–IVQ we formulate the following
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Fig. 1 The push–pull network

static production planning problem which generalizes the static planning problem of
Harrison:

max
α,u

w′α

s.t. R u = α,

Cu ≤ 1,

αk ≥ 0, k ∈ K∞, αk = 0, k ∈ K0,

u ≥ 0. (3)

Here, instead of determining the workload imposed by external input α, we impose a
constraint of 1 on workloads, and determine nominal input rates α that will maximize
the profit w′α where wk, k ∈ K∞ are the rewards per customer from the IVQs.
Let α∗ denote the optimal nominal production rates obtained from solving (3). The
resulting workloads are then the elements ρi of the vector C R−1α∗. Typically, in this
optimization some of the resource constraints Cu ≤ 1 are binding, in which case we
get a workload of ρi = 1 for those servers. Thus, in order to produce at optimal nominal
rates we need to achieve full utilization of some of the resources. While this cannot be
achieved without congestion in standard MCQN, it may well be possible to achieve it
in MCQN–IVQ. We define ρ̃i as the workload of server i restricted to standard buffers
only, i.e., ρ̃i =∑k∈C(i)∩K0

uk . We now pose our key research question:

Key Research Question: For MCQN–IVQ with ρ̃i < 1, i = 1, . . . , L , find a policy
under which IVQs produce at the nominal rates, and all the standard queues are stable.

We believe that this is a hard problem in general. We have as yet no indication
whether this is possible always, or if it is not always possible, what are the networks
for which such policies exist, and what are the policies which need to be used.

To illustrate the question, and a possible solution, we now describe an example
taken from [27] (see also [20,19]). They analyze a MCQN–IVQ which they name
the push–pull network, illustrated in Fig. 1. In this figure as well as in the following
Figs. 3, 4 and 5, the rectangles denote servers and the circles denote queues, those with
incoming arrows are standard queues, while those marked ∞ are IVQs. The push–pull
network has two nodes i = 1, 2, two routes, two IVQs, k = 1, 3, and two standard
queues k = 2, 4. Items move from IVQ 1 to queue 2 and out, and items move from
IVQ 3 to queue 4 and out. This is in fact the KSRS network of Kumar and Seidman
[22] and of Rybko and Stolyar [29], with IVQs replacing the random input streams.
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Fig. 2 The static production planning problem for the push–pull network

The dynamics here are:

Qk(t) = αk t − Sk(Tk(t)), k = 1, 3,

Qk(t) = Qk(0) + Sk−1(Tk−1(t)) − Sk(Tk(t)), k = 2, 4.

We assume that the average service requirements per customer at the queues are
mk = μ−1

k , k = 1, . . . , 4. The static production planning problem for the push–pull
network is then:

max
u,α

w1α1 + w3α3

s.t.

⎡

⎢⎢⎣

μ1 0 0 0
−μ1 μ2 0 0
0 0 μ3 0
0 0 −μ3 μ4

⎤

⎥⎥⎦

⎡

⎢⎢⎣

u1
u2
u3
u4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

α1
0
α3
0

⎤

⎥⎥⎦ ,

[
1 0 0 1
0 1 1 0

]
⎡

⎢⎢⎣

u1
u2
u3
u4

⎤

⎥⎥⎦ ≤
[

1
1

]
,

u, α ≥ 0.

The solution of this linear program is easily read from Fig. 2 or similar figures for any
parameter values. According to the values of the parameters w,μ the optimal nominal
inputs can be one of three:

(i) either α1 = min{μ1, μ2}, α3 = 0,

(ii) or α1 = 0, α3 = min{μ3, μ4},
(iii) or α1 = μ1μ2(μ3−μ4)

μ1μ3−μ2μ4
, α3 = μ3μ4(μ1−μ2)

μ1μ3−μ2μ4
.
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If we exclude the singular cases of μ1 = μ2 or μ3 = μ4 (see [28]), we then have
the following results: In (i) only queues 1 and 2 are processed, and ρ1 = 1, ρ̃1 = 0
while ρ2 = ρ̃2 = μ1

μ2
and this is clearly stable for μ1 < μ2. The case (ii) is simi-

lar, with only queues 3, 4 being processed. Case (iii) is the interesting one: We have
ρ1 = ρ2 = 1, while,

ρ̃1 = μ3(μ1 − μ2)

μ1μ3 − μ2μ4
< 1, ρ̃2 = μ1(μ3 − μ4)

μ1μ3 − μ2μ4
< 1.

A policy that stabilizes the push–pull network in case (iii) was indeed found in [27]
(see also [20]). Case (iii) has two sub-cases: (iii-a) If μ2 > μ1 and μ4 > μ3 then this
system is stable under a policy which gives priority to processing of the queues 2 and
4. We call this policy a pull priority policy, since it gives priority to pulling items out
of the standard queues. In contrast to that, we call the processing of items at an IVQ
push activities, as it pushes work into the standard queues. (iii-b) If on the other hand
μ2 < μ1 and μ4 < μ3, then pull priority is unstable (this is similar to what happens
in the KSRS network). However, a policy which processes items out of buffer 2 only
when buffer 4 is above a certain threshold, and similarly processes items out of buffer
4 only if buffer 2 is above a certain threshold, achieves full utilization of both nodes
and is stable. Note that here we use push priority to reach the required thresholds.
Similar threshold policies for the KSRS network are discussed in [17].

Our contribution in this paper is in verifying stability of MCQN–IVQ under given
policies via fluid models. We do so for IVQ re-entrant lines, with full utilization and
ρ̃i < 1, under various policies. In particular, we find that unlike a standard re-entrant
line, stability under the first buffer first served (FBFS) policy is not guaranteed, and
give the sufficient conditions for stability which are also necessary for two server
lines. Next, we extend the results to two re-entrant lines with two servers, and a ring
of machines under pull priority policy. The analysis throughout the paper depends on
model and policy and illustrates the difficulty in solving the general Key Research
Question.

The rest of the paper is structured as follows: In Sect. 2 we present the general
method, assumptions, and techniques which we use together with additional details
about MCQN–IVQ and the fluid stability framework adapted to accommodate IVQs.
The following three sections are devoted to the three structured models, mentioned
above. These are in essence fluid stability proofs, each time tailored to network and
policy. Concluding remarks are in Sect. 6.

1.1 Notation

For a vector x we let |x | denote the �1 norm, given by sum of absolute values of the
components. For a finite set A we use |A| to denote the number of elements of A. We
use I{·} for indicator function of event {·}. For a metric space S, we denote by B(S)

the Borel sets of S. For index sets D and D′ and a matrix A, let AD,D′ denote the
associated sub-matrix. We denote the identity matrix by I and for a vector a we let
diag(a) be a diagonal matrix with a on the diagonal. The transpose of a matrix A is
A′. We let 1 denote a vector of 1s. We use D

d [0,∞) to denote the set of functions
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f : [0,∞) 
→ R
d+ that are right continuous with left limits. For f ∈ D

d [0,∞),
we let || f ||t = sup0≤s≤t | f (s)|. A sequence of functions { fr } ⊂ D

d [0,∞) is
said to converge to f ∈ D

d [0,∞) uniformly on compact sets (u.o.c.), if for each
t ≥ 0, limr→∞ || fr − f ||t = 0.

2 Associated Markov process, fluid model, and stability

In this section we set-up the technical details of stability and overview the fluid stability
framework, adapted to MCQN–IVQ. In the context of stability properties of Markov
processes, the literature contains several related terms. We choose to use the terms
defined in Bramson [5], geared specifically towards queuing networks.

2.1 The discrete event stochastic model

As introduced in Sect. 1, our MCQN–IVQ consist of standard queues k ∈ K0 and
IVQs k ∈ K∞, with dynamics given by (2). Note again that while Qk(t) for standard
queues counts actual customers in the queue, the quantities Qk(t) for the IVQ are
more arbitrary, and measure the deviation of the actual processing of customers from
a nominal input rate αk . The nominal input rates may be obtained from the optimal
solution of a static production planning problem, or they may be chosen in some
other way. As far as the modeling of MCQN–IVQ is concerned this is immaterial.
Apart from the nominal input rates, the primitives of this system are the routes and the
processing times of individual customers, starting from their processing at an IVQ,
and moving through the network. We make the usual probabilistic assumptions about
processing and routing: all processing times and routings are independent. The nth
item in queue k requires processing for duration ξk(n), which are non-negative i.i.d.
for n = 1, 2, . . ., with mean mk = μ−1

k . Upon completion of service the nth item
moves from queue k to queue k′ ∈ K0 with probability Pk,k′ or leaves the system
with probability 1 −∑k′∈K0

Pk,k′ . It is assumed that PK0,K0 has spectral radius <1.
We define the random renewal counting processes Sk(t) as the number of service
completions at queue k over service duration t , and Φk,k′(n) as the number of items
among the first n items departing queue k which are routed to queue k′. Note that we
do not model items that move from k to k′ ∈ K∞, since they become indistinguishable
from the infinite supply. The input output matrix for MCQN–IVQ is

R = (I − P ′)diag(μ) =
(

I 0
−P ′

K∞,K0
I − P ′

K0,K0

)
diag(μ).

The cumulative processing times are determined by the scheduling policy (control).
Recall that each server i can serve only one item at a time, and service is pre-emptive
HOL, so that in each of the queues k, at any time t there is only one customer who is
either waiting for service to start, or is being served, or has been pre-empted. Thus Tk(t)
are constrained by the requirement that servers serve one customer at a time, that no
service is allocated to empty queues, and that Qk(t) ≥ 0, k ∈ K0. The capacity con-
straints on the allocation of service to the constituency of each node are summarized by:
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Tk(0) = 0, Tk(t) non-decreasing, C
(
T (t2) − T (t1)

) ≤ (t2 − t1)1, 0 ≤ t1 ≤ t2.

2.2 The associated Markov process

To analyze the MCQN–IVQ one associates a Markov process with Q, T , as follows:
The state of this process keeps track of the number of items in each of the standard
queues, the residual processing times of all classes, and any additional state information
needed by the policy. Denote by Uk(t), k ∈ K the residual processing times of the head
of the line customers at time t . Denote by G(t) ∈ G the additional policy information.

We now denote the network state process by X (t) =
(

QK0(t), U (t), G(t)
)

. The

state space for this process is S = Z
|K0|
+ × R

K+ × G. We assume that it is a piecewise
deterministic strong Markov process (cf. [13]). For specific policies (e.g., pre-emptive
priority policies), we have that G = ∅. For such cases, [5] (for example), provides a
rigorous treatment and construction of X , where it is shown that it is indeed a strong
Markov process. The adaptation from MCQN to MCQN–IVQ is immediate.

Stability: Stability of the queueing network is defined in terms of X . The network is
said to be stable if the continuous time process X is positive Harris recurrent. That is,
if there exists a finite measure, π on (S, B(S)) such that,

π(A) =
∫

Pt (x, A)π(dx), ∀x ∈ S, A ∈ B(S), t ≥ 0,

where Pt (x, ·) is the transition probability kernel of X . Next, following [5], a stable
network is said to be e-stable if the Markov process X is ergodic. That is if,

lim
t→∞ ||Pt (x, ·) − π(·)|| = 0, ∀x ∈ S,

where ||·|| denotes the total variation norm. For a detailed discussion on the relationship
between stability and e-stability, see [5].

Rate stability: In addition to the above definitions of stability, a weaker notion, rate
stability, is defined path-wise for each coordinate separately. We say that Qk, k ∈ K,
is rate stable if limt→∞ Qk(t)/t = 0, a.s. For k ∈ K0 this implies that there is no
linear accumulation of items over time. For k ∈ K∞ (as can be seen from (2)), this
occurs if and only if the departure rates from the IVQs equal the nominal input rates,
that is: limt→∞ Tk(t)/t = αk/μk a.s. for k ∈ K∞. See [5].

2.3 The key research question

We return to the question of finding policies that achieve full utilization, and
keep all standard queues stable. Recall the definition of the K dimensional vec-
tor of static resource requirements, u = R−1α, from which we have for nodes
i = 1, . . . , L workloads ρi = ∑

k∈C(i) uk , and standard queues workloads ρ̃i =∑
k∈C(i)∩K0

uk . Assume that ρi ≤ 1 and ρ̃i < 1 for all nodes i = 1, . . . ,
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L . Let X be the associated Markov chain, and let Qk(t), k ∈ K∞ be the IVQ levels.
We are looking for policies under which:

(i) Qk(·) is rate stable for all k ∈ K∞.
(ii) The network is stable/e-stable.

The first requirement ensures that the IVQs produce at the nominal production rates,
αk . The second requirement implies that the standard queues are stable.

It seems that essentially we should focus on more restricted problems, in which
we consider MCQN–IVQ which have ρi = 1 and a single IVQ at every node and all
the routes are deterministic. We argue as follows: Nodes which have ρi < 1 can be
considered as a subnetwork, with random exogenous inputs, and stabilized by standard
methods, without any IVQs. Remaining then only with nodes that have ρi = 1 and
ρ̃i < 1 we must have at least one IVQ at each node. If we can stabilize such nodes
with a single IVQ at each, then we should certainly be able to do so with several IVQs.
Finally, as pointed out by Kelly [18], using only deterministic routes is essentially
without loss of generality, as one can imitate probabilistic routing by splitting items
into more classes which have deterministic routes.

For these more restricted problems we can formulate the key research question
differently. We are now looking for policies which:

(i) Are work conserving, so the servers which have IVQs work all the time and are
fully utilized.

(ii) The network is stable/e-stable.

2.4 Fluid stability framework

To study the question of ergodicity or positive Harris recurrence of the associated
Markov process of a MCQN, the current commonly used approach is via a fluid
framework. We briefly survey this approach, and its extension to MCQN–IVQ. For a
thorough discussion see [5] and for a quicker introduction see [11].

For an arbitrary function Z(t), t > 0 and an integer N , define the fluid scal-
ing Z̄ N (t) = Z(Nt)/N , and similarly for Z(m), m = 1, 2, . . . define Z̄ N (t) =
Z(�Nt�)/N . For a MCQN–IVQ assume a sequence of starting values QN (0), and
assume a common (coupled) sequence of processing and routing random variables
for all N , so for each N we have different starting conditions but the same S, Φ. We
now look at the network processes for this sequence,

(
QN (t), T N (t)

)
, and their fluid

scalings
(
Q̄N (t), T̄ N (t)

)
. We assume for simplicity that U N (0) = 0 (no started jobs),

and that for all N we have Q̄N (0) = Q(0).
Next we define fluid limits: We say that the deterministic function

(
Q̄(t), T̄ (t)

)
is

a fluid limit if there exists a sample path (an ω in the sample space) and an increasing
divergent sequence of integers r such that limr→∞(Q̄r (t, ω), T̄ r (t, ω))=(Q̄(t), T̄ (t))
u.o.c. Such fluid limits exist, by the following argument: Under any policy, for every
sample path ω, T n(t, ω) are Lipschitz continuous with Lipschitz constant 1, hence so
are also T̄ N (t, ω), so they form a sequence of equicontinuous functions, and hence
there exists a divergent sub-sequence of r such that T̄ r (t, ω) converges u.o.c. to a
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Lipschitz continuous deterministic function. Next, for the sequence of primitives we
have the functional strong law of large numbers (FSLLN), and we now consider only
sample paths for which strong law convergence holds. This excludes a set of events of
measure zero. By the FSLLN convergence we have that limN→∞ S̄N

k (t) = μk t and
limN→∞ Φ̄N

k,k′(t) = Pk,k′ t , u.o.c. It can now be shown (cf. [5]) that convergence of

S̄r , Φ̄r , T̄ r implies convergence of Q̄r .
Since the fluid limits are Lipschitz continuous they are absolutely continuous and

so they have derivatives almost everywhere. For every fluid limit (Q̄(t), T̄ (t)) we
will call points t at which all the derivatives exist regular points, and denote the

derivatives at regular points by
( ˙̄Q(t), ˙̄T (t)

)
. We will have

(
Q̄(t), T̄ (t)

) = (Q̄(0), 0
)+

∫ t
0

( ˙̄Q(s), ˙̄T (s)
)
ds.

Next we define fluid model equations: these are equations which must be satisfied
by every fluid limit. They include, analogous to (2):

Q̄k(t) =
{

Q̄k(0) − μk T̄k(t) +∑k′∈K Pk′,kμk′ T̄k′(t) ≥ 0, k ∈ K0,

Q̄k(0) + αk t − μk T̄k(t), k ∈ K∞.
(4)

Taking derivatives of (4) we obtain at all regular points a dynamic version of the
static production planning constraints (3):

R ˙̄T (t) + ˙̄Q(t) = α,

C ˙̄T (t) ≤ 1, ˙̄T (t) ≥ 0.

The fluid model equations also include additional equations that follow from the
policy which determines T N (t). In particular we encounter in the following sections
that work conserving nodes with IVQs are busy at all times, hence

∑
k∈C(i) T̄ N

k (t) = t
and so for the fluid limit:

∑

k∈C(i)

T̄k(t) = t. (5)

We also encounter model equations that relate to priority policies. If node i gives
priority to queue k over queue k′, then work is allocated to k′ only when Q̄N

k (t) = 0:

t∫

0

Q̄k(t)dT̄k′(t) = 0.

One refers to the set of fluid model equations as the fluid model.
We now define fluid stability: Let |Q̄(0)| = ∑

k∈K0
Q̄k(0), and assume that

|Q̄(0)| = 1. We say that the fluid model associated with the network under a given
policy is stable if there exists a constant t0 so that for all such Q̄(0) and for every
solution of the fluid model equations Q̄(t) = 0 for all t > t0.

A theorem of Dai [10] for MCQN shows that fluid stability implies positive Harris
recurrence, see [5] for an up to date account, some further historical notes, and an
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extension of this to ergodicity. An adaptation of this to MCQN–IVQ is discussed in
[27, Theorem 2]. We state this as a theorem:

Theorem 1 Consider a MCQN–IVQ under some given policy. Assume that every
closed and bounded set of states in X is uniformly small. If the fluid model for this
network is stable, then the network is e-stable.

This theorem allows us to largely ignore the stochastic discrete event system, and
to study instead the deterministic continuous solutions of the fluid models. In fact
the proofs in Sects. 3–5 are proofs of fluid stability. We discuss the requirement of
uniformly small in Sect. 2.6.

The notion of weak fluid stability requires that if Q̄(t0) = 0 then Q̄(t) = 0 for all
t > t0. It is easily seen (see [11]) that weak fluid stability implies rate stability.

2.5 Maximum pressure policies

Maximum pressure policies were introduced in [30] and adapted to MCQN and to
more general processing networks by Dai and Lin [11]. Maximum pressure policy,
at any time t , with queues given by Q(t), allocates servers to customers by choosing
uk(t) = 0 or uk(t) = 1, so that uk(t) is an extreme point solution of the maximization
problem:

maxu(t)∈A(t) Q(t)′ R u(t)
s.t. Cu(t) ≤ 1, u(t) ≥ 0,

where A(t) are available actions, defined by the requirement that uk(t) = 0 if Qk(t) =
0, i.e. no service is allocated to empty queues.

Dai and Lin [11] prove that for standard MCQN under maximum pressure policy,
ρ ≤ 1 implies weak fluid stability and hence implies that the MCQN is rate stable,
while ρ < 1 implies fluid stability, which with additional technical assumptions
implies also stability or e-stability of the MCQN. In [26] it is shown that the same results
apply to MCQN–IVQ. Hence, for MCQN–IVQ with ρi < 1, i = 1, . . . , L , maximum
pressure achieves stability while maintaining the nominal input rates α. However, if
ρi = 1 for some buffers, maximum pressure only guarantees rate stability. In fact, for
the push–pull network, simulations in [20] show that under maximum pressure policy
the push–pull network is not stable.

A natural candidate to replace maximum pressure policies for MCQN–IVQ is the
following policy: Use the maximum pressure allocation calculated only for the stan-
dard queues, and allocate a server to an IVQ only if all the standard queues of the server
are empty. Unfortunately this policy is not successful in general. For the push–pull
network, in case (iii-b), it causes the queues to diverge, and is not even rate stable.

2.6 Technical requirements

To establish positive Harris recurrence or ergodicity using the fluid limit framework,
we need some further technical concepts (which occur when S is uncountable) : For
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x ∈ S, B ∈ B(S), let Pt (x, B) be the transition probability of X . Let ν be a non-
trivial measure on (S,B(S)). A non-empty set, A, is said to be uniformly small with
respect to ν if for some t1 < t2 and for all t ∈ [t1, t2], and for all x ∈ A:

Pt (x, B) ≥ ν(B), for all B ∈ B(S).

Theorem 1 requires for e-stability that every closed and bounded set of states in S

be uniformly small. This is discussed in detail by Bramson in [5, Sect. 4.1]. One way
to formulate results is to simply assume that this is the case, i.e., assume that every
closed and bounded set of states is uniformly small. There is no easy general way to
verify this assumption, and therefore it is preferable to specify an assumption in terms
of the model primitives and the properties of the policy.

The distribution of X is said to have unbounded support if P(X > x) > 0 for all
x > 0 and it is spread out if there exists an integer l and non-zero density q such
that P(a < X∗l ≤ b) ≥ ∫ b

a q(x)dx , where X∗l is the l fold convolution of X (cf.
[2, Sect. VII.1]).

Meyn and Down [25] consider single-class networks and show that if renewal inter-
arrival times are spread-out with unbounded support then compact sets are petite.
Similar results were derived by Foss [14]. Dai [10] uses those results in the context of
standard MCQN. Bramson [5] shows that this condition implies uniform smallness.

In MCQN–IVQ there are no external arrival streams, instead there are processing
times of the IVQ operations. Unfortunately, the condition of spread out and unbounded
support of the IVQ processing times is not a sufficient condition for uniform smallness
in MCQN–IVQ, for general policies. However, for the following useful class of policies
uniform smallness can be verified.

For MCQN–IVQ we define a work conserving policy as a policy in which a server
does not idle if there are customers in one of its queues. In particular this means that
a server with an IVQ never idles. We define a weak pull priority policy as a policy
which at all times allocates processing capacity to some standard queue, unless all the
standard queues are empty. Lemma 2 from [27] then states:

Lemma 1 If a MCQN–IVQ is operated with a work conserving weak pull priority
policy, and if processing times at all the IVQs have unbounded support and are spread
out, then every closed and bounded set of states is uniformly small.

In the next sections, we shall assume that every closed and bounded set of states in X
is uniformly small and utilize Theorem 1 in reducing the problem of proving e-stability
to that of showing that the fluid model is stable. Note that all of the control policies
that we use are in fact weak pull priority policies, so with the right assumptions on
processing times we can use Lemma 1 to show that Theorems 2, 4, 5, 6 imply e-stability
of the MCQN–IVQ.

3 Re-entrant lines

We consider a single re-entrant line with infinite supply of work as in Fig. 3. Buffers
are numbered k = 1, 2, . . . , K and items start in the virtual infinite buffer 1, then move
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Fig. 3 An IVQ re-entrant line

from buffer k to k + 1, and leave the system from buffer K . Nodes i = 1, . . . , L serve
the various buffers, and for simplicity we take s(1) = 1, i.e. 1 ∈ C(1). Without loss of
generality we let

∑
k∈C(1) mk =1, and we assume max{∑k∈C(i) mk, i =2, . . . , L}<1.

We refer to this system as the IVQ re-entrant line.
Re-entrant lines were introduced by Kumar [21], as models for manufacturing

systems, notably for semi-conductor wafer fabrication plants, see also [6]. It is well-
known that a standard re-entrant line with random input at rate α < 1 is stable under
the policies of LBFS (last buffer first served), FBFS, and maximum pressure (cf.
[5, Sect. 5.2], [11,12]).

In this section we investigate the stability of the IVQ re-entrant line under full
utilization, with nominal input rate α = 1. We then have ρ1 = 1, ρi = ρ̃i < 1, i �= 1,
and ρ̃1 < 1. This is the general case of a multi-class queueing network with a single
IVQ, and with fixed routing. Some explicit results on a 2-server 3-queue IVQ re-entrant
line, with C(1) = {1, 3}, C(2) = {2}, and with exponential service times, under LBFS,
are derived in [1,32].

We obtain the following results: The network is stable under LBFS policy. It is
stable under a policy which gives lowest priority to the IVQ, and uses FBFS for all
other buffers, if some additional necessary and sufficient conditions on the parameters
hold. In general it is not stable under pure maximum pressure policy, and it is not stable
under a policy which gives lowest priority to the IVQ, and uses maximum pressure
for the standard queues.

3.1 The IVQ re-entrant line under LBFS

In this and the following sections we let Dk(t) = Sk(Tk(t)) denote the departure
process from buffer k, with the fluid scaled departure process D̄N

k (t) and fluid limits
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D̄k(t). The following lemma is useful when considering fluid models of MCQN–IVQ
with deterministic routing:

Lemma 2 For a network with deterministic routes, let k′, k ∈ K0 be two successive
buffers on one of the routes. Assume that t is a regular time point. If Q̄k(t) = 0 then
˙̄Dk′(t) = ˙̄Dk(t), or alternatively μk′ ˙̄Tk′(t) = μk

˙̄Tk(t).

Proof Since Q̄k(t) is non-negative, whenever Q̄k(t) = 0 it is a local minimum, and

hence if t is a regular point then by Fermat’s theorem on stationary points, ˙̄Qk(t) = 0.

The result follows from ˙̄Qk(t) = ˙̄Dk′(t) − ˙̄Dk(t) as seen in (4). ��
Theorem 2 The fluid model for the IVQ re-entrant line with ρ1 = 1 and ρ̃i < 1,
under LBFS policy, is stable

Proof We denote m−1 = ∑
k∈C(1), k>1 mk , and m̃ = max{m−1,

∑
k∈C(i) mk, i =

2, . . . , L}. Define τ = inf{s : |Q̄(s)| = 0}. We show that τ is bounded. Observe from
(4) that,

|Q̄(t)| = |Q̄(0)| + D̄1(t) − D̄K (t).

Assume that k is the last non-empty buffer in the line, Q̄k(t)>0, Q̄k′(t) = 0, k′ >k
at a regular time t , with k ∈ C(i). Then by Lemma 2:

˙̄Dk(t) = ˙̄Dk+1(t) = · · · = ˙̄DK (t) =
⎛

⎝
∑

k′∈C(i), k′≥k

mk′

⎞

⎠
−1

.

We now argue:

(a) While |Q̄(t)| > 0 we have outflow from the last non-empty buffer, at rate

˙̄DK (t) ≥ 1

m̃
> 1.

(b) Outflow from buffer K is head of the line, so all of the fluid in Q̄(0) will be cleared
before any new fluid flows out. By (a) we therefore have that at time 1 all the fluid
originally in the system must have left the system.

(c) Any unit of fluid that was not originally in the system but entered after time 0
requires m−1 processing from server 1. By (b), D̄K (t)− D̄K (1) is all of it outflow
of fluid that was not originally in the system. Hence, it requires an amount of
service from server 1 which is

∑

k∈C(1),k>1

T̄k(t) ≥ m−1
(
D̄K (t) − D̄K (1)

)
> m−1(t − 1),

where (a) is applied in the last inequality.
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(d) Since T̄1(t) +∑k∈C(1),k>1 T̄k(t) = t we get, by (c), that

T̄1(t) < t − m−1(t − 1) = 1 + m1(t − 1).

Since the rate of processing of buffer 1 is 1/m1, we have that

D̄1(t) <
1 − m1

m1
+ t.

(e) We therefore obtain that for t < τ ,

0 < |Q̄(t)| = 1 + D̄1(t) − D̄K (t) < 1 + 1 − m1

m1
+ t − 1

m̃
t = 1

m1
− t

1 − m̃

m̃
.

We conclude that if the system stays non-empty on the time interval [0, τ ) then

τ <
m̃

m1

1

1 − m̃
.

(f) Next we prove that if |Q̄(t0)| = 0, then |Q̄(t)| = 0 for t ≥ t0. Suppose contrariwise
that there exists a δ > 0 such that |Q̄(t)| > 0 for t ∈ (t0, t0 + δ]. By (a) and (c),

∑

k∈C0(1),k>1

[
T̄k(t0 + δ) − T̄k(t0)

] ≥ m−1
[
D̄K (t0 + δ) − D̄K (t0)

]
> m−1δ.

By (d),

[
T̄1(t0 + δ) − T̄1(t0)

]=δ −
∑

k∈C0(1),k>1

[
T̄k(t0 + δ) − T̄k(t0)

]
<(1 − m−1)δ = m1δ,

and therefore D̄1(t0 + δ) − D̄1(t0) < δ, while D̄K (t0 + δ) − D̄K (t0) > δ, but this
is impossible since we assume that |Q̄(t0)| = 0. ��

3.2 The IVQ re-entrant line under pure maximum pressure policy

We now consider the IVQ re-entrant line, with ρ1 = 1, ρ̃i < 1, i = 1, . . . , L ,
with a pure maximum pressure policy. Under this policy, we calculate the pressure
of each buffer k, including the IVQ buffer 1, as Pk(t) = μk(Qk(t) − Qk+1(t)), k =
1, . . . , K − 1, PK (t) = μK QK (t), and we allocate server i to serve buffer k if
k ∈ arg max j∈C(i) Pj (t) and if Pk(t) > 0 (breaking ties according to some arbitrary
rule, say priority to lowest index k). If no buffers have pressure > 0, then server
i idles. Recall that for the IVQ buffer 1, Q1(t) = α1t − D1(t), the difference between

the nominal input and the departure process, where α1 =
(∑

j∈C(1) m j

)−1
.
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Under maximum pressure the re-entrant line will be rate stable. This follows from
the general result of Dai and Lin [11] and its adaptation to MCQN–IVQ in [26]. We
now show:

Proposition 1 The IVQ re-entrant line with ρ1 = 1, ρ̃i < 1, i = 1, . . . , L, is in
general not stable under pure maximum pressure.

The reason for this is quite simple: under maximum pressure, in steady state, the
IVQs will have a positive probability of idling. But in that case we cannot have ρi = 1.
We perform an exact analysis for a simple example now.

Proof In this proof we consider the stochastic system directly, and not the fluid model.
We look at the simplest re-entrant line, with 2 servers and 3 queues, so that C(1) =
{1, 3}, C(2) = {2}, with queue 1 an IVQ. We assume that processing times at the 3
buffers are exponential random variables, with rates μ1 = μ2 = μ3 = 2α1 = 1.
Under maximum pressure policy the state of this system will be described by the
Markov process X = (

Q1(t), Q2(t), Q3(t)
)
, where Q2(t), Q3(t) are non-negative

integers, and Q1(t) is a real number. Because the processing times are exponential,
there is no need to keep U (t), the residual processing times of the head of the line
items, as part of the state. However, to implement the maximum pressure policy we
need to know Q1(t), which in this case is the G(t) part of X .

If the system is stable under maximum pressure, then an invariant distribution exists
for X , so we can consider the stationary process, starting at time 0. For some integer M
there will be a positive probability π1 that the process has Qi (0)≤ M, i =1, 2, 3. Let
N (t) be a rate 1 Poisson process modeling successive processing times on server 1. Let
A be the event that N (4M) > 4M , and that the first service of server 2 is longer than
4M + 1, and let δ1 = P(A). Note that while Q1(t) + Q3(t) > 0, server 1 never idles,
so the number of job completions is N (t). Also, note that while Q3(t) > 0, the IVQ
Q1(t) will never go below 1. Under A there will be a time t0 < 4M at which for the
first time Q1(t0) = Q3(t0) = 0. This is because the total number of jobs to be served
before all jobs are exhausted includes no more than the original ≤ 2M jobs in Q1 and
Q3, plus the t0/2 nominal input to Q1, so indeed all jobs can be exhausted before 4M ,
and since Q3 will empty first and stay empty, at t0 both queues will be empty. At t0+
server 1 will start serving the IVQ, and will complete a job before time 4M +1/2 with
probability δ2. This will be followed by idling of server 1 for at least 1/2 time units.
Hence, for the stationary process there is a probability ≥ π1δ1δ2 that in time period of
length ≤ 4M + 1 server 1 idles for at least 1/2 time unit. This gives a lower bound of
π1δ1δ2/8M for the long-term fraction of time that the stationary process idles server
1. But if server 1 idles a fixed fraction of the time then with nominal input α1 we have
Q1(t) → ∞ almost surely. This is a contradiction to the assumption that an invariant
distribution exists. ��

3.3 The IVQ re-entrant line under maximum pressure with low priority to the IVQ

We next consider a modified version of the maximum pressure policy, in which server 1
is fully utilized but work on the IVQ has low priority. The modified policy is defined as

123



Queueing Syst (2014) 76:309–342 325

follows: Pressure is calculate as in Sect. 3.2 only for buffers k = 2, . . . , K . Allocation
of server i �= 1 is done as in Sect. 3.2. Server 1 is allocated to the highest pressure
buffer in C(1) if the pressure is ≥ 0 and the buffer is non-empty. Otherwise server 1
is allocated to the IVQ.

We now show that this policy is not stable. As an example consider a network
with L = 2, K = 4 and C(1) = {1, 4}, C(2) = {2, 3}, similarly to the well-studied
network in [23]. Take m1 + m4 = 1, m2 + m3 < 1 and m1 < m2m3

m2+2m3
. For example

we can take m1 = 1
8 , m2 = 2

5 , m3 = 1
2 , m4 = 7

8 . The initial condition is Q̄2(0) = 1
and Q̄3(0) = Q̄4(0) = 0.

We claim that the maximum pressure policy with low priority to the IVQ will use
the allocations:

u1(t) = 1, u2(t) = 1, u3(t) = u4(t) = 0, (6)

for all t ≥ 0. To see this we note that under this allocation:

Q̄2(t) = 1 + μ1t − μ2t, Q̄3(t) = μ2t, Q̄4(t) = 0,

which are all non-negative so the policy is feasible. Furthermore, the pressures are:

P2(t) = μ2(1 + μ1t − 2μ2t), P3(t) = μ3μ2t, P4(t) = 0,

and we can see that P2(t) ≥ P3(t), so that indeed the allocation (6) is according to the
policy. Under this policy we have that Q̄2(t), Q̄3(t) → ∞ as t → ∞, i.e., the fluid
model diverges.

3.4 The IVQ re-entrant line under FBFS

We now consider the FBFS policy for the IVQ re-entrant line. Under FBFS each
server gives pre-emptive priority to work on the lowest index buffer that it can serve,
except that the IVQ has lowest priority. The example discussed in Sect. 3.3 showed
instability. We observe that the policy that was used in that example is in fact a FBFS
policy. Hence we see that unlike the LBFS case, an IVQ re-entrant line under FBFS
discipline may be unstable when ρ1 = 1, ρ̃i < 1, i = 1, . . . , L . In this section,
we derive a sufficient and a partial necessary condition for stability under FBFS. To
characterize the sufficient condition, we introduce

Definition 1 For an IVQ re-entrant line, we say that buffer k1 joins buffer k2 without
loops if for any two buffers k3 and k4 with k1 ≤ k3 ≤ k4 ≤ k2 we have s(k3) �= s(k4).
Otherwise, we say that buffer k1 joins buffer k2 with loops.

Write C(1) = {�1, . . . , �|C(1)|}, with �1 = 1, for convenience we denote
�0 = 0, �|C(1)|+1 = K + 1. By the Definition 1, we know that for all i, k where
�i < k < �i+1, if buffer k joins buffer �i+1 without loops, then any buffer k′ with
k < k′ < �i+1 also joins buffer �i+1 without loops; if buffer k joins with buffer �i+1
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with loops, then any buffer k′′ with �i < k′′ < k also joins buffer �i+1 with loops.
Define

Hk = {� : � ≤ k and s(�) = s(k)}, H−
k = Hk\{k},

cn = max{l ∈ Z+ : �n+l = �n + l}, n = 1, . . . , |C(1)|.

Theorem 3 We consider a fluid model for the IVQ re-entrant line with ρ1 = 1 and
ρ̃i < 1 under FBFS policy. The fluid model is stable if the following conditions hold
for buffer k with �l < k < �l+1.

(i) when k joins �l+1 with loops, we have

l∑

i=1

m�i >
∑

i∈Hk

mi . (7)

(ii) when k joins �l+1 without loops, we have

l+1+cl+1∑

i=1

m�i >
∑

i∈Hk

mi . (8)

Furthermore, when the number of servers L = 2, the conditions (7) and (8) are
necessary.

Proof To prove the sufficiency we show that if (7) and (8) hold then there exist 0 ≤
t2 < · · · < tK < ∞ such that

Q̄k(t) = 0 for t ≥ tk . (9)

By convention we take t1 = 0. Assume as an induction hypothesis that at time
tk−1 all the buffers j < k are empty and that they shall stay empty for t ≥ tk−1 (no
assumption needed for k = 2). The content of buffer k at time tk−1, is bounded by
Q̄k(tk−1) ≤∑k

i=2 Q̄i (0)+μ1tk−1. Since we assume Q̄ j (t) = 0 for j = 2, . . . , k −1
and all t ≥ tk−1, and Q̄k(tk−1) > 0, buffer k will be the first non-empty buffer.
Therefore, for t ≥ tk−1,

Q̄k(t) =
k∑

i=2

Q̄i (t) =
k∑

i=2

Q̄i (0) + μ1T̄1(t) − μk T̄k(t). (10)

Also, these assumptions imply that for j = 2, . . . , k − 1 and all t ≥ tk−1,

˙̄Tj (t) = m jμ1
˙̄T1(t). (11)

We now consider three cases, and construct tk for each.
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Case 1 k = �i :
While Q̄k(t) > 0 we have ˙̄T1(t) = 0 and by (10), we have ˙̄Qk(t) = −μk . Hence,

tk = tk−1 + mk

(
k∑

i=2

Q̄i (0) + μ1tk−1

)
.

Case 2 �i < k < �i+1 and buffer k joins buffer �i+1 with loops:

By
∑i

h=1
˙̄T�h (t) ≤ 1, and by (11) we have

˙̄T1(t) ≤ m1∑i
h=1 m�h

. (12)

While Q̄k(t) > 0 we have
∑

j∈Hk

˙̄Tj (t) = 1. It follows from (11) and (12) that

˙̄Tk(t) ≥ 1 −
∑

j∈H−
k

m j
∑i

h=1 m�h

. (13)

Using (10), combining (12)–(13) yields that if t ≥ tk−1 and Q̄k(t) > 0, then

˙̄Qk(t) ≤
∑

j∈Hk
m j −∑i

h=1 m�h

mk
∑i

h=1 m�h

,

which is strictly negative by (7). Hence, we have

tk = tk−1 + mk
∑i

h=1 m�h∑i
h=1 m�h −∑ j∈Hk

m j

⎛

⎝
k∑

j=2

Q̄ j (0) + μ1tk−1

⎞

⎠ .

Case 3 �i < k < �i+1 and buffer k joins buffer �i+1 without loops:
In this case we have condition (8), which is weaker than condition (7). Define

L̄k(t)= Q̄k(t)+· · · + Q̄�i+1−1(t) =
k∑

i=2

Q̄i (0) + μ1T̄1(t) − μ�i+1−1T̄�i+1−1(t).

(14)

To get an upper bound of the derivative of L̄k(t), we let k̃ be the last non-zero buffer
among buffers k, . . . , (�i+1 − 1). Note that for all buffers k, . . . , (�i+1 − 1), each is
the first non-empty buffer for its server. By (11), we have

⎛

⎜⎝
∑

j∈H−
k̃

m j

⎞

⎟⎠μ1
˙̄T1(t) + ˙̄Tk̃(t) = 1. (15)
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If we assume that ˙̄T1(t) > 0 we get:

1 ≥
i+1+ci+1∑

h=1

˙̄T�h (t)

= μ1
˙̄T1(t)

i∑

h=1

m�h + ˙̄Dk̃(t)
i+1+ci+1∑

h=i+1

m�h , (16)

and

˙̄Dk̃(t) = μk̃

⎛

⎜⎝1 − μ1
˙̄T1(t)

∑

j∈H−
k̃

m j

⎞

⎟⎠ . (17)

Combining (16), (17) and rearranging we get:

(
1 − μ1

˙̄T1(t)
i∑

h=1

m�h

)
≥
⎛

⎜⎝1 − μ1
˙̄T1(t)

∑

j∈H−
k̃

m j

⎞

⎟⎠
∑i+1+ci+1

h=i+1 m�h

mk̃

. (18)

By (7) this is only possible if mk̃ >
∑i+1+ci+1

h=i+1 m�h .

Hence, if mk̃ ≤∑i+1+ci+1
h=i+1 m�h then ˙̄T1(t) = 0 and

˙̄Lk(t) = −μk̃ . (19)

If mk̃ >
∑i+1+ci+1

h=i+1 m�h we get from (18) that:

μ1
˙̄T1(t) ≤ mk̃ −∑i+1+ci+1

h=i+1 m�h

mk̃

∑i
h=1 m�h −∑ j∈H−

k̃
m j
∑i+1+ci+1

h=i+1 m�h

. (20)

Combining (17), (20) we also get:

˙̄Tk̃(t) ≥ 1 −
(
∑

l∈H−
k̃

ml)(mk̃ −∑i+1+ci+1
l=i+1 m�l )

mk̃

∑i
l=1 m�l − (

∑i+1+ci+1
l=i+1 m�l )

∑
l∈H−

k̃
ml

. (21)

Finally, from (20), (21) and (14) we have:

˙̄Lk(t) = μ1
˙̄T1(t) − ˙̄Dk̃(t)

≤
∑

l∈Hk̃
ml −∑i+1+ci+1

l=1 m�l

mk̃

∑i
l=1 m�l − (∑i+1+ci+1

l=i+1 m�l

)∑
l∈H−

k̃
ml

. (22)
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Let

�k = min
k≤k̃<�i+1

min

⎧
⎪⎨

⎪⎩

∑i+1+ci+1
l=1 m�l −∑l∈Hk̃

ml
∣∣∣mk̃

∑i
l=1 m�l − (∑i+1+ci+1

l=i+1 m�l

)∑
l∈H−

k̃
ml

∣∣∣
,

1

mk̃

⎫
⎪⎬

⎪⎭
.

In view of (8), (19) and (22), we always have ˙̄Lk(t) ≤ −�k . Therefore, also for
this case:

tk = tk−1 +
(

k∑

l=2

Q̄l(0) + μ1tk−1

)/
�k .

Note that by our convention of �|C(1)|+1=K+1, for all buffers k > �|C(1)| conditions
(7) and (8) are the same, and the proofs for both case 2 and 3 are valid. This completes
the proof of sufficiency.

Now we consider the case of two servers, L = 2, and prove necessity of (7)–(8).
Let buffer k be the first buffer to violate one of (7)–(8). We consider the case of
�i < k < �i+1 and k joins �i+1 with loops. The other cases can be proved similarly.
Then

i∑

h=1

m�h ≤
∑

j∈Hk

m j , (23)

ĩ∑

h=1

m�h >
∑

j∈Hk̃

m j for k̃ < k, �ĩ < k̃ < �ĩ+1 and ĩ = 1, . . . , i. (24)

Assume Q̄k(0) > 0 while Q̄ j (0) = 0, j �= k. In that case the flow into buffer k is:

μ1
˙̄T1(t) = 1

∑i
h=1 mlh

and the service rate to buffer k is:

˙̄Tk(t) = 1 − μ1
˙̄T1(t)

∑

j∈H−
k

m j

and by (24) we then have for t ≥ 0 that:

˙̄Qk(t) = μ1
˙̄T1(t) − μk

˙̄Tk(t) > 0

and the fluid solution diverges. This proves that the fluid model can diverge, so it is
not stable. Thus, the necessity for L = 2 is proved. ��
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Fig. 4 An example of a two re-entrant lines network with IVQs

4 Two servers and two re-entrant lines

Consider now a network with two servers and two re-entrant lines, as in Fig. 4. The
buffers are numbered (r, 1), (r, 2), . . . , (r, Kr ) for the two routes r = 1, 2 and we
assume s(1, 1) = 1 and s(2, 1) = 2, i.e., each of the servers has a single IVQ. We
denote all classes (1, k) ∈ C(1) as G1 (group 1), and similarly, G2 consists of the
classes (1, k) ∈ C(2), G3 is the set of the classes (2, k) ∈ C(2) and similarly G4 is
the set of the classes (2, k) ∈ C(1). We will refer to G1, G3 as push groups, and to
G2, G4 as pull groups. This is a generalization of the push–pull network where we
now have two general routes rather than two step routes — in the push–pull network
each G j consists of a single buffer.

Denote m+
j = ∑

(r,k)∈G j ∩K0
mr,k for j = 1, 2, 3, 4 and denote m̃ =

max{m+
1 , m+

2 , m+
3 , m+

4 }. We change the unit of measure for the fluids in both routes
and assume without loss of generality that

∑
(1,k)∈G1

m1,k = ∑
(2,k)∈G3

m2,k = 1.
So we have m+

1 , m+
3 < 1. We have that the workload per customer in the buffers

of the four groups G j , j = 1 . . . , 4 is 1, m+
2 , 1, m+

4 . The corresponding quantities
in the push–pull network are μ−1

j . We now assume that server 1 is bottleneck for

line 1, and server 2 is bottleneck for line 2, so that m+
2 , m+

4 < 1. This is analogous and
generalizes case (iii-a) of the push–pull line, with μ1 < μ2 and μ3 < μ4, for which
pull priority is stable.
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The following result is on the one hand analogous to the corresponding push–pull
network result, and at the same time it generalizes the result on re-entrant lines, in
Sect. 3.1.

Theorem 4 Consider the two re-entrant line network with m(1,1) + m+
1 = m(2,1) +

m+
3 = 1 and m+

2 , m+
4 < 1. The fluid model for this network, under work conserving

policy with priority to G2, G4 over G1, G3, and LBFS for buffers in the same group,
is stable.

Proof We classify the states of the system into several modes. According to the status
of queues in the various groups our LBFS pull priority policy implies the following
processing rules, for the various modes of the system:

Possible modes of the system

G1 G2 G3 G4

(i) ≥ 0 > 0 ≥ 0 > 0 Work on G2, G4, no input, possibly no output

(iia ) > 0 > 0 ≥ 0 = 0 Work on line 1, line 2 frozen, no input,

output from line 1

(iib) ≥ 0 = 0 > 0 > 0 symmetric to (iia )

(iiia ) = 0 > 0 ≥ 0 = 0 Work on line 1, line 2 frozen, input into line 1,

output from line 1

(iiib) ≥ 0 = 0 = 0 > 0 symmetric to (iiia )

(iv) > 0 = 0 > 0 = 0 Work on line 1 and line 2, no input,

output from both lines

(va ) > 0 = 0 = 0 = 0 Work on line 1, no input to line 1,

output from line 1,

also work on line 2 with input equal to output

(vb) = 0 = 0 > 0 = 0 symmetric to (va )

We note that (i) can only happen initially. Once either G2 or G4 become empty
at some time t0, at all times t > t0 either G2 or G4 will be empty. To see this note
that if G4 is empty at t0 and G2 is not, then until G2 becomes empty there will be no
processing at G3, and so G4 will remain empty.

In the modes (iia), (iib), (iiia), (iiib) both servers are working on just one of the
re-entrant lines, line 1 for (iia), (iiia), line 2 for (iib), (iiib).

In the mode (iv), (va), (vb) the servers are working on both lines, and for groups
G2, G4 the flow in equals the flow out.

We describe the server allocation for the modes (iv), (va), (vb) in more detail
now. Let (1, k1(t)) be the last non-empty buffer on line 1 at time t . Denote
by M1(t) = ∑

l∈C(1), l≥k1(t) m1, l , and M2(t) = ∑
l∈C(2), l≥k1(t) m1, l . Define

(2, k2(t)), M3(t), M4(t) similarly. Let θ1(t), θ2(t) be the server allocations to G1
and G3 respectively, with the allocations 1 − θ1(t) to G4 and 2 − θ2(t) to G2, since
our policy has full utilization. Since buffers (1, k1) and (2, k2) are non-empty, by the
LBFS priority there is no allocation of processing to queues in (1, l), l < k1 which
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belong to G1, or to queues in (2, l), l < k2 which belong to G3, and so there is no
input into the empty queues (1, l), l < k1 which belong to G2 or to the empty queues
(2, l), l < k2 which belong to G4. Therefore all the allocation of processing is to
queues (1, l), l ≥ k1 and to (2, l), l ≥ k2. Assume that t is a regular point. Then by

Lemma 2, ˙̄D(1,l)(t) = ˙̄D(1,k1)(t), l ≥ k1, and ˙̄D(2,l)(t) = ˙̄D(2,k2)(t), l ≥ k2. From this
we obtain that at a regular time point t the utilizations and the flows have to solve:

θ1(t)

M1(t)
= 1 − θ2(t)

M2(t)
,

θ2(t)

M3(t)
= 1 − θ1(t)

M4(t)
.

The solution is:

θ1(t) = M1(t)
M3(t)−M4(t)

M1(t)M3(t)−M2(t)M4(t)
, θ2(t) = M3(t)

M1(t)−M2(t)
M1(t)M3(t)−M2(t)M4(t)

.

The values of θ1(t), θ2(t) are determined by the solution above for each pair
(1, k1(t)), (2, k2(t)), and so there are only a finite number of them.

As we observed, starting from |Q̄(0)| = 1 in state (i), we leave state (i) at time
t0 ≤ 1 and never return, and we will have |Q̄(t0)| ≤ 1. So we may assume that we
start with |Q̄(0)| = 1 with at least one of the groups G2, G4 empty and never visit
state (i).

We denote by T̄L1(t) the cumulative time during (0, t] which is spent in mode
(iia), (iiia), when we are working only on line 1 with both servers. T̄L2(t) is defined
similarly. We denote by T̄1&2(t) the cumulative time during (0, t] which is spent in
mode (iv), (va), (vb), and we let �̄1(t) and �̄2(t) denote the average of the allocations
θ1(t), θ2(t) over the time spent in modes (iv), (va), (vb) during (0, t].

We examine the output from the system, D̄1,K1(t)+ D̄2,K2(t). When in modes (iia),

(iiia) line 1 is not empty and has output at rate ˙̄D1,K1(t) ≥ 1
m̃ . Similarly, when in modes

(iib), (iiib) line 2 is not empty and has output at rate ˙̄D2,K2(t) ≥ 1
m̃ . When in state (iv),

lines 1 and 2 are non-empty, with G2, G4 empty and there is output from G1, G3.

The rate of output is then ˙̄D1,K1(t) ≥ θ1(t)
1
m̃ from line 1, and ˙̄D2,K2(t) ≥ θ2(t)

1
m̃

from line 2.
In state (va) output from line 1 is again ˙̄D1,K1(t) ≥ θ1(t)

1
m̃ , while line 2 is empty,

and has output at the same rate as the input from the IVQ (2, 1), so ˙̄D2,K2(t) = θ2(t).
It follows that in state (va)

˙̄D1,K1(t) + ˙̄D2,K2(t) ≥ (θ1(t) + θ2(t))

(
1 + θ1(t)

θ1(t) + θ2(t)

(
1

m̃
− 1

))
.

We now define

ε1 = min
θ1(t)

θ1(t) + θ2(t)

(
1

m̃
− 1

)
,
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where the minimum is taken over all the values of k1(t) with k2(t) = 1, and similarly

ε2 = min
θ2(t)

θ1(t) + θ2(t)

(
1

m̃
− 1

)
,

where the minimum is taken over all the values of k2(t)with k1(t) = 1. Furthermore, let
ε = min{ε1, ε2} > 0. We then have that ˙̄D1,K1(t)+ ˙̄D2,K2(t) >

(
θ1(t)+θ2(t)

)
(1+ε).

It follows that,

D̄1,K1(t) ≥ T̄L1(t) + �̄1(t)T̄1&2(t),

D̄2,K2(t) ≥ T̄L2(t) + �̄2(t)T̄1&2(t),

D̄1,K1(t) + D̄2,K2(t) ≥
(

T̄L1(t) + T̄L2(t) + (�̄1(t) + �̄2(t))T̄1&2(t)
)
(1 + ε).

(25)

We now consider the input. Denote by T̄G1(t) the total cumulative time devoted by
server 1 to group G1 over (0, t). Let T̄1,1(t) be the time devoted to the IVQ to
produce input into line 1. Let T̄G+

1
(t) = T̄G1(t) − T̄1,1(t) be the time devoted by

server 1 to processing fluid in Q̄G1 . We have: T̄G1(t) = T̄L1(t) + �̄1(t)T̄1&2(t), and
T̄1,1(t) = D̄(1,1)(t)m1,1. We have the bound

T̄G+
1
(t) ≥ m+

1

(
D̄1,K1(t) − 1

) ≥ m+
1

(
T̄L1(t) + �̄1(t)T̄1&2(t) − 1

)

since all the fluid that comes out of line 1 except for the initial fluid in the system
requires processing m+

1 per unit of fluid, and |Q̄(0)| ≤ 1. It follows that:

T̄1,1(t) ≤ T̄L1(t) + �̄1(t)T̄1&2(t) − m+
1

(
T̄L1(t) + �̄1(t)T̄1&2(t) − 1

)

= m1,1
(
T̄L1(t) + �̄1(t)T̄1&2(t)

)+ m+
1 ,

and hence

D̄(1,1)(t) ≤ T̄L1(t) + �̄1(t)T̄1&2(t) + m+
1

m1,1
= T̄G1(t) + m+

1

m1,1
. (26)

Similarly

D̄2,1(t) ≤ T̄G3(t) + m+
3

m2,1
.
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Assume now that for the whole time [0, t] the system is not empty, so that it is in one
of the modes (iia), (iiia), (iib), (iiib), (iv), (va), (vb) throughout [0, t]. Then

0 < |Q̄(t)| = 1 + D̄1,1(t) + D̄2,1(t) − D̄1,K1(t) − D̄2,K1(t)

≤ 1 + T̄G1(t) + m+
1

m1,1
+ T̄G3(t) + m+

3

m2,1
− (1 + ε)

(
T̄G1(t) + T̄G3(t)

)

= 1 + m+
1

m1,1
+ m+

3

m2,1
− ε
(
T̄G1(t) + T̄G3(t)

)
. (27)

It follows that if the system is not empty before time t then

T̄G1(t) + T̄G3(t) <

(
1 + m+

1

m1,1
+ m+

3

m2,1

)/
ε

so we have a bound on T̄G1(t) + T̄G3(t). However, t = T̄L1(t) + T̄L2(t) + T̄1&2(t),
and,

T̄G1(t) + T̄G3(t) = T̄L1(t) + T̄L2(t) + (�̄1(t) + �̄2(t))T̄1&2(t).

We note that throughout the time in modes (iv), (va), (vb) at least one of θ1(t) or θ2(t)
is positive, and has one out of the finite set of possible values. So if we let δ = min θi

be the smallest of all these values, we will have T̄G1(t) + T̄G3(t) ≥ δt , and we get the
bound:

t <

(
1 + m+

1

m1,1
+ m+

3

m2,1

)/
(εδ).

Next we prove that if |Q̄(t0)| = 0, then |Q̄(t)| = 0 for t ≥ t0. Suppose contrariwise
that there exists a δ > 0 such that |Q̄(t)| > 0, t ∈ (t0, t0 + δ]. By (25),

(D̄1,K1(t0 + δ) + D̄2,K2(t0 + δ)) − (D̄1,K1(t0) + D̄2,K2(t0))

≥(1+ ε)
[(

T̄L1(t0 + δ)+T̄L2(t0 + δ)+(�̄1(t0 + δ) + �̄2(t0 + δ))T̄1&2(t0 + δ)
)

−
(

T̄L1(t0) + T̄L2(t0) + (�̄1(t0) + �̄2(t0))T̄1&2(t0)
)]

. (28)

Similar to (26),

D̄1,1(t0 + δ) − D̄1,1(t0) ≤ T̄G1(t0 + δ) − T̄G1(t0),

D̄2,1(t0 + δ) − D̄2,1(t0) ≤ T̄G3(t0 + δ) − T̄G3(t0).
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Thus, similar to (27),

0 < |Q̄(t0 + δ)| = |Q̄(t0 + δ) − Q̄(t0)|
=
(

D̄1,1(t0 + δ) + D̄1,2(t0 + δ) − D̄1,K1(t0 + δ) − D̄2,K1(t0 + δ)
)

−
(

D̄1,1(t0) + D̄1,2(t0) − D̄1,K1(t0) − D̄2,K1(t0)
)

≤ −ε
[(

T̄G1(t0 + δ) + T̄G3(t0 + δ)
)− (T̄G1(t0) + T̄G3(t0)

)]
,

which contradicts with the non-negativity of
[(

T̄G1(t0 +δ)+ T̄G3(t0 +δ)
)−(T̄G1(t0)+

T̄G3(t0)
)]

. Hence we have that if |Q̄(t0)| = 0, then |Q̄(t)| = 0 for t ≥ t0. ��

We note that in the case that m+
2 > 1, m+

4 > 1, which is analogous and generalizes
case (iii b) of the push–pull line, with μ1 > μ2 and μ3 > μ4, we have not found a
stabilizing work conserving policy.

5 A push–pull ring

We now consider deterministic routing networks having an equal number of routes
and servers, L ≥ 2 and each route and each server have exactly one IVQ and one
standard queue. We number the queues as follows: route i has IVQ (i, 1) which is
served at server i , and a standard queue (i, 2) which is served at server i + 1, so that
the constituency of server i is C(i) = {(i, 1), (i − 1, 2)}. For the case of L = 2 this
is the push–pull network. For arbitrary finite L and without loss of generality, this
network can be presented as a ring as in Fig. 5. Note that throughout this section, all
index arithmetic is modulo L on {1, . . . , L}.

We will assume that the average processing times and rewards are such that the
optimal solution to the static production planning problem is to have all resources
fully utilized. In that case the nominal input rates and the time allocations will be
given by the solution of Ru = α, Cu = 1. We assume that this solution is all positive.
We are now looking for policies which are non-idling and which keep all the standard
queues stable.

We refer to processing at the IVQs (1, 1), . . . , (L , 1) as push operations and to
processing at the standard queues (1, 2), . . . , (L , 2) as pull operations. We let the
average service times per customer at each of the buffers be mi,1 = λ−1

i for the push
operation and mi,2 = μ−1

i for the pull operation. We denote γi = λi/μi .
In the solution of the static production planning problem we will then have from

Ru = α

αi = ui,1λi = ui,2μi ,
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Fig. 5 An illustration of a three routes push–pull ring

and substituting this into Cu = 1 we obtain the equations:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ−1
1 μ−1

L
μ−1

1 λ−1
2 0

μ−1
2

. . .

. . .
. . .

0
. . . λ−1

L−1
μ−1

L−1 λ−1
L

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

α = 1,

which are solved by:

αi = λi
di

1 + (−1)L−1
∏L

j=1 γ j
,

where we define the coefficients:

di = ((· · · (((γi+1 − 1)γi+2 + 1)γi+3 − 1)γi+4 · · · · · · · · · )γi−2 − 1)γi−1 + 1

=
L−1∑

j=0

(−1) j
j∏

k=1

γi−k . (29)

We see here that di are proportional to the nominal rates αi .
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We also define the coefficients:

ci = ((· · · (((γi−1 − 1)γi−2 + 1)γi−3 − 1)γi−4 · · · · · · · · · )γi+2 − 1)γi+1 + 1

=
L−1∑

j=0

(−1) j
j∏

k=1

γi+k, (30)

The coefficients ci , di play a key role in our derivations. Observe that for odd L:

If sign(γi − 1) is the same for all i , then sign(ci − 1) = sign(di − 1) = sign(γi − 1)

for all i . This follows from the first form of (29) and (30). Assume all γi > 1, then
if (29) is read from left to right, and the expressions in successive parts are evaluated
from inside to outside, one sees that the expression in each parenthesis ending with
−1 is greater than 0, and the expression in each parenthesis ending with +1 is then
greater than 1. Similarly for the other cases.

It is also useful to observe that,

γi ci + ci−1 = 1 − (−1)L
L∏

k=1

γk = γi di + di+1. (31)

In the symmetric case of μi = μ, λi = λ, γ = λ/μ for all i , we have that ci = di =
(1 − (−γ )L)/(1 + γ ), and αi = (λ−1 + μ−1

)−1
for all i .

We now address the question of finding a policy which makes the push–pull ring
e-stable, where we need to show that the network under the policy has a stable fluid
model. We were not able to do this in general. What we were able to do is to find
sufficient conditions under which pull priority policy induces a stable fluid model.

We define the pull priority policy for the push–pull ring: At any time every server
gives preemptive priority to serving the HOL customer in the standard queue.

We prove two theorems, the first is simply the extension of the result for the push–
pull network case (iii a). We show that if γi < 1 for all i then pull priority is stable.
Surprisingly, pull priority remains stable also when γi > 1 for all i , if L is odd, and if
the γi remain in a certain bounded region. Our method of proof here, which we did not
employ for Theorems 2, 4, is the more general method of using a Lyapunov function
to prove fluid stability.

Theorem 5 The push–pull ring with γi < 1 for all i operating under a pull-priority
policy has a stable fluid model.

Proof As in [27 Theorem 1 Case 1], define a simple Lyapunov function, f
(
Q(t)

) =
|Q(t)|. It is then quite straight forward to see that this Lyapunov function is decreasing
at a rate bounded away from 0 at all times. The analysis parallels [27]. ��
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We now look at the case when L is odd and γi > 1 for all i . Denote L̃ = L−1
2 and

define,

� = 1

L

L∑

i=1

ci
(
L̃(γi − 1) − 1

)
(32)

= L̃

(
L∏

i=1

γi + 1

)
−

L∑

i=1

ci . (33)

(The equality between (32) and (33) is established below).

Theorem 6 The push–pull ring with L odd, γi > 1 for all i , operating under a
pull-priority policy has a stable fluid model if � < 0.

We observe that in the symmetric case, for L > 2 the stability condition reduces
to,

γ <
L + 1

L − 1
. (34)

We now assume that μi = 1 for all i , this is without loss of generality, since we
are looking at the fluid model, and so we can change the units of fluid for each route
accordingly.

The proof uses f (x) =∑L
i=1 ci xi as a Lyapunov function. This function is designed

based on states (defined below as eventual modes) in which exactly one buffer is
draining at rate 1, L̃ buffers are filling up at rates γi − 1 and L̃ buffers are empty. In
the symmetric case, the rate of change in |Q(t)| for such states is L̃(γ − 1)− 1 which
is < 0 if and only if (34) holds.

We now classify the states of the push–pull ring according to the emptiness or
non-emptiness of the queues. The mode is described by the indicator vector:

M(t) = (I{Q̄1,2(t) > 0}, . . . , I{Q̄L ,2(t) > 0}).

We refer to M(t) = (�1, . . . , �L) as the mode of the system at time t , it is an element
of {0, 1}L . We say a mode is regular if �i = 0 implies that �i+1 = 1. This indicates
that no two successive standard queues in the ring are empty.

Lemma 3 If L is odd, any regular mode has two consecutive 1s.

Proof Assume (�1, . . . , �L) is a regular mode. If �i = 0 we must have �i−1 = 1 and
�i+1 = 1. Hence, the number of 1s is at least as large as the number of 0s. If L is odd
this implies that there are at least L+1

2 1s and at most L−1
2 0s. Clearly this implies that

not all 1s are isolated. ��
The next lemma shows that it is enough to consider the drift of f

(
Q̄(t)

)
only on

regular modes.
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Lemma 4 Assume that γi > 1 for all i and assume a pull-priority policy. Then for
all regular time points, t , of the fluid model (Q̄, T̄ ), M(t) is either a regular mode or
(0, . . . , 0).

Proof Assume t is a regular time point. Then ˙̄Tk,1(t) + ˙̄Tk−1,2(t) = 1, and if

Q̄k−1,2(t) > 0 then ˙̄Tk−1,2(t) = 1. This is because server k is fully utilized and

we use pull priority. Also, by Lemma 2, if Q̄k+1,2(t) = 0, then ˙̄Tk+1,1(t)λk+1 =
˙̄Tk+1,2(t)μk+1. Assume now also that M(t) has two consecutive zeros but is not all
zero. Then there exists k for which Q̄k−1,2(t) > 0 and Q̄k,2(t) = Q̄k+1,2(t) = 0.

Then ˙̄Tk−1,2(t) = 1 (server k is pulling from buffer (k − 1, 2)), and hence ˙̄Tk,1(t) = 0
(server k is not pushing fluid into (k, 2)). Hence buffer (k, 2) has no input, and is empty,

so ˙̄Tk,2(t) = 0 (server k +1 is not pulling out of buffer (k, 2)). But then ˙̄Tk+1,1(t) = 1,

and so input into buffer (k +1, 2) is at rate γk+1, which would imply γk+1 = ˙̄Tk+1,1(t)
but this is impossible since γk+1 > 1. ��

We say that a regular mode is eventual if it contains exactly two consecutive 1s.
For each eventual node define the set Fi = { j = i + 2k, k = 1, . . . , L̃}. Denote the
eventual modes by M1, . . . , ML where Mi = {�1, . . . , �L} with

� j =
{

1, j ∈ Fi ∪ {i},
0, otherwise.

For example for the case of L = 5, the eventual modes are:

{M1, M2, M3, M4, M5} = {
(1, 0, 1, 0, 1), (1, 1, 0, 1, 0), (0, 1, 1, 0, 1),

(1, 0, 1, 1, 0), (0, 1, 0, 1, 1)
}
.

Heuristically observe that when M(t) = Mi buffers j ∈ Fi are filling up at rate γ j −1,
while buffer i is draining at rate −1 and the other buffers remain 0. Consider now the
L × L (L odd) matrix A = (ai j ) with

ai j =
⎧
⎨

⎩

−1, i = j,
γ j − 1, j ∈ Fi ,

0, otherwise.

The i th row of A signifies the net change of Q̄ in the eventual modes Li . E.g., for
L = 5:

A =

⎡

⎢⎢⎢⎢⎣

−1 0 γ3 − 1 0 γ5 − 1
γ1 − 1 −1 0 γ4 − 1 0
0 γ2 − 1 −1 0 γ5 − 1
γ1 − 1 0 γ3 − 1 −1 0
0 γ2 − 1 0 γ4 − 1 −1

⎤

⎥⎥⎥⎥⎦
.

Lemma 5 Assume L is odd. Then x = (c1, . . . , cL)′ is a solution of Ax = �1 and
further the equality between (32) and (33) holds.
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Proof We first show that
∑L

j=1 ai j c j is independent of i and equals (33):

L∑

j=1

ai j c j = −ci +
∑

j∈Fi

(γ j c j − c j )

= L̃

(
L∏

k=1

γk + 1

)
− ci −

∑

j∈Fi

(
c j−1 + c j

)

= L̃

(
L∏

k=1

γk + 1

)
−

L∑

j=1

c j ,

yielding (32). The first equality above follows from the structure of the matrix A,
the second follows from (31) and the last equality follows from {i} ∪ Fi−1 ∪ Fi =
{1, . . . , L}. Observe now that for each column j = 1, . . . , L of A,

∑L
i=1 ai j =

L̃(γ j − 1) − 1. Thus summing over the equations above for i = 1, . . . , L we obtain,

L∑

j=1

c j
(
L̃(γ j − 1) − 1

) = L

(
L̃

(
L∏

k=1

γk + 1

)
−

L∑

k=1

ck

)
,

yielding (33). ��
We note also that � = det(A).

Corollary 1 For eventual regular modes d
dt f (Q̄(t)) = �.

Proof Follows immediately from above lemma. ��
On the other regular modes that are not eventual, we have:

Lemma 6 Assume � < 0 then for all t such that M(t) is a regular mode, d
dt f (Q̄(t))

< �.

Proof Eventual modes are covered by the previous corollary, we now consider regular
modes that are not eventual. Denote M(t) = (�1, . . . , �L). Denote J = {i : �i−1 = 0}
(observe that since the mode is regular i ∈ J implies that �i = 1).

Consider now the eventual modes Mi+1 for all i ∈ J , for each of these modes:

ci (γi − 1) − ci+1 + Pi < �,

where Pi = ∑ j∈Fi+1\{i} c j (γ j − 1) > 0. Summing these inequalities over i ∈ J we
have,

∑

i∈J
ci (γi − 1) − ci+1 < � −

∑

i∈J
Pi < �.

The left hand side of the above is an upper bound of the drift in M(t). ��
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The proof of Theorem 6 now follows:

Proof For the mode (0, . . . , 0), f (Q̄(t)) = 0. For regular modes the lemmas above
show that f (Q̄(t)) ≤ � < 0. The non-regular modes do not need to be considered.

��

6 Concluding remarks

A key feature of most queueing systems is that they cannot be stable when the load
anywhere in the system is equal to 1, so full utilization leads to instability. In the
interest of efficiency one would like to have a load close to 1 and thus much of the
effort in queueing research has been directed at analyzing systems in heavy traffic,
and optimizing their performance. It is nevertheless the case that with ρ close to 1,
while stable, the system becomes very congested. Yet in practice, many systems do
operate at full utilization and yet are perfectly stable and remain uncongested. This
paper presents sensible models for such systems: MCQN–IVQ.

We cannot yet answer the question of how to operate general MCQN–IVQ at full
utilization, with no congestion. Our results in the current paper do however show how
it can be done for several useful types of networks. We believe the ideas generated here
will be useful in the study of other systems with IVQs. As stated in the Key Research
Question of Sect. 1, it would be interesting and challenging to find practical stable
policies that would work for general MCQN–IVQ, with full utilization and workload
of standard queues less than 1.

One aspect of MCQN–IVQ not covered in the current paper, is the diffusion scale
behavior of the departure and time allocation processes. Such analysis was carried
out for specific examples in [27] and can be further extended to general MCQN–
IVQ. In the diffusion scaling regime, the queue length tends to zero, while both the
“arrival processes” given by the output of the IVQs, and the departure processes tend to
Brownian motions. So the additional control offered by the IVQs allows us to control
the fluctuations in the queue lengths.
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