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Introduction

Multiclass queueing networks
Dai,Hasenbein,Vande Vate (2004)
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I Head-of-the-line (HL)
I Work conserving (non-idling)
I Service of a class can be prohibited depending on the

(non-)presence of customers of certain classes, e.g. Static Buffer
Priority discipline (SBP)



4/25

/w

Introduction

Key result: Dai (1995)
Consider a HL queueing network under some given policy. Assume that
the associated fluid model for the network is stable. Then under certain
technical assumptions the queueing network is stable.

Our problem of interest
When is an associated fluid model stable?
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Problem

Problem
Consider the following set of signals

B =


[
X(t)
T(t)

] ∣∣∣∣∣∣∣∣∣
0 ≤ X(t) = X(0) + αt + FT(t) T(0) = 0

T(t) non-decreasing G [T(t)− T(s)] ≤ β(t − s)

0 =

∫ t

0
Xi (s) d Tj (s)


When does it hold that all signals X(t) ∈ B converge to 0 in finite time?

I G used for modeling constituency, as well as equality constraints
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Problem
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B =


[
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] ∣∣∣∣∣∣∣∣∣
0 ≤ X(t) = X(0) + αt + FT(t) T(0) = 0

T(t) non-decreasing G [T(t)− T(s)] ≤ β(t − s)

0 =

∫ t

0
Xi (s) d Tj (s)


When does it hold that all signals X(t) ∈ B converge to 0 in finite time?

Additional assumptions

I X(t) piecewise linear on countable partition of intervals
I rank conditions involving α, β, F , and G

I G used for modeling constituency, as well as equality constraints
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Examples

Example 1: Push-pull ring
See also Weiss et al. (Session 3.11, yesterday)

Xi (t) = Xi (0) + λiTi ,1(t)− µiTi ,2(t)

t = Ti ,1(t) + Ti−1,2(t)

0 =

∫ t

0
Xi (s) d Ti+1,1(s)

0 ≤ Xi (t)

Ti ,j (t) non-decreasing

Ti ,j (0) = 0
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Examples

Example 2: Dai, Hasenbein, Vande Vate (2004)

µ1 = 1/4

µ3 = 1/4

µ4 = 1

µ2 = 1

µ5 = 1/4

λ =
1

10

X1(t) = X1(0) + λt − µ1T1(t)

Xi (t) = Xi (0) + µi−1Ti−1(t)− µiTi (t)

T+
1 (t) = t − T1(t)

T+
3 (t) = t − T1(t)− T3(t)

T+
4 (t) = t − T1(t)− T3(t)− T4(t)

T+
5 (t) = t − T5(t)

T+
2 (t) = t − T5(t)− T2(t)

Ti (t), T
+
i (t) non-decreasing

0 = Ti (0) = T+
i (0)

0 ≤ Xi (t)

0 =

∫ t

0
X1(s) d T+

1 (s)

0 =

∫ t

0
(X1 + X3)(s) d T+

3 (s)

0 =

∫ t

0
(X1 + X3 + X4)(s) d T+

4 (s)

0 =

∫ t

0
X5(s) d T+

5 (s)

0 =

∫ t

0
(X2 + X5)(s) d T+

2 (s)
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Preliminaries

Some standard observations

I For s ≤ t : 0 ≤ Ti (t)− Ti (s) ≤ t − s , so solutions in B are Lipschitz
continuous

I In particular they are absolutely continuous
I Therefore differentiable almost everywhere

Definition
Points t where all time derivatives exist are called regular points.

Remark
Since X(t) piecewise linear on countable union of intervals, we can
define derivatives at non-regular points by taking limits from the right.
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Approach

I Rewrite X(t) ∈ B as a differential inclusion:

Ẋ(t) ∈ SX(t) ⊂ S (1)

where SX(t) denotes set, depending on X(t) and S is a finite set.

• Dynamics for regular points
• Dynamics for non-regular points

I Derive graph with possible transitions
I Stability analysis of the differential inclusion (1) by means of the

graph
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Ẋ(t) ∈ SX(t) ⊂ S (1)

where SX(t) denotes set, depending on X(t) and S is a finite set.
We do that in two steps

• Dynamics for regular points
• Dynamics for non-regular points

I Derive graph with possible transitions
I Stability analysis of the differential inclusion (1) by means of the

graph



10/25

/w

Mode-dynamics for regular points

Partition state space into regions
Define L(t) = (1{X1(t)>0}, . . . ,1{Xn (t)>0}) ∈ {0,1}n .
We refer to L(t) = (`1, . . . , `n) as the mode of the system at time t .

Goal
Derive mode-dynamics for regular points (i.e. regular modes).

Definition
Region is union of (regular) modes with same dynamics.
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Mode-dynamics for regular points

Example 1: Push-pull ring
Recall equations

Ẋi (t) = λi Ṫi ,1(t)− µi Ṫi ,2(t) 0 = Xi (t)Ṫi+1,1(t)

1 = Ṫi ,1(t) + Ṫi−1,2(t) 0 ≤ Ṫi ,j (t), Xi (t)

During mode: two cases

Xi (t) > 0 : Ṫi+1,1(t) = 0

Xi (t) = 0, i.e. Ẋi (t) = 0 : λi Ṫi ,1(t)− µi Ṫi ,2(t) = 0

For each mode: 6 linear equations with 6 unknown Ṫi ,j (t).

Solution needs to satisfy 0 ≤ Ṫi ,j (t) for mode to be regular.
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Mode-dynamics for regular points

Example 1: Push-pull ring (λi > µi )
Regular modes (5):

L(t) = (1,1,1): Ẋ(t) = [−µ1,−µ2,−µ3]
′

L(t) = (0,1,1): Ẋ(t) = [0, λ2 − µ2,−µ3]
′

L(t) = (1,0,1): Ẋ(t) = [−µ1,0, λ3 − µ3]
′

L(t) = (1,1,0): Ẋ(t) = [λ1 − µ1,−µ2,0]′

L(t) = (0,0,0): Ẋ(t) = [0,0,0]′

Result: 5 possible directions of movement.

Non-regular modes (3):

L(t) = (1,0,0)

L(t) = (0,1,0)

L(t) = (0,0,1)
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Mode-dynamics for regular points

Example 2: Dai, Hasenbein, Vande Vate (2004)
Along the same lines we obtain

I 16 regular modes
I 16 non-regular modes

Some modes have same direction of movement.

Result: 11 possible directions of movement.

Remark
Mode L(t) = (0,0,0,1,0) is regular: Ẋ(t) =

(
0,0,0,− 1

10 ,0
)
.
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Mode-dynamics for regular points

Two problems

I Dynamics for non-regular modes?
I Non-unique direction of movement is a challenge

Next step
Need to determine dynamics for non-regular points.



15/25

/w

Dynamics for non-regular points

Some observations
I So far, two options considered:

• Xi (t) > 0
• Xi (t) = 0 and Ẋi (t) = 0

For mode-dynamics in regular points this suffices.

I For non-regular points, a third case needs to be considered:
• Xi (t) = 0 and Ẋi (t) > 0

I Extra condition: Xi (t)Ṫj (t) = 0 implies Ẋi (t)Ṫj (t) = 0
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Dynamics for non-regular points

Example 1: Push-pull ring
Recall equations

Ẋi (t) = λi Ṫi ,1(t)− µi Ṫi ,2(t) 0 = Xi (t)Ṫi+1,1(t)

1 = Ṫi ,1(t) + Ṫi−1,2(t) 0 = Ẋi (t)Ṫi+1,1(t)

0 ≤ Ṫi ,j (t) 0 ≤ Xi (t)

For each of the buffers consider three cases

Xi (t) > 0 : Ṫi+1,1(t) = 0

Xi (t) = 0 and Ẋi (t) = 0 : λi Ṫi ,1(t)− µi Ṫi ,2(t) = 0

Xi (t) = 0 and Ẋi (t) > 0 : Ṫi+1,1(t) = 0

Solution needs to satisfy Ṫi ,j (t) ≥ 0 and case conditions for feasibility.
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Dynamics for non-regular points

Example 1: Push-pull ring (λi > µi )

L = (0, ·,1): Ẋ = (0, λ2− µ2,−µ3)
′

L = (·,1,0): Ẋ = (λ1− µ1,−µ2,0)′

L = (1,0, ·): Ẋ = (−µ1,0, λ3− µ3)
′

L = (1,1,1): Ẋ = (−µ1,−µ2,−µ3)
′

L = (0,0,0): Ẋ = (0,0,0)′

L = (1,1,1)

L = (0, ·,1)

L = (·,1,0)

L = (1,0, ·)

L = (0,0,0)

Need to investigate loop.
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Dynamics for non-regular points

Example 1: Push-pull ring (λi > µi )
Recall dynamics

L(t) = (0, ·,1): Ẋ = (0, λ2 − µ2,−µ3)
′

L(t) = (·,1,0): Ẋ = (λ1 − µ1,−µ2,0)′

L(t) = (1,0, ·): Ẋ = (−µ1,0, λ3 − µ3)
′

Consider Lyapunov function (define ρi = λi/µi )

V = [1 + ρ2(ρ3 − 1)]
x1
µ1

+ [1 + ρ3(ρ1 − 1)]
x2
µ2

+ [1 + ρ1(ρ2 − 1)]
x3
µ3

Along any of the three modes we obtain:

V̇ =
3∏

i=1

(ρi − 1)− 1
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Dynamics for non-regular points

Example 1: Push-pull ring (λi > µi )
Resulting graph for

∏3
i=1(ρi − 1) < 1:

L = (1,1,1)

L = (0, ·,1)

L = (·,1,0)

L = (1,0, ·)

L = (0,0,0)

For
∏3

i=1(ρi − 1) > 1 we have instability.
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Dynamics for non-regular points

Example 2: Dai, Hasenbein, Vande Vate (2004)
Resulting dynamics

1:L(t) = (1, ·, ·, ·,1): Ẋ = [−3/20,1/4,0,0,−1/4]′

2:L(t) = (0, ·,1, ·,1): Ẋ = [0,1/10,−3/20,3/20,−1/4]′

3:L(t) = (0,1,0,1,0): Ẋ ∈ S(0,1,0,1,0)

4:L(t) = (0, ·,0,1,1): Ẋ = [0,1/10,0,−3/5,7/20]′

5:L(t) = (0, ·,0,0,1): Ẋ = [0,1/10,0,0,−1/4]′

6:L(t) = (1,1, ·, ·,0): Ẋ = [−3/20,−3/4,1,0,0]′

7:L(t) ∈ {(0,1,1, ·,0), (0,1, ·,0,0)}: Ẋ = [0,−9/10,17/20,3/20,0]′

8:L(t) = (1,0, ·, ·,0): Ẋ = [−3/20,0,1/4,0,0]′

9:L(t) = (0,0,1, ·,0): Ẋ = [0,0,−1/20,3/20,0]′

10:L(t) = (0,0,0,1,0): Ẋ ∈ S(0,0,0,1,0)

11:L(t) = (0,0,0,0,0): Ẋ = [0,0,0,0,0]′
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Dynamics for non-regular points

Example 2: Dai, Hasenbein, Vande Vate (2004)
Two interesting modes:

3:L (t) = (0,1,0,1,0):

Ẋ(t) ∈
{

[0,− 9
10

,
17
20

,
3
20

,0]′, [0,
1

150
,0,− 2

15
,0]′, [0,

1
10

,0,−3
5

,
7
20

]′
}

10:L (t) = (0,0,0,1,0):

Ẋ(t) ∈
{

[0,0,0,− 1
10

,0]′, [0,
1

150
,0,− 2

15
,0]′, [0,

1
10

,0,−3
5

,
7
20

]′
}

Remark
Notice: for mode 10 not two possible trajectories, but three.
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Dynamics for non-regular points

Example 2: Dai, Hasenbein, Vande Vate (2004)
Resulting graph:

1 2 3 4 5

6

8

7

9 10 11

Need to investigate loops (3-)4-5-7-9-10: Unstable
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Obtaining stable dynamics

Assume that B contains both stable and unstable trajectories. Can we
remove the unstable trajectories?

1 2 3 4 5
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8

7

9 10 11
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Obtaining stable dynamics

Modified policy:
Machine B starts a job of type two whenever both x3 = 0 and x2 > 0.

Illustration by simulation

Original SBP policy Modified policy



24/25

/w

Obtaining stable dynamics

Modified policy:
Machine B starts a job of type two whenever both x3 = 0 and x2 > 0.

Illustration by simulation

Original SBP policy Modified policy



25/25

/w

Conclusions

I A method (algorithm) for describing solutions of a fluid limit model
as differential inclusion has been presented.

I The method can be formalized as a finite time algorithm for general
queueing networks with SBP policies. We require that service of a
class can be prohibited depending on the (non-)presence of
customers of certain classes

I The differential inclusion leads to a graph that can be used for
analyzing stability of the fluid limit model

I Unstable solutions can be eliminated by modifying policy (on set of
measure zero)
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