Optimal Control of a Deterministic Multiclass Queuing System Simultaneously Serving Several Queues
 \section*{}

. Erjen Lefeber, Stefan Lämmer

Q $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Acknowledgment

This work is supported by the Netherlands Organization for Scientific Research (NWO-VIDI grant 639.072.072).

Paper

E. Lefeber, S. Lämmer, J.E. Rooda, Optimal control of a deterministic multiclass queuing system by serving several queues simultaneously, Systems and Control Letters 60(7), 524-529, 2011.

Introduction

MCQS simultaneously serving several queues

- Intersection
- Multiclass tandem queue without buffers, e.g. hot ingots
- Polling system with physical constraints, e.g. (un)loading container vessels

Introduction

Systems can be modeled as single server with modes:
mode $\{1,3\}$: serve class 1 and class 3 simultaneously, mode $\{1,4\}$: serve class 1 and class 4 simultaneously, mode $\{2,4\}$: serve class 2 and class 4 simultaneously, and the additional modes
mode $\{1\}$: serve only class 1 ,
mode $\{2\}$: serve only class 2 ,
mode $\{3\}$: serve only class 3 ,
mode $\{4\}$: serve only class 4,
mode $\emptyset:$ idle,

Introduction

Assumptions

- Deterministic fluid model
- No setup times
- Unit service rate, i.e. $\mu_{i}=1$ (w.l.o.g.).
- No arrivals, i.e. $\lambda_{i}=0$.

Introduction

Assumptions

- Deterministic fluid model
- No setup times
- Unit service rate, i.e. $\mu_{i}=1$ (w.l.o.g.).
- No arrivals, i.e. $\lambda_{i}=0$.

Objective

$$
\min \int_{0}^{\infty} 4 x_{1}(t)+3 x_{2}(t)+2 x_{3}(t)+5 x_{4}(t) \mathrm{d} t
$$

where $x_{i}(t)$ denotes the length of queue i at time t.

Introduction

$$
\min \int_{0}^{\infty} 4 x_{1}(t)+3 x_{2}(t)+2 x_{3}(t)+5 x_{4}(t) d t
$$

Assume that the system initially starts at $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(6,6,6,6)$.

Introduction

$$
\min \int_{0}^{\infty} 4 x_{1}(t)+3 x_{2}(t)+2 x_{3}(t)+5 x_{4}(t) d t
$$

Assume that the system initially starts at $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(6,6,6,6)$.

Mode	Rate of cost decrease
mode $\{1,4\}$	9
mode $\{2,4\}$	8
mode $\{1,3\}$	6
mode $\{4\}$	5
mode $\{1\}$	4
mode $\{2\}$	3
mode $\{3\}$	2
mode \emptyset	0

Introduction

$$
\min \int_{0}^{\infty} 4 x_{1}(t)+3 x_{2}(t)+2 x_{3}(t)+5 x_{4}(t) d t
$$

Assume that the system initially starts at $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(6,6,6,6)$.

Mode	Rate of cost decrease
mode $\{1,4\}$	9
mode $\{2,4\}$	8
mode $\{1,3\}$	6
mode $\{4\}$	5
mode $\{1\}$	4
mode $\{2\}$	3
mode $\{3\}$	2
mode \emptyset	0

μc-rule Total costs: 504.

- mode $\{1,4\}$ for 6
- mode $\{2\}$ for 6
- mode $\{3\}$ for 6

Introduction

$$
\min \int_{0}^{\infty} 4 x_{1}(t)+3 x_{2}(t)+2 x_{3}(t)+5 x_{4}(t) d t
$$

Assume that the system initially starts at $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(6,6,6,6)$.

Mode	Rate of cost decrease
mode $\{1,4\}$	9
mode $\{2,4\}$	8
mode $\{1,3\}$	6
mode $\{4\}$	5
mode $\{1\}$	4
mode $\{2\}$	3
mode $\{3\}$	2
mode \emptyset	0

μc-rule Total costs: 504. Min. time Total costs: 468.

- mode $\{2,4\}$ for 6
- mode $\{1,3\}$ for 6

Introduction

$$
\min \int_{0}^{\infty} 4 x_{1}(t)+3 x_{2}(t)+2 x_{3}(t)+5 x_{4}(t) d t
$$

Assume that the system initially starts at $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(6,6,6,6)$.

Mode	Rate of cost decrease
mode $\{1,4\}$	9
mode $\{2,4\}$	8
mode $\{1,3\}$	6
mode $\{4\}$	5
mode $\{1\}$	4
mode $\{2\}$	3
mode $\{3\}$	2
mode \emptyset	0

μc-rule Total costs: 504. Min. time Total costs: 468.
Optimal Total costs: 456.

Problem

- $S=(\mathcal{N}, \mathcal{C})$ undirected graph which models classes that cannot be served simultaneously
- Vertices $\mathcal{N}=\{1,2, \ldots, N\}$: classes
- Edges $\mathcal{C} \subset \mathcal{N} \times \mathcal{N}:$ conflicting classes.

For the example:

$$
\mathcal{N}=\{1,2,3,4\} \text { and } \mathcal{C}=\{(1,2),(2,3),(3,4)\}
$$

Problem

- $S=(\mathcal{N}, \mathcal{C})$ undirected graph which models classes that cannot be served simultaneously
- Vertices $\mathcal{N}=\{1,2, \ldots, N\}$: classes
- Edges $\mathcal{C} \subset \mathcal{N} \times \mathcal{N}:$ conflicting classes.

For the example:

$$
\mathcal{N}=\{1,2,3,4\} \text { and } \mathcal{C}=\{(1,2),(2,3),(3,4)\}
$$

- A set $m \subset \mathcal{N}$ is an allowed mode when $m \times m \cap \mathcal{C}=\emptyset$.
- \mathcal{M}_{S} set of all allowed modes for system S.

Problem

Dynamics:

$$
\begin{align*}
\dot{x}(t) & =-B_{m} u(t) \tag{1}\\
\text { where } B_{m} & =\left[\begin{array}{cccc}
\mathbb{I}_{m}(1) & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mathbb{I}_{m}(N)
\end{array}\right] \quad \mathbb{I}_{m}(i)=\left\{\begin{array}{cl}
1 & \text { if } i \in m \\
0 & \text { if } i \notin m
\end{array}\right.
\end{align*}
$$

Constraints:

$$
\begin{equation*}
x_{i}(t) \geq 0 \quad 0 \leq u_{i}(t) \leq \mu_{i} \quad \forall i \in \mathcal{N}, \quad \forall t \geq 0 \tag{2}
\end{equation*}
$$

Problem

Dynamics:

$$
\begin{equation*}
\dot{x}(t)=-B_{m} u(t) \quad m \in \mathcal{M}_{S} \tag{1}
\end{equation*}
$$

where $B_{m}=\left[\begin{array}{cccc}\mathbb{I}_{m}(1) & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mathbb{I}_{m}(N)\end{array}\right] \quad \mathbb{I}_{m}(i)=\left\{\begin{array}{cl}1 & \text { if } i \in m \\ 0 & \text { if } i \notin m,\end{array}\right.$
Constraints:

$$
\begin{equation*}
x_{i}(t) \geq 0 \quad 0 \leq u_{i}(t) \leq \mu_{i} \quad \forall i \in \mathcal{N}, \quad \forall t \geq 0 \tag{2}
\end{equation*}
$$

Problem: Find feedback $u(x), m(x)$ for (1) guaranteeing (2), minimizing

$$
J\left(x_{0}\right)=\int_{0}^{\infty} c^{T} x\left(s ; u, m, x_{0}\right) \mathrm{d} s
$$

Some basic lemmas

Lemma (max rate)

For optimal policy: rate of service of class $i \in \mathcal{N}$ is given by $u_{i}(x)=\mu_{i}$.

Some basic lemmas

Lemma (max rate)

For optimal policy: rate of service of class $i \in \mathcal{N}$ is given by $u_{i}(x)=\mu_{i}$.

Lemma (μc)

For an optimal policy: $\sum_{i \in m_{k}} \mu_{i} c_{i}$ is nonincreasing for two consecutive modes m_{k}.

Some basic lemmas

Lemma (max rate)

For optimal policy: rate of service of class $i \in \mathcal{N}$ is given by $u_{i}(x)=\mu_{i}$.

Lemma (μc)

For an optimal policy: $\sum_{i \in m_{k}} \mu_{i} c_{i}$ is nonincreasing for two consecutive modes m_{k}.

Lemma

Switching infinitely fast between several modes can be ignored w.l.o.g.

Optimization problem

Let $\tau=\left[\begin{array}{lllllll}\tau_{14} & \tau_{24} & \tau_{13} & \tau_{4} & \tau_{1} & \tau_{2} & \tau_{3}\end{array}\right]^{T}$ denote the durations of the successive modes.

Optimization problem

Let $\tau=\left[\begin{array}{lllllll}\tau_{14} & \tau_{24} & \tau_{13} & \tau_{4} & \tau_{1} & \tau_{2} & \tau_{3}\end{array}\right]^{T}$ denote the durations of the successive modes.

Given τ we can determine the resulting costs, e.g.

$$
\int_{0}^{\infty} x_{1}(s) d s=\frac{1}{2} x_{10}^{2}+\left(x_{10}-\tau_{14}\right) \tau_{24}+\left(x_{10}-\tau_{14}-\tau_{13}\right) \tau_{4}
$$

Optimization problem

Let $\tau=\left[\begin{array}{lllllll}\tau_{14} & \tau_{24} & \tau_{13} & \tau_{4} & \tau_{1} & \tau_{2} & \tau_{3}\end{array}\right]^{T}$ denote the durations of the successive modes.

Given τ we can determine the resulting costs, e.g.

$$
\int_{0}^{\infty} x_{1}(s) d s=\frac{1}{2} x_{10}^{2}+\left(x_{10}-\tau_{14}\right) \tau_{24}+\left(x_{10}-\tau_{14}-\tau_{13}\right) \tau_{4}
$$

In addition we have constraints like

$$
x_{10}=\tau_{14}+\tau_{13}+\tau_{1} \quad \text { and } \quad \tau_{i} \geq 0
$$

Optimization problem

The problem can be written as an mpQP:

$$
\min _{\tau} \frac{1}{2} \tau^{T} H \tau-x_{0}^{T} F \tau+\frac{1}{2} x_{0}^{T} Y_{x_{0}}
$$

subject to

$$
G \tau \leq x_{0}
$$

which can be solved for an arbitrary parameter x_{0}.

Note that solving for τ_{14}, τ_{24}, and τ_{13} suffices.

Solution (1)

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
\frac{1}{2} & -\frac{1}{3} & -\frac{1}{3} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{3} & \frac{1}{3} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{3} & -\frac{1}{2}
\end{array}\right] x_{0} \quad \text { for }\left[\begin{array}{rrrr}
-3 & 2 & 2 & -3 \\
3 & -2 & -2 & -3 \\
-3 & -2 & -2 & 3 \\
-3 & -4 & 2 & 3 \\
3 & 2 & -4 & -3
\end{array}\right] x_{0} \leq 0} \\
& {\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] x_{0} \quad \text { for }\left[\begin{array}{rrrr}
0 & -1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
3 & -2 & -2 & 3
\end{array}\right] x_{0} \leq 0} \\
& {\left[\begin{array}{ll}
\tau_{14} \\
\tau_{24} \\
\tau_{13}
\end{array}\right]= \begin{cases}{\left[\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1
\end{array}\right] x_{0}} & \text { for }\left[\begin{array}{rrrr}
1 & 0 & -1 & -1 \\
-3 & 2 & 2 & 3
\end{array}\right] x_{0} \leq 0 \\
{\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] x_{0}} & \text { for }\left[\begin{array}{rrrr}
-1 & -1 & 0 & 1 \\
3 & 2 & 2 & -3
\end{array}\right] x_{0} \leq 0\end{cases} }
\end{aligned}
$$

Solution (2)

$$
\begin{aligned}
& \left(\begin{array}{c}
\vdots \\
{\left[\begin{array}{rrr}
0 & -1 & 0 \\
0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
\hline
\end{array}\right] x_{0} \quad \text { for }\left[\begin{array}{rrrr}
0 & 1 & 0 & -1 \\
-1 & -1 & 0 & 1 \\
3 & 4 & -2 & -3
\end{array}\right] x_{0} \leq 000}
\end{array}\right. \\
& {\left[\begin{array}{l}
\tau_{14} \\
\tau_{24} \\
\tau_{13}
\end{array}\right]=\left\{\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] x_{0} \quad \text { for }\left[\begin{array}{rrrr}
-1 & 0 & 1 & 0 \\
1 & 0 & -1 & -1 \\
-3 & -2 & 4 & 3
\end{array}\right] x_{0} \leq 0} \\
& {\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] x_{0} \quad \text { for }\left[\begin{array}{llll}
-1 & 0 & 1 & 1
\end{array}\right] x_{0} \leq 0} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] x_{0} \quad \text { for }\left[\begin{array}{llll}
1 & 1 & 0 & -1
\end{array}\right] x_{0} \leq 0 \text {. }}
\end{aligned}
$$

Example: Optimal solution

$$
\min \int_{0}^{\infty} 4 x_{1}(t)+3 x_{2}(t)+2 x_{3}(t)+5 x_{4}(t) d t
$$

Assume that the system initially starts at $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(6,6,6,6)$.

Mode	Rate
mode $\{1,4\}$	9
mode $\{2,4\}$	8
mode $\{1,3\}$	6
mode $\{4\}$	5
mode $\{1\}$	4
mode $\{2\}$	3
mode $\{3\}$	2
mode \emptyset	0

μc-rule Total costs: 504.
Min. time Total costs: 468.
Optimal Total costs: 456.

Example: Optimal solution

$$
\min \int_{0}^{\infty} 4 x_{1}(t)+3 x_{2}(t)+2 x_{3}(t)+5 x_{4}(t) d t
$$

Assume that the system initially starts at $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(6,6,6,6)$.

Mode	Rate
mode $\{1,4\}$	9
mode $\{2,4\}$	8
mode $\{1,3\}$	6
mode $\{4\}$	5
mode $\{1\}$	4
mode $\{2\}$	3
mode $\{3\}$	2
mode \emptyset	0

μc-rule Total costs: 504.
Min. time Total costs: 468.
Optimal Total costs: 456.

- mode $\{1,4\}$ for $2 \quad(4,6,6,4)$
- mode $\{2,4\}$ for $4 \quad(4,2,6,0)$
- mode $\{1,3\}$ for $4 \quad(0,2,2,0)$
- mode $\{2\}$ for $2 \quad(0,0,2,0)$
- mode $\{3\}$ for $2 \quad(0,0,0,0)$

Summary

Using the mpQP-approach we can solve the problem for

- Given cost vector c
- Arbitrary initial condition

The controller becomes a "lookup table".

Summary

Using the mpQP-approach we can solve the problem for

- Given cost vector c
- Arbitrary initial condition

The controller becomes a "lookup table".

Remaining questions

- Can we solve the problem for arbitrary c ?
- Can we describe the controller more elegantly?

A dynamic programming like approach

Let $\mu_{i}>0$ and $c_{i}>0$ be given such that the sequence of modes remains the same, i.e. $0<\mu_{3} c_{3} \leq \mu_{2} c_{2}<\mu_{1} c_{1} \leq \mu_{4} c_{4} \leq \mu_{1} c_{1}+\mu_{3} c_{3}$

Step 1

Assume that only the final five modes are given, i.e. only mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset.

A dynamic programming like approach

Let $\mu_{i}>0$ and $c_{i}>0$ be given such that the sequence of modes remains the same, i.e. $0<\mu_{3} c_{3} \leq \mu_{2} c_{2}<\mu_{1} c_{1} \leq \mu_{4} c_{4} \leq \mu_{1} c_{1}+\mu_{3} c_{3}$

Step 1

Assume that only the final five modes are given, i.e. only mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset.

Solution is simple: $\tau_{i}=x_{i 0} / \mu_{i}$.

A dynamic programming like approach

Let $\mu_{i}>0$ and $c_{i}>0$ be given such that the sequence of modes remains the same, i.e. $0<\mu_{3} c_{3} \leq \mu_{2} c_{2}<\mu_{1} c_{1} \leq \mu_{4} c_{4} \leq \mu_{1} c_{1}+\mu_{3} c_{3}$

Step 1

Assume that only the final five modes are given, i.e. only mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset.

Solution is simple: $\tau_{i}=x_{i 0} / \mu_{i}$.
Cost to go:

$$
\frac{1}{2} x^{T}\left[\begin{array}{llll}
c_{1} / \mu_{1} & c_{2} / \mu_{1} & c_{3} / \mu_{1} & c_{1} / \mu_{4} \\
c_{2} / \mu_{1} & c_{2} / \mu_{2} & c_{3} / \mu_{2} & c_{2} / \mu_{4} \\
c_{3} / \mu_{1} & c_{3} / \mu_{2} & c_{3} / \mu_{3} & c_{3} / \mu_{4} \\
c_{1} / \mu_{4} & c_{2} / \mu_{4} & c_{3} / \mu_{4} & c_{4} / \mu_{4}
\end{array}\right] x
$$

A dynamic programming approach

Step 2

Assume that only the final six modes are given, i.e. only mode $\{1,3\}$ mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset.

A dynamic programming approach

Step 2

Assume that only the final six modes are given, i.e. only mode $\{1,3\}$ mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset.
We only need to determine $0 \leq \tau_{13} \leq \min \left(x_{1} / \mu_{1}, x_{3} / \mu_{3}\right)$

A dynamic programming approach

Step 2

Assume that only the final six modes are given, i.e. only mode $\{1,3\}$ mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset.
We only need to determine $0 \leq \tau_{13} \leq \min \left(x_{1} / \mu_{1}, x_{3} / \mu_{3}\right)$
Costs made during mode $\{1,3\}$:

$$
c_{1} \tau_{13} \frac{x_{1}+\left(x_{1}-\tau_{13} \mu_{1}\right)}{2}+c_{2} \tau_{13} x_{2}+c_{3} \tau_{13} \frac{x_{3}+\left(x_{3}-\tau_{13} \mu_{3}\right)}{2}+c_{4} \tau_{13} x_{4}
$$

Remaining cost to go:

$$
\frac{1}{2}\left[\begin{array}{c}
x_{1}-\tau_{13} \mu_{1} \\
x_{2} \\
x_{3}-\tau_{13} \mu_{3} \\
x_{4}
\end{array}\right]^{T}\left[\begin{array}{clll}
c_{1} / \mu_{1} & c_{2} / \mu_{1} & c_{3} / \mu_{1} & c_{1} / \mu_{4} \\
c_{2} / \mu_{1} & c_{2} / \mu_{2} & c_{3} / \mu_{2} & c_{2} / \mu_{4} \\
c_{3} / \mu_{1} & c_{3} / \mu_{2} & c_{3} / \mu_{3} & c_{3} / \mu_{4} \\
c_{1} / \mu_{4} & c_{2} / \mu_{4} & c_{3} / \mu_{4} & c_{4} / \mu_{4}
\end{array}\right]\left[\begin{array}{c}
x_{1}-\tau_{13} \mu_{1} \\
x_{2} \\
x_{3}-\tau_{13} \mu_{3} \\
x_{4}
\end{array}\right]
$$

A dynamic programming approach

Step 2 (continued)

We need to minimize the additional cost to go:

subject to $0 \leq \tau_{13} \leq \min \left(x_{1} / \mu_{1}, x_{3} / \mu_{3}\right)$.

A dynamic programming approach

Step 2 (continued)

We need to minimize the additional cost to go:

subject to $0 \leq \tau_{13} \leq \min \left(x_{1} / \mu_{1}, x_{3} / \mu_{3}\right)$.
Optimal value: $\tau_{13}^{*}=\min \left(x_{1} / \mu_{1}, x_{3} / \mu_{3}\right)$.

A dynamic programming approach

Step 2 (continued)

We need to minimize the additional cost to go:

subject to $0 \leq \tau_{13} \leq \min \left(x_{1} / \mu_{1}, x_{3} / \mu_{3}\right)$.
Optimal value: $\tau_{13}^{*}=\min \left(x_{1} / \mu_{1}, x_{3} / \mu_{3}\right)$.

Step 3 and 4

Along the same lines (add remaining two modes one at a time)

Result if $0<\mu_{3} C_{3} \leq \mu_{2} C_{2}<\mu_{1} C_{1} \leq \mu_{4} C_{4} \leq \mu_{1} C_{1}+\mu_{3} C_{3}$

Stay in a mode until a condition is satisfied, then move to the next one
mode $\{4\}: x_{4}=0$
$\operatorname{mode}\{1\}: x_{1}=0$
mode $\{2\}: x_{2}=0$
mode $\{3\}: x_{3}=0$
mode $\emptyset:$ Stay in this mode.

Result if $0<\mu_{3} C_{3} \leq \mu_{2} C_{2}<\mu_{1} C_{1} \leq \mu_{4} C_{4} \leq \mu_{1} C_{1}+\mu_{3} C_{3}$

Stay in a mode until a condition is satisfied, then move to the next one
mode $\{1,3\}: x_{1}=0$ or $x_{3}=0$
mode $\{4\}: x_{4}=0$
mode $\{1\}: x_{1}=0$
mode $\{2\}: x_{2}=0$
mode $\{3\}: x_{3}=0$
mode $\emptyset:$ Stay in this mode.

Result if $0<\mu_{3} C_{3} \leq \mu_{2} C_{2}<\mu_{1} C_{1} \leq \mu_{4} C_{4} \leq \mu_{1} C_{1}+\mu_{3} C_{3}$

Stay in a mode until a condition is satisfied, then move to the next one

```
mode \(\{2,4\}: x_{2}=0\) or \(x_{4}=0\)
mode \(\{1,3\}: x_{1}=0\) or \(x_{3}=0\)
    mode \(\{4\}: x_{4}=0\)
    mode \(\{1\}: x_{1}=0\)
    mode \(\{2\}: x_{2}=0\)
    mode \(\{3\}: x_{3}=0\)
```

mode $\emptyset:$ Stay in this mode.

Result if $0<\mu_{3} C_{3} \leq \mu_{2} C_{2}<\mu_{1} C_{1} \leq \mu_{4} C_{4} \leq \mu_{1} C_{1}+\mu_{3} C_{3}$

Stay in a mode until a condition is satisfied, then move to the next one mode $\{1,4\}: x_{1}=0$ or $x_{4}=0$ or $x_{4} \leq x_{2} \wedge x_{1} \leq x_{3} \wedge$

$$
\wedge\left(\mu_{1} c_{1}-\mu_{2} c_{2}+\mu_{3} c_{3}\right)\left(\frac{x_{1}}{\mu_{1}}+\frac{x_{4}}{\mu_{4}}\right) \leq \mu_{3} c_{3}\left(\frac{x_{2}}{\mu_{2}}+\frac{x_{3}}{\mu_{3}}\right)
$$

mode $\{2,4\}: x_{2}=0$ or $x_{4}=0$
mode $\{1,3\}: x_{1}=0$ or $x_{3}=0$
mode $\{4\}: x_{4}=0$
$\operatorname{mode}\{1\}: x_{1}=0$
mode $\{2\}: x_{2}=0$
mode $\{3\}: x_{3}=0$
mode $\emptyset:$ Stay in this mode.

Dynamic programming approach (general case)

Notice that if $c_{4} \mu_{4}>c_{1} \mu_{1}+c_{3} \mu_{3}$ mode $\{4\}$ has a higher rate of cost decrease than mode $\{1,3\}$.

Dynamic programming approach (general case)

Notice that if $c_{4} \mu_{4}>c_{1} \mu_{1}+c_{3} \mu_{3}$ mode $\{4\}$ has a higher rate of cost decrease than mode $\{1,3\}$.

Consider modes $m_{1}, m_{2}, \ldots, m_{M}=\emptyset$, ordered by rate of cost decrease. We define the i th subproblem as follows:

- only modes $m_{M-i+1}, m_{M-i+2}, \ldots m_{M}$ are allowed
- (initial) state restrictions:

$$
\begin{array}{lll}
x_{j}(t) \geq 0 & \text { for all } j \in \bigcup_{k=M-i+1}^{M} m_{k} & \forall t \geq 0 \\
x_{j}(t)=0 & \text { for all } j \notin \bigcup_{k=M-i+1}^{M} m_{k} & \forall t \geq 0
\end{array}
$$

Conclusions

Summary

- Optimal control problem: emptying deterministic single server multiclass queueing system without arrivals
- Server serves several queues simultaneously
- Sequence of modes: μc
- Buffers not necessarily empty at end of mode.
- Presented mpQP approach
- Presented dynamic programming approach

Conclusions

Summary

- Optimal control problem: emptying deterministic single server multiclass queueing system without arrivals
- Server serves several queues simultaneously
- Sequence of modes: μc
- Buffers not necessarily empty at end of mode.
- Presented mpQP approach
- Presented dynamic programming approach

Future work

- Extend to systems with arrivals (SCLP (Gideon Weiss); stability)
- Extend to stochastic setting
- Include setup times (more challenging)

Separate Continuous Linear Program

$$
\min _{u} \int_{0}^{T}\left[\begin{array}{llll}
4 & 3 & 2 & 5
\end{array}\right] x(s) \mathrm{d} s
$$

subject to

$$
\begin{aligned}
\dot{x}(t)= & {\left[\begin{array}{l}
0.2 \\
0.2 \\
0.4 \\
0.4
\end{array}\right]-\left[\begin{array}{llllllll}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right] u(t) }
\end{aligned} \begin{aligned}
& \\
& {\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] u(t)=1 } \forall t \geq 0 \\
& x_{i}(t), u_{i}(t) \geq 0 \forall t \geq 0
\end{aligned}
$$

Stability

- Arrival rate λ_{i}. Define $\rho_{i}=\lambda_{i} / \mu_{i}$.
- Necessary condition for stability: $\max _{C \in \mathcal{C}} \sum_{i \in C} \rho_{i}<1$
- Not sufficient

For stability not only:
$\rho_{1}+\rho_{2}<1 \quad \rho_{2}+\rho_{3}<1 \quad \rho_{3}+\rho_{4}<1 \quad \rho_{4}+\rho_{5}<1 \quad \rho_{5}+\rho_{1}<1$
but also:

$$
\rho_{1}+\rho_{2}+\rho_{3}+\rho_{4}+\rho_{5}<2
$$

Setup times

Consider $\mu_{i}=1$, setup times: $1, \boldsymbol{c}=(0.34,0.33,0.32,0.35)^{T}$.

- First mode $\{1,4\}$, then mode $\{2,4\}$, next mode $\{1,3\}$, finally mode $\{3\}$. Resulting cost: 1039.68
- First mode $\{2,4\}$, then mode $\{1,4\}$, next mode $\{1,3\}$, finally mode $\{3\}$. Resulting cost: 1039.60
Reduction due to fact that during setups, the system might still partially serve certain classes.

