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Introduction

MCQS simultaneously serving several queues
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I Intersection
I Multiclass tandem queue without buffers, e.g. hot ingots
I Polling system with physical constraints, e.g. (un)loading container

vessels
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Systems can be modeled as single server with modes:

mode {1,3}: serve class 1 and class 3 simultaneously,

mode {1,4}: serve class 1 and class 4 simultaneously,

mode {2,4}: serve class 2 and class 4 simultaneously,

and the additional modes

mode {1}: serve only class 1,

mode {2}: serve only class 2,

mode {3}: serve only class 3,

mode {4}: serve only class 4,

mode ∅: idle,
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Assumptions

I Deterministic fluid model
I No setup times
I Unit service rate, i.e. µi = 1 (w.l.o.g.).
I No arrivals, i.e. λi = 0.

Objective
min

∫ ∞
0

4x1(t) + 3x2(t) + 2x3(t) + 5x4(t) dt

where xi (t) denotes the length of queue i at time t .
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min
∫∞

0 4x1(t)+3x2(t)+2x3(t)+5x4(t) dt

Assume that the system initially starts at (x1, x2, x3, x4) = (6,6,6,6).

Mode Rate of cost decrease
mode {1,4} 9
mode {2,4} 8
mode {1,3} 6

mode {4} 5
mode {1} 4
mode {2} 3
mode {3} 2

mode ∅ 0

µc-rule Total costs: 504.

Min. time Total costs: 468.

Optimal Total costs: 456.
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0 4x1(t)+3x2(t)+2x3(t)+5x4(t) dt

Assume that the system initially starts at (x1, x2, x3, x4) = (6,6,6,6).

Mode Rate of cost decrease
mode {1,4} 9
mode {2,4} 8
mode {1,3} 6

mode {4} 5
mode {1} 4
mode {2} 3
mode {3} 2

mode ∅ 0

µc-rule Total costs: 504.
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Optimal Total costs: 456.
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0 4x1(t)+3x2(t)+2x3(t)+5x4(t) dt

Assume that the system initially starts at (x1, x2, x3, x4) = (6,6,6,6).

Mode Rate of cost decrease
mode {1,4} 9
mode {2,4} 8
mode {1,3} 6

mode {4} 5
mode {1} 4
mode {2} 3
mode {3} 2

mode ∅ 0

µc-rule Total costs: 504.

Min. time Total costs: 468.
I mode {2,4} for 6
I mode {1,3} for 6

Optimal Total costs: 456.
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Problem

I S = (N , C) undirected graph which models classes that cannot be
served simultaneously

I VerticesN = {1,2, . . . ,N}: classes
I Edges C ⊂ N ×N : conflicting classes.

For the example:

1 2

3 4

N = {1,2,3,4} and C = {(1,2), (2,3), (3,4)}

I A set m ⊂ N is an allowed mode when m ×m ∩ C = ∅.
I MS set of all allowed modes for system S .
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Problem

Dynamics:

ẋ(t) = −Bm u(t) m ∈MS , (1)

where Bm =


Im(1) 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 Im(N)

 Im(i ) =

{
1 if i ∈ m

0 if i 6∈ m ,

Constraints:

xi (t) ≥ 0 0 ≤ ui (t) ≤ µi ∀i ∈ N , ∀t ≥ 0. (2)

Problem: Find feedback u(x), m(x) for (1) guaranteeing (2), minimizing

J(x0) =

∫ ∞
0

cT x(s ; u ,m , x0) ds .
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Some basic lemmas

Lemma (max rate)
For optimal policy: rate of service of class i ∈ N is given by ui (x) = µi .

Lemma (µc)
For an optimal policy:

∑
i∈mk

µi ci is nonincreasing for two consecutive
modes mk .

Lemma
Switching infinitely fast between several modes can be ignored w.l.o.g.
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Optimization problem

Let τ =
[
τ14 τ24 τ13 τ4 τ1 τ2 τ3

]T
denote the durations of the

successive modes.

Given τ we can determine the resulting costs, e.g.∫ ∞
0

x1(s) ds =
1
2

x2
10 + (x10 − τ14)τ24 + (x10 − τ14 − τ13)τ4

In addition we have constraints like

x10 = τ14 + τ13 + τ1 and τi ≥ 0
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Optimization problem

The problem can be written as an mpQP:

min
τ

1
2
τ T Hτ − xT

0 Fτ +
1
2

xT
0 Yx0

subject to
Gτ ≤ x0

which can be solved for an arbitrary parameter x0.

Note that solving for τ14, τ24, and τ13 suffices.
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Solution (1)

τ14

τ24

τ13

 =



[ 1
2 −

1
3 −

1
3

1
2

− 1
2

1
3

1
3

1
2

1
2

1
3

1
3 −

1
2

]
x0 for

−3 2 2 −3
3 −2 −2 −3
−3 −2 −2 3
−3 −4 2 3

3 2 −4 −3

 x0 ≤ 0

[
0 0 0 0
0 0 0 1
1 0 0 0

]
x0 for

[
0 −1 0 1
1 0 −1 0
3 −2 −2 3

]
x0 ≤ 0

[ 0 0 0 1
0 0 0 0
1 0 0 −1

]
x0 for

[ 1 0 −1 −1
−3 2 2 3

]
x0 ≤ 0

[ 1 0 0 0
−1 0 0 1

0 0 0 0

]
x0 for

[−1 −1 0 1
3 2 2 −3

]
x0 ≤ 0

...
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Solution (2)

τ14

τ24

τ13

 =



...[ 0 −1 0 1
0 1 0 0
1 1 0 −1

]
x0 for

[
0 1 0 −1
−1 −1 0 1

3 4 −2 −3

]
x0 ≤ 0

[ 1 0 −1 0
−1 0 1 1

0 0 1 0

]
x0 for

[
−1 0 1 0

1 0 −1 −1
−3 −2 4 3

]
x0 ≤ 0

[
0 0 0 1
0 0 0 0
0 0 1 0

]
x0 for [−1 0 1 1 ] x0 ≤ 0

[
1 0 0 0
0 1 0 0
0 0 0 0

]
x0 for [ 1 1 0 −1 ] x0 ≤ 0.
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Example: Optimal solution
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∫∞

0 4x1(t)+3x2(t)+2x3(t)+5x4(t) dt

Assume that the system initially starts at (x1, x2, x3, x4) = (6,6,6,6).

Mode Rate
mode {1,4} 9
mode {2,4} 8
mode {1,3} 6

mode {4} 5
mode {1} 4
mode {2} 3
mode {3} 2

mode ∅ 0

µc-rule Total costs: 504.

Min. time Total costs: 468.

Optimal Total costs: 456.

I mode {1,4} for 2 (4,6,6,4)
I mode {2,4} for 4 (4,2,6,0)
I mode {1,3} for 4 (0,2,2,0)
I mode {2} for 2 (0,0,2,0)
I mode {3} for 2 (0,0,0,0)



14/24

/w

Example: Optimal solution

4

1

2

3
1

2

3

4

1

2

3

4

min
∫∞

0 4x1(t)+3x2(t)+2x3(t)+5x4(t) dt

Assume that the system initially starts at (x1, x2, x3, x4) = (6,6,6,6).

Mode Rate
mode {1,4} 9
mode {2,4} 8
mode {1,3} 6

mode {4} 5
mode {1} 4
mode {2} 3
mode {3} 2

mode ∅ 0

µc-rule Total costs: 504.

Min. time Total costs: 468.

Optimal Total costs: 456.
I mode {1,4} for 2 (4,6,6,4)
I mode {2,4} for 4 (4,2,6,0)
I mode {1,3} for 4 (0,2,2,0)
I mode {2} for 2 (0,0,2,0)
I mode {3} for 2 (0,0,0,0)



15/24

/w

Summary

Using the mpQP-approach we can solve the problem for
I Given cost vector c
I Arbitrary initial condition

The controller becomes a "lookup table".

Remaining questions

I Can we solve the problem for arbitrary c?
I Can we describe the controller more elegantly?
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A dynamic programming like approach

Let µi > 0 and ci > 0 be given such that the sequence of modes remains
the same, i.e. 0 < µ3c3 ≤ µ2c2 < µ1c1 ≤ µ4c4 ≤ µ1c1 + µ3c3

Step 1
Assume that only the final five modes are given, i.e. only mode {4},
mode {1}, mode {2}, mode {3}, and mode ∅.

Solution is simple: τi = xi 0/µi .

Cost to go:

1
2

xT


c1/µ1 c2/µ1 c3/µ1 c1/µ4

c2/µ1 c2/µ2 c3/µ2 c2/µ4

c3/µ1 c3/µ2 c3/µ3 c3/µ4

c1/µ4 c2/µ4 c3/µ4 c4/µ4

 x
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A dynamic programming approach

Step 2
Assume that only the final six modes are given, i.e. only mode {1,3}
mode {4}, mode {1}, mode {2}, mode {3}, and mode ∅.

We only need to determine 0 ≤ τ13 ≤ min(x1/µ1, x3/µ3)

Costs made during mode {1,3}:

c1τ13
x1 + (x1 − τ13µ1)

2
+ c2τ13x2 + c3τ13

x3 + (x3 − τ13µ3)

2
+ c4τ13x4

Remaining cost to go:

1
2


x1 − τ13µ1

x2

x3 − τ13µ3

x4


T 

c1/µ1 c2/µ1 c3/µ1 c1/µ4

c2/µ1 c2/µ2 c3/µ2 c2/µ4

c3/µ1 c3/µ2 c3/µ3 c3/µ4

c1/µ4 c2/µ4 c3/µ4 c4/µ4




x1 − τ13µ1

x2

x3 − τ13µ3

x4
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A dynamic programming approach

Step 2 (continued)
We need to minimize the additional cost to go:

µ3c3τ13

τ13 −

 x1

µ1
+

x2

µ2
+

x3

µ3
+
µ1c1 + µ3c3 − µ4c4

µ3c3︸ ︷︷ ︸
≥0

x4

µ4




subject to 0 ≤ τ13 ≤ min(x1/µ1, x3/µ3).

Optimal value: τ∗13 = min(x1/µ1, x3/µ3).

Step 3 and 4
Along the same lines (add remaining two modes one at a time)
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Result if 0<µ3c3≤µ2c2<µ1c1≤µ4c4≤µ1c1+µ3c3

Stay in a mode until a condition is satisfied, then move to the next one

mode {1,4}: x1 = 0 or x4 = 0 or x4 ≤ x2 ∧ x1 ≤ x3∧
∧(µ1c1 − µ2c2 + µ3c3)

(
x1
µ1

+ x4
µ4

)
≤ µ3c3

(
x2
µ2

+ x3
µ3

)
,

mode {2,4}: x2 = 0 or x4 = 0

mode {1,3}: x1 = 0 or x3 = 0

mode {4}: x4 = 0

mode {1}: x1 = 0

mode {2}: x2 = 0

mode {3}: x3 = 0

mode ∅: Stay in this mode.
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Dynamic programming approach (general case)

Notice that if c4µ4 > c1µ1 + c3µ3 mode {4} has a higher rate of cost
decrease than mode {1,3}.

Consider modes m1,m2, . . . ,mM = ∅, ordered by rate of cost decrease.
We define the i th subproblem as follows:

I only modes mM−i+1,mM−i+2, . . .mM are allowed
I (initial) state restrictions:

xj (t) ≥ 0 for all j ∈
M⋃

k=M−i+1

mk ∀t ≥ 0

xj (t) = 0 for all j 6∈
M⋃

k=M−i+1

mk ∀t ≥ 0
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Dynamic programming approach (general case)

Notice that if c4µ4 > c1µ1 + c3µ3 mode {4} has a higher rate of cost
decrease than mode {1,3}.

Consider modes m1,m2, . . . ,mM = ∅, ordered by rate of cost decrease.
We define the i th subproblem as follows:

I only modes mM−i+1,mM−i+2, . . .mM are allowed
I (initial) state restrictions:

xj (t) ≥ 0 for all j ∈
M⋃

k=M−i+1

mk ∀t ≥ 0

xj (t) = 0 for all j 6∈
M⋃

k=M−i+1

mk ∀t ≥ 0



21/24

/w

Conclusions

Summary

I Optimal control problem: emptying deterministic single server
multiclass queueing system without arrivals

I Server serves several queues simultaneously
I Sequence of modes: µc
I Buffers not necessarily empty at end of mode.
I Presented mpQP approach
I Presented dynamic programming approach

Future work

I Extend to systems with arrivals (SCLP (Gideon Weiss); stability)
I Extend to stochastic setting
I Include setup times (more challenging)



21/24

/w

Conclusions

Summary

I Optimal control problem: emptying deterministic single server
multiclass queueing system without arrivals

I Server serves several queues simultaneously
I Sequence of modes: µc
I Buffers not necessarily empty at end of mode.
I Presented mpQP approach
I Presented dynamic programming approach

Future work

I Extend to systems with arrivals (SCLP (Gideon Weiss); stability)
I Extend to stochastic setting
I Include setup times (more challenging)



22/24

/w

Separate Continuous Linear Program

min
u

∫ T

0

[
4 3 2 5

]
x(s) ds

subject to

ẋ(t) =


0.2
0.2
0.4
0.4

−


1 0 1 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
1 1 0 1 0 0 0 0

 u(t) x(0) =


6
6
6
6


[
1 1 1 1 1 1 1 1

]
u(t) = 1 ∀t ≥ 0

xi (t), ui (t) ≥ 0 ∀t ≥ 0
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Stability

I Arrival rate λi . Define ρi = λi/µi .
I Necessary condition for stability: maxC∈C

∑
i∈C ρi < 1

I Not sufficient
1

2

34

5

For stability not only:

ρ1 + ρ2 < 1 ρ2 + ρ3 < 1 ρ3 + ρ4 < 1 ρ4 + ρ5 < 1 ρ5 + ρ1 < 1

but also:
ρ1 + ρ2 + ρ3 + ρ4 + ρ5 < 2.
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Setup times

Consider µi = 1, setup times: 1, c = (0.34,0.33,0.32,0.35)T .
I First mode {1,4}, then mode {2,4}, next mode {1,3}, finally

mode {3}. Resulting cost: 1039.68
I First mode {2,4}, then mode {1,4}, next mode {1,3}, finally

mode {3}. Resulting cost: 1039.60

Reduction due to fact that during setups, the system might still partially
serve certain classes.
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