

TU

Optimal Control of a Deterministic Multiclass Queuing System Simultaneously Serving Several Queues

Erjen Lefeber, Stefan Lämmer

Technische Universiteit **Eindhoven** University of Technology

November 14, 2011

Where innovation starts

Acknowledgment

This work is supported by the Netherlands Organization for Scientific Research (NWO-VIDI grant 639.072.072).

Paper

E. Lefeber, S. Lämmer, J.E. Rooda, Optimal control of a deterministic multiclass queuing system by serving several queues simultaneously, Systems and Control Letters 60(7), 524-529, 2011.

MCQS simultaneously serving several queues

- Intersection
- Multiclass tandem queue without buffers, e.g. hot ingots
- Polling system with physical constraints, e.g. (un)loading container vessels

Systems can be modeled as single server with modes: mode $\{1, 3\}$: serve class 1 and class 3 simultaneously, mode $\{1, 4\}$: serve class 1 and class 4 simultaneously, mode $\{2, 4\}$: serve class 2 and class 4 simultaneously, and the additional modes

- mode {1}: serve only class 1,
- mode {2}: serve only class 2,
- mode {3}: serve only class 3,
- mode $\{4\}$: serve only class 4,
 - mode ∅: idle,

Assumptions

- Deterministic fluid model
- No setup times
- Unit service rate, i.e. $\mu_i = 1$ (w.l.o.g.).
- No arrivals, i.e. $\lambda_i = 0$.

Assumptions

- Deterministic fluid model
- No setup times
- Unit service rate, i.e. $\mu_i = 1$ (w.l.o.g.).
- No arrivals, i.e. $\lambda_i = 0$.

Objective

$$\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) dt$$

where $x_i(t)$ denotes the length of queue *i* at time *t*.

Assume that the system initially starts at $(x_1, x_2, x_3, x_4) = (6, 6, 6, 6)$.

$$\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, \mathrm{d}t$$

Assume that the system initially starts at $(x_1, x_2, x_3, x_4) = (6, 6, 6, 6)$.

Mode	Rate of cost decrease
mode {1, 4}	9
mode {2, 4}	8
mode {1,3}	6
mode {4}	5
mode {1}	4
mode {2}	3
mode {3}	2
mode ∅	0

$$\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, \mathrm{d}t$$

Assume that the system initially starts at $(x_1, x_2, x_3, x_4) = (6, 6, 6, 6)$.

Mode	Rate of cost decrease
mode {1, 4}	9
mode {2, 4}	8
mode {1, 3}	6
mode {4}	5
mode {1}	4
mode {2}	3
mode {3}	2
mode ∅	0

 μ *c*-rule Total costs: 504.

- mode {1, 4} for 6
- mode {2} for 6
- mode {3} for 6

$$\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, \mathrm{d}t$$

Assume that the system initially starts at $(x_1, x_2, x_3, x_4) = (6, 6, 6, 6)$.

Mode	Rate of cost decrease
mode {1,4}	9
mode {2, 4}	8
mode {1,3}	6
mode {4}	5
mode {1}	4
mode {2}	3
mode {3}	2
mode ∅	0

 μ *c*-rule Total costs: 504. Min. time Total costs: 468.

mode {2, 4} for 6

6/24

mode {1, 3} for 6

$$\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, \mathrm{d}t$$

Assume that the system initially starts at $(x_1, x_2, x_3, x_4) = (6, 6, 6, 6)$.

Mode	Rate of cost decrease
mode {1, 4}	9
mode {2, 4}	8
mode {1,3}	6
mode {4}	5
mode {1}	4
mode {2}	3
mode {3}	2
mode Ø	0

 μ *c*-rule Total costs: 504. Min. time Total costs: 468. Optimal Total costs: 456.

6/24

- ► S = (N, C) undirected graph which models classes that cannot be served simultaneously
- Vertices $\mathcal{N} = \{1, 2, \dots, N\}$: classes
- Edges $C \subset \mathcal{N} \times \mathcal{N}$: conflicting classes.

For the example:

$$\mathcal{N} = \{1, 2, 3, 4\} ext{ and } \mathcal{C} = \{(1, 2), (2, 3), (3, 4)\}$$

- ► S = (N, C) undirected graph which models classes that cannot be served simultaneously
- Vertices $\mathcal{N} = \{1, 2, \dots, N\}$: classes
- Edges $C \subset \mathcal{N} \times \mathcal{N}$: conflicting classes.

For the example:

$$\mathcal{N} = \{1,2,3,4\} \text{ and } \mathcal{C} = \{(1,2),(2,3),(3,4)\}$$

• A set $m \subset \mathcal{N}$ is an allowed mode when $m \times m \cap \mathcal{C} = \emptyset$.

▶ *M*_S set of all allowed modes for system *S*.

Dynamics:

$$\dot{x}(t) = -B_m u(t) \qquad \qquad m \in \mathcal{M}_S, \qquad (1)$$
where $B_m = \begin{bmatrix} \mathbb{I}_m(1) & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mathbb{I}_m(N) \end{bmatrix} \qquad \mathbb{I}_m(i) = \begin{cases} 1 & \text{if } i \in m \\ 0 & \text{if } i \notin m, \end{cases}$

Constraints:

 $x_i(t) \ge 0$ $0 \le u_i(t) \le \mu_i$ $\forall i \in \mathcal{N}, \forall t \ge 0.$ (2)

Dynamics:

$$\dot{x}(t) = -B_m u(t) \qquad m \in \mathcal{M}_S, \qquad (1)$$
where $B_m = \begin{bmatrix} \mathbb{I}_m(1) & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mathbb{I}_m(N) \end{bmatrix} \qquad \mathbb{I}_m(i) = \begin{cases} 1 & \text{if } i \in m \\ 0 & \text{if } i \notin m, \end{cases}$

Constraints:

$$x_i(t) \ge 0$$
 $0 \le u_i(t) \le \mu_i$ $\forall i \in \mathcal{N}, \forall t \ge 0.$ (2)

Problem: Find feedback u(x), m(x) for (1) guaranteeing (2), minimizing

$$J(x_0) = \int_0^\infty c^T x(s; u, m, x_0) \,\mathrm{d}s.$$

Τl

Technische I Eindhoven

Lemma (max rate)

For optimal policy: rate of service of class $i \in \mathcal{N}$ is given by $u_i(x) = \mu_i$.

Lemma (max rate)

For optimal policy: rate of service of class $i \in \mathcal{N}$ is given by $u_i(x) = \mu_i$.

Lemma (*µc***)**

For an optimal policy: $\sum_{i \in m_k} \mu_i c_i$ is nonincreasing for two consecutive modes m_k .

Lemma (max rate)

For optimal policy: rate of service of class $i \in \mathcal{N}$ is given by $u_i(x) = \mu_i$.

Lemma (µ*c*)

For an optimal policy: $\sum_{i \in m_k} \mu_i c_i$ is nonincreasing for two consecutive modes m_k .

Lemma

Switching infinitely fast between several modes can be ignored w.l.o.g.

Let $\tau = \begin{bmatrix} \tau_{14} & \tau_{24} & \tau_{13} & \tau_4 & \tau_1 & \tau_2 & \tau_3 \end{bmatrix}^T$ denote the durations of the successive modes.

10/24

Let $\tau = \begin{bmatrix} \tau_{14} & \tau_{24} & \tau_{13} & \tau_4 & \tau_1 & \tau_2 & \tau_3 \end{bmatrix}^T$ denote the durations of the successive modes.

Given τ we can determine the resulting costs, e.g.

$$\int_0^\infty x_1(s) \, \mathrm{d}s = \frac{1}{2} x_{10}^2 + (x_{10} - \tau_{14}) \tau_{24} + (x_{10} - \tau_{14} - \tau_{13}) \tau_4$$

10/24

Let $\tau = \begin{bmatrix} \tau_{14} & \tau_{24} & \tau_{13} & \tau_4 & \tau_1 & \tau_2 & \tau_3 \end{bmatrix}^T$ denote the durations of the successive modes.

Given τ we can determine the resulting costs, e.g.

$$\int_0^\infty x_1(s) \, \mathrm{d}s = \frac{1}{2} x_{10}^2 + (x_{10} - \tau_{14}) \tau_{24} + (x_{10} - \tau_{14} - \tau_{13}) \tau_4$$

In addition we have constraints like

$$x_{10} = \tau_{14} + \tau_{13} + \tau_1$$
 and $\tau_i \ge 0$

10/24

The problem can be written as an mpQP:

$$\min_{\tau} \frac{1}{2} \tau^T H \tau - x_0^T F \tau + \frac{1}{2} x_0^T Y x_0$$

subject to

 $\mathbf{G} \tau \leq \mathbf{x}_{\mathbf{0}}$

which can be solved for an arbitrary parameter x_0 .

Note that solving for τ_{14} , τ_{24} , and τ_{13} suffices.

Solution (1)

$$\begin{bmatrix} \tau_{14} \\ \tau_{24} \\ \tau_{13} \end{bmatrix} = \begin{cases} \begin{bmatrix} \frac{1}{2} - \frac{1}{3} & -\frac{1}{3} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{3} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{3} & -\frac{1}{2} \end{bmatrix} x_{0} & \text{for} \begin{bmatrix} -3 & 2 & 2 & -3 \\ 3 & -2 & -2 & -3 \\ -3 & -2 & -2 & 3 \\ -3 & 2 & -4 & -3 \end{bmatrix} x_{0} \le 0$$
$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} x_{0} & \text{for} \begin{bmatrix} 0 -1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 3 & -2 & -2 & 3 \end{bmatrix} x_{0} \le 0$$
$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \end{bmatrix} x_{0} & \text{for} \begin{bmatrix} 1 & 0 & -1 & -1 \\ -3 & 2 & 2 & -3 \end{bmatrix} x_{0} \le 0$$
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} x_{0} & \text{for} \begin{bmatrix} -1 & -1 & 0 & 1 \\ -3 & 2 & 2 & -3 \end{bmatrix} x_{0} \le 0$$
$$\vdots$$

Solution (2)

$$\begin{bmatrix} \tau_{14} \\ \tau_{24} \\ \tau_{13} \end{bmatrix} = \begin{cases} \vdots \\ \begin{bmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & -1 \end{bmatrix} x_0 & \text{for} \begin{bmatrix} 0 & 1 & 0 & -1 \\ -1 & -1 & 0 & 1 \\ 3 & 4 & -2 & -3 \end{bmatrix} x_0 \le 0 \\ \begin{bmatrix} 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} x_0 & \text{for} \begin{bmatrix} -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & -1 \\ -3 & -2 & 4 & 3 \end{bmatrix} x_0 \le 0 \\ \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x_0 & \text{for} \begin{bmatrix} -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & -1 \\ -3 & -2 & 4 & 3 \end{bmatrix} x_0 \le 0 \\ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x_0 & \text{for} \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & -1 & -1 \end{bmatrix} x_0 \le 0. \end{cases}$$

Example: Optimal solution

$$\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \, \mathrm{d}t$$

Assume that the system initially starts at $(x_1, x_2, x_3, x_4) = (6, 6, 6, 6)$.

Mode	Rate
mode $\{1, 4\}$	9
mode $\{2,4\}$	8
mode $\{1, 3\}$	6
mode {4}	5
mode $\{1\}$	4
mode {2}	3
mode {3}	2
$mode\emptyset$	0

 μ *c*-rule Total costs: 504. Min. time Total costs: 468. Optimal Total costs: 456.

14/24

Example: Optimal solution

$$\min \int_0^\infty 4x_1(t) + 3x_2(t) + 2x_3(t) + 5x_4(t) \,\mathrm{d}t$$

Assume that the system initially starts at $(x_1, x_2, x_3, x_4) = (6, 6, 6, 6)$.

Mode	Rate
mode $\{1, 4\}$	9
mode $\{2,4\}$	8
mode $\{1, 3\}$	6
mode {4}	5
mode $\{1\}$	4
mode {2}	3
mode {3}	2
$mode\emptyset$	0

 $\mu c\text{-rule Total costs: 504.}$ Min. time Total costs: 468. Optimal Total costs: 456. $\blacktriangleright \mod \{1,4\} \text{ for } 2 \qquad (4,6,6,4)$ $\blacktriangleright \mod \{2,4\} \text{ for } 4 \qquad (4,2,6,0)$

- mode $\{1,3\}$ for 4
- mode {2} for 2
- mode {3} for 2
- (0,2,2,0)(0,0,2,0)(0,0,0,0)

14/24

Summary

Using the mpQP-approach we can solve the problem for

- Given cost vector c
- Arbitrary initial condition

The controller becomes a "lookup table".

15/24

Summary

Using the mpQP-approach we can solve the problem for

- Given cost vector c
- Arbitrary initial condition

The controller becomes a "lookup table".

Remaining questions

- Can we solve the problem for arbitrary c?
- Can we describe the controller more elegantly?

A dynamic programming like approach

Let $\mu_i > 0$ and $c_i > 0$ be given such that the sequence of modes remains the same, i.e. $0 < \mu_3 c_3 \le \mu_2 c_2 < \mu_1 c_1 \le \mu_4 c_4 \le \mu_1 c_1 + \mu_3 c_3$

Step 1

Assume that only the final five modes are given, i.e. only mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset .

16/24

A dynamic programming like approach

Let $\mu_i > 0$ and $c_i > 0$ be given such that the sequence of modes remains the same, i.e. $0 < \mu_3 c_3 \le \mu_2 c_2 < \mu_1 c_1 \le \mu_4 c_4 \le \mu_1 c_1 + \mu_3 c_3$

Step 1

Assume that only the final five modes are given, i.e. only mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset .

Solution is simple: $\tau_i = x_{i0}/\mu_i$.

16/24

A dynamic programming like approach

Let $\mu_i > 0$ and $c_i > 0$ be given such that the sequence of modes remains the same, i.e. $0 < \mu_3 c_3 \le \mu_2 c_2 < \mu_1 c_1 \le \mu_4 c_4 \le \mu_1 c_1 + \mu_3 c_3$

Step 1

Assume that only the final five modes are given, i.e. only mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset .

Solution is simple: $\tau_i = x_{i0}/\mu_i$.

Cost to go:

$$\frac{1}{2} x^{T} \begin{bmatrix} c_{1}/\mu_{1} & c_{2}/\mu_{1} & c_{3}/\mu_{1} & c_{1}/\mu_{4} \\ c_{2}/\mu_{1} & c_{2}/\mu_{2} & c_{3}/\mu_{2} & c_{2}/\mu_{4} \\ c_{3}/\mu_{1} & c_{3}/\mu_{2} & c_{3}/\mu_{3} & c_{3}/\mu_{4} \\ c_{1}/\mu_{4} & c_{2}/\mu_{4} & c_{3}/\mu_{4} & c_{4}/\mu_{4} \end{bmatrix} x$$

16/24

Step 2

Assume that only the final *six* modes are given, i.e. only mode $\{1, 3\}$ mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset .

17/24

Step 2

Assume that only the final *six* modes are given, i.e. only mode $\{1, 3\}$ mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset . We only need to determine $0 \le \tau_{13} \le \min(x_1/\mu_1, x_3/\mu_3)$

17/24

Step 2

Assume that only the final *six* modes are given, i.e. only mode $\{1,3\}$ mode $\{4\}$, mode $\{1\}$, mode $\{2\}$, mode $\{3\}$, and mode \emptyset . We only need to determine $0 \le \tau_{13} \le \min(x_1/\mu_1, x_3/\mu_3)$

Costs made during mode $\{1, 3\}$:

$$c_{1}\tau_{13}\frac{x_{1}+(x_{1}-\tau_{13}\mu_{1})}{2}+c_{2}\tau_{13}x_{2}+c_{3}\tau_{13}\frac{x_{3}+(x_{3}-\tau_{13}\mu_{3})}{2}+c_{4}\tau_{13}x_{4}$$

Remaining cost to go:

$$\frac{1}{2} \begin{bmatrix} x_1 - \tau_{13}\mu_1 \\ x_2 \\ x_3 - \tau_{13}\mu_3 \\ x_4 \end{bmatrix}^T \begin{bmatrix} c_1/\mu_1 & c_2/\mu_1 & c_3/\mu_1 & c_1/\mu_4 \\ c_2/\mu_1 & c_2/\mu_2 & c_3/\mu_2 & c_2/\mu_4 \\ c_3/\mu_1 & c_3/\mu_2 & c_3/\mu_3 & c_3/\mu_4 \\ c_1/\mu_4 & c_2/\mu_4 & c_3/\mu_4 & c_4/\mu_4 \end{bmatrix} \begin{bmatrix} x_1 - \tau_{13}\mu_1 \\ x_2 \\ x_3 - \tau_{13}\mu_3 \\ x_4 \end{bmatrix}$$

Step 2 (continued)

We need to minimize the additional cost to go:

$$\mu_{3}c_{3}\tau_{13}\left(\tau_{13}-\left[\frac{x_{1}}{\mu_{1}}+\frac{x_{2}}{\mu_{2}}+\frac{x_{3}}{\mu_{3}}+\underbrace{\frac{\mu_{1}c_{1}+\mu_{3}c_{3}-\mu_{4}c_{4}}{\mu_{3}c_{3}}}_{\geq 0}\frac{x_{4}}{\mu_{4}}\right]\right)$$

subject to $0 \le \tau_{13} \le \min(x_1/\mu_1, x_3/\mu_3)$.

Step 2 (continued)

We need to minimize the additional cost to go:

$$\mu_{3}c_{3}\tau_{13}\left(\tau_{13}-\left[\frac{x_{1}}{\mu_{1}}+\frac{x_{2}}{\mu_{2}}+\frac{x_{3}}{\mu_{3}}+\underbrace{\frac{\mu_{1}c_{1}+\mu_{3}c_{3}-\mu_{4}c_{4}}{\mu_{3}c_{3}}}_{\geq 0}\frac{x_{4}}{\mu_{4}}\right]\right)$$

subject to $0 \le \tau_{13} \le \min(x_1/\mu_1, x_3/\mu_3)$.

Optimal value: $\tau_{13}^* = \min(x_1/\mu_1, x_3/\mu_3)$.

Step 2 (continued)

We need to minimize the additional cost to go:

$$\mu_{3}c_{3}\tau_{13}\left(\tau_{13}-\left[\frac{x_{1}}{\mu_{1}}+\frac{x_{2}}{\mu_{2}}+\frac{x_{3}}{\mu_{3}}+\underbrace{\frac{\mu_{1}c_{1}+\mu_{3}c_{3}-\mu_{4}c_{4}}{\mu_{3}c_{3}}}_{\geq 0}\frac{x_{4}}{\mu_{4}}\right]\right)$$

subject to 0 $\leq au_{13} \leq \min(x_1/\mu_1, x_3/\mu_3)$.

Optimal value: $\tau_{13}^* = \min(x_1/\mu_1, x_3/\mu_3)$.

Step 3 and 4

Along the same lines (add remaining two modes one at a time)

18/24

19/24

Stay in a mode until a condition is satisfied, then move to the next one

mode {4}: $x_4 = 0$ mode {1}: $x_1 = 0$ mode {2}: $x_2 = 0$ mode {3}: $x_3 = 0$ mode \emptyset : Stay in this mode.

19/24

Stay in a mode until a condition is satisfied, then move to the next one

mode
$$\{1, 3\}$$
: $x_1 = 0$ or $x_3 = 0$
mode $\{4\}$: $x_4 = 0$
mode $\{1\}$: $x_1 = 0$
mode $\{2\}$: $x_2 = 0$
mode $\{3\}$: $x_3 = 0$
mode \emptyset : Stay in this mode.

19/24

Stay in a mode until a condition is satisfied, then move to the next one

```
mode \{2, 4\}: x_2 = 0 or x_4 = 0
mode \{1, 3\}: x_1 = 0 or x_3 = 0
mode \{4\}: x_4 = 0
mode \{1\}: x_1 = 0
mode \{2\}: x_2 = 0
mode \{3\}: x_3 = 0
mode \emptyset: Stay in this mode.
```


Stay in a mode until a condition is satisfied, then move to the next one mode $\{1, 4\}$: $x_1 = 0$ or $x_4 = 0$ or $x_4 \le x_2 \land x_1 \le x_3 \land$ $\wedge (\mu_1 \boldsymbol{c}_1 - \mu_2 \boldsymbol{c}_2 + \mu_3 \boldsymbol{c}_3) \left(\frac{\boldsymbol{x}_1}{\mu_1} + \frac{\boldsymbol{x}_4}{\mu_4} \right) \leq \mu_3 \boldsymbol{c}_3 \left(\frac{\boldsymbol{x}_2}{\mu_2} + \frac{\boldsymbol{x}_3}{\mu_3} \right),$ mode $\{2, 4\}$: $x_2 = 0$ or $x_4 = 0$ mode $\{1, 3\}$: $x_1 = 0$ or $x_3 = 0$ mode $\{4\}$: $x_4 = 0$ mode {1}: $x_1 = 0$ mode $\{2\}$: $x_2 = 0$ mode $\{3\}$: $x_3 = 0$ **mode** \emptyset : Stay in this mode.

19/24

Dynamic programming approach (general case)

20/24

Notice that if $c_4\mu_4 > c_1\mu_1 + c_3\mu_3 \mod \{4\}$ has a higher rate of cost decrease than mode $\{1, 3\}$.

Dynamic programming approach (general case)

20/24

Notice that if $c_4\mu_4 > c_1\mu_1 + c_3\mu_3$ mode {4} has a higher rate of cost decrease than mode {1,3}.

Consider modes $m_1, m_2, \ldots, m_M = \emptyset$, ordered by rate of cost decrease. We define the *i*th subproblem as follows:

• only modes $m_{M-i+1}, m_{M-i+2}, \ldots m_M$ are allowed

(initial) state restrictions:

$$egin{aligned} & \mathbf{x}_j(t) \geq \mathbf{0} & \quad ext{for all } j \in igcup_{k=M-i+1}^M m_k & \quad orall t \geq \mathbf{0} \ & \mathbf{x}_j(t) = \mathbf{0} & \quad ext{for all } j
ot\in igcup_{k=M-i+1}^M m_k & \quad orall t \geq \mathbf{0} \end{aligned}$$

Conclusions

Summary

- Optimal control problem: emptying deterministic single server multiclass queueing system without arrivals
- Server serves several queues simultaneously
- Sequence of modes: μc
- Buffers not necessarily empty at end of mode.
- Presented mpQP approach
- Presented dynamic programming approach

Conclusions

Summary

- Optimal control problem: emptying deterministic single server multiclass queueing system without arrivals
- Server serves several queues simultaneously
- Sequence of modes: μc
- Buffers not necessarily empty at end of mode.
- Presented mpQP approach
- Presented dynamic programming approach

Future work

- Extend to systems with arrivals (SCLP (Gideon Weiss); stability)
- Extend to stochastic setting
- Include setup times (more challenging)

$$\min_{u} \int_{0}^{T} [4 \ 3 \ 2 \ 5] x(s) \, \mathrm{d}s$$

subject to

$$\dot{x}(t) = \begin{bmatrix} 0.2\\ 0.2\\ 0.4\\ 0.4 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0\\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} u(t) \quad x(0) = \begin{bmatrix} 6\\ 6\\ 6\\ 6 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} u(t) = 1 \qquad \forall t \ge 0$$
$$x_i(t), u_i(t) \ge 0 \qquad \forall t \ge 0$$

22/24

Stability

- Arrival rate λ_i . Define $\rho_i = \lambda_i / \mu_i$.
- Necessary condition for stability: $\max_{C \in C} \sum_{i \in C} \rho_i < 1$
- Not sufficient

For stability not only:

$$\label{eq:rho1} \begin{split} \rho_1+\rho_2 < 1 \quad \rho_2+\rho_3 < 1 \quad \rho_3+\rho_4 < 1 \quad \rho_4+\rho_5 < 1 \quad \rho_5+\rho_1 < 1 \end{split}$$
 but also:

$$\rho_1 + \rho_2 + \rho_3 + \rho_4 + \rho_5 < 2.$$

23/24

Setup times

Consider $\mu_i = 1$, setup times: 1, $c = (0.34, 0.33, 0.32, 0.35)^T$.

- First mode {1,4}, then mode {2,4}, next mode {1,3}, finally mode {3}. Resulting cost: 1039.68
- First mode {2, 4}, then mode {1, 4}, next mode {1, 3}, finally mode {3}. Resulting cost: 1039.60

Reduction due to fact that during setups, the system might still partially serve certain classes.