Finite buffer fluid networks with overflows

Stijn Fleuren, Erjen Lefeber, Yoni Nazarathy
IWAP 2012, Jerusalem

Open Jackson Networks

Jackson (1957); Goodman, Massey (1984); Chen, Mandelbaum (1991)

Jackson 1957

Problem data

α, μ, P

Traffic equations (stable case)

$$
\begin{aligned}
\lambda_{i} & =\alpha_{i}+\sum_{j=1}^{N} \lambda_{j} p_{j i} \\
\lambda & =\alpha+P^{\prime} \lambda \\
\lambda & =\left(I-P^{\prime}\right)^{-1} \alpha
\end{aligned}
$$

Open Jackson Networks

Theorem (Jackson 1957)

Given an $(M / M / 1)^{N}$ system where every node can be filled and drained, let $\lambda=\left[\lambda_{1}, \ldots, \lambda_{N}\right]^{\prime}$ be the solution of the throughput equation

$$
\lambda=\alpha+P^{\prime} \lambda
$$

If $\rho_{i}=\lambda_{i} / \mu_{i}$ and $\rho_{i}<1$ for all i, then

$$
\lim _{t \rightarrow \infty} P\left(X_{1}(t)=n_{1}, \ldots X_{N}(t)=n_{N}\right)=\prod_{i=1}^{N}\left(1-\rho_{i}\right) \rho_{i}^{n_{i}}
$$

for all integers $n_{i} \geq 0$.

Open Jackson Networks

Jackson (1957); Goodman, Massey (1984); Chen, Mandelbaum (1991)

Jackson 1957

$\alpha_{i} \longrightarrow \quad \stackrel{\bullet}{\bullet}$

Problem data

α, μ, P

Traffic equations (general)

$$
\begin{aligned}
\lambda_{i} & =\alpha_{i}+\sum_{j=1}^{N} \min \left(\lambda_{j}, \mu_{j}\right) p_{j i} \\
\lambda & =\alpha+P^{\prime} \min (\lambda, \mu)
\end{aligned}
$$

Open Jackson Networks

Theorem (Goodman, Massey 1984)

Given an $(M / M / 1)^{N}$ system where every node can be filled and drained, let $\lambda=\left[\lambda_{1}, \ldots, \lambda_{N}\right]^{\prime}$ be the solution of the throughput equation

$$
\lambda=\alpha+P^{\prime} \min (\lambda, \mu)
$$

If $\rho_{i}=\lambda_{i} / \mu_{i}$ and $U=\left\{i \mid \rho_{i}<1\right\}$, then

$$
\lim _{t \rightarrow \infty} P\left(X_{i}(t)=n_{i} ; i \in U\right)=\prod_{i \in U}\left(1-\rho_{i}\right) \rho_{i}^{n_{i}}
$$

for all integers $n_{i} \geq 0$ with $i \in U$. Moreover, if $j \notin U$ then

$$
\lim _{t \rightarrow \infty} P\left(X_{j}(t)=n\right)=0
$$

for all integers $n \geq 0$

Finite buffers and overflows

Problem data

α, μ, P, Q, K

Our contribution (in progress)

- Limiting traffic equations
- Efficient algorithm for unique solution
- Limiting deterministic trajectories
- Limiting sojourn time distribution

Finite buffers and overflows

Network

Problem data

α, μ, P, Q, K

Our contribution (in progress)

- Limiting traffic equations
- Efficient algorithm for unique solution
- Limiting deterministic trajectories
- Limiting sojourn time distribution

Scaling yields a fluid system

A sequence of systems: $N=1,2, \ldots$

$$
\alpha^{N}=N \alpha \quad \mu^{N}=N \mu \quad K^{N}=N K
$$

Make the jobs fast and the buffers big by taking $N \rightarrow \infty$.

The proposed limiting model is a deterministic fluid system

Fluid trajectories as an approximation

$$
\lim _{N \rightarrow \infty} \sup _{t}\left\{\left|\frac{X^{N}(t)}{N}-x(t)\right|\right\}=0
$$

Traffic equations (at equilibrium point)

outflow rate: $\min (\lambda, \mu)$ overflow rate: $\lambda-\min (\lambda, \mu)=\max (0, \lambda-\mu)$

Traffic equations

Question

How to (efficiently) solve traffic equations for given α, μ, P, Q, K ?

Traffic equations (at equilibrium point)

outflow rate: $\min (\lambda, \mu)$
overflow rate: $\lambda-\min (\lambda, \mu)=\max (0, \lambda-\mu)$

Traffic equations

$$
\lambda_{i}=\alpha_{i}+\sum_{j=1}^{N} \min \left(\lambda_{j}, \mu_{j}\right) p_{j i}+\sum_{j=1}^{N} \max \left(0, \lambda_{j}-\mu_{j}\right) q_{j i}
$$

or

$$
\lambda=\alpha+P^{\prime} \min (\lambda, \mu)+Q^{\prime} \max (0, \lambda-\mu)
$$

Question

How to (efficiently) solve traffic equations for given α, μ, P, Q, K ?

Traffic equations (at equilibrium point)

outflow rate: $\min (\lambda, \mu)$
overflow rate: $\lambda-\min (\lambda, \mu)=\max (0, \lambda-\mu)$

Traffic equations

$$
\lambda_{i}=\alpha_{i}+\sum_{j=1}^{N} \min \left(\lambda_{j}, \mu_{j}\right) p_{j i}+\sum_{j=1}^{N} \max \left(0, \lambda_{j}-\mu_{j}\right) q_{j i}
$$

or

$$
\lambda=\alpha+P^{\prime} \min (\lambda, \mu)+Q^{\prime} \max (0, \lambda-\mu)
$$

Question

How to (efficiently) solve traffic equations for given α, μ, P, Q, K ?

Traffic equations

$$
\lambda=\alpha+P^{\prime} \min (\lambda, \mu)+Q^{\prime} \max (0, \lambda-\mu)
$$

Let $w=\lambda-\min (\lambda, \mu)$ and $z=\mu-\min (\lambda, \mu)$. Then $\lambda=w-z+\mu$ and

$$
w \geq 0 \quad z \geq 0 \quad w^{\prime} z=0
$$

Furthermore we obtain for the traffic equation

Traffic equations

$$
\lambda=\alpha+P^{\prime} \min (\lambda, \mu)+Q^{\prime} \max (0, \lambda-\mu)
$$

Let $w=\lambda-\min (\lambda, \mu)$ and $z=\mu-\min (\lambda, \mu)$. Then $\lambda=w-z+\mu$ and

$$
w \geq 0 \quad z \geq 0 \quad w^{\prime} z=0
$$

Furthermore we obtain for the traffic equation

$$
\begin{aligned}
w-z+\mu & =\alpha+P^{\prime}(\mu-z)+Q^{\prime} w \\
\left(I-Q^{\prime}\right) w & =\alpha-\left(I-P^{\prime}\right) \mu+\left(I-P^{\prime}\right) z \\
w & =\underbrace{\left(I-Q^{\prime}\right)^{-1}\left(\alpha-\left(I-P^{\prime}\right) \mu\right)}_{q}+\underbrace{\left(I-Q^{\prime}\right)^{-1}\left(I-P^{\prime}\right)}_{M} z
\end{aligned}
$$

Linear Complementarity Problem

LCP

$\operatorname{LCP}(q, M)$: Find z, w such that

$$
w-M z=q \quad w, z \geq 0 \quad w^{\prime} z=0
$$

For our system: $q=\left(I-Q^{\prime}\right)^{-1}\left(\alpha-\left(I-P^{\prime}\right) \mu\right), M=\left(I-Q^{\prime}\right)^{-1}\left(I-P^{\prime}\right)$

Theorem

$\operatorname{LCP}(q, M)$ has unique solution for all q iff M is a P-matrix, i.e. determinants of all $2^{N}-1$ principal submatrices are positive

Observation

No polynomial time algorithm (yet) exists for solving the P-matrix LCP

Linear Complementarity Problem

LCP

$\operatorname{LCP}(q, M)$: Find z, w such that

$$
w-M z=q \quad w, z \geq 0 \quad w^{\prime} z=0
$$

For our system: $q=\left(I-Q^{\prime}\right)^{-1}\left(\alpha-\left(I-P^{\prime}\right) \mu\right), M=\left(I-Q^{\prime}\right)^{-1}\left(I-P^{\prime}\right)$

Theorem

$\operatorname{LCP}(q, M)$ has unique solution for all q iff M is a P-matrix, i.e. determinants of all $2^{N}-1$ principal submatrices are positive

Observation

No polynomial time algorithm (yet) exists for solving the P-matrix LCP

An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve $\lambda=\alpha+P^{\prime} \min (\lambda, \mu)$
Observation: If we would know the stable and unstable nodes, we can solve for λ.

Step 1: Assume all queues are unstable, i.e. output rate μ_{i}, and solve for arrival rate: $\lambda(1)$.
Observation: $\lambda(1)$ is at worst an over-estimate.
Let $I(1)=\left\{i \mid \lambda_{i}(1)<\mu_{i}\right\}$ denote the set of stable nodes.
Step 2: Assume nodes $i \notin I(1)$ are unstable and solve for the arrival rate: $\lambda(2) \leq \lambda(1)$.
Repeat until: $I(n)=I(n+1)$.

An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve $\lambda=\alpha+P^{\prime} \min (\lambda, \mu)$
Observation: If we would know the stable and unstable nodes, we can solve for λ.

Step 1: Assume all queues are unstable, i.e. output rate μ_{i}, and solve for arrival rate: $\lambda(1)$.
Observation. $\lambda(1)$ is at worst an over-estirnate.
Let $I(1)=\left\{i \mid \lambda_{i}(1)<\mu_{i}\right\}$ denote the set of stable nodes.
Step 2: Assume nodes $i \notin I(1)$ are unstable and solve for the arrival rate: $\lambda(2) \leq \lambda(1)$.
Repeat until: $I(n)=I(n+1)$.

An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve $\lambda=\alpha+P^{\prime} \min (\lambda, \mu)$
Observation: If we would know the stable and unstable nodes, we can solve for λ.

Step 1: Assume all queues are unstable, i.e. output rate μ_{i}, and solve for arrival rate: $\lambda(1)$.
Observation: $\lambda(1)$ is at worst an over-estimate.

Step 2: Assume nodes $i \notin I(1)$ are unstable and solve for the arrival rate: $\lambda(2) \leq \lambda(1)$.
Repeat until: $I(n)=I(n+1)$.

An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve $\lambda=\alpha+P^{\prime} \min (\lambda, \mu)$
Observation: If we would know the stable and unstable nodes, we can solve for λ.

Step 1: Assume all queues are unstable, i.e. output rate μ_{i}, and solve for arrival rate: $\lambda(1)$.
Observation: $\lambda(1)$ is at worst an over-estimate.
Let $I(1)=\left\{\boldsymbol{i} \mid \lambda_{i}(1)<\mu_{i}\right\}$ denote the set of stable nodes.
Step 2: Assume nodes $i \notin I(1)$ are unstable and solve for the arrival rate: $\lambda(2) \leq \lambda(1)$.
Repeat until: $I(n)=I(n+1)$.

An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve $\lambda=\alpha+P^{\prime} \min (\lambda, \mu)$
Observation: If we would know the stable and unstable nodes, we can solve for λ.

Step 1: Assume all queues are unstable, i.e. output rate μ_{i}, and solve for arrival rate: $\lambda(1)$.
Observation: $\lambda(1)$ is at worst an over-estimate.
Let $I(1)=\left\{i \mid \lambda_{i}(1)<\mu_{i}\right\}$ denote the set of stable nodes.
Step 2: Assume nodes $i \notin I(1)$ are unstable and solve for the arrival rate: $\lambda(2) \leq \lambda(1)$.
Repeat until: $I(n)=I(n+1)$.

An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve $\lambda=\alpha+P^{\prime} \min (\lambda, \mu)$
Observation: If we would know the stable and unstable nodes, we can solve for λ.

Step 1: Assume all queues are unstable, i.e. output rate μ_{i}, and solve for arrival rate: $\lambda(1)$.
Observation: $\lambda(1)$ is at worst an over-estimate.
Let $I(1)=\left\{i \mid \lambda_{i}(1)<\mu_{i}\right\}$ denote the set of stable nodes.
Step 2: Assume nodes $i \notin I(1)$ are unstable and solve for the arrival rate: $\lambda(2) \leq \lambda(1)$.
Repeat until: $I(n)=I(n+1)$.

An efficient algorithm with overflow

Algorithm

Problem: Solve $\lambda=\alpha+P^{\prime} \min (\lambda, \mu)+Q^{\prime} \max (0, \lambda-\mu)$
Step 1: Assume all nodes have infinite capacity, i.e. $K_{i}=\infty$ and no overflow, and solve for arrival rate: $\lambda(1)$.
Observation: $\lambda(1)$ is at worst an under-estimate. Let $J(1)=\left\{j \mid \lambda_{j}(1)>\mu_{j}\right\}$ denote the overflowing nodes.
Step 2: Assume nodes $j \notin J(1)$ have infinite capacity and solve for the arrival rate: $\lambda(2) \geq \lambda(1)$.
Repeat until: $J(n)=J(n+1)$.

Number of iterations

Worst case: $O\left(N^{2}\right)$.
Practice (max 800 nodes): O($\log (N))$

Algorithm

Worst case: $O\left(N^{5}\right)$.
Practice: $O\left(N^{3} \log (N)\right)$

An efficient algorithm with overflow

Algorithm

Problem: Solve $\lambda=\alpha+P^{\prime} \min (\lambda, \mu)+Q^{\prime} \max (0, \lambda-\mu)$
Step 1: Assume all nodes have infinite capacity, i.e. $K_{i}=\infty$ and no overflow, and solve for arrival rate: $\lambda(1)$.
Observation: $\lambda(1)$ is at worst an under-estimate. Let $J(1)=\left\{j \mid \lambda_{j}(1)>\mu_{j}\right\}$ denote the overflowing nodes.
Step 2: Assume nodes $j \notin J(1)$ have infinite capacity and solve for the arrival rate: $\lambda(2) \geq \lambda(1)$.

Repeat until: $J(n)=J(n+1)$.

Number of iterations

Worst case: $O\left(N^{2}\right)$.

Practice (max 800 nodes): O(log(N))

An efficient algorithm with overflow

Algorithm

Problem: Solve $\lambda=\alpha+P^{\prime} \min (\lambda, \mu)+Q^{\prime} \max (0, \lambda-\mu)$
Step 1: Assume all nodes have infinite capacity, i.e. $K_{i}=\infty$ and no overflow, and solve for arrival rate: $\lambda(1)$.
Observation: $\lambda(1)$ is at worst an under-estimate. Let $J(1)=\left\{j \mid \lambda_{j}(1)>\mu_{j}\right\}$ denote the overflowing nodes.
Step 2: Assume nodes $j \notin J(1)$ have infinite capacity and solve for the arrival rate: $\lambda(2) \geq \lambda(1)$.
Repeat until: $J(n)=J(n+1)$.

Number of iterations

Worst case: $O\left(N^{2}\right)$.
Practice (max 800 nodes): O($\log (N))$

An efficient algorithm with overflow

Algorithm

Problem: Solve $\lambda=\alpha+P^{\prime} \min (\lambda, \mu)+Q^{\prime} \max (0, \lambda-\mu)$
Step 1: Assume all nodes have infinite capacity, i.e. $K_{i}=\infty$ and no overflow, and solve for arrival rate: $\lambda(1)$.
Observation: $\lambda(1)$ is at worst an under-estimate. Let $J(1)=\left\{j \mid \lambda_{j}(1)>\mu_{j}\right\}$ denote the overflowing nodes.
Step 2: Assume nodes $j \notin J(1)$ have infinite capacity and solve for the arrival rate: $\lambda(2) \geq \lambda(1)$.
Repeat until: $J(n)=J(n+1)$.

Number of iterations

Worst case: $\mathrm{O}\left(\mathrm{N}^{2}\right)$
Practice (max 800 nodes): O($\log (N))$

An efficient algorithm with overflow

Algorithm

Problem: Solve $\lambda=\alpha+P^{\prime} \min (\lambda, \mu)+Q^{\prime} \max (0, \lambda-\mu)$
Step 1: Assume all nodes have infinite capacity, i.e. $K_{i}=\infty$ and no overflow, and solve for arrival rate: $\lambda(1)$.
Observation: $\lambda(1)$ is at worst an under-estimate. Let $J(1)=\left\{j \mid \lambda_{j}(1)>\mu_{j}\right\}$ denote the overflowing nodes.
Step 2: Assume nodes $j \notin J(1)$ have infinite capacity and solve for the arrival rate: $\lambda(2) \geq \lambda(1)$.
Repeat until: $J(n)=J(n+1)$.

Number of iterations

Worst case: $O\left(N^{2}\right)$.
Practice (max 800 nodes): $O(\log (N))$

Algorithm

Worst case: $O\left(N^{5}\right)$.
Practice: $O\left(N^{3} \log (N)\right)$
a a $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Transient behavior

Algorithm can also be used for determining transient behavior
See also http: / / demonstrations.wolfram.com/
DynamicsOfADeterministicOverflowFluidNetwork/

Transient behavior

Algorithm can also be used for determining transient behavior
See also http: / / demonstrations.wolfram.com/
DynamicsOfADeterministicOverflowFluidNetwork/

Sojourn time distributions

Definition

Sojourn time: time in system of customer arriving to steady state FCFS system

Definition

S^{N} : sojourn time of customer in N th scaled system

Problem

We want to find the limiting distribution of S^{N}, i.e. $P\left(S^{N} \leq x\right)$, for $N \rightarrow \infty$.

Sojourn time distributions

Observation

Sojourn times scale to a discrete distribution

Sojourn time distributions

$$
\begin{array}{ll}
F=\{1, \ldots, \boldsymbol{s}\} & \\
\bar{F}=\{\boldsymbol{s}+1, \ldots, \boldsymbol{N}\} & \\
\bar{F} & \lambda_{i}<\mu_{i} \text { for } i \in F \\
\text { for } i \in \bar{F}
\end{array}
$$

Observation

Time through $i \in F \approx N K_{i} /\left(N \mu_{i}\right)=K_{i} / \mu_{i}$, time through $i \notin F \approx 1 /\left(N \mu_{i}\right) \approx 0$.

For job at entrance of buffer $i \in F$:

- enters buffer i w.p. $\approx \mu_{i} / \lambda_{i}$
- routed to entrance of buffer $i w . p . \approx\left(1-\mu_{i} / \lambda_{i}\right) q_{i j}$
- leaves system w.p. $\approx\left(1-\mu_{i} / \lambda_{i}\right) \bar{q}_{i}$

Job at entrance of buffer $i \in \bar{F}$:

- routed according to P almost immediately

Sojourn time distributions

$$
\begin{array}{ll}
F=\{1, \ldots, \boldsymbol{s}\} & \\
\bar{F}=\{\boldsymbol{s}+1, \ldots, \boldsymbol{N}\} & \\
\bar{F} & \lambda_{i}<\mu_{i} \text { for } i \in F \\
\text { for } i \in \bar{F}
\end{array}
$$

Observation

Time through $i \in F \approx N K_{i} /\left(N \mu_{i}\right)=K_{i} / \mu_{i}$, time through $i \notin F \approx 1 /\left(N \mu_{i}\right) \approx 0$.

For job at entrance of buffer $i \in F$:

- enters buffer i w.p. $\approx \mu_{i} / \lambda_{i}$
- routed to entrance of buffer j w.p. $\approx\left(1-\mu_{i} / \lambda_{i}\right) q_{i j}$
- leaves system w.p. $\approx\left(1-\mu_{i} / \lambda_{i}\right) \bar{q}_{i}$

Job at entrance of buffer $i \in \bar{F}$:

- routed according to P almost immediately

Sojourn time distributions

$$
\begin{array}{ll}
F=\{1, \ldots, s\} & \lambda_{i}>\mu_{i} \text { for } i \in F \\
\bar{F}=\{\boldsymbol{s}+1, \ldots, \boldsymbol{v}\} & \\
\lambda_{i}<\mu_{i} \text { for } i \in \bar{F}
\end{array}
$$

Observation

Time through $i \in F \approx N K_{i} /\left(N \mu_{i}\right)=K_{i} / \mu_{i}$, time through $i \notin F \approx 1 /\left(N \mu_{i}\right) \approx 0$.

For job at entrance of buffer $i \in F$:

- enters buffer i w.p. $\approx \mu_{i} / \lambda_{i}$
- routed to entrance of buffer j w.p. $\approx\left(1-\mu_{i} / \lambda_{i}\right) q_{i j}$
- leaves system w.p. $\approx\left(1-\mu_{i} / \lambda_{i}\right) \bar{q}_{i}$

Job at entrance of buffer $i \in \bar{F}$:

- routed according to P almost immediately

Sojourn time distributions

$$
\begin{array}{ll}
F=\{1, \ldots, s\} & \lambda_{i}>\mu_{i} \text { for } i \in F \\
\bar{F}=\{\boldsymbol{s}+1, \ldots, \boldsymbol{v}\} & \\
\lambda_{i}<\mu_{i} \text { for } i \in \bar{F}
\end{array}
$$

Observation

Time through $i \in F \approx N K_{i} /\left(N \mu_{i}\right)=K_{i} / \mu_{i}$, time through $i \notin F \approx 1 /\left(N \mu_{i}\right) \approx 0$.

For job at entrance of buffer $i \in F$:

- enters buffer i w.p. $\approx \mu_{i} / \lambda_{i}$
- routed to entrance of buffer j w.p. $\approx\left(1-\mu_{i} / \lambda_{i}\right) q_{i j}$
- leaves system w.p. $\approx\left(1-\mu_{i} / \lambda_{i}\right) \bar{q}_{i}$

Job at entrance of buffer $i \in \bar{F}$:

- routed according to P almost immediately

Sojourn time distributions

$$
\begin{array}{ll}
F=\{1, \ldots, s\} & \lambda_{i}>\mu_{i} \text { for } i \in F \\
\bar{F}=\{\boldsymbol{s}+1, \ldots, \boldsymbol{v}\} & \\
\lambda_{i}<\mu_{i} \text { for } i \in \bar{F}
\end{array}
$$

Observation

Time through $i \in F \approx N K_{i} /\left(N \mu_{i}\right)=K_{i} / \mu_{i}$, time through $i \notin F \approx 1 /\left(N \mu_{i}\right) \approx 0$.

For job at entrance of buffer $i \in F$:

- enters buffer i w.p. $\approx \mu_{i} / \lambda_{i}$
- routed to entrance of buffer j w.p. $\approx\left(1-\mu_{i} / \lambda_{i}\right) q_{i j}$
- leaves system w.p. $\approx\left(1-\mu_{i} / \lambda_{i}\right) \bar{q}_{i}$

Job at entrance of buffer $i \in \bar{F}$:

- routed according to P almost immediately

Sojourn time distributions

start

Sojourn time distributions

Fast chain on
 $\left\{0,1,2,1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$

Sojourn time distributions

$a_{i j}$ absorbtion probability in $j \in\{0,1,2\}$ starting in i^{\prime}

Sojourn time distributions

Slow chain on
 $\{0,1,2\}$, transitions
 based on fast chain.

Conclusions

Finite buffer networks with overflows.

Contributions

- Limiting traffic equations
- Efficient algorithm for unique solution
- Limiting deterministic trajectories
- Limiting sojourn time distribution

Future work

Work on limits (Chen and Mandelbaum, 1991)

