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Open Jackson Networks

Jackson (1957); Goodman, Massey (1984); Chen, Mandelbaum (1991)

Jackson 1957 Problem data

α, µ, P

Traffic equations (stable case)

λi = αi +
N∑

j=1

λjpji

λ = α + P ′λ

λ = (I − P ′)−1α
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Open Jackson Networks

Theorem (Jackson 1957)

Given an (M/M/1)N system where every node can be filled and drained,
let λ = [λ1, . . . , λN ]′ be the solution of the throughput equation

λ = α + P ′λ

If ρi = λi/µi and ρi < 1 for all i , then

lim
t→∞

P(X1(t) = n1, . . . XN (t) = nN ) =
N∏

i=1

(1− ρi )ρnii

for all integers ni ≥ 0.
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Open Jackson Networks

Jackson (1957); Goodman, Massey (1984); Chen, Mandelbaum (1991)

Jackson 1957 Problem data

α, µ, P

Traffic equations (general)

λi = αi +
N∑

j=1

min(λj , µj )pji

λ = α + P ′min(λ, µ)
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Open Jackson Networks

Theorem (Goodman, Massey 1984)

Given an (M/M/1)N system where every node can be filled and drained,
let λ = [λ1, . . . , λN ]′ be the solution of the throughput equation

λ = α + P ′min(λ, µ)

If ρi = λi/µi and U = {i | ρi < 1}, then

lim
t→∞

P(Xi (t) = ni ; i ∈ U) =
∏
i∈U

(1− ρi )ρnii

for all integers ni ≥ 0 with i ∈ U . Moreover, if j 6∈ U then

lim
t→∞

P(Xj (t) = n) = 0

for all integers n ≥ 0
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Finite buffers and overflows

Network Problem data

α, µ, P , Q , K

Our contribution (in progress)

I Limiting traffic equations
I Efficient algorithm for

unique solution
I Limiting deterministic

trajectories
I Limiting sojourn time

distribution
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Scaling yields a fluid system

A sequence of systems: N = 1,2, . . .

αN = Nα µN = Nµ KN = NK

Make the jobs fast and the buffers big by taking N →∞.

The proposed limiting model is a
deterministic fluid system
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Fluid trajectories as an approximation

lim
N→∞

sup
t

{∣∣∣∣XN (t)

N
− x(t)

∣∣∣∣} = 0
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Traffic equations (at equilibrium point)

outflow rate: min(λ, µ)
overflow rate: λ−min(λ, µ) = max(0, λ− µ)

Traffic equations

λi = αi +
N∑

j=1

min(λj , µj )pji +
N∑

j=1

max(0, λj − µj )qji

or
λ = α + P ′min(λ, µ) + Q ′max(0, λ− µ)

Question

How to (efficiently) solve traffic equations for given α, µ, P , Q , K?
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Traffic equations

λ = α + P ′min(λ, µ) + Q ′max(0, λ− µ)

Let w = λ−min(λ, µ) and z = µ−min(λ, µ). Then λ = w − z + µ and

w ≥ 0 z ≥ 0 w ′z = 0

Furthermore we obtain for the traffic equation

w − z + µ = α + P ′(µ− z) + Q ′w

(I − Q ′)w = α− (I − P ′)µ+ (I − P ′)z

w = (I − Q ′)−1(α− (I − P ′)µ)︸ ︷︷ ︸
q

+ (I − Q ′)−1(I − P ′)︸ ︷︷ ︸
M

z
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Linear Complementarity Problem

LCP

LCP(q ,M): Find z, w such that

w −Mz = q w , z ≥ 0 w ′z = 0

For our system: q = (I − Q ′)−1(α− (I − P ′)µ), M = (I − Q ′)−1(I − P ′)

Theorem

LCP(q ,M) has unique solution for all q iff M is a P -matrix, i.e.
determinants of all 2N − 1 principal submatrices are positive

Observation

No polynomial time algorithm (yet) exists for solving the P-matrix LCP
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An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve λ = α + P ′min(λ, µ)
Observation: If we would know the stable and unstable nodes, we can
solve for λ.

Step 1: Assume all queues are unstable, i.e. output rate µi , and
solve for arrival rate: λ(1).

Observation: λ(1) is at worst an over-estimate.
Let I(1) = {i | λi (1) < µi} denote the set of stable nodes.

Step 2: Assume nodes i 6∈ I(1) are unstable and solve for the
arrival rate: λ(2) ≤ λ(1).

Repeat until: I(n) = I(n + 1).
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An efficient algorithm with overflow

Algorithm

Problem: Solve λ = α + P ′min(λ, µ) + Q ′max(0, λ− µ)

Step 1: Assume all nodes have infinite capacity, i.e. Ki =∞ and
no overflow, and solve for arrival rate: λ(1).

Observation: λ(1) is at worst an under-estimate.
Let J(1) = {j | λj (1) > µj} denote the overflowing nodes.

Step 2: Assume nodes j 6∈ J(1) have infinite capacity and solve for
the arrival rate: λ(2) ≥ λ(1).

Repeat until: J(n) = J(n + 1).

Number of iterations

Worst case: O (N2).
Practice (max 800 nodes): O (log(N))

Algorithm

Worst case: O (N5).
Practice: O (N3 log(N))
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Transient behavior

Algorithm can also be used for determining transient behavior

See also http://demonstrations.wolfram.com/
DynamicsOfADeterministicOverflowFluidNetwork/

http://demonstrations.wolfram.com/DynamicsOfADeterministicOverflowFluidNetwork/
http://demonstrations.wolfram.com/DynamicsOfADeterministicOverflowFluidNetwork/
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Sojourn time distributions

Definition

Sojourn time: time in system of customer arriving to steady state FCFS
system

Definition

SN : sojourn time of customer in N th scaled system

Problem

We want to find the limiting distribution of SN , i.e. P(SN ≤ x), for
N →∞.
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Sojourn time distributions

Observation

Sojourn times scale to a discrete distribution
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Sojourn time distributions

F = {1, . . . , s} λi > µi for i ∈ F

F̄ = {s + 1, . . . ,N} λi < µi for i ∈ F̄

Observation

Time through i ∈ F ≈ NKi/(Nµi ) = Ki/µi , time through
i 6∈ F ≈ 1/(Nµi ) ≈ 0.

For job at entrance of buffer i ∈ F :
I enters buffer i w.p. ≈ µi/λi
I routed to entrance of buffer j w.p. ≈ (1− µi/λi )qij
I leaves system w.p. ≈ (1− µi/λi )q̄i

Job at entrance of buffer i ∈ F̄ :
I routed according to P almost immediately
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Sojourn time distributions

Fast chain on
{0,1,2,1′,2′,3′,4′}
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Sojourn time distributions

aij absorbtion
probability in
j ∈ {0,1,2} starting
in i ′
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Sojourn time distributions

Slow chain on
{0,1,2}, transitions
based on fast chain.
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Conclusions

Finite buffer networks with overflows.

Contributions

I Limiting traffic equations
I Efficient algorithm for unique solution
I Limiting deterministic trajectories
I Limiting sojourn time distribution

Future work

Work on limits (Chen and Mandelbaum, 1991)


