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Open Jackson Networks

2/19

Jackson (1957); Goodman, Massey (1984); Chen, Mandelbaum (1991)

Jackson 1957 Problem data

Q, i, P

Traffic equations (stable case)

N
)\,‘ = o + Z)\jp,-i

j=1
A=a+ P
A=(I-P)la
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Open Jackson Networks
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Theorem (Jackson 1957)

Given an (M/M/1)N system where every node can be filled and drained,
let A = [A\1,..., An] be the solution of the throughput equation

A=a+ P\

If pi = A\j/pi and p; < 1 foralli, then

lim P(Xy(t) = ny,... Xn(t) = nw) = H(1 — pi)py

for all integers n; > 0.
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Open Jackson Networks
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Jackson (1957); Goodman, Massey (1984); Chen, Mandelbaum (1991)

Jackson 1957 Problem data

Q, i, P

Traffic equations (general)
N

Ai = i+ Y min(Xj, 4)pji
=1

A =a+ P min(\, 1)
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Open Jackson Networks
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Theorem (Goodman, Massey 1984)

Given an (M/M/1)N system where every node can be filled and drained,
let A = [A\1,..., An] be the solution of the throughput equation

A=a+ P 'min(\ p)
|fp,' = )\,'/M,' and U = {l | pi < 1},then
o ) o . n;
tango P(Xi(t)=nj;i e U) = H(l PI)P,'
icu
for all integers n; > 0 with i € U. Moreover, if j ¢ U then

lim P(Xj(t)=n)=0

t—o0

forall integersn > 0
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Finite buffers and overflows

Problem data

o, i, P, Q, K
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Finite buffers and overflows
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Problem data

o, i, P, Q, K

Our contribution (in progress)

» Limiting traffic equations

» Efficient algorithm for
unique solution

» Limiting deterministic
trajectories

» Limiting sojourn time
distribution
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Scaling yields a fluid system

A sequence of systems: N =1,2,...
oM = Na N = Np KN = NK

Make the jobs fast and the buffers big by taking N — oc.

The proposed limiting model is a
deterministic fluid system
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Fluid trajectories as an approximation
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Traffic equations (at equilibrium point)

outflow rate: min(\, u)
overflow rate: A — min(\, 1) = max(0, A\ — p)

nnnnnnnn
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Traffic equations (at equilibrium point)
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outflow rate: min(\, u)
overflow rate: A — min(\, 1) = max(0, A\ — p)

Traffic equations

Ni=a;+ Zmln is 1)Pji + Zmax(O)\ 1) gji
j=1

or
A =a+ P 'min(\, 1) + Q' max(0,\ — )
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Traffic equations (at equilibrium point)
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outflow rate: min(\, u)
overflow rate: A — min(\, 1) = max(0, A\ — p)

Traffic equations

Ai = i+ Y min(Xj, p)pji + ZmaX(O/\ 1) Gji
j=1

or
A =a+ P 'min(\, 1) + Q' max(0,\ — )

How to (efficiently) solve traffic equations for given a, u, P, Q, K?
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Traffic equations

A =a+ P 'min(\, 1) + Q' max(0,\ — )
Letw = A — min(\, ) and z = p — min(\, ). Then A = w — z + pand

w >0 z>0 wz=0
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Traffic equations

A =a+ P 'min(\, 1) + Q' max(0,\ — )
Letw = A — min(\, ) and z = p — min(\, ). Then A = w — z + pand

w >0 z>0 wz=0
Furthermore we obtain for the traffic equation

W—z+p=a+P(u—2)+Qw
(I-QWwW=a—-U-P)u+(l-P)z
w=(-Q)a—(I-P))+(1-Q)(I-P)z
q M

nnnnnnnn
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Linear Complementarity Problem
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LCP
LCP(q,

M): Find z, w such that

Foroursystem: ¢ = (I — Q') Y(a— (I = P)u),M = (I — Q") (1 — P))
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Linear Complementarity Problem
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LCP
LCP(g, M): Find z, w such that

w—Mz=g w,z>0 wz=0

Foroursystem: ¢ = (I — Q') Y(a— (I = P)u),M = (I — Q") (1 — P))

Theorem

LCP(g, M) has unique solution for all g iff M is a P-matrix, i.e.
determinants of all 2V — 1 principal submatrices are positive

No polynomial time algorithm (yet) exists for solving the P-matrix LCP
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An efficient algorithm: No overflow
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Algorithm of Goodman and Massey (1984)

Problem: Solve A = o + P" min(\, p)
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An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve A = o + P" min(\, p)

Observation: If we would know the stable and unstable nodes, we can
solve for \.
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An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve A = a + P’ min(\, i)

Observation: If we would know the stable and unstable nodes, we can
solve for \.

Step 1: Assume all queues are unstable, i.e. output rate y;, and
solve for arrival rate: A(1).
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An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve A = a + P’ min(\, i)
Observation: If we would know the stable and unstable nodes, we can
solve for \.

Step 1: Assume all queues are unstable, i.e. output rate y;, and
solve for arrival rate: A(1).

Observation: A(1) is at worst an over-estimate.
Let I(1) = {i | A\j(1) < u;} denote the set of stable nodes.
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An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve A = a + P’ min(\, i)
Observation: If we would know the stable and unstable nodes, we can
solve for \.
Step 1: Assume all queues are unstable, i.e. output rate y;, and
solve for arrival rate: A(1).
Observation: A(1) is at worst an over-estimate.
Let I(1) = {i | A\j(1) < u;} denote the set of stable nodes.

Step 2: Assume nodes i ¢ I(1) are unstable and solve for the
arrival rate: A(2) < A(1).
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An efficient algorithm: No overflow

Algorithm of Goodman and Massey (1984)

Problem: Solve A = a + P’ min(\, i)
Observation: If we would know the stable and unstable nodes, we can
solve for \.

Step 1: Assume all queues are unstable, i.e. output rate y;, and
solve for arrival rate: A(1).

Observation: A(1) is at worst an over-estimate.
Let I(1) = {i | A\j(1) < u;} denote the set of stable nodes.

Step 2: Assume nodes i ¢ I(1) are unstable and solve for the
arrival rate: A(2) < A(1).
Repeat until: I(n) =I(n + 1).
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An efficient algorithm with overflow
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Algorithm

Problem: Solve A = a + P' min(\, u) + Q" max(0, A — p)
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An efficient algorithm with overflow
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Algorithm

Problem: Solve A = a + P' min(\, u) + Q" max(0, A — p)

Step 1: Assume all nodes have infinite capacity, i.e. K; = co and
no overflow, and solve for arrival rate: A(1).
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An efficient algorithm with overflow

Algorithm

Problem: Solve A = a + P' min(\, u) + Q" max(0, A — p)

Step 1: Assume all nodes have infinite capacity, i.e. K; = co and
no overflow, and solve for arrival rate: A(1).

Observation: A(1) is at worst an under-estimate.
Let J(1) = {j | Aj(1) > p;} denote the overflowing nodes.
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An efficient algorithm with overflow

13/19

Algorithm

Problem: Solve A = a + P' min(\, u) + Q" max(0, A — p)

Step 1: Assume all nodes have infinite capacity, i.e. K; = co and
no overflow, and solve for arrival rate: A(1).

Observation: A(1) is at worst an under-estimate.
Let J(1) = {j | Aj(1) > p;} denote the overflowing nodes.

Step 2: Assume nodes j ¢ J(1) have infinite capacity and solve for
the arrival rate: A(2) > A\(1).
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An efficient algorithm with overflow
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Algorithm

Problem: Solve A = a + P' min(\, u) + Q" max(0, A — p)

Step 1: Assume all nodes have infinite capacity, i.e. K; = co and
no overflow, and solve for arrival rate: A(1).

Observation: A(1) is at worst an under-estimate.
Let J(1) = {j | Aj(1) > p;} denote the overflowing nodes.

Step 2: Assume nodes j ¢ J(1) have infinite capacity and solve for
the arrival rate: A(2) > A\(1).

Repeat until: J(n) =J(n + 1).

Number of iterations Algorithm

Worst case: O(N?). Worst case: O(N?).
Practice (max 800 nodes): O(log(N)) Practice: O(N?> log(N ))
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Transient behavior

Algorithm can also be used for determining transient behavior

Seealsohttp://demonstrations.wolfram.com/
DynamicsOfADeterministicOverflowFluidNetwork/
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http://demonstrations.wolfram.com/DynamicsOfADeterministicOverflowFluidNetwork/
http://demonstrations.wolfram.com/DynamicsOfADeterministicOverflowFluidNetwork/

Transient behavior

Algorithm can also be used for determining transient behavior

Seealsohttp://demonstrations.wolfram.com/
DynamicsOfADeterministicOverflowFluidNetwork/
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Sojourn time distributions
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Definition

Sojourn time: time in system of customer arriving to steady state FCFS
system

Definition

SN: sojourn time of customer in Nth scaled system

We want to find the limiting distribution of SV, i.e. P(SN < x), for
N — oo.
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Sojourn time distributions

Sojourn times scale to a discrete distribution
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Sojourn time distributions

F:{l,...,S} Aj>pifori € F
F={s+1,...,N} N\ < piforicF

Time through i € F ~ NK;/(Np;) = K;/pi, time through
i¢F~1/(Nuj)=~D0.

et
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Sojourn time distributions

F:{l,...,S} Aj>pifori € F
F={s+1,...,N} N\ < piforicF

Time through i € F ~ NK;/(Np;) = K;/pi, time through
i¢F~1/(Nuj)=~D0.

For job at entrance of buffer i € F:
» enters buffer i w.p. =~ p;/\;

et

. . . Eindhoven
/department of mechanical engineering I U/e University of Technology



Sojourn time distributions

F:{l,...,S} Aj>pifori € F
F={s+1,...,N} N\ < piforicF

Time through i € F ~ NK;/(Npy;) = K;/u;, time through
i¢F~1/(Nuj)=~D0.
For job at entrance of buffer i € F:

» enters buffer i w.p. =~ p;/\;

» routed to entrance of buffer j w.p. =~ (1 — p;/\i)gjj

et
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Sojourn time distributions

F:{l,...,S} Aj>pifori € F
F={s+1,...,N} N\ < piforicF

Time through i € F ~ NK;/(Npy;) = K;/u;, time through
i¢F~1/(Nuj)=~D0.
For job at entrance of buffer i € F:
» enters buffer i w.p. =~ p;/\;
» routed to entrance of buffer j w.p. =~ (1 — p;/\i)gjj
» leaves system w.p. ~ (1 — uj/A;)q;

et
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Sojourn time distributions

F:{l,...,S} Aj>pifori € F
F={s+1,...,N} N\ < piforicF

Time through i € F =~ NK; /(Np;) = K;/u;i, time through
i¢F~1/(Nuj)=~D0.
For job at entrance of bufferi € F:
» enters buffer i w.p. =~ p;/\;
» routed to entrance of buffer j w.p. =~ (1 — p;/\i)gjj
» leaves system w.p. ~ (1 — 1;/A;)q;

Job at entrance of buffer i € F:
» routed according to P almost immediately

it
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Sojourn time distributions

Fast chain on
{0,1,2,1',2",3",4'}
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Sojourn time distributions

Fast chain on
{0,1,2,1',2",3",4'}
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Sojourn time distributions

a;j absorbtion
probability in
j € {0,1, 2} starting
ini’

. . . K L1}/ @A cindhoven
/department of mechanical engineering



Sojourn time distributions

Slow chain on
{0.1,2}, transitions
based on fast chain.

. . . K L1}/ @A cindhoven
/department of mechanical engineering



Finite buffer networks with overflows.

Contributions

v

Limiting traffic equations

v

Efficient algorithm for unique solution

v

Limiting deterministic trajectories

v

Limiting sojourn time distribution

Future work

Work on limits (Chen and Mandelbaum, 1991)
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