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Abstract We consider a terminal operator who provides container handling ser-

vices at multiple terminals within the same port. In this setting, the well-known

berth allocation problem can no longer be considered for each terminal in isolation

since vessel calls should be spread over the various terminals to avoid peaks and

troughs in quay crane utilization, and an allocation of two connecting vessels to

different terminals will generate inter-terminal container transport. In this paper, we

address the problem of spreading a set of cyclically calling vessels over the various

terminals and allocating a berthing and departure time to each of them. The

objectives are (1) to balance the quay crane workload over the terminals and over

time and (2) to minimize the amount of inter-terminal container transport. We

develop a solution approach based on mixed-integer programming that allows to

solve real-life instances of the problem within satisfactory time. Additionally, a

practical case study is presented based on data from the terminal operator PSA

Antwerp who operates multiple terminals in the port of Antwerp, Belgium. The

computational results show the cost of the currently agreed schedules, and that
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relatively small modifications can significantly reduce the required crane capacities

and inter-terminal transport.

Keywords Container terminal � Optimization � Berth allocation � Multi-terminal �
Mixed-integer linear programming

1 Introduction

The importance of efficiently managing the scarce and expensive resources at a

modern container terminal is well recognized. For an overview including problem

classifications as well as solution methods, the reader is referred to the survey

papers (Bierwirth and Meisel 2010; Stahlbock and Voß 2008; Steenken et al. 2004;

Vis and de Koster 2003; Rashidi and Tsang 2006) and references therein. These

studies classify the so-called berth allocation problem (BAP) as one of the key

issues in a container terminal. Container shipping is characterized by loops. A loop

is a set of vessels visiting a sequence of terminals according to a more or less fixed

schedule, similar to a timetable for trains. For a terminal this results in a cyclic

schedule of calling vessels. The BAP concerns the allocation of quay space and

quay crane capacity to these loops in time minimizing an objective function.

This problem can be considered at three different levels: strategic, tactical, and

operational. The timetable itself, i.e. the arrival and departure times of the various

vessels, is fixed for a long period of time, usually in the order of years. It is subject

to change only when contracts come up for renewal, or when new contracts are

negotiated. At this strategic level, it is of paramount importance to determine the

most suitable schedule for a terminal operator, and try to agree with the vessel

operators upon the most favorable schedule. Due to its nature, optimization

algorithms to solve this problem can be allowed to run for a number of hours, if not

days. Given such a timetable of arrivals and departures at a terminal, we can

consider the same problem at a tactical level. At this level tactical decisions and

schedules are made. This results in (optimal, but still proforma) schedules for

weekly quay crane allocations and yard reservations. At an operational level a

terminal operator needs to cope with the day-to-day disturbances and adjust such a

proforma schedule to reflect actual arrivals and departures of vessels, break-down of

equipment, repair of yard pavement, etc. The optimization problems at this

operational level need instant solutions.

An extensive number of studies on the BAP can be found in the literature, for

instance (Giallombardo et al. 2010; Guan and Cheung 2004; Monaco and Sammarra

2007; Imai et al. 2005; Cordeau et al. 2005; Kim and Moon 2003; Hansen et al. 2008;

Wang and Lim 2007; Moorthy and Teo 2006). They all have in common that they

consider a single terminal at a tactical or operational level. Usually the various

terminals in a port are not related to one another since each terminal is run by a different

terminal operator who compete for the container flows into and out of the port. In those

cases, it makes sense to consider the BAP for each terminal individually.

Recently, in an increasing number of ports (e.g. Singapore, Antwerp, and

Rotterdam), one terminal operator is or will become responsible for multiple
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terminals in that port. The BAP in these ports should then no longer be considered

for individual terminals. By exploiting the fact that multiple terminals are under the

control of one terminal operator, it is possible to avoid peaks and troughs in quay

and quay crane utilization and to spread vessels evenly over the various terminals.

Moreover, transshipment containers, i.e. containers that arrive but also leave by

vessel generate inter-terminal traffic if the two vessels involved berth at different

terminals. The cost of this inter-terminal traffic should also be taken into account

and minimized (see Fig. 1).

The overall problem becomes to allocate (1) a terminal to each vessel (or actually

the loop to which a number of vessels belong), (2) a time interval for berthing to

each vessel, (3) a suitable berth position to each vessel in a terminal, and (4) a

number of quay cranes to a vessel during the time that it is berthed (Hendriks 2009).

Each of these subproblems can be nicely formulated mathematically, and is

practically relevant and theoretically interesting in its own right. To the best of our

knowledge and as stated in Ottjes et al. (2006), the BAP for multiple interrelated

terminals has not yet been considered.

Multiple terminals in the same port are considered in Imai et al. (2008a) but the

setting is entirely different from ours. In their formulation, an additional terminal

comes into play only if the main terminal can no longer handle the expected number

of vessels at some point in time. A number of vessels is then rerouted to a nearby

terminal in order to minimize the total vessel service time. Compared to our

research, this is a problem at an operational level, and the extra costs incurred for

the haulage and reshuffling of containers to be transported between the two

terminals is noted, but does not play a role in the resulting minimization problem.

In addition to the fact that almost all studies consider the BAP for a single

terminal, also the inherent cyclic nature of the system, i.e. vessels in a loop call at

regular (usually weekly) intervals, is hardly ever taken into account. Most of the

existing studies of the BAP consider a set of vessels within a certain time horizon.
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Fig. 1 Container flows in a cluster of multiple terminals
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The corresponding objective in these studies often reduces to the well-known

packing problem of fitting all vessels within a time horizon and minimizing the total

weighted handling time for all vessels. In practice vessels may arrive at the end of

this time period (cycle) and leave at the beginning of the same period (next cycle).

Relating this to the packing problem implies that rectangles (vessels) may have to

be cut into two pieces, where one piece is placed at the end of the time horizon and

the other piece at the beginning. Another way of phrasing this is to consider this a

packing problem on a cylinder. The authors in Moorthy and Teo (2006) take this

phenomenon into consideration for a single terminal BAP in a continuous time

setting. In this paper, we develop a formulation that takes this cyclic property into

account for a multi-terminal container port in a discrete time setting.

In principle our problem can be considered as a multiple-job-on-one-processor

scheduling problem, where each processor represents a terminal and each vessel a

job. However, for reasons of computational complexity we split this problem into

two. In the first step, discussed in this paper, we allocate a terminal and a berthing

time interval to a set of cyclically calling vessels. At this stage, we only guarantee

that the total lengths of all vessels berthed at a terminal at any point in time does not

exceed that terminal’s quay length. In addition we guarantee that a terminal’s quay

crane capacity to process the vessels berthed, assuming their nominal load

compositions, will not be exceeded. To this end we assume that a vessel’s

processing time is inversely proportional to the crane capacity allocated to it. These

simplifications make the problem computationally tractable, although there is

clearly no guarantee that a feasible solution will result to do the actual berth and

quay crane allocations at a tactical level. However, for typical berth and quay crane

utilizations, this problem never surfaced. For very high utilization ratios this may no

longer be the case. While we assume that each vessel has a preferred terminal and a

preferred time interval, as is the case in practice, we phrase the problem in such a

way that we can relax these restrictions to any desired level. We can impose bounds

on the deviations from preferred berthing terminals and time slots. The objective is

to balance the workload over the terminals and over time, so as to minimize the

maximally required crane capacity per terminal, and at the same time to minimize

the amount of container transport between the various terminals.

In a subsequent step (see Hendriks 2009; Hendriks et al. 2011) a joint berth

position and container stacking problem can be solved for a given terminal

allocation and a given timetable, in order to actually position the vessels along the

quay, and the containers in blocks in the yard. At the same time the actual

assignment of an integer number of quay cranes to the berthed vessels can be

determined, taking into account the non-crossing constraint of quay cranes (Lim

et al. 2004). A limited number of studies address the joint problem of berth

allocation and crane scheduling in a two-phase approach (Imai et al. 2008b; Park

and Kim 2003; Meisel and Bierwirth 2009). The authors in Imai et al. (2008b)

assume that the process time of a vessel depends on its berth position. They

construct a mixed-integer linear program (MILP) for the joint problem of berth

allocation and crane scheduling and solve it using a genetic algorithm. The authors

in Park and Kim (2003) take into account that a vessel’s process time is inversely

proportional to the number of cranes assigned to it and solve the problem in two
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phases. The first phase determines the vessels’ positions and berth times and an

integer number of quay cranes in each time segment for each vessel. A sub-gradient

optimization technique is applied to obtain a near-optimal solution of the first phase.

The second phase constructs a schedule for each individual quay crane guaranteeing

non-crossing of cranes. The main difference of our approach to Park and Kim

(2003) is that we consider the multi-terminal BAP (rather than the single-terminal

BAP) and face the additional problem of allocating each of the vessels to a terminal.

Techniques to make such an allocation robust to disturbances at an operational

level, such as deviations in arrival times or load compositions are explained in

Hendriks et al. (2010).

The BAP can be modeled with a discrete or a continuous quay. In the discrete

case, the quay is divided into segments with specific lengths, or even points when

the quay and vessels’ lengths are ignored. The problem can then be modeled as a

parallel machine scheduling problem (Pinedo 1995; Lim 1998) where each vessel is

a job and each berth a machine. Large segments result in a poor space utilization,

whereas small segments increase the computational complexity of the problem. The

continuous approach adopted in this paper is still complex from a computational

point of view. However, with the proposed split of the problem, it can still be solved

for real-world instances.

Existing studies on the single-terminal BAP consider either a static or dynamic

arrival of vessels. The static case assumes that all vessels are in port waiting for a

berth allocation. The discrete-quay-static-arrival BAP (Imai et al. 1997) is an

assignment problem and is solvable in polynomial time with the Hungarian method

(Papadimitriou and Steiglitz 1982). This method assigns jobs to machines by

sequentially computing shortest paths until each job is assigned to a machine. In the

dynamic case, vessels arrive while work is in progress, in which case there may be

idle times between successive vessels. The dynamic BAP is NP-hard for both the

continuous and the discrete quay case (Cordeau et al. 2005). Although the dynamic

BAP is NP-hard, we can still solve real-life instances of our problem within

satisfactory time, since we abstract from the position and quay crane allocations at

the strategic level.

In order to show the feasibility of the model we have performed a case study,

based on data from terminal operator PSA Antwerp, Belgium. The results show that

this approach can yield significant reductions in required crane capacities and inter-

terminal transport. The practical contribution of this paper is therefore twofold. First

of all, it allows a set of terminals to balance their workload, so as not to exceed the

available labor and/or equipment pool at any point in time. Moreover, given the

enormous lead times for purchasing new cranes or expanding quays, it allows a

terminal to search for (possibly temporary) measures that can be taken to

accommodate a new customer on a short notice, or to deal with berths or quay

cranes that will be out of commission for a longer period of time. Whether changes

to the current schedules are commercially feasible is beyond the scope of this paper,

but our study shows the cost of the current schedules and the potential for cost

reduction.

The outline of the paper is as follows: In the next section, we formulate the

problem and derive an appropriate MILP which can be adjusted to exhibit the right
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amount of flexibility to allocate terminals and berthing intervals to vessels. In Sect.

3, we consider a real-life case, impose bounds on the deviations from preferred

terminals and time intervals that express relevant commercial considerations, and

solve the problem in two sequential steps. We end with conclusions and

recommendations in Sect. 4.

2 Mathematical model

2.1 Problem description

For the rest of this paper we postulate the following set-up. We are given a cluster of

terminals f1; 2; . . .; Tg, with typical elements s and t, a set of vessels f1; 2; . . .;Vg,
with typical elements v and w, and a set of container destinations f0; 1; 2; . . .;Vg,
with typical element z. A container destination can be any vessel, viz. the vessel that

a container is to be loaded on. A hinterland destination, to which a container is

transported by train or truck, is labeled destination 0. We assume vessels call

cyclically, where each vessel in the set arrives exactly once in each cycle. We

assume the cycle to be a sequence of K time slots, with k a typical time slot.

Addition and subtraction in the domain of time slots is done by adding a proper

multiple of K, so as to end up between 1 and K.

In the cluster of terminals, the container vessels have to be discharged and

loaded. Each vessel v brings a pre-determined (nominal) number of inbound

containers Ivz 2 IN with destinations z, where v = z. Besides the containers brought

in by vessels, a certain amount of containers Hv with destination v = 0 is brought

into the terminals by trucks and trains during the cycle. Each container is to be

delivered to one of the terminals. Usually, such a container is delivered to the

terminal where the destination vessel berths. However, if at the time of arrival, the

yard capacity of that particular terminal is fully used, containers have to be

temporarily stacked in a different terminal, resulting in inter-terminal transport of

containers, which is established by trucks. Furthermore, each vessel v exports a

number of outbound containers Ov 2 IN in each cycle.

Terminal t has a restricted quay length Lt 2 IRþ and a maximum quay crane

capacity Nt 2 IN. One aspect of the problem is to determine whether all of the quay

cranes are necessary. Once berthed, vessel v occupies a certain amount of quay

meters Mv. In addition, this length Mv determines the maximum number of quay

cranes Sv 2 IN that can process vessel v in parallel, and the efficiency gv 2 ½0; 1� of

the quay cranes on vessel v. In practice, quay cranes with different processing rates

are present in the terminals. We do not take the specific allocation of quay cranes to

vessels into account in this strategic planning stage, but assume the average

processing rate kt 2 IN to be the processing rate of each quay crane in terminal t.
Therefore the handling time of vessel v in terminal t depends on (1) the mean

processing rate kt in terminal t, (2) the efficiency gv of quay cranes operating vessel

v, (3) the number of quay cranes processing vessel v and (4) the total number of

inbound and outbound containers Ivz and Ov of vessel v. We assume the processing
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time of vessel v to be inversely proportional to the first three of these items and

proportional to the latter. Furthermore, the number of quay cranes processing vessel

v may change from one time slot to another. After the discharging and before the

loading, containers can temporarily be stored in the yard of terminal t up to the

yard’s capacity Wt. The number of time slots that it takes to transport a container

from terminal s to terminal t is defined as Dst 2 IN. Furthermore, the time that a

vessel is berthed is bounded by the length of the calling cycle. In addition, we

assume that vessels arrive at the beginning of a time slot and depart at the end of a

time slot.

Our goal is to minimize the total costs of the system, which consist of two

components. First, costs are associated with each operating quay crane. We define ct

to be the linear cost factor for the required crane capacity at terminal t. Second, a

transportation cost cst is associated with each container that is transported from

terminal s to terminal t.
In Table 1 we give a summary of all parameters introduced in this section. These

parameters are not entirely independent. Due to the cyclic property of the

considered system, we assume conservation of containers, i.e. everything brought

into a terminal by vessel or from the hinterland to be loaded onto a vessel will leave

with that vessel, i.e.,

Table 1 Model parameters
Parameter Definition

T Number of terminals in the cluster

V Number of vessels in the set

K Number of discrete time slots within the cycle

Lt Quay length (m) of terminal t

Mv Quay length required for vessel v (m)

Ivz Number of inbound containers to be discharged from

vessel v with destination z

Ov Number of outbound containers to be loaded

onto vessel v

Hv Number of containers with destination v arriving

from the hinterland

Nt Maximum quay crane capacity in terminal t

Sv Maximum number of quay cranes that can process

vessel v in parallel

kt Mean processing rate of quay cranes in terminal t
(containers/time slot)

gv Vessel efficiency with respect to quay crane rate

Dst Number of time slots needed to transport a container

from terminal s to t

Wt Maximum number of containers that can be stored

in terminal t

cst Transportation costs of a container from terminal s to t

ct Quay crane costs in terminal t
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XV

w¼1

Iwv þ Hv ¼ Ov 8v: ð1Þ

Another way of reading this equation is as a definition of Ov.

2.2 Formulation as a mixed-integer linear program

In this section we introduce a number of decision variables, for which we shall use

curly letters to distinguish them clearly from the variables and parameters

introduced in the previous section. The problem is to assign to each vessel a

terminal and a time interval during which that vessel is berthed at that terminal.

Therefore, we introduce a binary decision variable X tv, which is set to 1 if vessel v
calls at terminal t and integer decision variables Av, the arrival time slot of vessel v,

and Dv, the first time slot after vessel v’s departure. Hence, the processing of vessel

v starts in time slot Av and ends in time slot Dv � 1.

These decision variables need to satisfy a number of constraints. In order to

express these constraints more easily we will introduce a set of auxiliary decision

variables. All decision variables are summarized in Table 2.

2.2.1 Terminal and time allocation

Each vessel should berth at exactly one terminal, i.e.

XT

t¼1

X tv ¼ 1 8v: ð2Þ

Berthing and departure times of each vessel are within the cycle (although not

necessarily the same cycle):

Table 2 Overview of decision variables

Variable Definition

X tv 1, if vessel v calls at terminal t, 0 otherwise

Av The arrival time slot of vessel v

Dv The first time slot after vessel v’s departure

MtvðkÞ The amount of quay meters consumed in terminal t by vessel v during time slot k

QtvðkÞ The amount of quay cranes that process vessel v in terminal t during time slot k

HtvðkÞ The number of containers from the hinterland arriving

into terminal t with destination v during time slot k

F stvðkÞ The number of containers transported from terminal s to terminal

t with destination v during time slot k, s = t

W tvðkÞ WIP in terminal t with destination v at the end of time slot k

N t The amount of quay cranes required in terminal t

BvðkÞ Indicator whether vessel v is berthed during time slot k

Ev Indicator whether Av�Dv
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1�Av;Dv�K 8v: ð3Þ
A vessel can only be processed when it is berthed, which is exactly between its

arrival and departure times. To express whether a vessel is berthed during a certain

time slot, we introduce a binary variable BvðkÞ

BvðkÞ ¼
1 if vessel v is berthed during times lot k;
0 otherwise:

�
8v; k:

Since we study a cyclic setting the arrival time slot of a vessel does not

necessarily precede the departure time slot. A vessel may arrive in a time slot in one

cycle and leave in an earlier time slot in the next. Since each vessel can be entirely

processed in at most K time slots, the amount of time that a vessel is berthed spans

at most 2 cycles. Thus, if Av\Dv then the vessel is berthed between time slots Av

and Dv in the same cycle, and if Av�Dv then the vessel is berthed during the time

slots that are at least Av or less than Dv. Hence the case Av ¼ Dv is interpreted as a

vessel v that is continuously berthed for a full cycle.

In order to properly phrase this relationship betweenA,D, and B we distinguish 2

cases: Av\Dv, and Av�Dv. In each of these cases we first look at a numerical

example and then derive the general constraints for each of the cases. Finally, we

combine them into one again by introducing an auxiliary binary decision variable Ev.

1. Av\Dv: Here vessel v arrives and departs in the same cycle, and the time slots

during which a vessel is berthed are contiguous in a cycle. As an example,

assume K = 10, Av ¼ 3 and Dv ¼ 7. Since BvðkÞ is 1 between Av and Dv � 1,

and 0 everywhere else, we find the table below, where we also list the values of

k � BvðkÞ.

This table can be fully characterized by 3 constraints: First, after its departure a

vessel is not berthed anymore leading to

k � BvðkÞ�Dv � 1: ð4Þ

Second, before its arrival time slot, a vessel is not berthed yet leading to

ðK � kÞ � BvðkÞ�K �Av: ð5Þ

Note that the two constraints above set all non-berthing elements of Bv to 0.

The number of time slots k for which BvðkÞ ¼ 1 is equal to the number of time

slots between v’s arrival and departure, and is given by

XK

k¼1

BvðkÞ ¼ Dv �Av: ð6Þ

Av Dv

k 1 2 3 4 5 6 7 8 9 10

BvðkÞ 0 0 1 1 1 1 0 0 0 0

k � BvðkÞ 0 0 3 4 5 6 0 0 0 0
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2. Av�Dv: In this case the time slots when a vessel is not berthed are contiguous

in a cycle. As an example, assume K = 10, Av ¼ 8 and Dv ¼ 4. Hence BvðkÞ
should be 0 between Dv and Av � 1, and 1 everywhere else. This is shown in

the table below, where we also list the values of k � ð1� BvðkÞÞ.

The case is similar to case 1 with the roles of Av and Dv interchanged and BvðkÞ
replaced by 1� BvðkÞ. Therefore, the three constraints for this case are

k � 1� BvðkÞð Þ�Av � 1 ð7Þ
ðK � kÞ � 1� BvðkÞð Þ�K �Dv ð8Þ
XK

k¼1

1� BvðkÞð Þ ¼ Av �Dv: ð9Þ

To express this case distinction as a decision variable, and to formulate

constraints that relate A, D and B we introduce for each vessel v a binary

variable Ev

Ev ¼
1 ifAv�Dv;
0 otherwise:

�

This allows us to combine Eqs. 6 and 9 into

XK

k¼1

BvðkÞ � Evð Þ ¼ Dv �Av 8v: ð10Þ

Since BvðkÞ is a binary variable that will be 1 for at least 1 time slot in any

solution, Ev is 1 if and only if Dv�Av. Hence we can combine Eqs. 4 and 7,

and Eqs. 5 and 8 to

1�Av� k � BvðkÞ � Evð Þ�Dv � 1 8v; k ð11Þ

and

Dv � K� K � kð Þ � BvðkÞ � Evð Þ�K �Av 8v; k: ð12Þ
Note that in this formulation, each vessel arrives exactly once during the

considered cycle. In practice however, some vessel lines may call multiple

times during the same cycle, in particular when the cycle lengths of the various

loops are different. This can easily be incorporated in the model by introducing

auxiliary variables for the arrival times of the additional (second, third, and so

on) vessels of such a loop within the same cycle and defining the fixed inter-

arrival time between them. Although the number of constraints will grow in

Dv Av

k 1 2 3 4 5 6 7 8 9 10

BvðkÞ 1 1 1 0 0 0 0 1 1 1

k � 1� BvðkÞð Þ 0 0 0 4 5 6 7 0 0 0
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such a formulation, the number of decision variables will stay the same and

therefore the complexity of the problem does not increase much.

2.2.2 Quay and crane capacity allocation

To formulate constraints for quay we introduce the auxiliary variable

MtvðkÞ ¼Amount of quay consumed in terminal tby vessel vduring time slot

k; 8t; v; k
Vessel v requires an amount of quay meters Mv at a terminal t during time slot k,

if and only if the vessel is actually berthed during time slot k at terminal t. Since

vessel v does not consume space at a terminal where it does not berth and since it

never consumes more than Mv at the terminal where it berths we have

MtvðkÞ�Mv � X tv 8t; v; k: ð13Þ
Also, over all terminals, vessel v requires Mv space if and only if it is berthed at

time slot k.

XT

t¼1

MtvðkÞ ¼ Mv � BvðkÞ 8v; k: ð14Þ

Finally, the sum of lengths of all vessels berthed at a terminal during any time slot

should be less than or equal to the total quay length of that terminal

XV

v¼1

MtvðkÞ� Lt 8t; k: ð15Þ

In a similar vein we restrict the allocation of quay cranes capacity to vessels. We

introduce an auxiliary continuous variable

QtvðkÞ ¼ Amount of quay cranes processing vessel vin terminal tin time slot k;

8t; v; k

Since a vessel v can only be operated on in a terminal if that vessel calls at that

terminal, and since no more than Sv quay cranes can operate on that vessel

simultaneously we have

QtvðkÞ� Sv � X tv 8t; v; k: ð16Þ

Moreover, a vessel can only be operated on, if it is actually berthed. As opposed to

quay meters used, however, it is not necessarily the case that the maximum amount

of quay cranes is employed on a vessel at any time.

QtvðkÞ� Sv � BvðkÞ 8t; v; k: ð17Þ
On the other hand, a vessel has to be fully processed during the cycle, which

means that all its import containers (destined for the hinterland or other vessels)

have to be discharged and all its outbound containers have to be loaded. For each

import and export container a crane handling is required and hence:
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XT

t¼1

XK

k¼1

gvkt � QtvðkÞ ¼
XV

z¼0

Ivz þ Ov 8v: ð18Þ

We want to minimize the maximum number of quay cranes in a terminal that are

ever required during the cycle. Therefore, we introduce an auxiliary variable

N t ¼ The minimum number of quay cranes required in terminal t; 8t;

together with the constraint

XV

v¼1

QtvðkÞ�N t 8t; k: ð19Þ

The variable N t is present in the objective function. When the intention is to

determine the optimal number of quay cranes at each terminal, this variable N t is

unconstrained. However, quay cranes are typically not a resource that can be

acquired or disposed of easily. Moreover, there may be physical limitations for the

maximum number of quay cranes that can operate in one particular terminal, e.g.

due to maintenance. Therefore, we use a hard upper bound Nt for the maximum

number of quay cranes available at a terminal. The maximum number of quay

cranes ever required in terminal t during the cycle cannot be larger than the number

of quay cranes actually available in terminal t:

N t �Nt 8t: ð20Þ

Note on quay and quay crane capacities Restriction (15) is a necessary but not a

sufficient condition to guarantee that all vessels allocated to a certain terminal in a

certain time slot can actually berth at that terminal. We have to simplify the problem

in order to be able to solve it, and yet the simplified problem should still have

practical relevance. This particular simplification achieves both: The resulting

problem can be solved in a reasonable amount of time, and for typical quay

utilizations (0.2–0.5) the actual allocation of vessels to the quay turns out to be still

feasible in the many random experiments that we conducted (Hendriks 2009). This

is in particular true for the port of Antwerp case study. In the case of very high quay

crane utilizations, the solution may yield a solution that at a tactical level turns out

not to be feasible.

The variable Qtv is a continuous variable while in reality the number of quay

cranes is an integer. However, Qtv should be interpreted as an average and hence

non integer assignments can always be realized by assigning integer numbers of

cranes for partial time periods. Example an assignment of 3.6 quay cranes over a

certain time period t may be realized as an assignment of 4 during 0.6t and of 3

during 0.4t. However, care must be taken to make sure an available quay crane is

not prevented from doing work because it cannot cross its neighboring quay cranes

on the quay. In all random experiments that we conducted with typical quay crane

utilization (0.5–0.7) and also in the actual port of Antwerp case, the resulting

strategic solution always turned out to have a subsequent tactical solution.
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2.2.3 Container flows

The problem to solve is how best to organize the flow of containers into and out of

the terminals. A vessel berthing in some terminal brings containers into that

terminal, destined for the hinterland and other vessels, requiring yard space in that

terminal, in addition to quay and quay crane capacity. Also, it takes a number of

containers from that terminal, which should be present in that terminal at the

moment of loading. In order to capture all container movements during a cycle, we

also have to express the non-vessel related moves. These split into two flows, the

flow of export containers from the hinterland into the terminals, and the inter-

terminal flow of containers. Notice that we decided to not explicitly model the

import containers from the vessels to the hinterland. We assume that inbound

containers with destination 0 (hinterland) are transported into the hinterland some

time after their arrival. These containers will only affect the storage levels in a

terminal and can be considered a base storage level in a terminal. This can be

compensated for in the maximum storage level Wt for each terminal. We need two

additional auxiliary variables to express the flow from the hinterland into each

terminal

HtvðkÞ ¼ The number of containers from the hinterland arriving into terminal t

with destination vduring time slot k; 8t; v; k:

and the flow between the various terminals

F stvðkÞ ¼ The number of containers transported from terminal sto terminal t

with destination vduring time slotk; s 6¼ t; 8s; t; v:

The first constraint is that the total number of export containers should be absorbed

by the combined terminals during the cycle, i.e.,

XK

k¼1

XT

t¼1

HtvðkÞ ¼ Hv 8v: ð21Þ

Containers that are destined for a certain vessel do not necessarily enter the system

at the terminal where that vessel berths. If a terminal is stacked up to its capacity,

containers from the hinterland destined for vessel v temporarily may have to be

stacked in a terminal different from the one that vessel v calls at. In order to express

that the maximum yard capacity should not be exceeded we need to express the

storage level of each terminal, the Work In Process or WIP, at every time slot

W tvðkÞ ¼WIP in terminal twith destination vat the end of time slot k; 8t; v; k:

Difference equations are applied to update the storage levels over time. More

precisely, the amount of containers in a terminal with a particular destination v at

the end of time slot k is equal to the amount of containers in that terminal with that

destination at the end of the previous time slot plus all incoming flows for that

destination (from vessels, from other terminals, and from the hinterland) minus all
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outgoing flows for that destination (to vessels and to other terminals) during time

slot k. We assume that the amount of containers to be discharged from a vessel with

a particular destination or to be loaded onto a vessel is spread evenly over the time

slots during which vessel v is actually berthed. For vessel v, the total number of

containers to be handled during a particular call is
PV

z¼0 Ivz þ Ov. Of this total

number, we define ivz to be the fraction to be discharged with destination z, and �v to

be the fraction to be loaded. That is, ivz ¼ IvzPV

z¼0
IvzþOv

and �v ¼ OvPV

z¼0
IvzþOv

. Hence the

difference equation for W tv becomes

W tvðkÞ ¼ W tvðk � 1Þ þ
XV

w¼1

iwvgwkt � QtwðkÞ � �vgvkt � QtvðkÞ

þ HtvðkÞ þ
XT

s¼1

F stvðk � DstÞ �
XT

s¼1

F tsvðkÞ 8t; v; k
ð22Þ

where the arguments of W tv and F stv are understood to be increased by K, if less

than or equal to 0, due to the cyclic nature of the system. In order to prevent the

storage levels from exceeding the capacity during a time slot, we have to put an

upper bound on W tvðkÞ. Assuming the worst case scenario, viz. in a time slot all

containers arrive at a terminal before any container leaves, the following constraint

is required:

XV

v¼1

W tvðk � 1Þ þ
XV

w¼1

iwvgwkt � QtwðkÞ þ HtvðkÞ þ
XT

s¼1

F stvðk � DstÞ
 !

�Wt

8t; k:
ð23Þ

On the other hand, to prevent the storage level from becoming negative during time

slot k, again assuming the worst case scenario, the following constraint should also

be satisfied

W tvðk � 1Þ � �vgvkt � QtvðkÞ �
XT

s¼1

F tsvðkÞ� 0 8t; v; k: ð24Þ

By summing over k one can check that the container flow constraints together

with the quay crane allocation constraints generate inter-terminal flows F stvðkÞ that

ensure that all containers arriving at any terminal destined for vessel v will arrive in

time at the terminal where v berths, and will be loaded onto the vessel during its call.

In Table 2 we summarize.

2.2.4 Objective function

For each terminal t linear costs ct are assigned to the required quay crane capacity in

that terminal. A linear unit penalty cost cst is assigned when containers are

transported from terminal s to terminal t. The variables can be represented in a

vector and the objective function becomes
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min
XK

k¼1

XT

s¼1

XT

t¼1

XV

v¼1

cstF stvðkÞ þ
XT

t¼1

ctN t: ð25Þ

Remark In the solution of this MILP it could be that the storage level in one or

more terminals has a minimum larger than zero, i.e. an arbitrary amount of

containers is stored in a certain terminal during the entire cycle. This can be

prevented by assigning a small cost for each stored container. This storage cost

could also be used to model the fact that containers require a minimum amount of

yard space throughout a cycle.

2.3 Modeling additional constraints

In the previous section we have laid the foundation for a MILP to minimize the quay

crane and inter-terminal costs by allocating vessels to terminals for a duration that

will allow proper discharging and loading for the expected number of containers to

be handled. In practice, however, the freedom to allocate any vessel to any terminal,

and choosing the best arrival and departure times for these vessels is usually

somewhat restricted. Some vessels may need to berth in a particular terminal, for

example for reasons of draft or quay crane limitations. Also, arrival and departure

times may be flexible, but only within certain limits, because a vessel may have a

previous or a next port of call with certain arrival and departure times. Hence,

flexibility is not unlimited, and the potential reduction of the required number of

quay cranes and the costs for inter-terminal transport should take into account the

limited freedom to allocate a vessel to another terminal or give it different arrival or

departure times. Therefore we slightly expand the MILP derived in the previous

section, such that for a chosen/negotiated level of flexibility, the required quay crane

capacity and inter-terminal transport is minimized. Although the model does not

incorporate costs for certain modifications (since they are hard to quantify), we are

at least able to quantify the savings in crane capacities and inter-terminal transport

induced by these modifications, or put differently, the costs associated with existing

schedules.

Hence in reality the goal is to minimize the number of quay cranes required for

the current throughput in a set of terminals, and at the same time reduce the costs for

inter-terminal transport, by adapting the current terminal and time allocations.

Therefore, let us assume that we are given Xv, the preferred terminal of vessel v, and

Av and Dv, its preferred berthing and departure times, respectively. We would expect

that changing the current terminal allocation and slightly shifting the preferred

berthing interval in time for a couple of vessels will already lead to a significant

reduction in both the objectives.

There are many ways to allow limited flexibility. In a practical setting, it might

be the case that a terminal allocation is fixed for a vessel, but that its arrival and

departure times are flexible, or the other way around. When arrival and departure

time are flexible, it might be the case that the length of the berthing interval is still

fixed, or also flexible. All of these flavors can be captured in extensions of the base

model. In order to show the potential of this approach, we opt for the following
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extension of the model and define two sets: the set S is the set of vessels whose

current terminal and berthing allocation are allowed to be adapted, and the set F is

the set of vessels whose berthing terminal and intervals are fixed.

We have to specify additional constraints (while all the others remain valid) for

the vessels in the different sets. First, for the vessels in F, the time-position of the

berthing interval should be fixed:

Ai ¼ Ai; 8i 2 F ð26Þ
Di ¼ Di; 8i 2 F ð27Þ

and the current terminal allocation for the vessels in F should be fixed

X ij ¼ 1; 8i 2 F ^ j ¼ Xi: ð28Þ
The vessels in set S are free to be allocated to any one of the terminals according

to (2), so no additional constraint is necessary. Next, let Pv be defined as the number

of time slots of the preferred berthing interval, i.e. Pv = Dv - Av, for all v. (As

usual, we add K when necessary in order to make sure that 1 B Pv B K.) We want

to allow some freedom in the time allocation of a berthing interval to the vessels in

S, but not in the number of time slots of berthing:

XK

k¼1

BvðkÞ ¼ Pv; 8v 2 S: ð29Þ

Instead, we want to allow some, but not arbitrary, flexibility in where to place this

berthing interval within the cycle. Therefore, we introduce parameter Gv to express

that vessel v 2 S can be placed at most Gv time slots earlier or Gv time slots later

with respect to its preferred arrival as shown in Fig. 2.

The corresponding lower bound for arrival and upper bound for departure of

vessel v 2 S can then be defined as Av
l = Av - Gv and Dv

u = Dv - Gv, respectively.

Since Pv is fixed, we can express the desired limited flexibility as a constraint on Av

only. The earliest allowed arrival is Av
l and the latest Av

l ? 2Gv, where care has to be

taken that the latter value is between 1 and K again. Without loss of generality we

assume that 2Gv B K, since that already allows us to express any degree of

flexibility in the arrival time of vessel v. By this assumption we know that it suffices

to subtract K simply once in order to make sure that Av
l ? 2Gv becomes a proper

time slot again. This suggests the following case distinction between the cases

Av
l Dv

u

time

GvGv Pv

Av Dv

vv

Fig. 2 Flexibility in the time-position of the berthing interval Pv of vessel v 2 S
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Av
l ? 2Gv B K and Av

l ? 2Gv [ K, which is known beforehand, since these are

given parameters.

• Av
l ? 2Gv B K: In this case any allowed value of the decision variable Av is

larger than Av
l . Hence, the constraints are

Al
v�Av�Al

v þ 2Gv: ð30Þ

• Av
l ? 2Gv [ K: In this case, it is possible that Av�Al

v, in which case there is no

additional restriction on its value, other than that it should be at most K, which is

taken care of by the base model. The other possibility is that Av\Al
v, in which

case it should also be at most Av
l ? 2Gv - K, which is between 1 and K because

of our assumption that 2Gv B K. Therefore, we introduce the additional

auxiliary variable Ea
v to distinguish these two cases. The technique to make this

distinction is very similar to Eqs. 10 through 12. For each case exactly one of the

Eqs. 31 and 32 will force Ea
v to assume the right value:

K � Ea
v �Al

v �Av ð31Þ

�K � ð1� Ea
vÞ\Al

v �Av: ð32Þ

Now the additional restriction on the arrival time, as phrased by the case distinction

above can be stated as

Av�Al
v þ 2Gv � K � Ea

v : ð33Þ

2.3.1 A two-step approach

With this extended model we can solve problems of a practical size. Currently the

allocation schedules in ports are planned on a 1 or 2 h time grid. However, if we try to

solve the MILP formulation for such time grids (K = 84 and K = 168, respectively)

the problem for a realistic number of vessels, say V = 40, takes too long to allow us to

experiment with many different choices for the flexibility in arrival times. For a real

scheduling situation in a port this may not be a problem, since such an optimization is

done at most a few times a year and hence may run for a number of days. However,

since the purpose of this research is to show that a MILP can be formulated and is very

useful to highlight the (considerable) costs that are associated with the schedules that

are currently used in practice, we need to experiment with many different settings.

Therefore we perform the optimization in two sequential steps: First, the MILP is

solved for time slots of 8 h. For a weekly cycle this means K = 21. The model can then

be solved within minutes while generating allocations that are quite accurate, since

port employees work in shifts and vessels commonly berth during multiples of a shift.

In a second step, a similar MILP is built to refine the constructed allocation per

terminal on a 1-h time grid. Solving this MILP takes less than a second.

The resulting two-step optimization approach enables us to efficiently investigate

the dependency of the cost savings (in crane capacity and inter-terminal transport)
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on the level of flexibility. We select a number of vessels and the maximum allowed

modifications in their arrivals. We round the desired berthing time up to a multiple

of 8 h to express the parameter Pv of the model introduced above, and solve it.

Then, in the second step, we refine the constructed allocation per terminal from 8-h

time slots into 1-h time slots, where the terminal allocation remains fixed. We set

the berthing time interval for each vessel back to the original value (in hours instead

of multiple of 8 h) to express the parameter Pv and require it to be positioned

between the allocated arrival and departure times of the first step. So AH

v , the

optimal values of the first step optimization on the coarse time grid, play the same

role as Av
l in Eqs. 30 through 33. For Dv we introduce similar restrictions to bound

the departure time from above, using DH

v . Since the vessels are already distributed

among the terminals, the remaining objective is to minimize the required crane

capacity.

In Sect. 3 we conduct two representative experiments on realistic data to show

that considerable costs may be involved in the current commercially driven

allocation schedules.

3 Case study

We consider three interacting terminals (T = 3) in the port of Antwerp, where

thirty-seven vessel lines have one of their vessels processed exactly once a week

(V = 37). Furthermore, we assume that each vessel line has a preferred terminal and

a preferred arrival and departure time, which fit best to their schedules (the current

berth allocations). By these experiments the induced costs for the required number

of quay cranes and inter-terminal transport are made explicit.

We are interested in potential reductions in required crane capacity and inter-

terminal transport if we allow small modifications to the current allocations

constructed by PSA Antwerp, which are primarily driven by commercial

considerations. These reductions show how much additional container handling

capacity is in principle still available without having to invest in new cranes. A

simple visual analysis of these terminals (without any computation at all) reveals

that each terminal shows heavy fluctuations in the workload distribution over the

shifts of the week. At busy shifts, the entire quay crane capacity is fully occupied,

whereas at quiet shifts no crane is working. A second observation is the relatively

large number of transshipment containers that have to be transported from one

terminal to another due to the allocation of connecting vessels to different terminals.

(For the purposes of this paper it is not important who actually pays for this inter-

terminal traffic. For example, a terminal’s carbon footprint may be considered as a

cost that needs reduction.)

As an illustration Fig. 3 depicts the number of active quay cranes (scaled to 1) in

one of the terminals for each hour of a weekly cycle (K = 168) according to an

allocation representative for the situation in Antwerp. Note that the scaled total

number of quay cranes available in the terminal can be larger than 1 (implying that

never all available cranes are active at the same time). The black line represents the
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mean number of active quay cranes per hour. From the high fluctuations in the

number of active quay cranes we conclude that i) for a few time slots a high amount

of the crane capacity is needed and ii) during a lot of time slots a large percentage of

crane capacity is not used.

The experiments have been conducted on an Intel-based quad core Linux server

with a CPU-speed of 2.4GHz, and 4GB of RAM. In the first step, with 21 time slots

of 8 h each, the number of binary variables is 888 and the number of constraints is a

little over 2,300. In the second step, we solve the problem per terminal with 168

time slots of 1 h each per cycle. Both the number of binary variables and the number

of constraints are approximately 2,200. Solving the first step takes a few minutes,

solving the second step takes less than 1 s. The solver used is CPLEX 11.

In the first experiment, our hypothesis is that a slight modification of the

allocation of only a couple of vessels already leads to large cost reductions. Hence,

for a small selection of the vessels, considered by the terminal operator as

practically feasible, we allow (1) a terminal allocation different from the preferred

one, and (2) the berthing interval different from the preferred one. We allow the

berthing interval to shift maximally Gv time slots to the left or to the right on the

time axis as depicted in Fig. 2. For different values of these bounds, and for different

ratios between the parameter value cst and ct in Eq. 25, we run the two-step

optimization and from the results construct Pareto frontiers. Each Pareto frontier

shows a front of optima for which the bound Gv is the same, but the ratio between cst

and ct is different. It is a convenient way to visualize the trade-off between

conflicting objectives.

In these Pareto frontiers the total number of quay cranes (over all terminals) is

scaled to the number of quay cranes maximally active in a representative allocation

in the three terminals in Antwerp. One of the points from one of the Pareto frontiers

is highlighted to further illuminate the hypothesis. This allocation is the result of a

two-step optimization after selecting less than one third of the vessels and allowing

a change in their terminal allocation and a shift in the time position of the berthing

interval of these vessels of no more than 24 h (Gv = 24). The results of the two-step

optimization suggest that about 25% of the number of quay cranes can be saved
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while at the same time the inter-terminal transportation costs are reduced by 3%.

Although there might be proper (commercial) reasons for using the current

schedules, at least with our approach, we can quantify the additional costs induced.

In the second experiment, we assume that the preferred arrival and departure

times for all vessels are satisfied (Gv = 0, V v), but that they may be berthed at a

terminal different from their preferred one. Consequently, the terminal allocation of

all vessels is chosen to be flexible while the allocations of their berthing intervals

are fixed to the existing one. Results suggest (see Fig. 6) that with the same number

of quay cranes as in the current allocation, 40% of the costs for inter-terminal

transport can be saved by adapting the terminal allocation.

The details and a discussion of the two experiments are presented in the next two

sections.

3.1 Berthing time and terminal re-allocation

In this experiment we arbitrarily select a total of 11 vessels (out of the total set of

vessels) from the busy peaks in terminals 1, 2 and 3 (busy peaks in terminal 1 for

instance can be found simply by observing Fig. 3), and define this set to be S. For

each value of Gv 2 f0; 8; 16; 24; 48g (in hours) for the vessels in S, a Pareto frontier

of the total (sum over all terminals) number of active quay cranes versus the total

costs for inter-terminal transport is constructed. This means that for a certain black

or grey frontier Gv is the same, and each point on that frontier results from a single

two-step optimization with a specific ratio between costs for quay cranes and costs

for inter-terminal transport.

The results are depicted in Fig. 4a. As Gv increases, the frontiers move from the

upper right to the lower left in this figure. That means that the black frontier starting

at the upper right corresponds to the case where Gv = 0, the grey frontier below that

one corresponds to the case where Gv = 8, the black frontier in the middle

(overlapping with the grey ones) to the case where Gv = 16, the lower grey one to

the case where Gv = 24, and the lower black one (almost fully overlapping with the

grey one) to the case where Gv = 48. The cross represents the state of an allocation

representative for Antwerp, i.e. it represents the number of quay cranes maximally

active (possibly smaller than the number of quay cranes available) and the amount

of inter-terminal transport in an allocation representative for Antwerp. From Fig. 4a

we conclude:

• The frontier for the case where Gv = 0 already shows potential improvements in

the amount of inter-terminal transport (on the frontier at the left side of the

cross).

• In the same situation, i.e. Gv = 0 for v 2 S, a reduction in the number of quay

cranes is possible at the expense of higher inter-terminal costs transport (on the

same frontier at the lower-right side of the cross). This means that even without

changing the berthing intervals (Gv = 0 for v 2 S), the costs for inter-terminal

transport or the number of required quay cranes can be reduced. Apparently, an

adaptation in the terminal allocation of the vessels in S is sufficient to achieve

this.
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• The improvements going from Gv = 0 to Gv = 8 are relatively large, whereas

the improvements going from Gv = 24 to Gv = 48 are approximately zero (the

lower grey (Gv = 24) and the lower black (Gv = 48) mostly overlap).

• All fronts intersect (at the upper left point) where the parameter for crane costs ct

are zero. Apparently, the inter-terminal costs cannot be further reduced even if

Gv grows and the maximum number of cranes is used.

• The grey bullet [coordinates (0.51, 0.76)] on the lower grey frontier suggests

that if Gv = 24 for v 2 S the number of maximally active quay cranes can be

reduced by almost 25% and the costs for inter-terminal transport by about 3%.

This means that besides a possible change in terminal allocation, the time

allocation of only 11 vessels has to be shifted at most 1 day to gain significant

improvements.

It is interesting to visualize the difference between the representative allocation

in Antwerp (black cross in Fig. 4a) and the allocation represented by the grey bullet

in the lower gray frontier having coordinates (0.51, 0.76) in a different way: Fig. 5a,

c and e represent the scaled number of active quay cranes for each of the three

terminals for each hour in the 1-week-cycle. Figure 5b, d and f represent the number

of active quay cranes in each of the three terminals for each hour in the 1-week-

cycle for the allocation found by using the two step optimization [i.e. the optimum

represented by the grey bullet having coordinates (0.51, 0.76)]. The black lines

represent the mean quay crane usage per hour in the different terminals. If we

compare Fig. 5a, c, e with Fig. 5b, d, f, we notice the following:

• The workload in the generated allocation is better balanced (over the terminals

and over time) than in the current allocation. This results in the previously

mentioned reduction of almost 25% of the required quay cranes.

• At some points in time still some quay cranes are not active even in the

allocation generated by the two step optimization. Introducing either a higher

level of flexibility (by increasing Gv, v 2 S) or including more vessels into the
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set S would probably fill up these gaps and lead to an even better workload

balance and a smaller number of required cranes.

• The mean quay crane usage in a specific terminal can differ for the current

allocation and the generated allocation. This can be explained by a difference in

terminal allocation of the vessels in S. The total quay crane usage however

remains the same.
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Fig. 5 Current and generated quay crane usage during the hours of a 1-week cycle. a Current allocation
for terminal 1. b Generated allocation for terminal 1. c Current allocation terminal 2. d Generated
allocation terminal 2. e Current allocation for terminal 3. f Generated allocation for terminal 3
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Additionally, we depict the benefit of modification differently. For a constant

ratio of quay crane costs and inter-terminal costs, the scaled total costs are plotted

versus the level of flexibility Gv. Figure 4b presents the results for 10 ratios

( ct

cst
2 f0; 20; 40; 60; 80; 100; 120; 140; 160;1g). The ‘‘frontiers’’ move downwards

with increasing ratio. So the upper (horizontal graph) represents the results for the

costs ratio 0, the graph below that one represents the results for the ratio 20, and so

on. From this figure we notice:

• For the ratio equal to 0 (no costs for quay cranes), the total costs (for this ratio

only inter-terminal costs) are not affected by the level of flexibility. Apparently,

the terminal length and crane capacity are not the limiting factor so that the best

(lowest inter-terminal traffic) solution is already obtained at Gv = 0.

• For all ratios larger than zero the total costs decrease as the level of flexibility

increases.

• As the ratio grows between 0 and 40, the total cost decrease becomes relatively

large. Apparently, these are the sensitive ratios, where a slight increase of the

crane costs already leads to a significant reduction in quay cranes. This suggests

that the current number of quay cranes is far from minimal.

• Increasing the cost ratio beyond 40 does no longer lead to substantial cost

savings. A further increase of quay crane costs does no longer affect possible

cost reductions.

3.2 Terminal re-allocation for fixed timetable

In this experiment we assume that none of the vessel lines is prepared to change

their berthing interval in Antwerp, but we also assume that each of them allows a

different terminal allocation. We are interested in decreasing the current costs for

inter-terminal transport, while the current arrival and departure times are kept the

same. Additionally, we require that the maximum number of quay cranes active in a

terminal is at most equal to the number of quay cranes currently present in that

terminal. Hence, we allow a terminal adaptation for each vessel and fix its berthing

interval in time to the current allocation (Gv = 0). Figure 6 shows the cumulative

costs for inter-terminal transport for the current allocation and the generated

allocation for each hour in the weekly cycle. The costs are scaled to the total costs in

the current allocation. These results suggest that, with the same number of quay

cranes, about 40% of the costs for inter-terminal transport can be saved.

4 Conclusions and recommendations

We considered a port consisting of a number of inter-acting terminals operated by

one terminal operator. The strategic problem faced by the operator is to allocate

vessels to a terminal for a certain time interval. We abstracted from position and

quay crane allocations (problems faced at tactical and operational levels,

respectively) and constructed a MILP to strategically allocate a terminal and a

time window to each of the vessels in the cycle.
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Since the ability to solve real-life problems within reasonable time strongly

depends on the resolution of the time grid, a two-step optimization approach was

introduced. This approach was applied to perform a case study for the multi-

terminal container operator PSA Antwerp, who operates multiple terminals in the

port of Antwerp. The two-step approach enabled us to efficiently investigate the

benefit of modifying an existing allocation, i.e. the potential crane and inter-terminal

transport savings if the existing terminal and time allocations would be modified.

Phrased differently, it shows the capability to accommodate additional traffic

without having to increase the existing crane capacity.

Results suggest that a small modification of an existing allocation suffices to gain

significant improvements: a reduction of almost 25% of the number of cranes and at

the same time a reduction of more than 3% of the inter-terminal costs. Furthermore,

if the current terminal allocation of all vessels can be modified while the current

time allocation is fixed, costs for inter-terminal transport can be reduced by 40%.

Although the model does not incorporate costs for the modifications, at least this

tool enables us to quantify the cost savings or spare capacity that can be achieved by

these modifications.

Acknowledgments The research of D.A. is supported by NSF grant DMS-0604986 and by a grant from

the Stiftung Volkswagenwerk through the program on complex networks. Parts of this work were

conducted while M.L. was with Arizona State University, Department of Mathematics and Statistics.

Comments of two anonymous referees are gratefully acknowledged.

Open Access This article is distributed under the terms of the Creative Commons Attribution Non-

commercial License which permits any noncommercial use, distribution, and reproduction in any med-

ium, provided the original author(s) and source are credited.

References

Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in

container terminals. Eur J Oper Res 202:615–627

0 50 100 150
0

0.2

0.4

0.6

0.8

1

k

C
um

ul
at

iv
e 

co
st

s

0 50 100 150
0

0.2

0.4

0.6

0.8

1

k

C
um

ul
at

iv
e 

co
st

s

(a) (b)

Fig. 6 Current and generated cumulative inter-terminal costs for a 1-week cycle. a Inter-terminal costs
for the current allocation. b Inter-terminal costs for the generated allocation

Strategic allocation of cyclically calling vessels 271

123



Cordeau J-F, Laporte G, Legato P, Moccia L (2005) Models and tabu search heuristics for the berth-

allocation problem. Transp Sci 39:526–538

Giallombardo G, Moccia L, Salani M, Vacca I (2010) Modeling and solving the tactical berth allocation

problem. Transp Res Part B 44:232–245

Guan Y, Cheung RK (2004) The berth allocation problem: models and solution methods. OR Spectr

26:75–92
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