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a b s t r a c t

We consider the optimal control problem of emptying a deterministic single server multiclass queuing
system without arrivals. We assume that the server is able to serve several queues simultaneously, each
at its own rate, independent of the number of queues being served.

We show that the optimal sequence ofmodes is ordered by the rate of cost decrease. However, queues
are not necessarily emptied. We propose a dynamic programming approach for solving the problem,
which reduces the multi-parametric QP (mpQP) to a series of problems that can be solved readily.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Consider a model of N queues competing for a single server.
The buffer capacity at each queue is unlimited. The server is able
to serve queue i at a rate µi. The cost of operation per unit time
is a linear function of the queue sizes. For this system it is well
known [1–4] that the optimal policy is a µc-rule: allocate service
attention to the non-empty queue with the largest rate of cost
decrease.

The above-mentioned papers assume that the server can serve
only one queue simultaneously. In this paper, we assume that the
server is able to serve several queues simultaneously, each queue
at rate µi, independent of the number of queues being served.
These kind of models arise when studying multiclass queuing
networks. In Fig. 1, we depicted three illustrative examples, which
all can be modeled similarly.

The first example is an intersection which needs to switch
between flows from four different directions. For this intersection,
the directions 1 and 2 cannot be served simultaneously. The same
holds for directions 2 and 3, and also for the directions 3 and 4.
However, the directions 1 and 3 can be served simultaneously.
The same holds for directions 1 and 4, and also for the directions
2 and 4.
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The second example is a multiclass queuing tandem network
consisting of three servers, where each server serves two classes,
but can serve only one class at the same time. There are no buffers
between the servers. Class 1 needs only service at the 1st server,
class 2 needs service at server 1, followed by service at server 2.
Class 3 needs service at server 2, followed by service at server 3,
and class 4 needs only service at the 3rd server. This model can be
used for hot ingots, but can also be used as an approximation for
cases where buffers between servers are negligibly small.

The third example is a two-server polling system with physical
constraints: the servers cannot serve two consecutive queues and
cannot overtake (e.g. quay crane in a container terminal serving
bays of a berthed vessel).

All three examples can be modeled as a single server with the
modes

mode {1, 3}: serve class 1 and class 3 simultaneously,
mode {1, 4}: serve class 1 and class 4 simultaneously,
mode {2, 4}: serve class 2 and class 4 simultaneously,

and the additional modes

mode {1}: serve only class 1,
mode {2}: serve only class 2,
mode {3}: serve only class 3,
mode {4}: serve only class 4,
mode ∅: idle,

since it is also possible to serve a subset of classes.

http://dx.doi.org/10.1016/j.sysconle.2011.04.010
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
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Fig. 1. Three examples of multiclass queuing networks which can be modeled as a single server that can serve several queues simultaneously.
Table 1
An overview of the rate of cost decrease per mode for the example with service rate
µi = 1, c1 = 4, c2 = 3, c3 = 2, and c4 = 5.

Mode Rate of cost decrease

mode {1,4} 9
mode {2,4} 8
mode {1,3} 6
mode {4} 5
mode {1} 4
mode {2} 3
mode {3} 2
mode ∅ 0

In this paper we consider the optimal control of this multiclass
queuing systemwhen the cost of operation per unit time is a linear
function of the queue sizes. Throughout, we consider a fluid model
with negligible setup times.

As an illustrative example, consider the above mentioned
system and assume no arrivals. Furthermore, assume that for each
class the service rateµi = 1. Let xi(t) denote the queue size of class
i at time t , and assume that the cost of operation per unit time is
given by c1x1 + c2x2 + c3x3 + c4x4 with c1 = 4, c2 = 3, c3 = 2, and
c4 = 5. So the problem we consider is to minimize∫

∞

0
4x1(t) + 3x2(t) + 2x3(t) + 5x4(t) dt. (1)

Assume that the system initially starts at (x1, x2, x3, x4) = (6, 6,
6, 6).

We can make an overview of the rate of cost decrease per
mode, as shown in Table 1. According to the µc-rule, a good policy
seems to be to first use mode {1, 4} for a duration of 6 time units,
bringing the system in (x1, x2, x3, x4) = (0, 6, 6, 0), followed by
mode {2} for a duration of 6 time units, bringing the system in
(x1, x2, x3, x4) = (0, 0, 6, 0). Finally, usemode {3} for a duration of
6 time units to empty the system, after which the system can idle.
For the resulting trajectories we obtain:∫

∞

0
x1(t) dt = 18

∫
∞

0
x2(t) dt = 54∫

∞

0
x3(t) dt = 90

∫
∞

0
x4(t) dt = 18.

Therefore, the total costs for this policy become 4 · 18 + 3 · 54 +

2 · 90 + 5 · 18 = 504.
An alternative policy would be to first use mode {2, 4} for a

duration of 6 time units, bringing the system in (x1, x2, x3, x4) =

(6, 0, 6, 0). Next, serve inmode {1, 3} for 6 time units to empty the
system, and then idle. If we substitute the resulting trajectories for
the queue lengths in (1), the total costs for the alternative policy
become 4 · 54 + 3 · 18 + 2 · 54 + 5 · 18 = 468, which is less.

Clearly the µc-rule does not hold for this system. Furthermore,
the alternative policy is not optimal either. As we show in the
remainder of this paper, the optimal policy in this case yields a total
costs of 456.
3
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Fig. 2. The graph S = (N , C) with N and C as in (2).

2. The problem

We consider N queues competing for a single server which can
serve several queues simultaneously.

Assumption 1. We assume that no new jobs arrive to this system.

To model classes that cannot be served simultaneously, let S =

(N , C) be an undirected graph, with vertices N = {1, 2, . . . ,N}

corresponding with the classes, and edges C ⊂ N × N
corresponding to conflicting classes. That is, a pair (i, j) ∈ C (i <
j) when classes i and j cannot be served simultaneously. For the
example in the previous section we have

N = {1, 2, 3, 4} and C = {(1, 2), (2, 3), (3, 4)}, (2)

see also Fig. 2.

Definition 2. We call a setm ⊂ N an allowedmodewhenm×m∩

C = ∅. That is, all of the classes inm can be served simultaneously.

Corollary 3. When a set m ⊂ N is an allowed mode, any subset of
m is also an allowed mode.

LetMS denote the set of all allowedmodes for themulticlass single
server system described by the graph S. Furthermore, let x(t) =

[x1(t), x2(t), . . . , xN(t)]T denote the queue lengths at time t .
The system dynamics is given by the hybrid fluid model:

ẋ(t) = −Bmu(t) m ∈ MS, (3)

where

Bm =


Im(1) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Im(N)

 Im(i) =


1 if i ∈ m
0 if i ∉ m,

and u(t) = [u1(t), u2(t), . . . , uN(t)]T denotes the vector of used
service rates at time t .

The system dynamics is subject to the constraints

xi(t) ≥ 0 0 ≤ ui(t) ≤ µi ∀i ∈ N , ∀t ≥ 0. (4)

Let c = [c1, c2, . . . , cN ]
T be a costs vector satisfying ci > 0.
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Problem 4. Find a feedback u(x), m(x) for the system (3) which
guarantees (4) and minimizes

J(x0) =

∫
∞

0
cT x(s; u,m, x0) ds, (5)

where x(t; u,m, x0) denotes the resulting queue lengths at time t
whenusing feedback u(x) andm(x) if the system starts in x(0) = x0
at time 0.

Lemma 5. For an optimal policy, the rate of service of class i ∈ N is
given by ui(x) = µi.

Proof. We prove the result by contradiction. Suppose that an
optimal policy is given for which class i ∈ N is (amongst others)
served from t1 to t2 > t1 in mode m ∋ i for some m ∈ MS . And
assume that ui(t) < µi for t1 ≤ t ≤ t2. Let x1i and x2i denote
the queue length for class i at t1 and t2 respectively. Consider an
alternative policy which mimics this optimal policy, but for t1 ≤

t ≤ t2 first serves class i at rate µi for a duration of (x1i − x2i )/µi,
after which it serves class i at rate 0 for the remaining duration of
(t1−t2)−(x1i −x2i )/µi. Notice that the alternative policy is feasible,
sincewe have no arrivals. Clearly, the queue length of class i cannot
decrease at a faster rate than in this alternative policy. Therefore,
for all t1 < t < t2 the queue length of class i is strictly less than for
the optimal policy, whereas the queue length of all other classes
remains the same. In particular this implies that the alternative
policy results in strictly lower total costs, which contradicts the
optimality of the given optimal policy. �

Lemma 6. For an optimal policy the value of
∑

i∈mj
µici is non-

increasing for two consecutive modes mj.

Proof. We prove the result by contradiction. Suppose that an
optimal policy is given with two consecutive modes m1 and m2
for which

∑
i∈m1

µici <
∑

i∈m2
µici. Let τm1 > 0 and τm2 > 0

denote the corresponding durations of these modes. Consider the
alternative policy where this sequence of modes is interchanged,
while keeping the durations of the modes the same. That is, in
the alternative policy first mode m2 is used for a duration of τm2 ,
after which mode m1 is used for a duration of τm1 . Notice that the
alternative policy is feasible, since we have no arrivals. Clearly,
the costs initially decrease at a faster rate for the alternative
policy, resulting in strictly lower total costs, which contradicts the
optimality of the given optimal policy. �

Remark 7. Notice that Lemma 6 does not contradict our observa-
tion that theµc-rule does not hold for the example in the previous
section. Apparently the sequence of modes during transient is in
accordance with their µc-values, but the duration of modes is not
determined by buffers becoming empty.

Remark 8. Notice thatwe have not yet addressed the possibility of
switching infinitely fast between several modes. This is something
we in principle could do, as setup times are assumed to be zero.
By assuming that at time t we are in mode m for a fraction of time
αm(t) ≥ 0, with

∑
m∈MS

αm(t) = 1, instead of the dynamics (3)
we could consider the dynamics

ẋ(t) = −

−
m∈MS

αm(t)Bmu(t) m ∈ MS .

In a similar way as the proofs of Lemmas 5 and 6 it can be shown
by means of contradiction that without loss of generality αm(t) ∈

{0, 1}.
Suppose that an optimal policy is given which does not satisfy

this property on the interval [t1, t2]. For each mode m ∈ MS we
define τm =

 t2
t1

αm(s) ds, and additionally for each class i ∈ N
we define τ i
m =

1
µi

 t2
t1

αm(s)ui(s) ds. Consider an alternative policy
which is successively in each mode m for a duration of τm, where
the modes are in the order such that µmcm is non-increasing for
two consecutive modes. During mode m, class i is first served at
rate µi for a duration of τ i

m, after which it is served at rate 0 for a
duration of τm − τ i

m. This alternative is not only feasible, but also
not worse than the given optimal policy.

3. A worked out example

In the previous section we not only introduced the problem,
but also derived two lemmas that are helpful in determining the
optimal feedback. Before solving the general problem we first
consider the example introduced in Section 1, i.e., the system
depicted in Fig. 1 which can be parametrized by means of (2),
µi = 1 for all i ∈ N , and c = [4, 3, 2, 5]T .

As a first step in solving the problem we first consider the
open loop optimal control problem. Let an initial condition x(0) =

[x10, x20, x30, x40]T be given. From Lemma 6 we know that the
system subsequently visits the modes {1, 4}, {2, 4}, {1, 3}, {4}, {1},
{2}, and {3}, after which the system stays in mode ∅ forever. Let
τ14, τ24, τ13, τ4, τ1, τ2, and τ3 denote the durations of the successive
modes. From Lemma 5we know that during eachmode, each class
is served at maximal rate.

Using the results from Lemmas 5 and 6 we can now determine
the resulting costs as a function of these durations:∫

∞

0
x1(s) ds =

1
2
x210 + (x10 − τ14)τ24 + (x10 − τ14 − τ13)τ4∫

∞

0
x2(s) ds =

1
2
x220 + x20τ14 + (x20 − τ24)(τ13 + τ4 + τ1)∫

∞

0
x3(s) ds =

1
2
x230 + x30(τ14 + τ24)

+ (x30 − τ13)(τ4 + τ1 + τ2)∫
∞

0
x4(s) ds =

1
2
x240 + (x40 − τ14 − τ24)τ13

where we also have

x10 = τ14 + τ13 + τ1

x20 = τ24 + τ2

x30 = τ13 + τ3

x40 = τ14 + τ24 + τ4.

(6)

The problem of minimizing the costs (5) for a given initial
condition x0 can be reduced to solving the following quadratic
program:

min
τ≥0

1
2
τ THτ − xT0Fτ +

1
2
xT0Yx0 (7a)

subject to

Gτ ≤ x0 (7b)

where τ = [τ14, τ24, τ13]
T and

F =

4 3 2
3 3 2
2 2 2
4 3 1

 G =

1 0 1
0 1 0
0 0 1
1 1 0

 (7c)

H =

8 6 3
6 6 3
3 3 4


Y =

4 3 2 4
3 3 2 3
2 2 2 2
4 3 2 5

 . (7d)

For any given initial condition x0, (7) is a QP. The quadratic program
(7) is a so-called multi-parametric quadratic program (mpQP) and
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can be solved for an arbitrary parameter x0 [5,6]. An mpQP solver
is included in the (free) Multi-Parametric Toolbox for Matlab [7].

The solution of the mpQP (7) is given by:

τ =




1
2

−
1
3

−
1
3

1
2

−
1
2

1
3

1
3

1
2

1
2

1
3

1
3

−
1
2

 x0 for


−3 2 2 −3
3 −2 −2 −3

−3 −2 −2 3
−3 −4 2 3
3 2 −4 −3

 x0 ≤ 0

0 0 0 0
0 0 0 1
1 0 0 0


x0 for

0 −1 0 1
1 0 −1 0
3 −2 −2 3


x0 ≤ 0

0 0 0 1
0 0 0 0
1 0 0 −1


x0 for

[
1 0 −1 −1

−3 2 2 3

]
x0 ≤ 0

 1 0 0 0
−1 0 0 1
0 0 0 0


x0 for

[
−1 −1 0 1
3 2 2 −3

]
x0 ≤ 0

0 −1 0 1
0 1 0 0
1 1 0 −1


x0 for

 0 1 0 −1
−1 −1 0 1
3 4 −2 −3


x0 ≤ 0

 1 0 −1 0
−1 0 1 1
0 0 1 0


x0 for


−1 0 1 0
1 0 −1 −1

−3 −2 4 3


x0 ≤ 0

0 0 0 1
0 0 0 0
0 0 1 0


x0 for


−1 0 1 1


x0 ≤ 0

1 0 0 0
0 1 0 0
0 0 0 0


x0 for


1 1 0 −1


x0 ≤ 0.

(8)

So the parameter space for x0 is divided into 8 regions, and for
each region the duration of the first three modes is specified as a
linear function of x0. The duration of the other four modes follows
from (6).

From this solution we can obtain the optimal controller for the
example studied in Section 1, i.e., starting from the initial condition
x0 = [6, 6, 6, 6]T . Notice that we are in the first region of (8).
This gives that we should first use mode {1, 4} for a duration of 2,
bringing the system in x = (4, 6, 6, 4). Next, use mode {2, 4} for a
duration of 4, bringing the system in x = (4, 2, 6, 0). Subsequently,
use mode {1, 3} for a duration of 4, bringing the system in x =

(0, 2, 2, 0). Then, use mode {2} for a duration of 2, bringing the
system in x = (0, 0, 2, 0). Finally, use mode {3} for a duration of
2, bringing the system in x = (0, 0, 0, 0). This controller results in
the mentioned minimal total costs of 456.

Although (8) solves the optimal control problem,we can specify
the controller also differently, as we only need to know when to
leave a certain mode. Although this alternative description can
be derived from (8) it becomes more clear from our dynamic
programming approach to solving the problem, as explained in the
next section.

4. A dynamic programming approach

The approach introduced in the previous section solves the
example problem for a given cost vector c = [c1, c2, c3, c4]T .
However, by means of a dynamic programming approach it is
possible to solve the problem for a given sequence of modes.
Furthermore, as mentioned in the previous section, a different
formulation of the controller is obtained, which is also easier
to implement. To illustrate this, we again consider the system
depicted in Fig. 1 which can be parametrized by means of (2), but
this time we consider arbitrary µi > 0 and ci > 0. We only
assume that the sequence of modes is as described in Table 1, i.e.,
we assume that 0 < µ3c3 ≤ µ2c2 < µ1c1 ≤ µ4c4 ≤ µ1c1 + µ3c3.

In our dynamic programming approach we first solve the
subproblem for the case where we only have the final five modes
{4}, {1}, {2}, {3}, and ∅ available. The solution to this problem is
given by the µc-rule. First serve class 4 exhaustively, then class 1,
followed by class 2 and finally class 3. The resulting cost to go is
given by

1
2
xT



c1
µ1

c2
µ1

c3
µ1

c1
µ4

c2
µ1

c2
µ2

c3
µ2

c2
µ4

c3
µ1

c3
µ2

c3
µ3

c3
µ4

c1
µ4

c2
µ4

c3
µ4

c4
µ4


x. (9)

For the next subproblem, we assume that we have the final six
modes available. That is, in addition to the five modes we assumed
to have available in the previous subproblem, we assume to have
mode {1, 3} available aswell. FromLemma6weknow thatwe start
in this mode, and from the previous subproblem we know how to
proceed after leaving this mode. The only thing that remains to be
determined is the duration of mode {1, 3}. Assume that we stay in
this mode for a duration of τ13. The costs made during mode {1, 3}
are

c1τ13
x1 + (x1 − τ13µ1)

2
+ c2τ13x2

+ c3τ13
x1 + (x3 − τ13µ3)

2
+ c4τ13x4. (10)

The remaining cost to go is given by

1
2

x1 − τ13µ1
x2

x3 − τ13µ3
x4


T



c1
µ1

c2
µ1

c3
µ1

c1
µ4

c2
µ1

c2
µ2

c3
µ2

c2
µ4

c3
µ1

c3
µ2

c3
µ3

c3
µ4

c1
µ4

c2
µ4

c3
µ4

c4
µ4



x1 − τ13µ1
x2

x3 − τ13µ3
x4

 . (11)

Adding (10) and (11) gives the total cost to go, which needs to be
minimized over τ13 subject to the constraint
0 ≤ τ13 ≤ min(x1/µ1, x3/µ3).

Since (9) is independent of τ13, we can alsominimize the additional
cost to go obtained from adding (10) and (11), and subtracting (9):

µ3c3τ13


τ13 −

[
x1
µ1

+
x2
µ2

+
x3
µ3

+
µ1c1 + µ3c3 − µ4c4

µ3c3

x4
µ4

]
. (12)

The minimum of (12) as a function of τ13 is achieved for

τ ∗

13 =
1
2


x1
µ1

+
x2
µ2

+
x3
µ3

+
(µ1c1 + µ3c3) − µ4c4

µ3c3

x4
µ4


≥

1
2


x1
µ1

+
x3
µ3


≥ min


x1
µ1

,
x3
µ3


.

Therefore, the end of mode {1, 3} is determined by either buffer 1
or buffer 3 becoming empty.

Similarly, we can analyze the next subproblem, in which we
assume that in addition to the final six modes we havemode {2, 4}
available too. Let τ24 denote the duration of this mode. For the
additional cost to go we get for x1

µ1
≥

x3
µ3

µ2c2τ24


τ24 −

[
x2
µ2

+
x4
µ4

+
µ2c2 + µ4c4 − µ1c1 − µ3c3

µ2c2

x3
µ3

+


x1
µ1

−
x3
µ3

]
,
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whereas for x2
µ2

≤
x4
µ4

we obtain:

µ2c2τ24


τ24 −

[
x2
µ2

+
x4
µ4

+
µ2c2 + µ4c4 − µ1c1 − µ3c3

µ2c2

x1
µ1

+
µ3c3
µ2c2


x3
µ3

−
x1
µ1

]
.

For both expressions the minimum as a function of τ24 is achieved
for τ ∗

24 ≥ min(x2/µ2, x4/µ4), which implies that mode {2, 4} is
finished by either x2 = 0 or x4 = 0.

The final step in our dynamic programming approach is to
consider the full problem, i.e. assume that all allowed modes are
available. We need to determine the duration of mode {1, 4}:
τ14. When either x4

µ4
≥

x2
µ2

or x1
µ1

≥
x3
µ3

we obtain τ ∗

14 ≥

min(x1/µ1, x4/µ4). However, for x4
µ4

≤
x2
µ2

and x1
µ1

≤
x3
µ3

we obtain

τ ∗

14 =
1
2


x1
µ1

+
x4
µ4


−

µ3c3
2(µ1c1 − µ2c2 + µ3c3)


x2
µ2

+
x3
µ3


.

(13)

This implies that mode {1, 4} is either terminated when x1 =

0 or x4 = 0, or when all of the following three conditions are
satisfied:
•

x4
µ4

≤
x2
µ2

,
•

x1
µ1

≤
x1
µ3

, and

• (µ1c1 − µ2c2 + µ3c3)


x1
µ1

+
x4
µ4


≤ µ3c3


x2
µ2

+
x3
µ3


.

To summarize, from the dynamic programming approach we
obtain the following controller for the system depicted in Fig. 1,
parametrized by means of (2), with 0 < µ3c3 ≤ µ2c2 < µ1c1 ≤

µ4c4 ≤ µ1c1 + µ3c3:
Initialization: Start in mode {1, 4}.
mode {1, 4}: Stay in this mode until either x1 = 0, or x4 = 0,
or x4 ≤ x2 ∧ x1 ≤ x3 ∧ (µ1c1 − µ2c2 + µ3c3)


x1
µ1

+
x4
µ4


≤

µ3c3


x2
µ2

+
x3
µ3


then switch to mode {2, 4}.

mode {2, 4}: Stay in this mode until either x2 = 0 or x4 = 0, then
switch to mode {1, 3}.
mode {1, 3}: Stay in this mode until either x1 = 0 or x3 = 0, then
switch to mode {4}.
mode {4}: Stay in this mode until x4 = 0, then switch to mode {1}.
mode {1}: Stay in this mode until x1 = 0, then switch to mode {2}.
mode {2}: Stay in this mode until x2 = 0, then switch to mode {3}.
mode {3}: Stay in this mode until x3 = 0, then switch to mode ∅.
mode ∅: Stay in this mode.

Given an arbitrary initial condition x0, the duration of each
mode can be derived from the above description. Doing so for the
case where c1 = 4, c2 = 3, c3 = 2, c4 = 5, and µi = 1 results
in (8).

5. The dynamic programming approach for the general
problem

In the previous section we introduced a dynamic programming
approach to solving the problem for a specific example. In this
section we deal with the dynamic programming approach for
Problem Problem 4 as introduced in Section 2.

Consider the set of allowed modes

MS = {m1,m2, . . . ,mM}

and assume without loss of generality that−
i∈mj

µici ≥

−
i∈mk

µici ∀j < k.
From Lemmas 5 and 6, we know that classes are served atmaximal
rate, and subsequent modes are ordered by the rate of cost
decrease. That is, the system visits first modem1, thenm2, etc. and
finally the system visits mode mM = ∅.

Remark 9. Notice that the modes mM−N , mM−N+1, . . . , mM−1 are
not necessarily the modes in which a single class is served. For
example, in the system parametrized by (2), we might have c4 >
c1 + c3, in which case mode {4} has a higher rate of cost decrease
than mode {1, 3}.

Our dynamic programming approach consists of solving a se-
quence of subproblems.

The ith subproblem Pi can be formulated as follows:

Problem 10 (Subproblem Pi). Consider system dynamics described
by the hybrid fluid model

ẋ(t) = −Bmµ m ∈ {mM−i+1,mM−i+2, . . . ,mM} (14)

where

Bm =


Im(1) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Im(N)

 Im(j) =


1 if j ∈ m
0 if j ∉ m,

and µ(t) = [µ1, µ2, . . . , µN ]
T denotes the vector of service rates.

Find a feedbackm(x) which guarantees

xj(t) ≥ 0 for all j ∈

M
k=M−i+1

mk, ∀t ≥ 0

xj(t) = 0 for all j ∈ N \

M
k=M−i+1

mk, ∀t ≥ 0

(15)

and minimizes

J(x0) =

∫
∞

0
cT x(s; u,m, x0) ds, (16)

where x(t; u,m, x0) denotes the resulting queue lengths at time t
when using feedbackm(x) if the system starts in x(0) = x0 at time
0, where x0 satisfies (15).

The solution of subproblem P1 is trivial.
Let the solution of subproblem Pi be given, consisting not

only of the feedback m(x), but also of the cost to go J(x). From
Lemma 6 we know that the solution to subproblem Pi+1 follows
from first staying in mode mM−i for a duration τM−i, after which
the solution of subproblem Pi can be applied. Therefore, in order
to solve subproblem Pi+1, only the duration τM−i ≥ 0 needs to
be determined. This duration follows from minimizing a second
order polynomial in τM−i subject to an upperbound on τM−i due
to the fact that buffers are not allowed to become negative during
mode mM−i.

In this way, starting from the solution of subproblem P1, we can
consecutively solve the subproblems P2, P3, . . . , PM−1, and finally
also subproblem PM , which actually is equivalent to Problem 4
which we need to solve.

6. Conclusions and future work

In this paper we considered the optimal control problem of
emptying a deterministic single server multiclass queuing system
without arrivals. We considered that case where the server is able
to serve several queues simultaneously, where queue i can be
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served at a rate µi. The cost of operation per unit time is a linear
function of the queue sizes.

We showed that the optimal sequence of modes is ordered by
rate of cost decrease. However, contrary to the µc-rule, queues
are not necessarily emptied. Let M denote the number of modes.
We proposed a dynamic programming approach for solving the
problem, which reduces the M-dimensional multi-parametric QP
(mpQP) to a series ofM problems that can be solved readily.

So far, we considered a system without arrivals. We are
currently working on extending our solution to constant arrival
rates. Lemmas 5 and 6 can be extended easily. The main difference
is that the server can serve class i not only at rate 0 or µi, but
also at rate λi (only when buffer i is empty). When considering
infinitely fast switching between modes, the problem can also be
formulated as a separated continuous linear problem for which a
solution method has recently been presented in [8].

The next step to pursue is an extension to the stochastic
setting, cf. [1–4]. Lemmas 5 and 6 can also be extended to the
setting of stochastic inter-arrival times and stochastic service
times. Subsequently, the dynamic programming approach can be
extended.

The abovementioned extensions are relatively straightforward.
Including non-zero setup times ismore challenging, since Lemma6
does not hold anymore. This can be illustrated by means of the
system depicted in Fig. 1, parametrized by means of (2). Let the
service rates µi = 1, the cost vector c = (0.34, 0.33, 0.32, 0.35)T ,
and the initial state x0 = (30, 20, 20, 40). In addition, assume that
setup times are not negligible anymore, and that they are all equal
to 1. Using first mode {1, 4}, then mode {2, 4}, next mode {1, 3},
and finally mode {3} results a total costs of 1039.68. However, first
serving inmode {2, 4}, then inmode {1, 4}, next inmode {1, 3}, and
finally in mode {3} results in a total costs of 1039.60. The reduced
costs result from the fact that during setups the system might still
partially serve certain classes.
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