
EURANDOM PREPRINT SERIES
2010-022

Model Predictive Control
for the Acquisition Queue and Related

Queueing Networks

J. van Leeuwaarden, E. Lefeber, Y. Nazarathy, J. Rooda
ISSN 1389-2355

1



1

Model Predictive Control
for the Acquisition Queue and Related

Queueing Networks

Johan S.H. van Leeuwaardena,b, Erjen Lefeberc,
Yoni Nazarathyb,c and Jacobus E. Roodac

aDepartment of Mathematics and Computer Science, EindhovenUniversity of Technology, The Netherlands
bEURANDOM, The Netherlands

cDepartment of Mechanical Engineering, Eindhoven University of Technology, The Netherlands

Abstract

Model Predictive Control (MPC) is a well established methodin control theory and engineering
practice. It is often the method of choice for systems that need to be controlled in view of constraints.
The main idea of MPC is to solve an optimization problem over agiven time horizon at each control
epoch, and to use the obtained solution for controlling the system until the next control epoch. In many
cases this optimization problem can be formulated as a tractable quadratic programming problem. In
this paper we apply MPC to discrete-time queueing networks that incorporate multiple product routes,
delays, self-generated arrivals and multi-job processing. We compare our MPC-based controller to simple
threshold policies and show improved performance. We also mention some open theoretical problems
related to this control method.

I. INTRODUCTION

Queueing networks are often used to model communication, manufacturing and service networks.
Emphasis usually lies on the performance analysis of a modelfor a given service discipline and routing
scheme. It is often challenging to determine the optimal wayof scheduling capacity or routing jobs. This
paper explores methods for finding such dynamic control rules.

When precise objectives are formulated, for example minimizing steady-state queue sizes, the optimal
control problem can in principle be formulated as a Markov Decision Problem (MDP), but in practice,
MDPs for larger networks often prove numerically cumbersome. An alternative is to employ much simpler
control laws such as priority or threshold policies, but these typically fail to achieve the desired behavior.
Analysis and tuning of MDPs and simple control laws can sometimes benefit from using asymptotic
scaling regimes. In such cases, there is often some simplification of the underlying stochastic process, and
intractable MDPs can then be approximated by more tractableBrownian control problems. Nevertheless,
even when using such asymptotic approximations, finding optimal controls is still challenging. For more
background see [3], [10], [15].

In this paper we present an alternative control methodologywhich to the best of our knowledge has
not been applied before to queueing networks. Our method uses the concept of Model Predictive Control
(MPC). A classic reference is [6]. MPC is a popular tool for generating feedback controllers for dynamical
systems (i.e. control laws that observe the current state and use it to decide on the next control action).
MPC can deal with non-linearities and state constraints. Two recent papers that apply MPC to logistical
and manufacturing networks are [12] and [13], but in general, MPC is not as well known in the operations
research community as it is in the systems and control community.

The concept of MPC is simple: At every control epoch solve an optimization problem for the optimal
trajectory into the future, then use the first step of the optimal trajectory as the current control decision.



Q

¥

Q

¥

¥

QQ Q

S

S

¥ S

DD

Fig. 1. An example network. This network has 5 servers, 4 routes, 3 sinks, 4 infinite supply sources, 5 queues and a delay of
arbitrary size. The control law of the network is a specification of how the servers allocate their effort among their constituent
job classes.

At the next time step solve the optimization problem again, and so on. This method allows to incorporate
predictions in the control mechanism and has proven useful for systems with delayed feedback. Some
theoretical properties of this method have also been established [2], [14]. Specifically, conditions for
obtaining a stabilizing controller in the case of deterministic systems are by now well known (and even
implemented in commercial control packages [11]). Contrary to the deterministic case, quantifying the
performance of stochastic systems controlled by MPC is a largely unexplored area.

The network models we consider are discrete-time multi-class queueing networks that allow for delays,
multi-job processing and self-generated arrivals. The latter is motivated by both the acquisition queue
[5] and multi-class queueing networks with infinite virtualqueues [16], [20]. In these types of queueing
models, a server in the network can generate arrivals and is often faced with the control choice of either
letting new jobs enter the system or serving jobs that are presently waiting for service.

Figure 1 depicts an example network. The five boxes representservers. The circles represent job classes.
Classes marked with the∞ sign are calledsource classes. These represent an infinite amount of jobs
waiting to enter the system. Classes marked withQ representqueue classes; each queue class has an
associated queue in which jobs are waiting to be served. Classes marked withD representdelay classes.
When jobs pass through a delay class they are delayed for one time unit. Concatenatingd delay classes
results in a delay ofd time units. Finally, classes marked with anS aresink classesand represent jobs
that have left the system. We choose to model these sink classes in order to keep track of the departure
processes.

Source and queue classes are associated with servers. In Figure 1, three servers are associated with a
single class and two servers are associated with three classes each. All classes associated with the same
server have to share that server’s capacity. The delay and sink classes are not associated with servers.
Jobs that finish processing in a source or queue class, or a unit delay in a delay class, move to the next
downstreamclass. This is indicated by the arrows. All routes are deterministic and end up in sink classes.

The networks evolve at discrete time pointsn = 0, 1, . . .. At each time point all servers allocate their
capacities among their constituent source and queue classes. The way in which this capacity is allocated
is specified by the control law, the main object of our study. Capacity is used by the source classes to
generate new jobs and by the queue classes to process jobs in their queue. Every unit of capacity allocated
to a queue class results in the removal of a single job from thequeue. Every unit of capacity allocated
to a source class results in the generation of a random numberof new jobs. Delay classes simply pass,
after one time unit, all of their jobs to their downstream class. Thus the randomness in our system is
caused by the uncertainty in the number of jobs generated by source classes.

The structure of the paper is as follows. Section II illustrates our basic concepts by means of an example.



Section III describes in detail the queueing network model,presented both as a controlled Markov chain
and as a controlled linear system with noise. Section IV describes the MPC based controller, including
details of the implementation. Section V presents some further simulation experiments that provide insight
into some of the design issues related to MPC. We also mentionsome open problems in Section V, and
conclude in Section VI.

II. A N ILLUSTRATIVE EXAMPLE – THE ACQUISITION QUEUE

To demonstrate the MPC approach we consider the acquisitionqueue that was introduced in [5]. In this
stochastic model, a server has to divide its capacity among the acquisition of new jobs and the service of
jobs that are presently waiting in the queue. Within each time slot the server hasc ∈ N units of capacity
to spend. Each unit spent on acquisition in time slotn generates a random number of new jobs that join
the queue after a delay ofd ∈ N time units. Each unit spent on service removes one job from the queue.
Figure 2 presents a schematic representation of the model.

Server

Q

¥ D

D

DS

Fig. 2. The acquisition queue falls within our framework. Itis a single server that can either acquire new jobs (by working
on the source class∞) or service jobs in its queue. There is a delay ofd time units between the time a job is acquired and its
arrival to the queue. Serviced jobs accumulate in the sink.

We denote byU(n) the number of acquisition efforts at timen and refer to this choice as the control
law of the system. The queue length process{Q(n)}n∈N is then described by the recursion equation

Q(n + 1) =
(

Q(n) − (c − U(n))
)+

+

U(n−d)
∑

i=1

ũn,i, n = 0, 1, . . . . (1)

Here,x+ = max(0, x) and{ũn,i}n∈N is a sequence of i.i.d. non-negative integer-valued randomvariables.
The initial conditions areQ(0) andU(−d), U(−d+1), . . . , U(−1). The controlU(n) ∈ N is a function
of Q(n) that satisfies

(

c − Q(n)
)+

≤ U(n) ≤ c.

Let S(n) be the number of jobs in the sink (jobs that have received service) by timen, with S(0) = 0.
If we assume that the system is stable and well defined (see [5]), the throughput of the system satisfies

δ = lim
n→∞

1

n
S(n) = m

c

1 + m
,

with m = E[ũ1,1]. In [5] the following simple control law was analyzed in fulldetail:

U(n) = α + (c − Q(n))+, (2)

with α ∈ N some number for whichα < c/(1 + m) (for stability).

A sensible control lawU(·) should stabilize the system, and in addition, keep the queuelengths
relatively small. Consider thesink error Se(n) = S(n) − δn. If we are able to produce at rateδ then



limn→∞ Se(n)/n = 0. The time-dependent behavior ofSe(n) is also of interest: highly fluctuating or
periodic behavior is considered undesirable. Finally, it is desirable for the control law to be computed
relatively quickly. The threshold policy (2) certainly meets this criterion. As opposed to that, an MDP
formulation of the acquisition queue (or more complex networks) typically does not. The MPC based
controller presented in this paper does allow for quick evaluation.

We shall now compare the threshold policy in (2) to MPC1.

Out[523]=

400 450 500
n

-100

-50

50

100

150

200

250
HaL

400 450 500
n

-75

-50

-25

25

50

75
HbL

Fig. 3. Trajectories of the acquisition queue with deterministic acquisition sizes,d = 10 and m = 3. Trajectories above the
axis are the queue level. Trajectories below the axis are thesink error. (a) Compares the threshold policy withα = 0 (dots
with line) andα = 2 (dots only). (b) Compares the threshold policy withα = 2 (dots only) and an MPC based controller (dots
connected by a line).

Figure 3(a) considers the threshold policy and shows the evolution of Q(n) (above the axis) andSe(n)
(below the axis). In this example, the system is deterministic (i.e. Var

(

ũ1,1

)

= 0), andc = 10, d = 10,
m = 3. The figure comparesα = 0 andα = 2. It appears thatα = 2 performs better, both in terms of
queue lengths and fluctuations in sink error. In Figure 3(b) we compare the threshold policy withα = 2
and MPC. The latter clearly performs better. Figure 4 further compares the threshold policy and MPC,
but this time for stochastic acquisition sizes. Again, MPC outperforms the threshold controller.

We now briefly outline how our MPC control for the acquisitionqueue comes about. For simplicity,
taked = 3, so that the complete state at timen is described byQ(n), S(n), and the acquisition during
the last three time units denoted byD1(n),D2(n) andD3(n).

Assume now that our control law is a general function of the state, and given by both the acquisition
effort U∞(n) and the serviceUQ(n), which satisfy

U∞(n) + UQ(n) ≤ c and UQ(n) ≤ Q(n). (3)

The evolution of our system is then described as












D1(n + 1)
D2(n + 1)
D3(n + 1)
Q(n + 1)
S(n + 1)













=













0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1

























D1(n)
D2(n)
D3(n)
Q(n)
S(n)













+













m 0
0 0
0 0
0 −1
0 1













[

U∞(n)
UQ(n)

]

+ noise, (4)

where the noise term is implicitly specified: its first coordinate is

U∞(n)
∑

i=1

ũn,i − U∞(n)m,

1With Q = I , R = I andN = 30, see Section IV.



200 400 600 800 1000
n

-150

-100

-50

50

100

150

200

250

Fig. 4. Trajectories of the acquisition queue with geometrically distributed acquisition sizes,d = 10 andm = 3. Trajectories
above the axis are the queue level. Trajectories below the axis are the sink error. The thin solid curves are for the threshold
policy with α = 2. The dotted curves are for the MPC based controller.

while all its other coordinates are zero.

The first step of our approach is to identify areference trajectoryby studying the system without
noise. In principle we may choose any reference trajectory.For the acquisition queue, to make a fair
comparison with the controller in (2), we choose as a reference the trajectory in which the sink grows
linearly at rateδ and all other quantities remain constant. That is,

D̄r
1(n) = D̄r

2(n) = D̄r
3(n) = Q̄r(n) = Ū r

∞(n) = Ū r
Q(n) = δ, S̄r(n) = δ n.

We now seek to formulate astate feedback control lawthat attempts to drive the system to the reference.
MPC does this by solving, at each timen, the following optimization problem:

min
n+N−1
∑

i=n

(

||X̂(i + 1) − X̄r(i + 1)|| + ||U(i) − Ū r(i)||
)

(5)

s.t. constraints (3).

Here X̂(n) is the prediction of the state at timen (a vector of dimensiond + 2 for the acquisition
queue),X̄r(·) is the state part of the reference trajectory,U(·) is the vector of controls (2-dimensional
for the acquisition queue) and|| · || is some norm or some norm-like measure (in this paper we consider
a 2-norm, i.e. quadratic costs). The minimization is over the controls which are to be applied over the
time horizonn, n+1, . . . , n+N −1. This is a2N -dimensional vector for the present case. The predicted
stateX̂(·) is a function of the decision variables and the current state.

MPC works as follows: At each time point the optimal solutionof (5) is used to control the system
for the next time unit. Note that as opposed to “myopic control” which attempts to make the next “best
step”, MPC is “look ahead control”. It appears to be very suitable for queueing networks of the type
we describe. The full details of the controller are surveyedin Section IV. First, we formally define the
general network model in Section III.



III. T HE NETWORK MODEL

We consider multi-class queueing networks that evolve at discrete time pointsn = 0, 1, 2, . . .. A
network is composed of four types of job classes:source(∞), queue(Q), delay(D) andsink (S). Jobs
originate in source classes, pass through queue and delay classes, and eventually end up in sink classes.

Let K∞,KQ,KD,KS denote the number of classes of each type. Classes are indexed byk = 1, . . . ,K.
We denote the classes of typej by Kj for j ∈ {∞, Q,D, S} and we number the classes as follows:
K∞ = {1, . . . ,K∞}, KQ = {K∞ +1, . . . ,K∞ +KQ}, etc. For convenience, we use the notationK{j,j′}

to indicate the union ofKj andKj′ , for j, j′ ∈ {∞, Q,D, S}, sometimes extending the notation to three
indices. For example,K{∞,Q,D} are all classes except the sink classes. LetK{j,j′} = |K{j,j′}|.

The jobs are processed byL servers indexed byi = 1, . . . , L. These servers perform activities on the
source and queue classes. The activity of each such class is performed by a unique serverσ(k). Let

C(i) = {k ∈ K{∞,Q} : σ(k) = i}

denote the constituency of serveri. Let C denote theL × K{∞,Q}-dimensional constituency matrix.
Element(i, k) of this matrix is1 if k ∈ C(i), and0 otherwise. We partitionC as

C =
[

C∞ CQ

]

.

At each time point, each serveri must divide its effort between the constituency activitiesC(i), generating
new material from the source classes, processing existing material in queue classes, idling or performing
a combination of these. The number of activities that serveri can perform in one time unit is given by
the integerci ≥ 1. Let c denote the vector of these elements. LetUk(n), k ∈ K{∞,Q} denote the number
of activities that are actually applied to classk at timen. We thus have the constraints

∑

k∈C(i)

Uk(n) ≤ ci, i = 1, . . . , L. (6)

With each source classk ∈ K∞, we associate a sequence of non-negative i.i.d.inputs: {ũk(ℓ), ℓ =
1, 2, . . .}, with E[ũk(1)] = mk. Let M∞ be a diagonal matrix with the elementsmk, k ∈ K∞. We denote
generic random variables of these i.i.d. sequences byũk, k ∈ K∞. Further, usẽu∗v

k to denote generic
random variables whose distribution is thev-fold convolution of the distribution of̃uk. The action of
performing an activity on classk ∈ K∞ is the creation of̃uk new jobs. Thus the application ofUk(n)

units of processing on classk results in the creation of̃u∗Uk(n)
k jobs. Obviously, the mean of this quantity

is Uk(n)mk.

Jobs that leave a class move to downstream classes using somerouting scheme. Downstream classes
may be of the queue, delay, or sink type. If it is a queue class,numberk say, the job joins the queue
and awaits service from serverσ(k). If it is a delay class the job is delayed for one time unit, before
moving onto the next downstream class in the next time unit. If it is a sink class, the job has reached its
final destination.

In this paper we assume that routing is deterministic. We letpkk′ = 1 if jobs that move out of class
k ∈ K{∞,Q,D} move into classk′ ∈ K{Q,D,S}. Otherwisepkk′ = 0. These values are arranged in a matrix
P = (pkk′), which we partition as

P =





P∞Q P∞D P∞S

PQQ PQD PQS

PDQ PDD PDS



 .

We assume that all routes end up in sink classes. Note that routes may merge.



The state of the network is the number of jobs in the queue, delay and sink classes. We denote it by
the K{Q,D,S}-dimensional vectorX(n) partitioned as[ XQ(n) XD(n) XS(n) ]. The state evolves as

Xk(n+1) =















Xk(n) +
∑

k′∈KD
Xk′(n)pk′k +

∑

k′∈K{Q,∞}
ũ
∗Uk′ (n)
k′ pk′k − Uk(n), k ∈ KQ (queue),

∑

k′∈KD
Xk′(n)pk′k +

∑

k′∈K{Q,∞}
ũ
∗Uk′ (n)
k′ pk′k, k ∈ KD (delay),

Xk(n) +
∑

k′∈KD
Xk′(n)pk′k +

∑

k′∈K{Q,∞}
ũ
∗Uk′ (n)
k′ pk′k, k ∈ KS (sink).

In the above we use the conventionũk = 1 for k ∈ KQ, i.e. for these classes̃u∗Uk(n)
k = Uk(n). This

allows us to represent the job inflow resulting fromUk(t) in the same manner for both the queue and
the source classes. Queue activities require material to bein the queue for the activity to be performed.
We thus have the constraints

Uk(n) ≤ Xk(n), k ∈ KQ. (7)

When the controlU(n) is a well specified function of the stateX(n) that satisfies constraints (6) and
(7) we refer to it as astate feedback control. This makes{X(n)}∞n=0 a Markov chain.

Description as a linear system with noise

As an alternative to the Markov chain representation, we nowrepresent our network as a linear system
with control-dependent zero-mean non-Gaussian noise. That is,

X(n + 1) = AX(n) + BU(n) + Gũ
(

U(n)
)

. (8)

Here,A, B andG are matrices to be defined below andũ
(

U(n)
)

denotes aK∞-dimensional zero-mean
random vector with thekth element distributed as

ũ
∗Uk(n)
k − Uk(n)mk.

Observe that the elements of this noise vector are always zero whenũk is deterministic. Further, when
the control actionUk(n) is a large number, thekth noise element is approximately Gaussian distributed.

The matricesA, B andG are now spelled out (I is the identity matrix):




XQ(n + 1)
XD(n + 1)
XS(n + 1)



 =





I P ′

DQ 0

0 P ′

DD 0
0 P ′

DS I









XQ(n)
XD(n)
XS(n)



+





P ′

∞QM∞ P ′

QQ − I
P ′

∞DM∞ P ′

QD

P ′

∞SM∞ P ′

QS





[

U∞(n)
UQ(n)

]

+





P ′

∞Q

P ′

∞D

P ′

∞S



 ũ
(

U∞(n)
)

.

The controlU(n) needs to satisfy linear constraints of the form

F

[

X(n)
U(n)

]

≤ g,

with F andg further specified as








0 0 0 −I 0
0 0 0 0 −I
−I 0 0 0 I
0 0 0 C∞ CQ





















XQ(n)
XD(n)
XS(n)
U∞(n)
UQ(n)













≤









0
0
0
c









. (9)

In addition we require thatU(n) is integer.

Table I contains four key examples along with their partitioned C and P matrices. Example 1 is
the simplest model possible, a single server queue. Example2 is a simple reentrant line. This example
resembles the continuous-time reentrant line in [1]. Example 3 is the acquisition queue presented in
Section II. Note the similarity between Examples 2 and 3: thefirst has a queue delay while the other has
a fixed delay. Otherwise, these two networks are the same. Example 4 is somewhat similar to the push-
pull network which was first introduced in [9] and further investigated in [8] and [17]. Some simulation
experiments of Examples 2 and 4 are reported in Section V. Example 1 is used to illustrate the concept
of multi-parametric programming for generating the MPC based control law in Section IV.



Example 1: single server queue
Server 2 Server 1

Q
2

¥

1

S
3

C =

[

1 0

0 1

]

P =

[

1 0

0 1

]

Example 2: simple reentrant line
Server 1 Server 2

Q
3

¥

1
Q

2
S

4

C =

[

1 0 1

0 1 0

]

P =





1 0 0

0 1 0

0 0 1





Example 3: acquisition queue
Server

Q
2

¥

1
D

3

D
4

D
d+2

S
d+3

C =
[

1 1
]

P =























0 1 0 · · · · · · 0 0 0

0 0 0 · · · · · · 0 0 1

0 0 1 0 · · · · · · 0 0

0 0 0 1 0 · · · 0 0

...
. . .

...
0 0 1 0

1 0 0 · · · 0 0























Example 4: more complex network

Q
9

¥

3

Q
5

¥

4

¥

2

Q
8

Q
6

Q
7

S
15

S
14

¥

1

S
13

D
10

D
12

D
11

Server 1 Server 2 Server 3 Server 4 Server 5

C =











1 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 1 0 0 0 1 0











P =







































1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0







































TABLE I

SOME EXAMPLE NETWORKS AND THEIR PARTITIONEDC AND P MATRICES.

The fluid relaxation and reference trajectories

For the MPC approach, it is useful to consider an auxiliary system that is a deterministic fluid relaxation
of (8). For this, assume that the noise component does not exist and that the control effort (and thus the
queue lengths) need not satisfy integrality constraints. The resulting system is then

X̄(n + 1) = AX̄(n) + BŪ(n) (10)

subject to

F

[

X̄(n)
Ū(n)

]

≤ g, (11)

with the matricesA, B, F and the vectorg as defined above. For this system we define areference
trajectory as a pair of sequences{X̄r(n), Ū r(n)} such that when the control̄U r(·) is applied to the
fluid relaxation dynamics (10), the statēXr(·) is obtained. In addition, the reference trajectory needs
to adhere to the constraints (11). In general, the choice of the reference trajectory may depend on the
desired throughput of the system. We discuss this briefly in Section V.



Given a reference trajectory, we define theerror dynamicsas

Xe(n) = X(n) − X̄r(n), U e(n) = U(n) − Ū r(n). (12)

Combining (12), (10) and (8) then yields

Xe(n + 1) = AXe(n) + BU e(n) + Gũ
(

U e(n) + Ū r(n)
)

= AXe(n) + BU e(n) + noise. (13)

This representation proves useful in the next section.

IV. T HE MPC BASED APPROACH

We now describe the MPC approach in more detail. The controller is parameterized by a discrete
time horizonN > 0 and two positive definite matricesQ andR of dimensionsK{Q,D,S} andK{∞,Q},
respectively. At timen, the controller uses the optimal solution of a quadratic programming (QP) problem
in which the decision variables are the controls over the time horizon:n, n+1, . . . , n+N −1. Given the
current stateX(n) and the controlsU(i), i = n, . . . , n + N − 1, the prediction of the state over the time
horizon, denoted bŷX(·), is generated (details below) and appears in the objective and constraints of
the QP. WithX̂e(i) = X̂(i)− X̄r(i) denoting the prediction of the error dynamics, we get the following
QP:

min

n+N−1
∑

i=n

X̂e(i + 1)′QX̂e(i + 1) + U e(i)′RU e(i) (14)

s.t.
∑

k∈C(j)

Uk(i) ≤ ci, i = n, . . . ,N − 1, j = 1, . . . , L, (15)

Uk(n) ≤ Xk(n), k ∈ KQ, (16)

Uk(i) ≤ X̂k(i), i = n + 1, . . . ,N − 1, k ∈ KQ, (17)

0 ≤ U(i), i = n, . . . ,N − 1. (18)

The objective function in (14) quadratically penalizes deviations from the reference trajectory in both the
state, using theQ matrix, and the control, using theR matrix. Constraints (15) are capacity constraints.
Constraints (16) are for the control at timen not to exceed the current queue levels. Constraints (17)
are the same, but with respect to the predicted queue levels.Finally, constraints (18) are non-negativity
constraints.

There always exists a unique solution to the QP. To see this, first observe that there is always a feasible
solution:U(i) = 0, i = n, . . . , n+N − 1. Then, sinceQ andR are positive definite, a unique solution is
guaranteed (see [19] for background on quadratic programming). Note that the solution of the QP is an
N ·K{∞,Q}-dimensional vector that specifies a control over the whole time horizon. From this solution,
we only keep the firstK{∞,Q} coordinates to specify the control decision for the next time step. The
remaining coordinates are not used. At every time point, theprocess is repeated: At timen, the current
state is observed, the reference trajectory is calculated,and Xe(n) is obtained. We denote it byXe

0 .
Given a control over the time horizon, the prediction fori > n is made by iterating the fluid relaxation
dynamics (10). ThuŝXe(i), which appears in the objective and constraints of the QP, isa function of
Xe

0 and the decision variablesU e(i), i = n, . . . , n + N − 1.

We denote the first step of the optimal solution as theK{∞,Q}-dimensional vectorU e
OPT(X

e
0). Once

U e
OPT(X

e
0) is determined, it is converted from the error dynamic coordinate system to the control coordinate

system. We finally represent our controller as

UMPC(n,X(n)) =
[

min
(

max
([

U e
OPT

(

X(n) − Xr(n)
)

+ U r(n)
]$

, 0
)

,XQ(n)
)

]%

C
. (19)



Here themax andmin operators operate element-wise and[x]$ denotes the element-wise nearest integer
to x. In addition,[u]%C denotes the following operation: Check the validity ofCu ≤ c. Every coordinate
for which the inequality is invalid represents a server in which the capacity constraint has been exceeded.
In this case reduce theu by integer steps until the inequality is met, by first reducing activities for the
source buffers and then reducing from the queue buffers. Within each class one can follow some arbitrary
specified rule.

Note thatUMPC(·) is a function ofn since the reference trajectory needs to be evaluated so thatthe
current error is plugged intoU e

OPT(·) and converted back into the coordinate system of the control. Further
observe that if we takeU r(n) to be constant thenU e

OPT(·) is only a function of the current errorXe
0 , and

does not depend on the current time.

Detailed description of the QP

We now give a detailed description of the QP. The decision variables of the QP are organized in the
N ·K{∞,Q}-dimensional vector Ue. TheN ·K{Q,D,S}-dimensional vector̂X

e
is the predicted state error

over the time horizonn+1, . . . , n+N , obtained by iterating (13) and assuming no noise. The predicted
error can be represented as

X̂
e

= AXe
0 + B Ue,

where

A =











A
A2

...
AN











, B =













B 0 · · · 0

AB B
...

...
. . .

AN−1B · · · B













.

We need some additional matrices. Denote by Qand R block diagonal matrices ofQ and R with
dimensionsN ·K{Q,D,S} andN ·K{∞,Q}, respectively. Denote by Ca block diagonal matrix ofC with
dimensionN · L × N · K{∞,Q}, and let cbe a block vector that stacks theL-dimensionalc vector N
times. Define

SUQ =
[

0 I
]

, SXQ =
[

I 0 0
]

.

The KQ × K{∞,Q} matrix SUQ is such that when multiplied by a control vector it selects the controls
for the queue classes. Similarly,SXQ can be multiplied by a state vector to select the state of the queue
classes. In addition, define

S1
UQ =

[

SUQ 0 · · · 0
]

, S1
XQ =

[

SXQ 0 · · · 0
]

,

S+
UQ =













0 SUQ 0 · · · 0
...

. . .
...

...
. . . 0

0 SUQ













, S−
XQ =







SXQ 0 · · · 0
. . .

...
0 SXQ 0






.

Multiplying S1
UQ by the control vector over the whole time horizon results in the control of the queue

classes at the first time step. Similarly, multiplying S1
XQ by the state vector results in the state of the

queue classes at the first time step. These two matrices are used to implement constraints (16). The matrix
S+

UQ is used to select the control of the queue classes at all time steps other than the first time step. The
(N−1)KQ×N ·K{Q,D,S}-dimensional matrix S−XQ selects the queue levels at timesn+1, . . . , n+N−1

when multiplied by the predicted state. Both S+
UQ and S−XQ are used to implement constraints (17).

Given arbitrary reference trajectories, the QP is in general time-dependent. Nevertheless, the required
coordinates are the controls (for both the source and queue classes) and the states (for only the queue



classes). In many cases it is sensible to choose constant values for these references (yielding a linear
reference trajectory for the sinks), so that the QP becomes time-independent. We denote by Ur a stacked
N · K{∞,Q}-dimensional vector of the reference controls. Similarly,Xr is a stackedN · K{Q,D,S}-
dimensional vector of the reference states, of which only the coordinates relevant toKQ are used in the
QP.

The QP can now be formulated as follows:

minUe Ue′(

B′ QB + R
)

Ue + 2Xe′

0 A′ QB Ue + Xe′

0 A′ QAXe
0 (20)

s.t.








C
S1

UQ

S+
UQ − S−

XQB
−I









Ue ≤









c
0
0
0









+









0
S1

XQ

S−
XQ

0









Xr +









−C
−S1

UQ

−S+
UQ

I









Ur +









0
SXQ

S−
XQA
0









Xe
0 .

It is straightforward to verify that (20) agrees with the QP in (14)-(18). Formulation (20) is in the form
that is required by most commercial QP solvers.

In search of an explicit controller

When Ur and Xr are constant on theirk ∈ KQ coordinates, the QP only depends onXe
0 , and not

on the current time. In such cases one might try to find an explicit solution or an approximation for
the functionU e

OPT(·). A useful tool in this respect is an algorithm for solving multi-parametric quadratic
programs (MPQP) as described in [18] and implemented in [11].

-20 0 150
-150

0

150
-20 0 150

-150

0

150

Q0
e

S0
e

-20 0 500
-500

0

500
-20 0 500

-500

0

500

Q0
e

S0
e

Fig. 5. Using MPQP for the single server queue example 1 withc1 = ∞, c2 = 20, m1 = 1. Q = I , R = I , N = 5. The
left figure shows a search space of a box of width150 around the origin, in this area there is not much structure. The right
figure shows the result of increasing the width of the search space to500. In this case, the structure of the resulting controller
is evident.

The output of the MPQP algorithm represents the optimal solution of (20) as a piece-wise affine
function of Xe

0 over a boundedsearch space. That is, the state space is partitioned into polytopes,
and for each polytope an affine function ofXe

0 is specified. Figure 5 illustrates the application of this
algorithm for Example 1, the single server queue. Running this algorithm off-line is often useful for fast
implementation of MPC based controllers (see [11]).



We believe that by using MPQP algorithms, it is also possibleto understand the structure of the control
law for points far from the origin for relatively simple models. Figure 5 stems hopeful: On the left, the
search space is of width150 – in this area there is no particular structure. On the right,the search space is
of width 500 – structure is evidently present. Parameterizing this structure for simple examples by using
numerical experiments such as these is currently being investigated. See [13] for a detailed example of
applying MPQP for finding optimal controls.

V. FURTHER SIMULATION EXPERIMENTS

We now report some simulation experiments for Examples 2 and4 (see Table I) and describe some
of the observed phenomena.

Example 2: simple reentrant line

We consider the following parameters:c1 = 10, c2 = 100 andm1 = 20. This implies that server 1 is
the bottleneck. The maximal throughput achieved by a stablesystem is

m1
c1

1 + m1
≈ 9.52,

which follows from similar considerations as for the acquisition queue – indeed these models are quite
similar. In [1] (see also [20]) the authors have shown that a continuous-time reentrant line is stable when
using the Last Buffer First Serve (LBFS) control that prioritizes step3 over step1, and a non-idling
policy in server 2. This policy ensures that server 1 is maximally utilized.

Figure 6(a) plots the trajectory of the queue levels of this system under LBFS. Observe that server2
is able to clear its queue almost instantaneously, while server 1 (which is 10 times as slow) is lagging
behind. This cyclic behavior is somewhat similar to that of the acquisition queue operating under a
threshold control (see Figure 4).

Out[506]=

0 100 200 300
n

100

200

300

400

500

600
HaL

0 100 200 300
n

100

200
HbL

Fig. 6. The simple reentrant line model withc1 = 10, c2 = 100, m1 = 20 and geometrically distributed input. Comparison of
the LBFS policy (a) and MPC based controller (b). The MPC based controller usesN = 10, a Q matrix of all ones andR = I .
Queue 1 is marked by a solid line. Queue 2 is marked by dots. Note that both controllers achieve maximal throughput,9.52.

Figure 6(b) plots a simulation run of the same system when using MPC withN = 10, R = I andQ
the matrix with all elements1. As expected, both the fluctuations and the mean queue sizes are smaller
than for LBFS. For comparison: averaging over 20,000 time steps the average total queue level of the
LBFS system is172 and that of the MPC based controller is112. No substantial difference in throughput
is observed. This is a non-trivial observation, since it implies that the MPC based controller decides to



0 100 200 300
n

100

200

Fig. 7. The same model as in Figure 6 but with the identityQ matrix. In this case the controller does not produce at maximal
throughput. The thin solid curve is queue2 and the dashed curve is queue3. Observe that both curves are very close to each
other.

never idle the system. In general, it is not clear which models have the property that MPC preserves
maximal throughput.

In Figure 7 we plot a simulation trace similar to that of Figure 6(b), but withQ = I. Notice the totally
different behavior of the queue levels in this trace. It appears that queue2 and queue3 are almost perfectly
synchronized. Here is a possible explanation: choosing aQ matrix of all ones implies minimization of
(
∑

Xi

)2
, while an identityQ matrix implies minimization of

∑

Xi
2. In the latter case, when queue1

is large, the controller chooses not to remove jobs from queue 2 at a rate faster than queue1 can be
served. We note that similar “self-synchronizing” behavior also appears in Maximum Pressure Policies,
cf. [4].

An additional observation (observed over a time horizon of 20,000) is that the maximal throughput
of 9.52 was not achieved whenQ = I. This means that server 1 occasionally idles. A possible remedy
for this might be to convert some of the capacity inequality constraints in the QP to equality constraints,
thus forcing server 1 (in this example) to work non-stop. It remains to be explored if the system would
be stable under such a controller.

Example 4: more complex network

The main reason for presenting this more complex example is to emphasize the applicability of our
method for arbitrary networks. We further use it to illustrate that reference trajectories can be obtained
in a methodological manner. As for the other examples in thispaper, we use a reference with constant
queue levels and a linear increase of the sink buffers. Such atrajectory can always be found by solving
a linear programming problem (LP), similar to the so-calledStatic Planning Problem (cf. [7]) used in
multi-class queueing networks.

To find a reference trajectory, define the variablesri, i = 1, 2, 3, 4 to be the long range flow rate on
each of the routes. Here the route index corresponds to the source queue on which the route begins. For
example, route4 is the route passing through classes4, 10, 11, 12, 9 and ending in the sink buffer15.



Out[1182]=

1010 1020 1030 1040 1050
n

20

40

60

80
HaL

5000 10 000 15 000 20 000
n

-200

-100

100

HbL

200 400 600 800 1000
n

-100

-50

50

HcL

Fig. 8. Trajectories of the model of example 4 using an MPC based controller withQ = I , R = I and N = 3, 4, 5. (a)
N = 5. In this case the system appears stable over a longer time horizon, and we only plot the trajectory over the range 1000
to 1050. (b)N = 4. Queue levels are stable, but the sink error of 15 is not. (c)N = 3. The system is not stable. OnlyXe

15

andX9 are plotted.

Now use the capacity constraints (6) to indicate restrictions on the variablesri. For example, server5 is
required to serve routes1, 2 and4:

r1 +
r2

m2
+

r4

m4
≤ c5.

Note that in the above constraint, the source classes (2 and4) are normalized by the meansm2 andm4,
while the queue class (class8 on route1) is not. Writing the constraints in this manner, together with
the non-negativity constraints, defines a feasible polytope. Any point within this polytope is associated
with a reference trajectory.

We find a point on the boundary of the polytope by solving an LP that minimizes
∑4

i=1 wiri. In



applications, the weightswi reflect preference of routes. This is the resulting LP:

max
∑4

i=1 wiri (21)

s.t.




1 0 0 0
1 0 1/m3 1
1 1/m2 0 1/m4













r1

r2

r3

r4









≤





c1m1 ∧ c3 ∧ c4

c2

c5



 ,

ri ≥ 0, i = 1, 2, 3, 4.

Denote the solution byr∗i , i = 1, 2, 3, 4. Further, letρ be an arbitrary number in the interval[0, 1]. We
now have the following reference trajectory:

(route 1) Ū r
1 (n) = ρr∗1/m1, X̄r

5 (n) = X̄r
6 (n) = X̄r

7 (n) = X̄r
8 (n) = Ū r

5 (n) = Ū r
6 (n) = Ū r

7 (n) = Ū r
8 (n) = ρr∗1 ,

(route 2) Ū r
2 (n) = ρr∗2/m2,

(route 3) Ū r
3
(n) = ρr∗

3
/m3,

(route 4) Ū r
4 (n) = ρr∗4/m4, X̄r

10(n) = X̄r
11(n) = X̄r

12(n) = X̄r
9 (n) = Ū r

9 (n) = ρr∗4 ,

(sinks) X̄r
13

(n) = ρ(r∗
1

+ r∗
2
)n, X̄r

14
(n) = ρr∗

3
n, X̄r

15
(n) = ρr∗

4
n.

Whenρ = 0 the reference indicates “no job flow” and whenρ = 1 the reference indicates “maximal
job flow” (i.e. the reference is on the boundary of the polytope).

For a numerical example consider the following parameters:c1 = 40, c2 = 60, c3 = c4 = c5 = 30,
m15 = m13 = m12 = 1, m14 = 1.8. Use the weights:w1 = 10, w2 = 5, w3 = 1, w4 = 10. The solution
of the LP is

r∗1 = 1.9081, r∗2 = 38.1992, r∗3 = 51.2218, r∗4 = 6.8702.

Everyρ ∈ [0, 1] defines a reference trajectory. We simulate withρ = 1. Figure 8 plots trajectories ofXk

for k ∈ KQ andXe
k for k ∈ KS . The parameters of the MPC based controller areQ = I, R = I and

N = 3, 4, 5. We see that whenN = 5 both the queue levels and the sink errors are stable over a long run
of 20,000 time units. ForN = 4 we observe thatXe

15 is not stable. Finally, whenN = 3, bothXe
15 and

X9 seem unstable (we only plot two coordinates in (c)). Interestingly, the trajectory ofX9 “leaves the
axis” at the same time whenXe

15 hits the axis, and from that point onwards, the two trajectories closely
follow each other. This behavior appears to be consistent over several runs.

The classification of models that are able to operate atρ = 1 in a stable manner is an interesting
open question. To our surprise we have seen that this is possible for Example 4. We have also observed
(as expected) that changing the value of the time horizon produces different results and behaviors. An
alternative option is to useN = ∞. While in this case, the QP (20) is not well defined, there are methods
for implementing such an MPC based controller, cf. [6]. The basic idea is to partition the time horizon into
a finite part and an infinite part, and to use the Ricatti Equation to solve the Linear Quadratic Regulator
(LQR) problem for the infinite part. It is possible that in this case, the structure of the controller may be
found for certainQ andR matrices. This remains the subject of future work.

VI. CONCLUSION

We have explored the applicability of MPC to stochastic queueing networks operating in discrete time.
We have outlined a methodological way of constructing controllers for such networks. While our method
appears to work well for some examples, explicit performance analysis of the behavior of the resulting
stochastic processes remains an open question and is the subject of ongoing research. In this respect, one
future research goal is to attempt to parallel the stabilityresults that are currently known for deterministic
settings [14] to our stochastic queueing network setting.



Of further interest is the study of queueing networks that generate their own arrivals. The current paper
takes a step towards bridging the modeling gap between the acquisition queue (which is a special case
of our network model), and queueing networks with infinite virtual queues [1], [16], [17]. A byproduct
of our simulation results is the observation that the discrete time networks can often be operated on the
boundary of the capacity region in a stable manner.

An additional research direction is to explore the use of tools such as MPQP (Figure 5) and LQR for
deriving (or guessing) the structure of optimal solutions of the MPC based controller for simple examples
such as the single server queue and the simple reentrant line.

Acknowledgment: This work was supported by the Netherlands Organization forScientific Research
(NWO-VIDI grant 639.072.072).

REFERENCES

[1] I.J.B.F. Adan and G. Weiss. Analysis of a simple Markovian re-entrant line with infinite supply of work under the LBFS
policy. Queueing Systems, 54(3):169–183, 2006.

[2] D.P. Bertsekas.Dynamic Programming and Optimal Control, Vol. I. Athena Scientific, 2007.
[3] H. Chen and D.D. Yao.Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization. Springer,

2001.
[4] J. G. Dai and W. Lin. Maximum pressure policies in stochastic processing networks.Operations Research, 53(2):197–218,

2005.
[5] D. Denteneer, J.S.H. van Leeuwaarden, and I.J.B.F. Adan. The acquisition queue.Queueing Systems, 56(3):229–240, 2007.
[6] C.E. Garcia, D.M. Prett, and M. Morari. Model predictivecontrol: theory and practice–a survey.Automatica, 25(3):335–

348, 1989.
[7] J. M. Harrison. Brownian models of open processing networks: Canonical representation of workload.Ann. Appl. Probab,

10(1):75–103, 2000.
[8] A. Kopzon, Y. Nazarathy, and G. Weiss. A push pull system with infinite supply of work.Preprint, 2008.
[9] A. Kopzon and G. Weiss. A push pull queueing system.Operations Research Letters, 30(6):351–359, 2002.

[10] H.J. Kushner.Heavy Traffic Analysis of Controlled Queueing and Communication Networks. Springer, 2001.
[11] M. Kvasnica, P. Grieder, M. Baotic, and M. Morari. Multi-parametric toolbox (MPT).Hybrid Systems: Computation and

Control, pages 121–124, 2004.
[12] M. Laumanns and E. Lefeber. Robust optimal control of material flows in demand-driven supply networks.Physica A:

Statistical Mechanics and its Applications, 363(1):24–31, 2006.
[13] E. Lefeber, S. Lammer, and J.E. Rooda. Optimal control of a deterministic multiclass queueing system by serving several

queues simultaneously.SE Technical Report, Systems Engineering Group, The Department of Mechancial Engineering,
Eindhoven University of Technology, 2008-09, 2008.

[14] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O. Scokaert.Constrained model predictive control: stability and optimality.
Automatica, 36:789–814, 2000.

[15] S.P. Meyn.Control Techniques for Complex Networks. Cambridge University Press, 2008.
[16] Y. Nazarathy.On Control of Queueing Networks and the Asymptotic VarianceRate of Outputs. PhD thesis, The University

of Haifa, 2009.
[17] Y. Nazarathy and G. Weiss. Positive Harris recurrence and diffusion scale analysis of a push pull queueing network.

Performance Evaluation, 67:201–217, 2010.
[18] P. Tøndel, T.A. Johansen, and A. Bemporad. An algorithmfor multi-parametric quadratic programming and explicit MPC

solutions.Automatica, 39(3):489–497, 2003.
[19] R.J. Vanderbei.Linear Programming: Foundations and Extensions. Kluwer Academic Publishers, 2001.
[20] G. Weiss. Stability of a simple re-entrant line with infinite supply of work – the case of exponential processing times. J.

Oper. Res. Soc. Jpn., 47(4):304–313, 2004.


