EURANDOM PREPRINT SERIES
2010-022

Model Predictive Control
for the Acquisition Queue and Related
Queueing Networks

J. van Leeuwaarden, E. Lefeber, Y. Nazarathy, J. Rooda
ISSN 1389-2355

Model Predictive Control
for the Acquisition Queue and Related
Queueing Networks

Johan S.H. van Leeuwaardén Erjen Lefebef,
Yoni Nazarathy® and Jacobus E. Rootla
“Department of Mathematics and Computer Science, Eindhowéversity of Technology, The Netherlands
YEURANDOM, The Netherlands
“Department of Mechanical Engineering, Eindhoven Uniwgref Technology, The Netherlands

Abstract

Model Predictive Control (MPC) is a well established methiodcontrol theory and engineering
practice. It is often the method of choice for systems tha&dnt® be controlled in view of constraints.
The main idea of MPC is to solve an optimization problem ovejiven time horizon at each control
epoch, and to use the obtained solution for controlling tfstesn until the next control epoch. In many
cases this optimization problem can be formulated as aatrbetquadratic programming problem. In
this paper we apply MPC to discrete-time queueing netwdnks incorporate multiple product routes,
delays, self-generated arrivals and multi-job procesdiveycompare our MPC-based controller to simple
threshold policies and show improved performance. We alsation some open theoretical problems
related to this control method.

I. INTRODUCTION

Queueing networks are often used to model communicatiomufaaturing and service networks.
Emphasis usually lies on the performance analysis of a model given service discipline and routing
scheme. It is often challenging to determine the optimal wiagcheduling capacity or routing jobs. This
paper explores methods for finding such dynamic controlsrule

When precise objectives are formulated, for example miiingi steady-state queue sizes, the optimal
control problem can in principle be formulated as a MarkowciBien Problem (MDP), but in practice,
MDPs for larger networks often prove numerically cumbersoAn alternative is to employ much simpler
control laws such as priority or threshold policies, butsthéypically fail to achieve the desired behavior.
Analysis and tuning of MDPs and simple control laws can somed benefit from using asymptotic
scaling regimes. In such cases, there is often some sinapidficof the underlying stochastic process, and
intractable MDPs can then be approximated by more tracBime/nian control problems. Nevertheless,
even when using such asymptotic approximations, findingr@btcontrols is still challenging. For more
background see [3], [10], [15].

In this paper we present an alternative control methodolelyich to the best of our knowledge has
not been applied before to queueing networks. Our methosl theeconcept of Model Predictive Control
(MPC). A classic reference is [6]. MPC is a popular tool fongeating feedback controllers for dynamical
systems (i.e. control laws that observe the current stafeuan it to decide on the next control action).
MPC can deal with non-linearities and state constraint T®cent papers that apply MPC to logistical
and manufacturing networks are [12] and [13], but in gen®&&C is not as well known in the operations
research community as it is in the systems and control corityaun

The concept of MPC is simple: At every control epoch solve ptintization problem for the optimal
trajectory into the future, then use the first step of therpalitrajectory as the current control decision.

@)
©)

© QrHen

v
o ®
B

L (D) e e < (D) | ()

Fig. 1. An example network. This network has 5 servers, 4a9u8 sinks, 4 infinite supply sources, 5 queues and a delay of
arbitrary size. The control law of the network is a specifaaif how the servers allocate their effort among their titunsnt
job classes.

At the next time step solve the optimization problem agaml so on. This method allows to incorporate
predictions in the control mechanism and has proven usefusystems with delayed feedback. Some
theoretical properties of this method have also been eésiigol [2], [14]. Specifically, conditions for
obtaining a stabilizing controller in the case of deteristigi systems are by now well known (and even
implemented in commercial control packages [11]). Cowmttarthe deterministic case, quantifying the
performance of stochastic systems controlled by MPC isgelgrunexplored area.

The network models we consider are discrete-time mulsctpueueing networks that allow for delays,
multi-job processing and self-generated arrivals. Theedas motivated by both the acquisition queue
[5] and multi-class queueing networks with infinite virtigleues [16], [20]. In these types of queueing
models, a server in the network can generate arrivals anfies taced with the control choice of either
letting new jobs enter the system or serving jobs that areemty waiting for service.

Figure 1 depicts an example network. The five boxes reprasemtrs. The circles represent job classes.
Classes marked with theo sign are calledsource classesThese represent an infinite amount of jobs
waiting to enter the system. Classes marked wjthiepresenjueue classesach queue class has an
associated queue in which jobs are waiting to be serveds@amarked wittD representlelay classes
When jobs pass through a delay class they are delayed forirapeuhit. Concatenating delay classes
results in a delay ofl time units. Finally, classes marked with &hare sink classesand represent jobs
that have left the system. We choose to model these sinkedassorder to keep track of the departure
processes.

Source and queue classes are associated with servers.ulre Bigthree servers are associated with a
single class and two servers are associated with threeeslassh. All classes associated with the same
server have to share that server’'s capacity. The delay aukdctasses are not associated with servers.
Jobs that finish processing in a source or queue class, ott @elay in a delay class, move to the next
downstreantlass. This is indicated by the arrows. All routes are deit@stic and end up in sink classes.

The networks evolve at discrete time poimts= 0, 1,.... At each time point all servers allocate their
capacities among their constituent source and queue slaBlse way in which this capacity is allocated
is specified by the control law, the main object of our studgpé&rity is used by the source classes to
generate new jobs and by the queue classes to process jtieirigueue. Every unit of capacity allocated
to a queue class results in the removal of a single job fromqgtieue. Every unit of capacity allocated
to a source class results in the generation of a random nuaflrew jobs. Delay classes simply pass,
after one time unit, all of their jobs to their downstreamsslaThus the randomness in our system is
caused by the uncertainty in the number of jobs generatedincs classes.

The structure of the paper is as follows. Section Il illusseour basic concepts by means of an example.

Section Il describes in detail the queueing network mopedsented both as a controlled Markov chain
and as a controlled linear system with noise. Section 1V iless the MPC based controller, including
details of the implementation. Section V presents soméadusimulation experiments that provide insight
into some of the design issues related to MPC. We also meatiore open problems in Section V, and
conclude in Section VI.

Il. AN ILLUSTRATIVE EXAMPLE — THE ACQUISITION QUEUE

To demonstrate the MPC approach we consider the acquisjtiene that was introduced in [5]. In this
stochastic model, a server has to divide its capacity amoa@dtquisition of new jobs and the service of
jobs that are presently waiting in the queue. Within eacle tgiot the server hase N units of capacity
to spend. Each unit spent on acquisition in time slajenerates a random number of new jobs that join
the queue after a delay dfe N time units. Each unit spent on service removes one job frangtreue.
Figure 2 presents a schematic representation of the model.

Serve

e @

(e

Fig. 2. The acquisition queue falls within our frameworkidta single server that can either acquire new jobs (by wgrkin
on the source classo) or service jobs in its queue. There is a delayddfme units between the time a job is acquired and its
arrival to the queue. Serviced jobs accumulate in the sink.

We denote byU(n) the number of acquisition efforts at timeand refer to this choice as the control
law of the system. The queue length procé§3n)},cn is then described by the recursion equation

U(n—d)

Qn+1)=(Qn)—(c—=Um)) " + Y s, n=01,.... 1)
=1

Here,z = max(0, z) and{a,; }nen is @ sequence of i.i.d. non-negative integer-valued randammables.
The initial conditions ar&)(0) andU(—d), U(—d+1),...,U(—1). The controlU(n) € N is a function
of Q(n) that satisfies

(c— Q(n))+ <U(n)<ec

Let S(n) be the number of jobs in the sink (jobs that have receiveda®rby timen, with S(0) = 0.
If we assume that the system is stable and well defined (sgettig] throughput of the system satisfies

1 c
g 1. —_ =
0 nl—{gons(n) ml—l—m’
with m = E[a 1]. In [5] the following simple control law was analyzed in fulktail:
Un) =a+(c-Q(n))",)

with o € N some number for whiclx < ¢/(1 + m) (for stability).

A sensible control lanU(-) should stabilize the system, and in addition, keep the queungths
relatively small. Consider thsink error S¢(n) = S(n) — dn. If we are able to produce at ratethen

lim,, . S¢(n)/n = 0. The time-dependent behavior 6f(n) is also of interest: highly fluctuating or

periodic behavior is considered undesirable. Finallysidésirable for the control law to be computed
relatively quickly. The threshold policy (2) certainly meehis criterion. As opposed to that, an MDP
formulation of the acquisition queue (or more complex neksp typically does not. The MPC based
controller presented in this paper does allow for quick exgbn.

We shall now compare the threshold policy in (2) to MPC

@ (b)

250+

200

150+

100+

50r

—50+

—-10C

Fig. 3. Trajectories of the acquisition queue with deterstio acquisition sizes¢ = 10 andm = 3. Trajectories above the
axis are the queue level. Trajectories below the axis aresitiie error. (a) Compares the threshold policy with= 0 (dots
with line) anda = 2 (dots only). (b) Compares the threshold policy with= 2 (dots only) and an MPC based controller (dots
connected by a line).

Figure 3(a) considers the threshold policy and shows thkigen of Q(n) (above the axis) and¢(n)
(below the axis). In this example, the system is deterniinige. Var(,,,) = 0), andc = 10, d = 10,
m = 3. The figure comparea = 0 and« = 2. It appears thate = 2 performs better, both in terms of
gueue lengths and fluctuations in sink error. In Figure 3(b)cempare the threshold policy with= 2
and MPC. The latter clearly performs better. Figure 4 furitmpares the threshold policy and MPC,
but this time for stochastic acquisition sizes. Again, MR@Eperforms the threshold controller.

We now briefly outline how our MPC control for the acquisitigneue comes about. For simplicity,
taked = 3, so that the complete state at times described byQ(n), S(n), and the acquisition during
the last three time units denoted BY (n), D2(n) and D3(n).

Assume now that our control law is a general function of ttagestand given by both the acquisition
effort U (n) and the servicé/g(n), which satisfy

Uso(n) +Ug(n) <c and Ug(n) < Q(n). (3)

The evolution of our system is then described as

Di(n+1) 00000 D1 (n) m 0

Dy(n+1) 10000 Dy(n) 0 0 U (1)

Ds(n+1) | =10 1 0 0 0 Ds(n) |+ 0 0 [UOO(TL)] + noise 4)

Q(n+1) 00110 Q(n) 0 —1 @

S(n+1) 00001 S(n) 0 1
where the noise term is implicitly specified: its first cooate is

Uso(n)

With Q = I, R =T and N = 30, see Section IV.

250r
200r
150Cr
100Cr

.
% .
50 .
.
.
.

—50H

—100r

—-15C*

Fig. 4. Trajectories of the acquisition queue with geoncatly distributed acquisition sized,= 10 andm = 3. Trajectories
above the axis are the queue level. Trajectories below tieear the sink error. The thin solid curves are for the ttokkh
policy with o = 2. The dotted curves are for the MPC based controller.

while all its other coordinates are zero.

The first step of our approach is to identifyreference trajectoryby studying the system without
noise. In principle we may choose any reference trajectéoy.the acquisition queue, to make a fair
comparison with the controller in (2), we choose as a ref@dhe trajectory in which the sink grows
linearly at rate§ and all other quantities remain constant. That is,

Di(n) = D5(n) = D3(n) = Q"(n) = Ul (n) = Ug(n) =46, S"(n) =dn.

We now seek to formulate state feedback control lathat attempts to drive the system to the reference.
MPC does this by solving, at each time the following optimization problem:

n+N-—1 B B
min Z (||Xz—|—1 Xr(z'—|—1)||+||U(z')—Ur(z')||) (5)

s.t. constralnts 3)

Here X(n) is the prediction of the state at time (a vector of dimensionl + 2 for the acquisition
queue),X"(-) is the state part of the reference trajectdry;) is the vector of controls2¢dimensional

for the acquisition queue) arjd- || is some norm or some norm-like measure (in this paper we densi

a 2-norm, i.e. quadratic costs). The minimization is over toatmls which are to be applied over the
time horizonn,n+1,...,n+ N —1. This is a2 N-dimensional vector for the present case. The predicted
state X (-) is a function of the decision variables and the current state

MPC works as follows: At each time point the optimal solutioin(5) is used to control the system
for the next time unit. Note that as opposed to “myopic cdhindich attempts to make the next “best
step”, MPC is “look ahead control”. It appears to be very ahlit for queueing networks of the type
we describe. The full details of the controller are surveye&ection IV. First, we formally define the
general network model in Section III.

I1l. THE NETWORK MODEL

We consider multi-class queueing networks that evolve atrdie time points: = 0,1,2,.... A
network is composed of four types of job classssurce(oc), queue(R), delay (D) andsink (S). Jobs
originate in source classes, pass through queue and delssesl, and eventually end up in sink classes.

Let K, Kg, Kp, Ks denote the number of classes of each type. Classes are thidgke=1, ..., K.
We denote the classes of tygeby KC; for j € {o0,Q, D, S} and we number the classes as follows:
Koo ={1,....Kso}, Kg ={Kx+1,...,Kx+ Kq}, etc. For convenience, we use the notation ;.
to indicate the union ok’; and;/, for j, ;' € {00, @, D, S}, sometimes extending the notation to three
indices. For example(, o, py are all classes except the sink classes. Ket iy = [y |-

The jobs are processed liyservers indexed by=1,..., L. These servers perform activities on the
source and queue classes. The activity of each such classfearped by a unique servet(k). Let

C(i) = {k € Kooy : (k) = 1}

denote the constituency of serverLet C' denote thel x K, gj-dimensional constituency matrix.
Element(s, k) of this matrix is1 if £ € C(i), and0 otherwise. We partitior' as

C=[Cx Cql.

At each time point, each servemust divide its effort between the constituency activiti§s), generating
new material from the source classes, processing existatgrial in queue classes, idling or performing
a combination of these. The number of activities that seivean perform in one time unit is given by
the integerc; > 1. Let c denote the vector of these elements. Ugtn), k € K,) denote the number
of activities that are actually applied to classat timen. We thus have the constraints

Z Uk(n)gci, ’i=1,...,L. (6)
keC (i)

With each source class € K, we associate a sequence of non-negative imputs {a(¢),¢ =
1,2,...}, with E[ag(1)] = mg. Let M, be a diagonal matrix with the elements;, k£ € K. We denote
generic random variables of these i.i.d. sequenceshy € K. Further, usei;” to denote generic
random variables whose distribution is thefold convolution of the distribution ofi,. The action of
performing an activity on clask € K, is the creation ofi; new jobs. Thus the application éf;(n)
units of processing on clagsresults in the creation OIZUk(”) jobs. Obviously, the mean of this quantity
is Uk(n)mk

Jobs that leave a class move to downstream classes usingreatimgy scheme. Downstream classes
may be of the queue, delay, or sink type. If it is a queue clasmberk say, the job joins the queue
and awaits service from servefk). If it is a delay class the job is delayed for one time unit,doef
moving onto the next downstream class in the next time uhit.i$ a sink class, the job has reached its
final destination.

In this paper we assume that routing is deterministic. Wepjgt = 1 if jobs that move out of class
k € K{so,0,py Move into class’ € Ky p g3. Otherwisepyi: = 0. These values are arranged in a matrix
P = (prr), which we partition as

PooQ PooD PooS
Ppg Ppp Pps

We assume that all routes end up in sink classes. Note thegsronay merge.

The state of the network is the number of jobs in the queuaydahd sink classes. We denote it by
the K p,gy-dimensional vectoX (n) partitioned a§ X¢q(n) Xp(n) Xs(n)]. The state evolves as

Xi(n) + Xper, Xi(m)Pek + e o, i ppy — Uk(n), k€ Kq (queue)
Xp(nt1) = Swern Xi (WPrk + e -, T - proks ke Kp (delay)
Xp(n) + > pe, Xiw()prk + ke o) e s ke Ks (sink).
In the above we use the conventiap = 1 for k € Kg, i.e. for these classe&‘thk(") = Uk(n). This
allows us to represent the job inflow resulting frd(¢) in the same manner for both the queue and

the source classes. Queue activities require material io bee queue for the activity to be performed.
We thus have the constraints

Ur(n) < Xp(n), k€Kg. (7)

When the controlU(n) is a well specified function of the staf€(n) that satisfies constraints (6) and
(7) we refer to it as astate feedback controThis makes{ X (n)}°°, a Markov chain.

Description as a linear system with noise

As an alternative to the Markov chain representation, we regresent our network as a linear system
with control-dependent zero-mean non-Gaussian noise. i$ha
X(n+1)=AX(n) + BU(n) + Ga(U(n)). (8)

Here, A, B andG are matrices to be defined below ain(ﬂ(n)) denotes & ,.-dimensional zero-mean
random vector with thé&th element distributed as

ﬂZU’“ ™ _ (n)mg.

Observe that the elements of this noise vector are alwayswkenu, is deterministic. Further, when

the control actiorlUx(n) is a large number, theth noise element is approximately Gaussian distributed.
The matricesA, B and G are now spelled out/(is the identity matrix):

I Phy 0 Xg(n) | PloMs Pho—1

XQ(TL+1) U (n) 00Q
Xpn+1) | =|0 Phy 0 || Xpn) |+] PpMa Phyp {Uw(n)]+ P | @(Uss(n))
Xs(n+1) 0 Phg I Xs(n) | | PlsMsx Py @ Pl
The controlU (n) needs to satisfy linear constraints of the form
[X(n)
<
"l o) } <9
with F' and g further specified as
0 00 —I 0))?9% 0
0 00 0 -I b 0
700 0 I 55((2)) =lo ©
0 0 0 Cx C > c
N Uq(n)

In addition we require thal/(n) is integer.

Table | contains four key examples along with their pamiéd C and P matrices. Example 1 is
the simplest model possible, a single server queue. Exathjdea simple reentrant line. This example
resembles the continuous-time reentrant line in [1]. EXan®is the acquisition queue presented in
Section Il. Note the similarity between Examples 2 and 3:fits¢ has a queue delay while the other has
a fixed delay. Otherwise, these two networks are the sameanjrad is somewhat similar to the push-
pull network which was first introduced in [9] and further @stigated in [8] and [17]. Some simulation
experiments of Examples 2 and 4 are reported in Section Vimpleal is used to illustrate the concept
of multi-parametric programming for generating the MPCdahsontrol law in Section IV.

Example 1: single server queue

Server Server
) _[1o _ [Lo
O sties st =101 = o
3 2 1
Example 2: simple reentrant line
Server . Server :

o
I =]
o

[
== O

O =
| I
|
Il

Example 3: acquisition queue

0|1 0 0 010
(c0)+~D) 00 0 --- 0 0]1
! 3 oo 1 0 - 00
i 00 110
S D | 1/0 0 --- 00
CDLHS Q 2 Q+2
Example 4: more complex network
Server . Server : Server { Server ¢ Server !
~ ~ —~ r i 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1
@1 Q s Q o Q ; Q o S f c=|0 0 0 0[O0 1 0 0 ©
0 0 0 0 0 0 1 0 0
Lo 1 0o 1/l0 0 0o 1 o0 J
r i1 0 0 0 0 0 0 0 0 0 0
@F 0 0 0 0 0 0 0 0 1 0 0
14 3 2 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0
f\ 0 1 0 0 0 0 0 0 0 0 0
S Q @4_@4_@. ‘ p_| 0 0 1 0 0f0o 0 0of0 0 0
le o s a o 4 00 0 1 0[O0 0 0|0 0 O
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 |

TABLE |
SOME EXAMPLE NETWORKS AND THEIR PARTITIONEDC' AND P MATRICES.

The fluid relaxation and reference trajectories

For the MPC approach, it is useful to consider an auxiliastesy that is a deterministic fluid relaxation
of (8). For this, assume that the noise component does nsit &xd that the control effort (and thus the
gueue lengths) need not satisfy integrality constrainte fesulting system is then

X(n+1)=AX(n)+ BU(n) (10)
subject to -
F [08 } <. (11)

with the matricesA, B, F' and the vectory as defined above. For this system we defineefarence
trajectory as a pair of sequencgs{”(n),U"(n)} such that when the contrdl"(-) is applied to the
fluid relaxation dynamics (10), the stafé"(-) is obtained. In addition, the reference trajectory needs
to adhere to the constraints (11). In general, the choicdefréference trajectory may depend on the
desired throughput of the system. We discuss this brieflyeictiGn V.

Given a reference trajectory, we define #reor dynamicsas
X¢(n) = X(n) — X" (n), U(n) =U(n) —U"(n). (12)
Combining (12), (10) and (8) then yields
Xe(n+1) = AX®(n)+ BU(n) + Gﬂ(Ue(n) +07(n))
= AX°n)+ BU®(n) + noise (13)

This representation proves useful in the next section.

IV. THE MPC BASED APPROACH

We now describe the MPC approach in more detail. The coatridl parameterized by a discrete
time horizonN > 0 and two positive definite matrice@ and R of dimensionsK g p g and K, o1,
respectively. At timen, the controller uses the optimal solution of a quadratigpmming (QP) problem
in which the decision variables are the controls over the timarizon:n,n+1,...,n+ N — 1. Given the
current stateX (n) and the controld/ (i), i = n,...,n+ N — 1, the prediction of the state over the time
horizon, denoted b)f((-), is generated (details below) and appears in the objectidecanstraints of
the QP. WithXe(z‘) = X(z‘) — X" (i) denoting the prediction of the error dynamics, we get thiofdhg
QP:

n+N-—1
min > X(i+ 1)QX(i + 1) + U°(i) RU*(i) (14)
s.t. S Uk(i) < a i=n,...,N—1, j=1,...,L, (15)
keC(j)
Ur(n) < Xi(n), keKyq, (16)
Up(i) < Xg(i), i=n+1,....,N—1, keKq, (17)
0 < U@), i=n,...,N—1 (18)

The objective function in (14) quadratically penalizesid@uns from the reference trajectory in both the
state, using th&) matrix, and the control, using th8 matrix. Constraints (15) are capacity constraints.
Constraints (16) are for the control at timenot to exceed the current queue levels. Constraints (17)
are the same, but with respect to the predicted queue Idviglally, constraints (18) are non-negativity
constraints.

There always exists a unigue solution to the QP. To see tres olbserve that there is always a feasible
solution:U (i) = 0,i =n,...,n+ N — 1. Then, sinc&) and R are positive definite, a unique solution is
guaranteed (see [19] for background on quadratic prograghmNote that the solution of the QP is an
N - K{ gy-dimensional vector that specifies a control over the whiate thorizon. From this solution,
we only keep the first;, 5, coordinates to specify the control decision for the nexetistep. The
remaining coordinates are not used. At every time pointpttogess is repeated: At time the current
state is observed, the reference trajectory is calculaed, X(n) is obtained. We denote it byg.
Given a control over the time horizon, the prediction far n is made by iterating the fluid relaxation
dynamics (10). Thu§(e(z'), which appears in the objective and constraints of the QR, fisnction of
X¢§ and the decision variablds®(i), i =n,...,n+ N — 1.

We denote the first step of the optimal solution as #ig, o)-dimensional vectolUS.,(X§). Once
Use+(X§) is determined, it is converted from the error dynamic cauaitk system to the control coordinate
system. We finally represent our controller as

Unpc(n, X (n)) = [min (max ([USy(X (n) — X" (n)) + U"(n)]*,0), XQ(n))} Z (19)

Here themax andmin operators operate element-wise dnd denotes the element-wise nearest integer
toz. In addition,[u]ZS denotes the following operation: Check the validity@# < c. Every coordinate
for which the inequality is invalid represents a server irichithe capacity constraint has been exceeded.
In this case reduce the by integer steps until the inequality is met, by first redgcactivities for the
source buffers and then reducing from the queue bufferdibi@gach class one can follow some arbitrary
specified rule.

Note thatUyec(-) is a function ofn since the reference trajectory needs to be evaluated sdahthat
current error is plugged inttS,.(-) and converted back into the coordinate system of the corfitmther
observe that if we tak&" (n) to be constant thets,(-) is only a function of the current erroX§, and
does not depend on the current time.

Detailed description of the QP

We now give a detailed description of the QP. The decisiomabtes of the QP are organized in the
N - K{, gy-dimensional vector Ul The N - K p s)-dimensional vectoK® is the predicted state error
over the time horizom +1,...,n+ N, obtained by iterating (13) and assuming no noise. The giedli
error can be represented as

X" = AX§+BU",

where
A B 0 - 0
A2 :
a=|" |, B=| 48 P
AN AN-1R ... B

We need some additional matrices. Denote_bya@ R block diagonal matrices of) and R with
dimensionsN - Ky p sy and N - K¢, ¢y, respectively. Denote by @ block diagonal matrix o with
dimensionN - L x N - K, g}, and let_cbe a block vector that stacks tedimensionalc vector N
times. Define

SUQZ[O I], SXQZ[IOO].

The Kg x K gy matrix Sy is such that when multiplied by a control vector it selects tontrols
for the queue classes. Similarlyx g can be multiplied by a state vector to select the state of teaig
classes. In addition, define

Sig=[Svg 0 -+ 0], Sxo=[Sxqg 0 --- 0],
0 Syo 0 - 0
L e . Sxg 0 - 0
Sig=| . o (') » Sxq = :
: - 0 S 0
0 Sug *e

Multiplying §(le by the control vector over the whole time horizon resultsha tontrol of the queue
classes at the first time step. Similarly, muItipIyiQ§“§ by the state vector results in the state of the
gueue classes at the first time step. These two matrices etldagnplement constraints (16). The matrix
§Z§Q is used to select the control of the queue classes at all tieps ®ther than the first time step. The
(N—-1)Kq x N-Kq p sy-dimensional matrix $, selects the queue levels attimes-1,...,n+ N —1
when multiplied by the predicted state. Bo_tﬁiQSand_'a}Q are used to implement constraints (17).

Given arbitrary reference trajectories, the QP is in gdrieree-dependent. Nevertheless, the required
coordinates are the controls (for both the source and quesses) and the states (for only the queue

classes). In many cases it is sensible to choose constardsvidr these references (yielding a linear
reference trajectory for the sinks), so that the QP becomesihdependent. We denote by @ stacked
N - K qy-dimensional vector of the reference controls. Similaiy, is a stackedN - K(q p s}-
dimensional vector of the reference states, of which ondydbordinates relevant #6, are used in the

QP.

The QP can now be formulated as follows:

mingye U”(B'QB + R)U° + 2X§ A’QBU° + X§' A’ QAX§ (20)
s.t.
C c 0 -C 0
1 sl _al
N I e e S A
20Q T =2xQP =xQ —20Q 2xQh
—I 0 0 I 0

It is straightforward to verify that (20) agrees with the QP(14)-(18). Formulation (20) is in the form
that is required by most commercial QP solvers.

In search of an explicit controller

When U and X' are constant on theik € Ko coordinates, the QP only depends &ij, and not
on the current time. In such cases one might try to find an ekxg@olution or an approximation for
the functionUS..(-). A useful tool in this respect is an algorithm for solving tiwplarametric quadratic
programs (MPQP) as described in [18] and implemented in. [11]

-20 0 500
00 e 500

—50C
00

Fig. 5. Using MPQP for the single server queue example 1 with- co, co =20, m; =1.Q =1, R=1, N =5. The
left figure shows a search space of a box of widlHf® around the origin, in this area there is not much structutee fight
figure shows the result of increasing the width of the seapette to500. In this case, the structure of the resulting controller
is evident.

The output of the MPQP algorithm represents the optimalt®siuof (20) as a piece-wise affine
function of X§ over a boundedsearch spaceThat is, the state space is partitioned into polytopes,
and for each polytope an affine function &f; is specified. Figure 5 illustrates the application of this
algorithm for Example 1, the single server queue. Runniigdlgorithm off-line is often useful for fast
implementation of MPC based controllers (see [11]).

We believe that by using MPQP algorithms, it is also posdiblenderstand the structure of the control
law for points far from the origin for relatively simple mddeFigure 5 stems hopeful: On the left, the
search space is of widtth0 — in this area there is no particular structure. On the rigife,search space is
of width 500 — structure is evidently present. Parameterizing thisctire for simple examples by using
numerical experiments such as these is currently beingsiligaged. See [13] for a detailed example of
applying MPQP for finding optimal controls.

V. FURTHER SIMULATION EXPERIMENTS

We now report some simulation experiments for Examples 24fske Table I) and describe some
of the observed phenomena.

Example 2: simple reentrant line

We consider the following parameteks: = 10,co = 100 andm; = 20. This implies that server 1 is
the bottleneck. The maximal throughput achieved by a staygéem is
c1
m
ol + my

~ 9.52,

which follows from similar considerations as for the acifios queue — indeed these models are quite
similar. In [1] (see also [20]) the authors have shown thab@tiouous-time reentrant line is stable when
using the Last Buffer First Serve (LBFS) control that ptiags step3 over stepl, and a non-idling
policy in server 2. This policy ensures that server 1 is maXiyrutilized.

Figure 6(a) plots the trajectory of the queue levels of tisteam under LBFS. Observe that serer
is able to clear its queue almost instantaneously, whileeset (which is 10 times as slow) is lagging
behind. This cyclic behavior is somewhat similar to that loé acquisition queue operating under a
threshold control (see Figure 4).

@ (b)
600" 200
500"
400"
300"

100G+

200"

0 100 200 ‘ 300 0 100 200 30C

Fig. 6. The simple reentrant line model with = 10, c2 = 100, m; = 20 and geometrically distributed input. Comparison of
the LBFS policy (a) and MPC based controller (b). The MPC Basmtroller usesV = 10, a@ matrix of all ones and? = 1.
Queue 1 is marked by a solid line. Queue 2 is marked by dots Nuweit both controllers achieve maximal throughgsus2.

Figure 6(b) plots a simulation run of the same system whemgusIPC with N = 10, R = I and@
the matrix with all elementd. As expected, both the fluctuations and the mean queue Seesraller
than for LBFS. For comparison: averaging over 20,000 tinepsthe average total queue level of the
LBFS system isl 72 and that of the MPC based controllerlis2. No substantial difference in throughput
is observed. This is a non-trivial observation, since itlisgpthat the MPC based controller decides to

2007

100~

100 200 300 :

Fig. 7. The same model as in Figure 6 but with the ider@tynatrix. In this case the controller does not produce at makim
throughput. The thin solid curve is que@eand the dashed curve is queBieObserve that both curves are very close to each
other.

never idle the system. In general, it is not clear which medelve the property that MPC preserves
maximal throughput.

In Figure 7 we plot a simulation trace similar to that of Fig@(b), but withQ) = I. Notice the totally
different behavior of the queue levels in this trace. It appé¢hat queu and queud are almost perfectly
synchronized. Here is a possible explanation: choosidyraatrix of all ones implies minimization of
(ZXZ-)Q, while an identity@Q matrix implies minimization ofS" X;2. In the latter case, when quele
is large, the controller chooses not to remove jobs from queat a rate faster than quedecan be
served. We note that similar “self-synchronizing” behawtso appears in Maximum Pressure Policies,
cf. [4].

An additional observation (observed over a time horizon @0Q0) is that the maximal throughput
of 9.52 was not achieved whe@ = I. This means that server 1 occasionally idles. A possibleedym
for this might be to convert some of the capacity inequaldpstraints in the QP to equality constraints,
thus forcing server 1 (in this example) to work non-stopelnains to be explored if the system would
be stable under such a controller.

Example 4: more complex network

The main reason for presenting this more complex example entphasize the applicability of our
method for arbitrary networks. We further use it to illustréhat reference trajectories can be obtained
in a methodological manner. As for the other examples in pliger, we use a reference with constant
gueue levels and a linear increase of the sink buffers. Suddjextory can always be found by solving
a linear programming problem (LP), similar to the so-calfdtic Planning Problem (cf. [7]) used in
multi-class queueing networks.

To find a reference trajectory, define the variablgs = 1,2,3,4 to be the long range flow rate on
each of the routes. Here the route index corresponds to threesgueue on which the route begins. For
example, routet is the route passing through classes0,11,12,9 and ending in the sink buffers.

@

101C 102C 103C ~V104c 105

(b)

‘ e : ‘ L n
1 200, 40 60C 800 100¢

‘
(1A M

_50- ",\ i

—-100-

Fig. 8. Trajectories of the model of example 4 using an MPGebasontroller withQ = I, R = I and N = 3,4,5. (a)

N = 5. In this case the system appears stable over a longer tinieohpand we only plot the trajectory over the range 1000
to 1050. (b) N = 4. Queue levels are stable, but the sink error of 15 is notN[cy 3. The system is not stable. Only 5
and Xy are plotted.

Now use the capacity constraints (6) to indicate restmation the variables;. For example, servey is
required to serve routel 2 and4:

r2 T4
rn+—+— <ecs.
mg My

Note that in the above constraint, the source claszend4) are normalized by the means, andmy,
while the queue class (classon routel) is not. Writing the constraints in this manner, togethethwi
the non-negativity constraints, defines a feasible polytdmy point within this polytope is associated
with a reference trajectory.

We find a point on the boundary of the polytope by solving an h&t Iminimizeszf:lwiri. In

applications, the weights); reflect preference of routes. This is the resulting LP:

max 2?:1 w;T; (21)
s.t.
1
1 0 0 0 citmi ANes N\ ey
1 0 1/msg 1 "2 < ¢ ,
1 1/m2 0 1/m4 :i Cy

7 >0, i=1,234.

Denote the solution by,i = 1,2, 3, 4. Further, letp be an arbitrary number in the interval 1]. We
now have the following reference trajectory:

(route 1) U7 (n) = pri/my, X5(n) = Xg(n) = X2(n) = X§(n) = UZ (n) = Ug (n) = U5 (n) = T (n) = pr.
(route 2) Uy (n) = prs /ma,

(route 3) U3 (n) = pr /ms.

(route 4) Uj(n) = pri/ma, Xip(n) = X{s(n) = Xia(n) = X5(n) = Us(n) = pr,

(sinks) X7y(n) = p(ri +r3)n, Xiu(n) = prin, Xjy(n) = prin.

When p = 0 the reference indicates “no job flow” and when= 1 the reference indicates “maximal
job flow” (i.e. the reference is on the boundary of the polgop

For a numerical example consider the following parametars: 40, co = 60, ¢3 = ¢4 = ¢5 = 30,
mis = mi3 = mig = 1, myy = 1.8. Use the Weightsw1 =10, wgy =5, wy =1, wyg = 10. The solution
of the LP is

ri = 1.9081, 5 = 38.1992, 75 = 51.2218, r} = 6.8702.

Everyp € [0, 1] defines a reference trajectory. We simulate wits 1. Figure 8 plots trajectories oXj,

for k € Kg and X} for k € Kg. The parameters of the MPC based controller@re- I, R = I and
N = 3,4,5. We see that whetV = 5 both the queue levels and the sink errors are stable oveigarlon
of 20,000 time units. FolV = 4 we observe thaK{; is not stable. Finally, whe®V = 3, both X{; and
Xy seem unstable (we only plot two coordinates in (c)). Intiémgly, the trajectory ofXy “leaves the
axis” at the same time wheR{; hits the axis, and from that point onwards, the two trajeesoclosely
follow each other. This behavior appears to be consistegtt sgveral runs.

The classification of models that are able to operate at 1 in a stable manner is an interesting
open question. To our surprise we have seen that this isipedsr Example 4. We have also observed
(as expected) that changing the value of the time horizoduymes different results and behaviors. An
alternative option is to us® = oc. While in this case, the QP (20) is not well defined, there agthods
for implementing such an MPC based controller, cf. [6]. Theibidea is to partition the time horizon into
a finite part and an infinite part, and to use the Ricatti Equatd solve the Linear Quadratic Regulator
(LQR) problem for the infinite part. It is possible that inghdase, the structure of the controller may be
found for certain@@ and R matrices. This remains the subject of future work.

VI. CONCLUSION

We have explored the applicability of MPC to stochastic ailegl networks operating in discrete time.
We have outlined a methodological way of constructing alers for such networks. While our method
appears to work well for some examples, explicit perforneaanalysis of the behavior of the resulting
stochastic processes remains an open question and is fleetsafoongoing research. In this respect, one
future research goal is to attempt to parallel the stahigults that are currently known for deterministic
settings [14] to our stochastic queueing network setting.

Of further interest is the study of queueing networks thategate their own arrivals. The current paper
takes a step towards bridging the modeling gap between tipgisiiion queue (which is a special case
of our network model), and queueing networks with infiniteual queues [1], [16], [17]. A byproduct
of our simulation results is the observation that the diectiene networks can often be operated on the
boundary of the capacity region in a stable manner.

An additional research direction is to explore the use ofstsach as MPQP (Figure 5) and LQR for
deriving (or guessing) the structure of optimal solutiohthe MPC based controller for simple examples
such as the single server queue and the simple reentrant line

Acknowledgment: This work was supported by the Netherlands Organizatiorsfaentific Research
(NWO-VIDI grant 639.072.072).

REFERENCES

[1] 1.J.B.F. Adan and G. Weiss. Analysis of a simple Markeovi@-entrant line with infinite supply of work under the LBFS
policy. Queueing System54(3):169-183, 2006.

[2] D.P. BertsekasDynamic Programming and Optimal Control, Vol. Athena Scientific, 2007.

[3] H. Chen and D.D. Yao.Fundamentals of Queueing Networks: Performance, Asyimgptand Optimization Springer,
2001.

[4] J. G. Dai and W. Lin. Maximum pressure policies in stodltagrocessing network€perations Resear¢tb3(2):197-218,
2005.

[5] D. Denteneer, J.S.H. van Leeuwaarden, and 1.J.B.F. A@lka acquisition queugueueing System§6(3):229-240, 2007.

[6] C.E. Garcia, D.M. Prett, and M. Morari. Model predictigentrol: theory and practice—a survefutomatica 25(3):335—
348, 1989.

[7] J. M. Harrison. Brownian models of open processing neltsoCanonical representation of workloadhn. Appl. Probap
10(1):75-103, 2000.

[8] A. Kopzon, Y. Nazarathy, and G. Weiss. A push pull systeithvinfinite supply of work. Preprint, 2008.

[9] A. Kopzon and G. Weiss. A push pull queueing systébperations Research Letter30(6):351-359, 2002.

[10] H.J. Kushner.Heavy Traffic Analysis of Controlled Queueing and CommuitnaNetworks Springer, 2001.

[11] M. Kvasnica, P. Grieder, M. Baotic, and M. Morari. Mufiarametric toolbox (MPT)Hybrid Systems: Computation and
Control, pages 121-124, 2004.

[12] M. Laumanns and E. Lefeber. Robust optimal control otearial flows in demand-driven supply networkBhysica A:
Statistical Mechanics and its Applicatign363(1):24—31, 2006.

[13] E. Lefeber, S. Lammer, and J.E. Rooda. Optimal contf@ deterministic multiclass queueing system by serving v
queues simultaneoushSE Technical Report, Systems Engineering Group, The Dwpattof Mechancial Engineering,
Eindhoven University of Technolag2008-09, 2008.

[14] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O. Scoka@dnstrained model predictive control: stability and opatiity.
Automatica 36:789-814, 2000.

[15] S.P. Meyn.Control Techniques for Complex Network8ambridge University Press, 2008.

[16] Y. Nazarathy.On Control of Queueing Networks and the Asymptotic VaridRate of OutputsPhD thesis, The University
of Haifa, 2009.

[17] Y. Nazarathy and G. Weiss. Positive Harris recurrencd diffusion scale analysis of a push pull queueing network.
Performance Evaluatign67:201-217, 2010.

[18] P. Tgndel, T.A. Johansen, and A. Bemporad. An algorifonmulti-parametric quadratic programming and expliciP®
solutions. Automatica 39(3):489-497, 2003.

[19] R.J. Vanderbeilinear Programming: Foundations and Extensiomduwer Academic Publishers, 2001.

[20] G. Weiss. Stability of a simple re-entrant line with imfe supply of work — the case of exponential processing ginde
Oper. Res. Soc. Jpd7(4):304-313, 2004.

