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Predicting cycle time distributions for integrated
processing workstations: an aggregate modeling

approach∗
C.P.L. Veeger, L.F.P. Etman, E. Lefeber, I.J.B.F. Adan, J. van Herk, and J.E. Rooda

Abstract

Predicting the cycle time distribution as a function of throughput is helpful in making a trade-off between workstation
productivity and meeting due dates. To predict cycle time distributions, detailed models are almost exclusively used, which
require considerable development and maintenance effort. Instead, we propose a so-called aggregate model to predict cycle time
distributions, which is a lumped-parameter representation of the queueing system. The lumped parameters of the model are
determined directly from arrival and departure events measured at the workstation. The paper demonstrates that the aggregate
model can accurately predict the cycle time distribution of workstations in semiconductor manufacturing, in particular the tail of
the distribution.
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I. INTRODUCTION

In production planning for semiconductor workstations, there is a trade-off between productivity and meeting due dates. With
a workstation, we mean a group of machines that perform similar operations, and that share the same input buffer. Workstation
productivity is expressed as the number of lots processed per time unit, which is also referred to as throughput. A high
workstation productivity is desirable because of the capital intensive equipment used. On the other hand, a high workstation
productivity causes high cycle times, with cycle time defined as the sum of process time and waiting time at the workstation.
As a consequence, a smaller percentage of lots will meet their due date.

To make a trade-off between productivity and due dates, an accurate prediction of the cycle time distribution as a function of
the throughput is required. For this prediction, a model may be used that has to incorporate semiconductor workstation behavior
such as integrated processing, outage delays, and dispatching rules. Integrated processing machines can process multiple lots at
the same time in the various process chambers. For planning purposes it is desirable that the model requires little development
and maintenance effort, and that model evaluations are computationally cheap.

To predict cycle time distributions, simulation models are almost exclusively used. Application of classical queueing models,
such as the G/G/m queue [1], is mostly restricted to relatively simple systems, and implementation in semiconductor industry
has been unsatisfactory [2]. Alternatively, statistical analysis of historical data (e.g. data mining) may be used to predict future
expected cycle times [3], [4], [5], [6], but these approaches do not focus on cycle time distribution prediction.

Predictions of the cycle time distribution may be obtained using a detailed simulation model. For example, McNeill et al. [7]
and Bekki et al. [8] estimated a set of quantiles from a detailed simulation model using a Cornish-Fisher expansion. Sivakumar
and Chong [9] used a detailed simulation model to analyze cycle time distributions in semiconductor back-end manufacturing.
Detailed simulation models allow the inclusion of many details of the factory floor to arrive at accurate predictions. On the
other hand, detailed models are computationally expensive. Dangelmayer et al. [10] pointed out that model abstraction is
necessary to allow simulation experiments of efficient runtime.

One way to make an abstraction of a detailed simulation model, is to carry out simulation runs according to a design of
experiments, and use the responses to generate a metamodel. For example, Yang et al. [11] and Chen [12] built a metamodel
from a detailed simulation model, which they used to derive cycle time quantiles as a function of the throughput.

Another approach to abstract a detailed simulation model is aggregation. Brooks and Tobias [13], and Johnson et al. [14]
used a simplification technique in which non-bottleneck workstations are replaced by a constant delay, but they do not use
their simplified model for cycle time distribution prediction. Rose [15] used delay distributions to aggregate all workstations
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except the bottleneck station. He concluded that the proposed model inaccurately estimates cycle time distributions for certain
scenarios. To improve the estimations, Rose [16] replaced the delay distributions by a FCFS (First-Come-First-Served) single
server system with inventory-dependent process times, which are determined by running a full-detail simulation model at
various utilization levels.

Model abstraction techniques as described above require that a detailed simulation model is available beforehand. Develop-
ment of such a detailed simulation model requires substantial resources to develop and maintain [2].

In this paper, we also propose an aggregate model, but we do not need to model the workstation in full detail first. The
proposed model is a single-server aggregate queueing model. The lumped parameters of the model are determined from arrival
and departure data measured at the workstation in operation. We demonstrate that the aggregate model can accurately predict
cycle time distributions of workstations in semiconductor manufacturing.

The process time distributions and outage delays in the workstation are aggregated by means of a Work In Process (WIP)-
dependent aggregate process time distribution. With WIP we mean the total number of lots in the workstation including the
input buffer. We refer to the aggregate process time as the Effective Process Time (EPT). The EPT was introduced by Hopp
and Spearman [17], who defined the EPT as ‘the process time seen by a lot at a workstation’. They calculated the mean and
the variance of the EPT from the raw process time, and the preemptive and non-preemptive outages. They used the mean and
variance of the EPT in closed-form G/G/m equations to predict the mean cycle time. Since data of the various distributions
may not always be available, Jacobs et al. [18] developed an algorithm to determine the EPT distribution parameters directly
from arrivals and departures measured at the workstation.

For integrated processing workstations, the EPT distribution parameters are typically WIP-dependent, because multiple lots
may be in process at the same time. WIP-dependency of the EPT distribution parameters can also be caused by outage delays
that may occur when the machine is idle [19], such as preventive maintenance. The attribution of such delays to the EPT
may be utilization-dependent [19]. Therefore, Kock et al. [20] proposed a G/G/m-like aggregate simulation model with a
WIP-dependent EPT-distribution to predict the mean cycle time. Veeger et al. [21] demonstrated that the method of [20] is able
to predict the mean cycle time as a function of the throughput for workstations in an operating semiconductor environment.
However, the aggregate model of [20] does not necessarily yield accurate cycle time distribution predictions, due to the
First-Come-First-Served (FCFS) rule in the aggregate model.

In this paper, we use a WIP-dependent EPT distribution similar to [20], but additionally take into account the order in
which lots are processed. Each lot that arrives in the aggregate model has a probability to overtake a number of other lots
already in the system. The number of lots to overtake is determined by a WIP-dependent overtaking distribution. Like the EPT
distribution, the lot overtaking distribution is determined from measured arrival and departure events.

We demonstrate that the proposed method can be effectively used to predict cycle time distributions for semiconductor
workstations. We first validate the method using a simulation test case of a workstation in which we vary the number of
parallel machines, the number of integrated processes, the dispatching rule, and the variability of the process time and the
interarrival time. In the simulation case, ample arrival and departure events are available. However, in semiconductor practice,
typically a limited number of measured events are available. In a second simulation case representing a lithography workstation,
we show how still accurate predictions can be made when a limited amount of data is available. Finally, a test case based on
data from the Crolles2 factory demonstrates the applicability of the method in semiconductor manufacturing.

The outline of the paper is as follows: the proposed aggregate modeling method is explained in Section II. The validation
experiments are presented in Section III, and the Crolles2 case is discussed in Section IV. Finally, we present our conclusions
in Section V.

II. MODEL CONCEPT

We model a workstation as an infinitely buffered single-server aggregate queueing model with a WIP-dependent process
time distribution and a WIP-dependent overtaking distribution. Figure 1a illustrates an integrated processing workstation, which
consists of m identical parallel machines, each of which have l sequential integrated processes. Figure 1b visualizes the proposed
aggregate model. In this section we introduce the aggregate model concept and explain how we determine model parameters.

A. The Aggregate Model

We propose the following aggregate model (Figure 1b). Note that the structure of the aggregate model differs significantly
from the real workstation. Lots arrive in the queue of the aggregate model according to some arrival process. Lot i is defined
as the ith arriving lot in the queue. The queue is not a queue as in common queue-server models (such as the G/G/1 model),
but contains all lots that are currently in the system including the lots that are supposed to be in process. So during process,
lots stay in this queue. If the process time has elapsed, the lot that is currently first in the queue leaves the system. Upon arrival
of a new lot i, it is determined how many lots already present in the queue w will be overtaken by lot i. The number of lots
to overtake K ∈ {0, 1, ..., w} is sampled from probability distribution FK(k;w), which defines the probability P (K ≤ k;w)
that k or less lots are overtaken. Probability distribution FK(k;w) depends on the number of lots w in the queue just before
Lot i arrives (so not including lot i itself). The arriving Lot i is placed on position w −K in the queue, where position 0 is



3

Fig. 1. An example of a workstation (a), and the proposed aggregate model (b).

the head of the queue. For example, in Figure 1b, w = 3 upon arrival of Lot i. In this case there is a probability that 0, 1,
2 or 3 lots will be overtaken (K = 0, 1, 2, or 3). If no lots are overtaken, Lot i is placed at the end of the queue (position
3 − 0 = 3). If one lot is overtaken, Lot i is placed after the first two lots in the queue, and before the last lot in the queue
(position 3− 1 = 2), and so on.

We emphasize that in the aggregate model, the server is not a true physical server, but a timer that determines when the
next lot leaves the queue. We model the server as a timer to allow newly arriving lots to overtake all lots in the system while
the timer is running. The timer starts when: i) a lot arrives while no lots are present in the queue, or ii) a lot departs while
leaving one or more lots behind. When the timer starts, a time period E is sampled from probability distribution FE(t;w),
which defines the probability P (E ≤ t;w) that E is less than or equal to t. The probability distribution FE(t;w) depends on
number of lots w in the system just after the timer start. So in case of a lot arrival (case i)), w includes the arrived lot. In case
of a lot departure (case ii)), w does not include the departed lot. Time period E is referred to as an Effective Process Time
(EPT). When the EPT is finished, the lot that is presently first in the queue (position 0) leaves the system.

The input of the aggregate model consists of an EPT distribution FE(t;w) per WIP-level w and an overtaking distribution
FK(k;w) per WIP-level w. We assume that all sampled EPT realizations, and overtaking realizations are independent.

B. Example

Figure 2a shows four lots processed by the aggregate model in FCFS order. The first row of Figure 2a shows the arrivals
ai of each lot i (i indicates the arrival number). The second row depicts the numbers of overtaken lots K, which are sampled
upon each lot arrival from the overtaking probability distribution corresponding to number of lots in the queue w− (depicted
in between square brackets). We use w− in Figure 2a instead of w to point out that we mean here the WIP just before the
arrival of Lot i, not including Lot i. The third row in Figure 2a depicts the EPT realizations E, which are sampled upon each
EPT start by the timer from the EPT distribution corresponding to number of lots in the queue w+ (depicted in between square
brackets). Here, w+ indicates the WIP just after the event (an arrival or a departure) that triggered the EPT start. The fourth
row depicts the resulting departures di. Figure 2a shows that for each arrival the sampled number of overtaken lots equals
zero, which implies that no overtaking occurs; the order of arrival is equal to the order of departure.

Figure 2b shows four lots with overtaking. The lot arrival times, and the sampled EPTs are the same as in Figure 2a, but
the sampled values of K are different. Upon arrival of Lot 2, K becomes 1, so Lot 2 overtakes one lot (Lot 1). Lot 3 also
overtakes one lot (Lot 1 again), and Lot 4 overtakes three lots (Lot 1, 2, and 3). So when the timer first ends, Lot 4 is ahead
of the queue and departs. Next Lot 2 departs, then Lot 3, and then Lot 1.

C. Calculating Model Parameters

To determine EPT distribution FE(t;w) and overtaking distribution FK(k;w), the aggregate model is trained using arrival
and departure data measured at the workstation under consideration. For each lot i (which is the ith arriving lot) departing
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Fig. 2. Lot-time diagrams of four lots processed by the aggregate model including the EPTs sampled by the timer and the sampled number of overtaken
lots; (a) without overtaking, (b) with overtaking.

from the workstation, departure time di is collected, as well as the corresponding arrival time ai of the lot in the buffer of
the workstation. From the arrival and departure data, the EPT realizations, the number of lots overtaken by each lot, as well
as the corresponding WIP-levels are determined using the algorithm given in Appendix A. The algorithm input consists of a
lists of events; each event consists of time τ , event type ev , and lot arrival number i. The event type can be an arrival or a
departure of a lot. The events are sorted in increasing time order.

The EPT algorithm takes the aggregate model viewpoint. The algorithm keeps track of the momentary WIP-level and
reconstructs the EPT realizations from the measured event list. A new EPT is started when i) an arrival event occurs while the
system is empty, or ii) a departure event occurs while at least one lot remains in the system. An EPT ends when a departure
event occurs. The algorithm then calculates the duration of the EPT by subtracting the EPT start time from the departure time
(event time τ ). The EPT is written to output along with the number of lots w in the system upon the EPT start of Lot i.
Upon the departure of Lot i, the algorithm also reconstructs how many lots (k) were overtaken by the departing Lot i. A lot
has been overtaken by Lot i when it arrived earlier than Lot i (so has a lower arrival number i), but departs later than Lot
i. Hence, the value of k is calculated by counting the number of lots still in the system upon departure of Lot i that have a
lower arrival number lower than i. The number of overtaken lots k and the number of lots w in the system upon arrival of lot
i are written to output.

The EPT-realizations calculated by the algorithm are grouped according to the number of lots w in the system upon the
EPT start. For implementation reasons, we define a maximum WIP-level wmax, in which all EPT realizations are grouped that
started with w ≥ wmax lots in the system. For each WIP-level w a distribution is obtained, which is used in the aggregate
model for the EPT distribution FE(t;w) of the corresponding WIP-level.

Overtaking realizations are also grouped, but now according to the number of lots in the system w upon arrival. For
overtaking realization WIP-levels we do not define a maximum WIP-level. For each WIP-level, we again obtain a distribution
which is used for the overtaking distribution FK(k;w) for the corresponding WIP level.

III. VALIDATION

Two simulation test cases are presented to validate the proposed method. The first case is used to investigate the accuracy of
the method in predicting cycle time distributions for various workstation configurations. The second case is used to investigate
the predictions for a workstation representing a lithography workstation for which a limited amount of measured arrival and
departure events is available.

A. Case I

1) Description: Case I is depicted in Figure 1a. The workstation consists of m identical parallel machines. Each machine
consists of l sequential integrated processes that each have a gamma-distributed process time with mean t0 and coefficient of
variation c0. Lots arrive in the infinite buffer preceding the workstation; the interarrival times are independent and follow a
gamma distribution with mean ta and coefficient of variation ca. The order in which lots in the buffer are processed is defined
by dispatching rule d. If more than one machine is available for processing, the lot is sent to the machine of which the first
process has the longest idle time (fairness).

We experiment with different values of m, l, c0, and ca. For the dispatching rule d, we consider First-Come-First-Served
(FCFS), non-preemptive Last-Come-First-Served (LCFS), and Priority (Pr) dispatching. For FCFS and LCFS dispatching, we
assume that all lots require the same process time t0 = 1.0, and c0 in the various processes. For Pr dispatching, we use two
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Fig. 3. Mean EPT te and CV ce as a function of WIP level w for Case I for different values of m, and constant l = 1, c0 = ca = 1.0, and d = FCFS

lot classes. Class A requires t0 = 1.0, whereas class B requires t0 = 2.0. Coefficient of variability c0 is again the same for all
lots. Class A has non-preemptive priority over class B.

2) Calculating model parameters: To obtain the WIP-dependent EPT distribution FE(t;w) and overtaking distribution
FK(k;w) for a workstation configuration, arrivals and departures of 105 lots were obtained at a throughput ratio δ/δmax of 0.8,
with δ = 1/ta the throughput of the workstation and δmax the maximum obtainable throughput of the workstation.

The algorithm in Appendix A is used to calculate EPT realizations, which are grouped according to WIP-levels as explained
in Section II-C. To represent the EPT distribution for each WIP-level, we use a gamma distribution with mean te and coefficient
of variation ce. Distribution parameters te and ce are directly obtained from the measured data. Recall that maximum WIP-level
wmax groups all EPTs that started with WIP-level w ≥ wmax. On the one hand, we want to choose wmax as high as possible to
include system behavior at high WIP-levels. On the other hand, the higher wmax, the more difficult it becomes to accurately
estimate the EPT distribution parameters for high WIP-levels, because we typically obtain little EPT measurements at high
WIP levels. We therefore choose wmax as high as possible, under the condition that the 95% confidence interval of te,wmax is
less than ± 2.5%.

The algorithm in Appendix A also yields overtaking realizations k, which are grouped according to WIP-levels as well. For
each WIP-level, we use the empirical overtaking distribution directly in the aggregate model.

To illustrate the proposed method, we now present the measured EPT distribution parameters and the measured overtaking
probabilities for a selection of workstation configurations. Figure 3 shows mean EPT te (left hand side) and coefficient of
variation of the EPT ce (right hand side) as a function of the WIP w for m = 2, 4, and 6, with l = 1, c0 = ca = 1.0, and
d = FCFS. Mean EPT te decreases for increasing w, until w ≈ m. For w > 1 the mean EPT may be interpreted as the mean
interdeparture time of lots at the workstation. For increasing w, more parallel machines are processing, up to the maximum
number of machines m. Hence, the mean interdeparture time decreases up to w = m. For this configuration, ce increases
for increasing w, until w ≈ m where ce reaches 1.0. For low w < m, the interdeparture time between lots depends on the
exponential arrival process and the exponential service process, whereas for w ≥ m the interdeparture time only depends on
the exponential service process.

Next we show that the overtaking distribution FK(k;w) depend on the dispatching rule. Figure 4 shows the cumulative
overtaking probabilities P (K ≤ k;w) as a function of k for several values of WIP-level w. We consider FCFS, LCFS, and
Pr dispatching with m = l = 1, and c0 = ca = 1.0. For m = 1, overtaking only occurs due to the dispatching rule and not
due to parallel processing. In the FCFS case (the left-hand plot) P (K ≤ k;w) = 1 for all values of k and w, so lots do not
overtake. In the (non-preemptive) LCFS case (the middle plot), P (K ≤ k;w) jumps from 0 to 1 for k = w − 1, so each
arriving lot overtakes all lots in the system, except the one in process. For Pr dispatching (the right-hand plot), the probability
to overtake no lots is 0.5 for w > 1. This is because 50% of the arriving lots is of type B (with long process times), which
do not overtake. The type A may overtake one or more type B lots in the queue, with a maximum of the total amount of lots
in the system, minus the lot in process. Therefore, the cumulative probability reaches 1.0 for k = w − 1.

Figure 5 shows that the overtaking probabilities depend on c0. In Figure 5 we consider c0 = {0.5, 1.0, 1.5}, with m = 6,
l = 1, ca = 1.0, and d = FCFS. For this configuration, overtaking only takes place due to parallel processing. Hence, in
all three plots of Figure 5 the maximum number of lots that can be overtaken is 5. For c0 = 1.0 (the middle plot), there
is an equal probability to overtake K = 0, ...,min(w, 5) lots already in the system due to the exponential process times,
which makes the cumulative probability to increase linearly. For c0 = 0.5 (the left-hand plot), the slope of the cumulative
overtaking probability curve decreases for increasing k, indicating that the overtaking probability decreases for increasing k.
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This is because the process time variability is low compared to the case in which c0 = 1.0, so less overtaking occurs. For
c0 = 1.5 (the right-hand plot), the slope of the curves increases for increasing k. This is because the servers have a relatively
high process time variability, so more overtaking occurs.

3) Cycle time predictions: The detailed simulation model of the considered workstation is used to measure the real cycle
time distribution for various workstation configurations for throughput ratios δ/δmax of 0.6, 0.8, and 0.9. For each throughput
ratio, 15 simulation replications of 105 processed lots are performed. For each replication run, the first 2 ·104 lots are discarded
to account for the start-up phenomenon.

For each considered workstation configuration, we use the aggregate model depicted in Figure 1b to predict cycle time
distributions. The aggregate model is trained at δ/δmax = 0.8 using 105 arrivals and departures generated using the detailed
workstation model. We predict the cycle time distribution for the same throughput levels for which we calculated the real
cycle time distribution, using again 15 replications, a simulation length of 105 lots, and a start-up period of 2 · 104 lots. For
the arrival process in the aggregate model we use a gamma distribution with mean ta depending on the considered throughput
level. For the coefficient of variation ca we choose the same value as in the workstation. In the aggregate model we use
gamma EPT distributions for each WIP level, of which the shape and scale parameters are determined from the measured te
and ce values for the corresponding WIP-levels w. For the overtaking distributions in the aggregate model, we directly use
the empirical overtaking distribution. We measure the empirical overtaking distribution for WIP-levels up to a certain value.
For higher WIP-levels, we assume in the aggregate model that the overtaking probabilities are the same as for the highest
measured WIP-level.

Figure 6 depicts cycle time distributions of the workstation (the black lines), and cycle time distributions predicted by the
aggregate model (the dashed grey lines) for workstation configurations with c0 = {0.5, 1.0, 1.5}, with m = 6, l = 3, d = FCFS,
and ca = 1.0. We do not show the confidence intervals on the cycle time distributions because they are very small. From left
to right the figure shows distributions for throughput ratios of 0.6, 0.8, and 0.9 respectively. Recall that δ/δmax = 0.8 is the
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Fig. 6. Flow time distribution of the considered workstation, and predicted by the proposed aggregate model for c0 = {0.5, 1.0, 1.5}, with m = 6,
d = FCFS, l = 3, and ca = 1.0.

training level. The different lines in the plots correspond to different values of c0: the top solid black and dashed grey lines
in each plot corresponds to c0 = 0.5, the middle lines correspond to c0 = 1.0, and the bottom lines correspond to c0 = 1.5.
The x-axis denotes the cycle time ϕ, whereas the y-axis denotes the probability P (ϕ− ε < X < ϕ), where ε denotes the size
of an interval, for which we choose 0.25.

Figure 6 shows that for all considered values of c0 and δ/δmax, the tail of the cycle time distribution is predicted very
accurately. For c0 = 1.0 and 1.5, even the whole distribution is accurately predicted. For c0 = 0.5 and δ/δmax = 0.6 and 0.8
predictions are less accurate for low cycle times. The measured cycle time distribution shows less variability than the predicted
cycle time distribution. This may be due to the fact that the EPT and the number of overtaken lots in the aggregate model are
sampled independently for successive lots, possibly creating more variability than in reality.

We have also considered the cases m = 1, 2 and 4, using the same constant parameter values as in Figure 6. The accuracy
of the predictions of the cycle time distribution is similar to the accuracy of the m = 6 case.

Figure 7 depicts cycle time distributions of the workstation, and cycle time distributions predicted by the aggregate model for
workstation configurations with different values of l and d, with m = 1, and c0 = ca = 1.0. Figure 7a considers d = FCFS,
Figure 7b depicts the results of d = LCFS, and Figure 7c depicts d = Pr. From left to right the plots consider different
throughput ratios. The different lines in the plot represent different values of l, which are 2, 4, and 8. The top line represents
l = 2, the middle line l = 4, and the bottom line l = 8.

Figure 7 shows that for all considered values of l, d, and δ/δmax, the tail of the cycle time distribution is predicted accurately.
For l = 2, the whole distribution is predicted accurately. For increasing l, the predictions deteriorate for low cycle times. As
in Figure 6, the measured cycle time distribution shows less variability than the predicted cycle time distribution. We expect
this is also due to the fact that the EPT and the number of overtaken lots in the aggregate model are sampled independently
for successive lots.

We have also experimented with different values of ca (0.5 and 1.5). We observe that ca has little influence on the accuracy
of the cycle time predictions, since we also use ca for the arrival process in the aggregate model.

B. Case II

1) Description: Case II is depicted in Figure 8. The setup of Case II may be viewed as a group of track-scanner lithography
tools. Lots arrive at the infinite buffer according to a Poisson process: 50% of the arriving lots is of type A, whereas the other
50% is of type B. Lots are processed in First-Come-First-Serve order taking into account machine recipe qualification. The
first machine is qualified only for recipe A, the second and third machine are qualified for recipe A and B, and the fourth
machine is qualified only for recipe B. If more than one qualified machine is available for processing, the lot is sent to the
machine of which the first process has been idle longest (fairness). Each machine consists of three sequential process steps,
with a one-place buffer between the first and second process. The first and third process step of each machine can be viewed
as the track and is assumed to have a constant process time of 1.0. The second process step may be viewed as the scanner
and is assumed to have an exponential process time distribution with mean 2.0.

2) Calculating model parameters: Arrivals and departures of 20000 lots were obtained at a throughput ratio of δ/δmax of
0.8. We again use the algorithm given in Appendix A to calculate EPT realizations and overtaking realizations K, which
were grouped according to WIP-levels as explained in Section II.B. We again use gamma distributions to represent the EPT
distributions for each WIP-level.

Other than for Case I, we now measure arrivals and departures of only 20000 lots, a number one may encounter in
semiconductor manufacturing practice (see also Section IV). As a consequence, it is more difficult to accurately estimate
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Fig. 7. Flow time distribution of the considered workstation, and predicted by the proposed aggregate model for l = {2, 4, 8}, with m = 1, and ca = c0 = 1.0:
(a) considers FCFS, (b) LCFS, and (c) Pr dispatching.
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Fig. 8. Case II representing a lithography workstation

model parameters te(w), ce(w), and FK(k;w), and the cycle time predictions may deteriorate. In particular, we observe that
an accurate estimation of te for maximum WIP-level wmax is crucial. The reason is that 1/te(wmax) determines the predicted
maximum throughput of the workstation. To arrive at an accurate te(wmax) estimation, we take for wmax the WIP-level above
which te(w) is approximately constant. If we set wmax to this WIP-level, we obtain the largest number of EPT realizations for
wmax, while we do not discard the WIP-dependency of te. Furthermore, for WIP-levels smaller than wmax we observe noise on
te(w) and ce(w) because little EPT realizations may have been collected for certain WIP-levels. To overcome this problem of
noise we introduce a curve fitting approach, similar to [21].

The left plot in Figure 9 shows te(w) (the black line), obtained using only 20000 arrivals and departures. The middle plot
of Figure 9 shows ce(w) (the black line). We choose wmax = 15, because for w > 15, te(w) does not decrease further. Note
that Figure 9 shows noise on the values of te(w) and ce(w) for w < 15. To deal with the noise, we approximate the measured
te(w) values by t̂e(w), for which we use the following exponential function [21]:

t̂e(w) = θ + (η − θ)e−λ(w−1). (1)

Herein, θ represents the value of t̂e(w) at w =∞. Variable η represents the value of t̂e(w) at w = 1. Variable λ represents the
‘decay constant’ of the exponential curve. We set η equal to the measured te(w) value for w = 1. We set θ such that t̂e(15) is
equal to the measured te for w = 15. Variable λ is estimated using a non-linear least-squares fitting procedure. The values of
θ, η, and λ we find are 2.224, 0.548, and 0.4716 respectively. We approximate the measured ce values by ĉe(w), which is of
the same exponential form as Equation (1). The obtained values of θ, η, and λ are 0.5899, 0.8265, and 1.0413 respectively.

The right plot of Figure 9 shows the cumulative overtaking probabilities P (K ≤ k;w) as a function of k for several values
of w. For the overtaking distribution, we do not introduce a curve fit; we use the measured overtaking distribution directly
in the aggregate model. For WIP-levels for which we have not measured the overtaking probabilities, we again assume that
the overtaking probabilities are the same as for the highest measured WIP-level. In principle, a curve fit could be used to
represent the overtaking probabilities. For example, [22] fit discrete distributions for which the stochastic variable exists in the
range [0, 1, ..,∞]. However, in our case a sampled K value is always less than or equal to a finite value (w). For this type of
distribution, little results are reported.

3) Cycle time predictions: The detailed simulation model of the Case II workstation is used to calculate the real cycle time
distribution for throughput ratios δ/δmax of 0.6, 0.8, and 0.9. Recall that the training level is δ/δmax = 0.8. We use the same
number of replications, simulation length, and start-up period as for Case I.

The aggregate model depicted in Figure 1b is used to predict cycle time distributions. We again use the same number of
replications, simulation length, and start-up period as in Case I. In the aggregate model, we use Poisson arrivals the same as
in the detailed simulation model, but assume all lots are the same (no recipes are used). We use gamma EPT distributions in
the aggregate model for each WIP level w, with the fitted mean t̂e(w) and coefficient of variability ĉe(w). For the overtaking
distributions in the aggregate model, we use the empirical overtaking distributions (as we did in Case I).

Figure 10 depicts the cycle time distributions obtained for the considered workstation and the aggregate model at throughput
ratios 0.6, 0.8, and 0.9. The figure shows that again the tail of the cycle time distribution is accurately predicted, even though
we have measured only 20000 arrivals and departures. For low cycle times, predictions are less accurate because of the effect
explained in Section III-A.

IV. CROLLES2 CASE

We finally apply the proposed method to an operational workstation at the Crolles2 wafer fab. Crolles2 is a multi-product
300mm fab in which both high volume products and small series and prototype products are produced. Standard production lots,
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Fig. 9. Measured mean EPT te (left) and coefficient of variability ce (middle) with fitted curves, and measured cumulative overtaking probabilities (right)
of Case II using 20000 arrivals and departures
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Fig. 10. Cycle time distribution of Case II, and predicted by the aggregate model using 20000 arrivals and departures for throughput ratio 0.6, 0.8, and 0.9

so-called FOUPs (Front Opening Unified Pods), contain 25 wafers. In this section, we first describe the considered Crolles2
workstation, which is the lithography workstation. Subsequently, we explain how arrival and departure data was obtained and
filtered. Next, we calculate from the arrival and departure data the EPT-distributions and overtaking probability distributions.
Finally, cycle time distributions are predicted using the aggregate model.

A. Crolles2 Lithography Workstation

The lithography workstation consists of 14 track-scanner machines of different types, with different recipe qualifications.
Lots are loaded on one of the load ports of a machine, after which wafers are sequentially loaded into the machine. First,
wafers are cleaned, coated, and baked in the track. Then, the wafers are exposed in the scanner. Finally, the exposed wafers
return to the track where they are developed and hard-baked. After all wafers of a lot have been loaded, the track starts loading
the wafers of the next lot (if available on a load port). A track-scanner has four load ports; thus wafers of at most four lots
can be in process at the same time, depending on the number of wafers per lot.

B. Calculating model parameters

At the Crolles2 site, arrivals and departures of 42141 lots processed at the litho workstation were obtained from the
Manufacturing Execution System (MES). To obtain arrivals and departures from MES data, the data is filtered as described in
[21]. After this filtering, the EPT algorithm in Appendix A is used to calculate EPT-realizations and lot overtaking realizations.
We choose wmax = 100; for w > 100, te(w) does not decrease further. Similar to Section III, we use the gamma distribution
to represent the EPT distributions for each WIP-level.

The left plot of Figure 11 shows the measured te values as a function of the number of lots w in the system upon the EPT
start (the solid line). The middle plot depicts the measured ce as a function of w. For reasons of confidentiality, no values
on the y-axes are given. The dashed grey lines in the left and middle plot represents fitted curves, which we fit using the
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Fig. 11. Measured mean EPT te (left) and coefficient of variability ce (middle) with fitted curves, and measured cumulative overtaking probabilities (right)
of the Crolles2 lithography workstation

procedure described in Section III using exponential function (1). Note that we do not have EPT realizations for w < 18. For
te and ce at w = 1 we estimate values; te and ce at 1 < w < 18 then follow from the curve fit.

The left plot of Figure 11 clearly illustrates that the mean interdeparture time decreases because the workstation becomes
more productive for increasing w (more lots are in process), and approaches a minimum value for which the system works at
its full throughput.

The right plot of Figure 11 shows the measured cumulative overtaking probabilities P (K ≤ k;w). Note that for w ≥ 50
considerable overtaking occurs. We have not measured overtaking realizations for WIP-levels lower than 18 and higher than
256. We assume that no overtaking takes place for WIP-levels lower than 18. For WIP levels higher than 256, we use the
same overtaking probabilities as measured for a WIP-level of 256.

C. Cycle Time Predictions

We use the aggregate model depicted in Figure 1b to estimate cycle time distributions of the lithography workstation,
using gamma-distribution EPT distributions based on fitted values t̂e(w) and ĉe(w), and the empirical overtaking overtaking
distribution as model parameters. We again perform 15 simulation replications, a simulation run length of 105 lots, a start-up
period of 2 · 104 lots, and the same arrival process as measured at the lithography workstation.

Figure 12 depicts cycle time distributions for the lithography workstation at relative throughput levels of 0.8, 0.9 and 1.0.
The relative throughput is defined here as the throughput δ divided by the throughput at the training point δ∗. We use here the
relative throughput instead of throughput ratio δ/δmax because of confidentiality reasons. We do not consider relative throughput
levels higher than 1.0, because δ∗ is already very high.

The rightmost plot represents the cycle time distribution at the training point of the workstation (δ/δ∗ = 1). The x-axis
denotes cycle time ϕ, the y-axis probability P (ϕ− ε < X < ϕ) (for some small ε > 0). The solid line in the rightmost plot
represents the measured cycle time distribution of the workstation at the training point. The dashed lines represent the cycle
time distributions estimated by the proposed method.

Figure 12 shows that the cycle time distribution is accurately estimated at the training point (the rightmost plot). For a
decreasing relative throughput level, the predicted cycle times decrease. We can only verify the cycle time distribution at the
training point. The simulation test cases described in Section III indicates that accurate predictions can be made for throughput
levels other than the training point, in particular for the tail of the distribution. Therefore, we expect that accurate cycle time
distributions can be obtained at throughput levels other than the training point.

V. CONCLUSION

The proposed aggregate modeling method provides a simple and practical way to predict cycle time distributions for
semiconductor workstations by means of simulation. The aggregate model is a single-server representation of the workstation
that requires little development time and computational effort compared to a full-detail simulation model. The process time in
the aggregate model, referred to as the Effective Process Time (EPT), is sampled from an EPT distribution that depends on
the momentary WIP. The WIP-dependent EPT distribution includes semiconductor behavior such as integrated processing, and
outage delays. The order in which lots are processed is modeled by means of a WIP-dependent overtaking distribution; lots
entering the buffer have a probability to overtake other lots. Key to our approach is that the WIP-dependent EPT distribution
and overtaking distribution are determined from arrival and departure events, measured at the operational workstation.
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Fig. 12. Cycle time distribution of the litho workstation, and predicted by the proposed method for relative throughput levels of 0.8, 0.9, and 1.0

We have first validated the method using a simulation case of a workstation in which we vary the number of parallel
machines, the number of integrated processes, the dispatching rule, and the variability of the process time and the interarrival
time. We conclude that cycle time distributions can be accurately predicted by the aggregate model, in particular the tail of
the distribution.

In a second experiment, we have investigated the effect of a limited data set using a simulation model that may be viewed as a
lithography workstation. In this experiment, we measured only 20000 arrivals and departures to estimate the EPT distribution and
overtaking distribution, which is an amount that may typically be encountered in semiconductor practice. We have introduced
a curve fitting approach to overcome the difficulties with noise that arise because of the limited amount of data. The accuracy
of the prediction is in particular sensitive to the value of the parameter in the curve fit that represents the maximum throughput
of the system.

We have demonstrated the applicability of the proposed method in semiconductor practice by applying the method on a the
Crolles2 lithography workstation. We have obtained an accurate cycle distribution prediction when comparing the simulated
cycle time distributions with the measured cycle time distribution at the throughput level of operation. The results of the
simulation test case suggest that also accurate predictions can be made for throughput levels other than the operational
throughput.

In this way, for planning purposes, the maximum throughput can be estimated for which 95% of the lots are completed
within a user-defined time span using the 95% quantile. Lithography is usually the main contributor to the cycle time of lots.
We expect that the proposed method can also be used for other semiconductor workstations, such as the metal or implant
workstations. These workstations also have wafers of multiple lots in process at the same time.

The proposed aggregate model may be also be helpful in areas other than production planning. In their survey, Taylor and
Robinson [23] state that there is a need for higher level modeling techniques that abstract away from low-level model detail
to justify the development of a detailed model. Furthermore, Fowler and Rose [24] state that reducing problem solving cycles
is a grand challenge in modeling and simulation of complex manufacturing systems. Abstract models such as the aggregate
model proposed in the current paper may be helpful in these respects.

In future research we aim to investigate whether we can use our aggregate model to aggregate entire manufacturing networks.
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APPENDIX

The algorithm used to calculate EPT-realizations and overtaking realizations is depicted in Figure 13. The following variables
are used: variable τ denotes the event time, variable ev the event type (arrival a or departure d), and i the lot arrival number
(so lot i is the ith arriving lot). Furthermore, variable xs is a list that stores for each lot in the system its arrival number, i,
and the number of lots in the system just before its arrival aw . Variable s is used to store the EPT start time. Variable sw
stores the number of lots in the system just after the EPT start. Variable k denotes the number of lots that a lot has overtaken.
Function detOvert uses the following additional variables: ys is a list that stores part of list xs . Variable j stores a lot arrival
number.

The EPT algorithm takes the aggregate model viewpoint. Upon an arrival event, a new EPT is started if the lot arrives in
an empty system (len(xs) = 0). The start time s becomes τ and the corresponding WIP-level is stored in variable sw . For
every arriving lot, the lot arrival number i and the number of lots in the system just before arrival (len(xs)) are added to the
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end of list xs (indicated by ++). When a departure event occurs, an EPT ends, the EPT being current time τ minus EPT start
time s. The EPT is written to output along with number of lots in the system just after the EPT start sw . Next, the algorithm
reconstructs how many lots k were overtaken by the departing lot using function detOvert, and furthermore returns number of
lots aw in the system just before arrival of lot i and list xs with the information of lot i removed. The number of overtaken
lots (k) and the number of lots in the system just before the arrival of lot i (aw ) are written. If there are still lots in the system
after the departure (len(xs) > 0), a new EPT start time is stored in s, as well as the corresponding number of lots currently
in the system (len(xs)).

The input of function detOvert consists of list xs and the arrival number i of the departing lot. The function iteratively
removes each lot from xs and assigns its arrival number and the number of lots just before its arrival to variables j and aw
respectively. If the arrival number of the observed lot is lower than the arrival number i of the departed lot, then (j, aw) is
concatenated to ys . If the arrival number j of the observed lot is equal to i, the function returns list ys ++ xs , which does not
include lot i. Furthermore, the length of ys , and aw are returned. Note that the length of ys is equal to the number of lots
that arrived earlier than lot i, but that are still in the system upon the departure of lot i. In other words, the length of ys is
equal to the number of lots overtaken by lot i.

loop
read τ, ev , i
if ev = a :

if len(xs) = 0 :
(s, sw) := (τ, 1)

end if
xs := xs ++[(i, len(xs))]

elseif ev = d :
write τ − s, sw
(xs, k, aw) := detOvert(xs, i)
write k, aw
if len(xs) > 0 :

(s, sw) := (τ, len(xs))
end if

end if
end loop

function detOvert(xs, i) :
ys := []
while len(xs) > 0 :

(j, aw) := head(xs); xs := tail(xs)
if j < i :

ys := ys ++[(j, aw)]
elseif j = i :

return (ys ++ xs, len(ys), aw)
end if

end while

Fig. 13. EPT Algorithm (left) and function detOvert (right).
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